

Electromagnetic Emissions Test Report Application for Grant of Equipment Authorization pursuant to FCC Part 15, Subpart C Specifications for an Intentional Radiator on the Savi Technology, Inc. Model: SMR-640P-110

FCC ID: KL7-600MR-V3

GRANTEE: Savi Technology, Inc.

615 Tasman Drive

Sunnyvale, CA. 94089-1707

TEST SITE: Elliott Laboratories, Inc.

> 684 W. Maude Avenue Sunnyvale, CA 94086

REPORT DATE: August 22, 2002

FINAL TEST DATE: July 23, July 29 and August 6, 2002

AUTHORIZED SIGNATORY:

Mark Briggs

Director of Engineering

Mark Bry

This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

TABLE