

www.elliottlabs.com

Elliott Laboratories Inc. 684 West Maude Avenue Sunnyvale, CA 94086-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to FCC Part 15, Subpart C Specifications for an Intentional Radiator and FCC Part 15, Subpart B Specifications for a Receiver on the Savi Technology, Inc. Model: EchoPoint Reader 600, model SR-600-101

> FCC ID: KL7 - 612R- V1 GRANTEE: Savi Technology, Inc. 615 Tasman Drive Sunnyvale, CA 94089-1707 TEST SITE: Elliott Laboratories, Inc. 684 W. Maude Avenue Sunnyvale, CA 94086

REPORT DATE: October 16, 2001

FINAL TEST DATE:

September 6, 2001

AUTHORIZED SIGNATORY:

Mark Briggs

Director of Engineering

This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

TABLE OF CONTENTS

COVER PAGE	
TABLE OF CONTENTS	2
SCOPE	4
OBJECTIVE	4
STATEMENT OF COMPLIANCE	5
EMISSION TEST RESULTS	5
LIMITS OF CONDUCTED INTERFERENCE VOLTAGE	
LIMITS OF RADIATED FIELD STRENGTH - RECEIVER	
BANDWIDTH	
DUTY CYCLE CALCULATION	
PERIOD OF OPERATION	
LIMITS OF RADIATED FIELD STRENGTH - INTENTIONAL RADIATOR	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
ENCLOSURE	
SUPPORT EQUIPMENT	
EXTERNAL I/O CABLING	
TEST SOFTWARE	8
TEST SITE	9
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	9
MEASUREMENT INSTRUMENTATION	.10
RECEIVER SYSTEM	. 10
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	. 11
ANTENNAS	. 11
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	. 11
TEST PROCEDURES	.12
EUT AND CABLE PLACEMENT	. 12
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	. 13
CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207 & 15.107(A)	
FUNDAMENTAL AND HARMONIC LIMITS 15.231 (B)	
FUNDAMENTAL AND HARMONIC LIMITS 15.231 (E)	. 14
RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209	
RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.109(A) (RECEIVER)	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	. 16

TABLE OF CONTENTS (Continued)

EXHIBIT 1: Test Equipment Calibration Data	.1
EXHIBIT 2: Test Data Log Sheets	
EXHIBIT 3: Test Configuration Photographs	
EXHIBIT 4: Theory of Operation	
EXHIBIT 5: Proposed FCC ID Label & Label Location	
EXHIBIT 6: Detailed Photographs	
EXHIBIT 7: Installation Guide	
EXHIBIT 8: Block Diagram	.8
EXHIBIT 9: Schematic Diagrams	

SCOPE

An electromagnetic emissions test has been performed on the Savi Technology model EchoPoint Reader 600, model SR-600-101 pursuant to Subpart C of Part 15 of FCC Rules for intentional radiators and Subpart B of Part 15 of FCC Rules for receivers. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The transceiver above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Savi Technology model SaviReader 612R and therefore apply only to the tested sample. The sample was selected and prepared by Eugene Schlindwein of Savi Technology, Inc.

OBJECTIVE

The primary objective of the manufacturer is compliance with Subparts B and C of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiators and receivers. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

STATEMENT OF COMPLIANCE

The tested sample of Savi Technology, Inc. model EchoPoint Reader 600, model SR-600-101 complied with the requirements of Subpart C of Part 15 of the FCC Rules for low power intentional radiators and the requirements of Subpart B of Part 15 of the FCC Rules for receivers operating between 30 MHz and 960 MHz.

Maintenance of FCC compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

EMISSION TEST RESULTS

The following emissions tests were performed on the Savi Technology model EchoPoint Reader 600, model SR-600-101. The actual test results are contained in an exhibit of this report.

LIMITS OF CONDUCTED INTERFERENCE VOLTAGE

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.207 for an intentional radiator and Part 15 Section 15.107(a) for a receiver.

The following measurement was extracted from the data recorded during the conducted emissions scan and represents the highest amplitude emission relative to the specification limit. The actual test data and any correction factors are contained in an exhibit of this report.

120 1/00112								
Frequency	Level	Power	12.207	/ 15.107(a)	Detector			
MHz	dBuV	Lead	Limit	Margin	QP/Ave	Comments		
0.6133	30.4	Neutral	48.0	-17.6	QP			

120V/60Hz

LIMITS OF RADIATED FIELD STRENGTH - RECEIVER

The EUT tested complied with the limits detailed in FCC Rules Part 15 FCC Rules Part 15 Section 15.109(a) for a receiver.

The following measurement was extracted from the data recorded during the radiated electric field emissions scan and represents the highest amplitude emission relative to the specification limit. The actual test data and any correction factors are contained in an exhibit of this report.

	50 - 1000 MITZ								
	Frequency	Level	Pol	Cla	ass B	Detector	Azimuth	Height	Comments
	MHz	dBuV/m	v/h	Limit	Margin	Pk/QP/Avg	Degrees	Meters	
ĺ	112.030	32.0	V	43.5	-11.5	QP	67	1.0	

30 - 1000 MHz

BANDWIDTH

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.231(c). The 20dB bandwidth was 445 kilohertz.

DUTY CYCLE CALCULATION

The maximum duty cycle permitted for the data and control signals (other than the Wake-Up signal) is 33% (refer to the Theory of Operations for details) when measured over any 100mS period. This corresponds to a minimum average duty cycle correction factor of -9.5 dB to be applied to peak readings to calculate the average level of the signal.

PERIOD OF OPERATION

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.231(a) for control signals and 15.231(e) for data signals. Refer to the Theory of Operations for more details.

LIMITS OF RADIATED FIELD STRENGTH -INTENTIONAL RADIATOR

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.231 and 15.209 in the case of emissions falling within the frequency bands specified in Section 15.205.

The following measurement was extracted from the data recorded during the radiated electric field emissions scan and represents the highest amplitude emission relative to the specification limit. The actual test data and any correction factors are contained in an exhibit of this report.

Wake op Control Signal. Fundamental								
Frequency	Level	Pol		31(a)	Detector		Height	
MHz	dBuV/m	v/h	Limit	Margin	Pk/QP/Av	degrees	meters	Comments
				_	g	-		
433.920	75.4	V	80.8	-5.4	Pk	250	1.6	

"Wake-Up" Control Signal: Fundamental

	wake-op Condo Signal. Harmonics								
Freque	ncy	Level	Pol	15.2	31(a)	Detector	Azimuth	Height	
MHz	2	dBuV/m	v/h	Limit	Margin	Pk/QP/Av	degrees	meters	Comments
					-	g			
1301.7	43	43.7	V	54.0	-10.3	Pk	260	1.1	

"Wake-Up" Control Signal: Harmonics

Data and Other Control Signals: Fundamental

Frequency	Level	Pol		31(e)	Detector	Azimuth	Height	
MHz	dBuV/m	v/h	Limit	Margin	Pk/QP/Av	degrees	meters	Comments
				C	g	U U		
433.920	72.3	Н	72.9	-0.6	Avg	165	1.6	

Data and Other Control Signals: Harmonics

Frequency	Level	Pol	15.2	31(e)	Detector	Azimuth	Height	
MHz	dBuV/m	v/h	Limit	Margin	Pk/QP/Av	degrees	meters	Comments
				-	g	-		
2603.000	53.2	Н	54.0	-0.8	Pk	245	1.3	

MEASUREMENT UNCERTAINTIES

ISO Guide 25 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.2

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Savi Technology model EchoPoint Reader 600, model SR-600-101 is a controlling transceiver that is used as a part of a Tag identification system. The device operates at 433.92MHz.

The sample was received on October 4, 2001 and tested on September 6, 2001. The EUT consisted of the following component(s):

Manufacturer/Model/Description	Serial Number	FCC ID Number
Savi Technology/ SR-600-101 /Tag	N/A	KL7-612R-V1
identification system		

ENCLOSURE

The EUT enclosure is primarily constructed of plastic with an internal conductive paint coating. It measures approximately 30 cm (12 in.) diameter x 14 cm (5.5 in.) high.

SUPPORT EQUIPMENT

The following equipment was used as remote support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
Compaq	Armada	Laptop PC	-	-
Savi	SR-600-101	433.92MHz	-	-
		transceiver		

EXTERNAL I/O CABLING

The I/O cabling configuration during emissions testing was as follows:

Cable Description	Length (m)	From Unit/Port	To Unit/Port
RS485	30	RS485 in	Laptop
RS485	30	RS485 through	Savi Reader
AC Power	2	AC plug	AC power

TEST SOFTWARE

The system was configured to continuously transmit a CW signal at the maximum output power permitted in the current revision of firmware. The laptop was continuously acquiring data from the EUT.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on September 6, 2001 at the Elliott Laboratories Open Area Test Site #2 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4-1992. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions, which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207 & 15.107(a)

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency Range (MHz)	Limit (uV)	Limit (dBuV)
0.450 to 30.000	250	48

FUNDAMENTAL AND HARMONIC LIMITS 15.231 (b)

The table below shows the limits for both the Fundamental and Harmonic emissions for each frequency band of operation detailed in Section 15.231 (b) for control signals.

Operating Frequency (MHz)	Field strength (microvolts/m)	Harmonics (microvolts/m)
70 - 130	1250	125
130 - 174	1250 - 3750	125 - 375
174 - 260	3750	375
260 - 470	3750 - 12,500	375 - 1250
Above 470	12,500	1250

FUNDAMENTAL AND HARMONIC LIMITS 15.231 (e)

The table below shows the limits for both the Fundamental and Harmonic emissions (that do not fall in restricted bands) for each frequency band of operation detailed in Section 15.231 (e) for data signals.

Operating Frequency (MHz)	Field strength (microvolts/m)	Harmonics (microvolts/m)
70 - 130	500	50
130 - 174	500 - 1500	50 - 150
174 - 260	1500	150
260 - 470	1500 - 5000	150 - 500
Above 470	5000	500

RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

_

RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.109(a) (RECEIVER)

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

The table below shows the limits for emissions from the receiver.

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$\mathbf{R_r} - \mathbf{B} = \mathbf{C}$$

and

$$\mathbf{C} - \mathbf{S} = \mathbf{M}$$

where:

 $R_r = Receiver Reading in dBuV$

- B = Broadband Correction Factor*
- C = Corrected Reading in dBuV
- S = Specification Limit in dBuV
- M = Margin to Specification in +/- dB
- * Broadband Level Per ANSI C63.4, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

- R_r = Receiver Reading in dBuV/m
- F_d = Distance Factor in dB
- R_{c} = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

EXHIBIT 1: Test Equipment Calibration Data

Radiated Emissions, 30 - 4300 MHz, 31-Aug-01 05:15 PM

Engineer:	Mark
Lingineer.	ivia i n

Manufacturer	<u>Description</u>	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
A.H. Systems	Biconical Antenna, 20-200 MHz	SAS-200/540H	866	12	3/16/2001	3/16/2002
Dorado International Corp	Horn Antenna, 1 - 12 GHz	GH1-12N	1258	12	11/9/2000	11/9/2001
EMCO	Conical Log Spiral Antenna	3101	608	12	5/2/2001	5/2/2002
Hewlett Packard	EMC Spectrum Analyzer 9kHz - 6.5GHz	8595EM	787	12	2/14/2001	2/14/2002
Hewlett Packard	Microwave Preamplifier 0.5-26.5GHz	83017A	1257	12	10/16/2000	10/16/2001
Hewlett Packard	RF Preamplifier 100 kHz -1.3 GHz	8447D	789	12	12/13/2000	12/13/2001

Radiated Emissions, 30 - 1000 MHz (Digital Device/Receiver), 06-Sep-01 05:43 PM

Engineer: Mark						
Manufacturer	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
EMCO	Biconical Antenna, 30-300 MHz	3110B	801	11	10/12/2000	10/12/2001
EMCO	Log Periodic Antenna, 0.2-2 GHz	3148	1321	12	4/10/2001	4/10/2002
Rohde & Schwarz	Test Receiver, 20-1300MHz	ESVP	273	12	10/5/2000	10/5/2001

Radiated Emissions, 30 - 4340 MHz (FCC15.231(e)), 06-Sep-01 05:45 PM

Manufacturer	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
EMCO	Biconical Antenna, 30-300 MHz	3110B	801	11	10/12/2000	10/12/2001
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	868	12	10/26/2000	10/26/2001
Filtek	High Pass Filter, 1GHz	HP12/1000-5BA	956	12	3/22/2001	3/22/2002
Hewlett Packard	EMC Spectrum Analyzer, Opt. 026 9 KHz -26.5GHz	8593EM	1141	12	2/16/2001	2/16/2002
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	263	12	8/21/2001	8/21/2002
Rohde & Schwarz	Test Receiver, 20-1300MHz	ESVP	273	12	10/5/2000	10/5/2001

Conducted Emissions, AC and DC lines, 0.15 - 30 MHz, 06-Sep-01 08:03 PM

Engineer: Mark

Engineer: Mark

<u>Manufacturer</u>	Description	Model #	Assett #	Cal interval	Last Calibrated	<u>Cal Due</u>
Elliott Laboratories	FCC / CISPR LISN	LISN-3, OATS	304	12	6/14/2001	6/14/2002
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	372	12	7/27/2001	7/27/2002
Rohde & Schwarz	Test Receiver, 0.009-30 MHz	ESH3	215	12	10/5/2000	10/5/2001

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T44655 10 Pages

Elliot	t
Client:	Savi
Model:	EchoPoint Reader 600 Model SR-60

EMC Test Data

Client:	Savi	Job Number:	J44653
Model:	EchoPoint Reader 600 Model SR-600-101	T-Log Number:	T44655
		Proj Eng:	Mark Briggs
Contact:	Gene Schlindwein		
Emissions Spec:	FCC 15.231(e) & 15 Subpart B	Class:	В
Immunity Spec:	EN 301 489-03	Environment:	-

EMC Test Data

For The

Savi

Model

EchoPoint Reader 600 Model SR-600-101

C EIIIOII

EMC Test Data

Client:	Savi	Job Number:	J44653
Model:	EchoPoint Reader 600 Model SR-600-101	T-Log Number:	T44655
		Proj Eng:	Mark Briggs
Contact:	Gene Schlindwein		
Emissions Spec:	FCC 15.231(e) & 15 Subpart B	Class:	В
Immunity Spec:	EN 301 489-03	Environment:	-

EUT INFORMATION

General Description

The EUT is a transceiver which is designed to operate at 433.92 MHz. The EUT can operate from either AC power (230V/50Hz or 120V/60Hz) or from dc power. In addition the system has mutually exclusive RS 232 and RS 485 interface ports. The RS 232 interface is intended to connect to an RS232 to ethernet adapter.

The electrical rating of the EUT is 92-125/184-250 VAC, 50/60 Hz, 200/100 mA, 6-15 VDC, 300 mA

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Savi Technology	SR-600-101	433.92 MHz transceiver		

Other EUT Details

The EUT is designed to be used as a part of Savi's tag identification systems. With respect to Part 15 of the FCC's rules the EchoPoint Reader 600 is classified as a Class A digital device and as a transceiver operating under section 15.231.

The emissions related to the digital circuitry must comply with the limits for Class A digital devices detailed in FCC Parts 15.107(b) and 15.109(b).

The emissions from the receiver must comply with the limits detailed in 15.107(a) and 15.109(a). The transmitter emissions must comply with the requirements of 15.207 (with respect to AC conducted emissions) and with 15.231 for the intentionally transmitted signals. The requirements of 15.231(e) are to be applied to the data signals. the Wake-Up signal, which is a control signal, must meet the requirements of 15.231(a).

EUT Enclosure

The EUT enclosure is primarily constructed of plastic with an internal conductive paint coating. It measures approximately 30 cm (12 in.) diameter x 14 cm (5.5 in.) high.

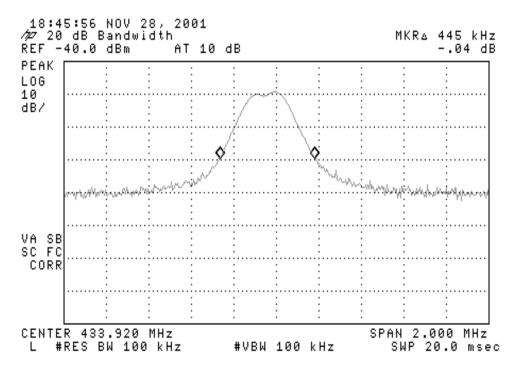
Modification History

Mod. #	Test	Date	Modification
1	-	-	None

Ellio			Job Number:	C Test Dat
	: EchoPoint Reader 600	Model SR-600-101	T-Log Number:	
Woder				Mark Briggs
Contact	: Gene Schlindwein			
Emissions Spec	: FCC 15.231(e) & 15 St	ubpart B	Class:	В
	: EN 301 489-03	·	Environment:	-
		nfiguration (RS4	-	
Manufacturer	Model	Description	Serial Number	FCC ID
None	-	-	-	-
Savi	SR-600-101	433.92MHz transceiver		I
Savi	SK-000-101	Interface Ports		
		Interface Ports	Cable(s)	
Port	Connected To		Shielded or Unshiel	
Port AC Power	Connected To AC power	Interface Ports	Shielded or Unshielded	2
Port AC Power RS485 In RS485 through	Connected To AC power Laptop SaviReader	Interface Ports Description	Shielded or Unshield unshielded shielded shielded	2 30 30
Port AC Power RS485 In RS485 through he system has both I nutually exicusive). T ransmit Mode The system was cor	Connected To AC power Laptop SaviReader RS232 and RS485 interfa his test configuration wa EUT	Interface Ports	Shielded or Unshield unshielded shielded shielded protocol is supported at 485 interface) sions aximum output power pe	a time (i.e. they are

y Lu	iott		El	MC Test Da
Client: Savi			Job Numbe	er: J44653
Model: EchoP	bint Reader 600 Model SR-600-10	1	T-Log Numbe	er: T44655
			Proj En	ng: Mark Briggs
Contact: Gene S				
Spec: FCC 1	5.231(e) & 15 Subpart B		Clas	ss: B
	Conducted F	Emissions - Po	ower Ports	
est Specifics				
Objectiv	e: The objective of this test session specification listed above.	on is to perform final quali	fication testing of the	EUT with respect to the
Date of Te	st: 9/6/2001	Config. Used:	#1 (RS 485 Mode)	
		-		
Test Engine	er: Mark Briggs	Config Change:	-	
Test Engined Test Locatio General Test C The EUT was lo	er: Mark Briggs n: SVOATS #3	EUT Voltage: om a vertical coupling pla	Refer to individual ru ne and 80cm from th	e LISN. Remote suppo
Test Engine Test Locatio General Test C The EUT was lo	er: Mark Briggs n: SVOATS #3 onfiguration cated on a wooden table, 40 cm fro ocated approximately 30 meters an	EUT Voltage: om a vertical coupling pla way from the test area, w 21°C	Refer to individual ru ne and 80cm from th	e LISN. Remote suppo
Test Engine Test Locatio General Test C The EUT was lo equipment was l	er: Mark Briggs n: SVOATS #3 onfiguration cated on a wooden table, 40 cm fro ocated approximately 30 meters a tions: Temperature: Rel. Humidity:	EUT Voltage: om a vertical coupling pla way from the test area, w 21°C	Refer to individual ru ne and 80cm from th	e LISN. Remote suppo
Test Engine Test Location eneral Test C The EUT was lo equipment was I mbient Cond	er: Mark Briggs n: SVOATS #3 onfiguration cated on a wooden table, 40 cm fro ocated approximately 30 meters a tions: Temperature: Rel. Humidity:	EUT Voltage: om a vertical coupling pla way from the test area, w 21°C	Refer to individual runne and 80cm from the and 1/O connections	e LISN. Remote suppo
Test Engine Test Locatio General Test C The EUT was lo equipment was l mbient Cond fummary of R Run # 1	er: Mark Briggs n: SVOATS #3 onfiguration cated on a wooden table, 40 cm fro ocated approximately 30 meters an itions: Temperature: Rel. Humidity: esults Test Performed CE, AC Power 230V/50Hz	EUT Voltage: om a vertical coupling pla way from the test area, w 21°C 56% Limit EN 301 489-03	Refer to individual runne and 80cm from the and 1/O connections	e LISN. Remote suppo s routed overhead.
Test Engine Test Locatio General Test C The EUT was lo equipment was I Ambient Cond Gummary of Re Run #	er: Mark Briggs n: SVOATS #3 onfiguration cated on a wooden table, 40 cm fro ocated approximately 30 meters a tions: Temperature: Rel. Humidity: esults Test Performed	EUT Voltage: om a vertical coupling pla way from the test area, w 21°C 56% Limit	Refer to individual ru ne and 80cm from th ith all I/O connections	e LISN. Remote suppo s routed overhead.

Client:	Savi						Job Number:	J44653
Model:	EchoPoir	nt Reader	600 Model	SR-600-10	1		T-Log Number:	T44655
							Proj Eng:	Mark Briggs
Contact:	Gene Scl	nlindwein						
Spec:	FCC 15.2	231(e) & 1	5 Subpart	В			Class:	В
						120V/60Hz		
				•			tion report and FCC c	ertification report
Frequency		AC		/15.207		Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.6133	30.4	Neutral	48.0	-17.6	QP			
1.8466	21.8	Neutral	48.0	-26.2	QP			
7.4786	15.1	Neutral	48.0	-32.9	QP			
7.4636	14.8	Line 1	48.0	-33.2	QP			
1.8466	23.1	Line 1	48.0	-24.9	QP			
0.6066	28.0	Line 1	48.0	-20.0	QP			
				-				


Client: Savi			J	Job Number: J4	44653
Model: EchoPo	int Reader 600 Model SR-600-101	1	T-L	og Number: T	44655
				Proj Eng: M	lark Briggs
Contact: Gene S	chlindwein				
Spec: FCC 15	.231(e) & 15 Subpart B			Class: B	
	Radi	iated Emissio	าร		
est Specifics					
-	e: The objective of this test session specification listed above.	n is to perform final quali	fication test	ting of the EUT	with respe
Date of Tes	t: 9/6/2001	Config. Used:	#1 for RS	485 Mode	
-	r: E Garcia / Mark Briggs	Config Change:			
Test Location	n: SVOATS #3	EUT Voltage:	120V/60H	Z	
The EUT and all equipment was lo On the OATS, the	local support equipment were loca located approximately 30 meters fro e measurement antenna was locat	om the test area with all I ted 3 meters from the EU	/O connect T.	ions routed ove	erhead.
equipment was lo On the OATS, the Note, preliminar measurement an of the measurem Note, for testing a	local support equipment were local cated approximately 30 meters from e measurement antenna was local y testing indicates that the emission tenna. Maximized testing indicate ent antenna, <u>and</u> manipulation of the above 1 GHz, the FCC specifies the iny emission above 1 GHz, can not	om the test area with all I ted 3 meters from the EU ons were maximized by o ed that the emissions were the EUT's interface cable the limit as an average me of exceed the average lime 21°C	/O connect T. rientation c re maximize s. asurement	ions routed over of the EUT and ed by orientation.	erhead. elevation c on of the EL
The EUT and all equipment was lo On the OATS, the Note, preliminar measurement an of the measurem Note, for testing a peak reading of a Ambient Condi	local support equipment were local cated approximately 30 meters from e measurement antenna was local y testing indicates that the emission tenna. Maximized testing indicates ent antenna, and manipulation of the above 1 GHz, the FCC specifies the above 1 GHz, the FCC specifies the inny emission above 1 GHz, can not tions: Temperature: Rel. Humidity: sults	om the test area with all I ted 3 meters from the EU ons were maximized by o ed that the emissions wer the EUT's interface cable the limit as an average me t exceed the average lim 21°C 56%	/O connect T. rientation c re maximize s. asurement it by more	ions routed over of the EUT and ed by orientation . In addition, the than 20 dB.	erhead. elevation c on of the EL he FCC sta
The EUT and all equipment was lo On the OATS, the Note, preliminar measurement an of the measurem Note, for testing a peak reading of a Ambient Condi Summary of Re Run #	local support equipment were local cated approximately 30 meters from e measurement antenna was locat y testing indicates that the emission tenna. Maximized testing indicates ent antenna, and manipulation of the above 1 GHz, the FCC specifies the inny emission above 1 GHz, can no tions: Temperature: Rel. Humidity: sults Test Performed	om the test area with all I ted 3 meters from the EU ons were maximized by o ed that the emissions were the EUT's interface cable the limit as an average me to exceed the average lime 21°C 56%	/O connect T. rientation c re maximize s. asurement it by more Result	ions routed over of the EUT and ed by orientation . In addition, the than 20 dB. Marg	erhead. elevation o on of the EL he FCC sta
The EUT and all equipment was lo On the OATS, the Note, preliminar measurement an of the measurem Note, for testing a peak reading of a Ambient Condi	local support equipment were local cated approximately 30 meters from e measurement antenna was locat y testing indicates that the emission tenna. Maximized testing indicates ent antenna, and manipulation of the above 1 GHz, the FCC specifies the iny emission above 1 GHz, can no tions: Temperature: Rel. Humidity: sults Test Performed RE, 30 - 1000MHz -	om the test area with all I ted 3 meters from the EU ons were maximized by o ed that the emissions were the EUT's interface cable the limit as an average me of exceed the average lime 21°C 56% Limit FCC 15 Class B	/O connect T. rientation c re maximize s. asurement it by more	ions routed over of the EUT and ed by orientation . In addition, the than 20 dB.	erhead. elevation o on of the EL he FCC sta
The EUT and all equipment was lo On the OATS, the Note, preliminar measurement an of the measurem Note, for testing a peak reading of a mbient Condi fummary of Re	local support equipment were local cated approximately 30 meters from e measurement antenna was local y testing indicates that the emission tenna. Maximized testing indicates ent antenna, and manipulation of the above 1 GHz, the FCC specifies the inny emission above 1 GHz, can no tions: Temperature: Rel. Humidity: sults Test Performed RE, 30 - 1000MHz - Maximized (RS485 Mode) RE, 30 - 4339 MHz Maximized	om the test area with all I ted 3 meters from the EU ons were maximized by o ed that the emissions wer the EUT's interface cable the limit as an average me t exceed the average lim 21°C 56% <u>Limit</u> FCC 15 Class B (Receiver/Digital FCC 15.231(e)	/O connect T. rientation c re maximize s. asurement it by more Result	ions routed over of the EUT and ed by orientation . In addition, the than 20 dB. Marg	erhead. elevation c on of the EL he FCC sta jin 12.03MHz
The EUT and all equipment was lo On the OATS, the Note, preliminar measurement an of the measurem Note, for testing a peak reading of a mbient Condir ummary of Re <u>Run #</u> 2 3	local support equipment were local cated approximately 30 meters from e measurement antenna was locat y testing indicates that the emission tenna. Maximized testing indicates ent antenna, and manipulation of the above 1 GHz, the FCC specifies the iny emission above 1 GHz, can no tions: Temperature: Rel. Humidity: sults Test Performed RE, 30 - 1000MHz - Maximized (RS485 Mode) RE, 30 - 4339 MHz Maximized Emissions	om the test area with all I ted 3 meters from the EU ons were maximized by o ed that the emissions were the EUT's interface cable the limit as an average me of exceed the average lime 21°C 56% <u>Limit</u> FCC 15 Class B (Receiver/Digital FCC 15.231(e) (Intentional Radiator)	/O connect T. rientation c e maximize s. asurement it by more <u>Result</u> Pass Pass	ions routed over of the EUT and ed by orientation . In addition, the than 20 dB. Marg -11.5dB @ 1 6dB @ 43	erhead. elevation o on of the EL he FCC sta 12.03MHz 33.92MHz
The EUT and all equipment was lo On the OATS, the Note, preliminar measurement an of the measurem Note, for testing a peak reading of a mbient Condi ummary of Re Run # 2	local support equipment were local cated approximately 30 meters from e measurement antenna was local y testing indicates that the emission tenna. Maximized testing indicates ent antenna, and manipulation of the above 1 GHz, the FCC specifies the inny emission above 1 GHz, can no tions: Temperature: Rel. Humidity: sults Test Performed RE, 30 - 1000MHz - Maximized (RS485 Mode) RE, 30 - 4339 MHz Maximized	om the test area with all I ted 3 meters from the EU ons were maximized by o ed that the emissions wer the EUT's interface cable the limit as an average me t exceed the average lim 21°C 56% <u>Limit</u> FCC 15 Class B (Receiver/Digital FCC 15.231(e)	/O connect T. rientation c re maximize s. asurement it by more <u>Result</u> Pass	ions routed over of the EUT and ed by orientation :. In addition, the than 20 dB. Marg -11.5dB @ 1	erhead. elevation o on of the EL he FCC sta 12.03MHz 33.92MHz

Client:	Savi						~	Job Number:	J44653
Model:	EchoPoin	t Reader	600 Model	SR-600-10	1		T-l	og Number:	T44655
								Proj Eng:	Mark Briggs
Contact:	Gene Sch	lindwein							
Spec:	FCC 15.2	31(e) & ⁻	15 Subpart	В				Class:	В
	ns From		•				I.		
				irements of	f the standar	d			
		madon				u.			
Run #1: P	reliminary	Radiate	ed Emissio	ns, 30-1000) MHz				
S 485 Mo	•								
requency	Level	Pol	FC	СВ	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg		meters		
423.145	32.3	Η	46.0	-13.7	QP	138	1.0	Receiver LO)
112.030	29.0	Η	43.5	-14.5	QP	48	1.9		
423.145	30.6	V	46.0	-15.4	QP	145	1.0	Receiver LO)
112.030	27.4	V	43.5	-16.1	QP	67	1.0		
141.020	26.7	V	43.5	-16.8	QP	34	1.0	Broadband	noise
124.030	26.0	V	43.5	-17.5	QP	85	1.0		
140.030	24.6	V	43.5	-18.9	QP	280	1.0	Broadband	noise
120.030	23.2	<u>V</u>	43.5	-20.3	QP	73	1.0		
31.340	19.5	<u>V</u>	40.0	-20.5	QP	231	1.0		
136.030	22.3	<u>V</u>	43.5	-21.2	QP	90	1.0		
<u>116.030</u> 52.010	22.0 17.5	H V	43.5 40.0	-21.5 -22.5	QP QP	139 238	1.8 1.0		
128.030	20.6	V	40.0	-22.5	QP QP	238 61	1.0		
120.030	20.0	H	43.5	-22.9	QP	164	1.0		
133.310	20.3	V	43.5	-23.0	QP	104	1.7		
116.030	19.6	V	43.5	-23.9	QP	242	1.0		
132.030	19.3	V	43.5	-24.2	QP	302	1.0		
141.020	18.9	H	43.5	-24.6	QP	135	1.5	Broadband	noise
124.030		H	43.5	-25.5	QP	261	1.5		
140.030	17.6	Н	43.5	-25.9	QP	186	1.7	Broadband	noise
31.340	14.0	Н	40.0	-26.0	QP	198	1.4		
128.030	17.5	Н	43.5	-26.0	QP	203	1.5		
136.030	16.6	Η	43.5	-26.9	QP	360	1.0		
138.030	16.1	Н	43.5	-27.4	QP	86	1.6		
52.010	12.2	Η	40.0	-27.8	QP	187	1.2		
138.030	14.2	V	43.5	-29.3	QP	67	1.0		
132.030	14.0	Н	43.5	-29.5	QP	113	1.0		
133.310	10.5	Н	43.5	-33.0	QP	170	1.0		

Run #2: Maxin RS 485 Mode - - Frequency Li MHz dB 112.030 3 112.030 3 423.145 3 1423.145 3 141.020 2	ne Schlir C 15.231 mized R - Digital I evel 34,07 32.0 30.5 32.3 30.6	ndwein I (e) & 1 eading	5 Subpart I s From Ru and Receiv	B n #1	1 Detector Pk/QP/Avg	Azimuth degrees	Height	og Number: Proj Eng: Class: Comments	Mark Briggs
Spec: FC0 Run #2: Maxin RS 485 Mode - Frequency Li MHz dB 112.030 3 423.145 3 423.145 3 141.020 2	C 15.231 mized R - Digital I evel 3µV/m 32.0 30.5 32.3 30.6	I (e) & 1 eading Device Pol v/h V H	s From Ru and Receiv FCC 1 Limit 43.5	n #1 er 5.109 Margin			¥	Class:	
Spec: FC0 Run #2: Maxin RS 485 Mode - Frequency Li MHz dB 112.030 3 423.145 3 423.145 3 141.020 2	C 15.231 mized R - Digital I evel 3µV/m 32.0 30.5 32.3 30.6	I (e) & 1 eading Device Pol v/h V H	s From Ru and Receiv FCC 1 Limit 43.5	n #1 er 5.109 Margin			¥	Class:	
Spec: FC0 Run #2: Maxin RS 485 Mode - Frequency Li MHz dB 112.030 3 423.145 3 423.145 3 141.020 2	C 15.231 mized R - Digital I evel 3µV/m 32.0 30.5 32.3 30.6	I (e) & 1 eading Device Pol v/h V H	s From Ru and Receiv FCC 1 Limit 43.5	n #1 er 5.109 Margin			¥		В
Run #2: Maxir RS 485 Mode - - Frequency Li MHz dB 112.030 3 112.030 3 423.145 3 423.145 3 141.020 2	mized R - Digital I .evel 8µV/m 32.0 30.5 32.3 30.6	eading Device Pol v/h V H	s From Ru and Receiv FCC 1 Limit 43.5	n #1 er 5.109 Margin			¥		
RS 485 Mode - Frequency L MHz dB 112.030 3 112.031 3 423.145 3 423.145 3 141.020 2	- Digital I evel 3µV/m 32.0 30.5 32.3 30.6	Device Pol v/h V H	and Receiv FCC 1 Limit 43.5	er 5.109 Margin			¥	Comments	
Frequency L MHz dB 112.030 3 112.030 3 423.145 3 423.145 3 141.020 2	evel 34,000 32.0 30.5 32.3 30.6	Pol v/h V H	FCC 1 Limit 43.5	5.109 Margin			¥	Comments	
MHz dB 112.030 3 112.030 3 423.145 3 423.145 3 141.020 2	BμV/m 32.0 30.5 32.3 30.6	v/h V H	Limit 43.5	Margin			¥	Commente	
112.030 3 112.030 3 423.145 3 423.145 3 141.020 2	32.0 30.5 32.3 30.6	V H	43.5	ĕ	· · · · _ · · · · · g	ueurees	meters		
112.030 3 423.145 3 423.145 3 141.020 2	30.5 32.3 30.6				QP	67	1.0		
423.1453423.1453141.0202	32.3 30.6		45.0	-13.0	QP	48	1.9	Front cable	s moved around.
423.145 3 141.020 2	30.6	v	46.0	-13.7	QP	138	1.0	Receiver L	
141.020 2		ĥ	46.0	-15.4	QP	145	1.0	Receiver L	
	26.7	V	43.5	-16.8	QP	34	1.0	Broadband	-
127.000 2	26.0	V	43.5	-17.5	QP	85	1.0	2100000010	
	evel	Pol		5.231(e)	Detector	Azimuth	Height	Comments	
	βμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Nata 2	
433.920 433.920	72.3 71.8	H V	72.9 72.9	-0.6 -1.1	Avg	165 300		Note 2 Note 2	
2603.000	53.2	H	54.0	-1.1	Avg Pk	245			ng, average limit
2603.000	52.1	V	54.0	-0.0	Pk	243			ng, average limit
1735.662	49.0	V	54.0	-5.0	Pk	167			ng, average limit
1735.662	46.7	Ĥ	54.0	-7.3	Pk	66			ng, average limit
1301.743	44.1	V	54.0	-9.9	Pk	120			ng, average limit
433.920	81.8	Н	92.9	-11.1	Pk	165	1.6		5. 5
1301.743	42.7	Н	54.0	-11.3	Pk	310			ng, average limit
433.920	81.3	V	92.9	-11.6	Pk	300	1.3		
867.830	26.0	V	52.9	-26.9	QP	0	1.2	Note 3	

Client:							J	ob Number:	J44653
		Reader	600 Model	SR-600-10)1			og Number:	
					-	-		0	Mark Briggs
Contact:	Gene Schl	indwein						, ,	
Spec:	FCC 15.23	81(e) & 1	5 Subpart	В				Class:	В
			•		9 MHz, Tran	smitter - "Wa	ake-Up" Si	gnal	
			er FCC requ				•	•	
	r #2 (note 1							-	
Frequency		Pol		5.231(a)	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
433.920		V	80.8	-5.4	Pk	250			ng, average limit
433.920		H V	80.8	-7.2	Pk	330			ng, average limit
1301.743 2603.000		V	54.0 60.8	-10.3 -10.8	Pk Pk	260 90			ng, average limit ng, average limit
2603.000		H	60.8	-10.8	Pk	90 175			ng, average limit
1301.743		H	54.0	-12.3	Pk	316			ng, average limit
1735.662	47.5	V	60.8	-13.3	Pk	140			ng, average limit
Note 3:	showed the having the Signal sub The limit fo	e differe slightly stitution or signal	nce to be le higher outp measurem	ess than 0.5 out field stre ent ed bandsis	odB between ength.	the output le	vels from th	e two transr	eliminary measurement nitters, with transmitter signals the limit for
Note 3:	showed the having the Signal sub The limit fo	e differe slightly stitution or signal	nce to be le higher outp measurem s in restricte	ess than 0.5 out field stre ent ed bandsis	odB between ength.	the output le	vels from th	e two transr	nitters, with transmitter

20dB Bandwidth Measurement

EXHIBIT 3: Test Configuration Photographs

EXHIBIT 4: Theory of Operation Savi Technology, Inc. Model EchoPoint Reader 600, model SR-600-101

EXHIBIT 5: Proposed FCC ID Label & Label Location

EXHIBIT 6: Detailed Photographs Savi Technology, Inc. Model EchoPoint Reader 600, model SR-600-101Construction

EXHIBIT 7: Installation Guide Savi Technology, Inc. Model EchoPoint Reader 600, model SR-600-101

EXHIBIT 8: Block Diagram Savi Technology, Inc. Model EchoPoint Reader 600, model SR-600-101

EXHIBIT 9: Schematic Diagrams Savi Technology, Inc. Model EchoPoint Reader 600, model SR-600-101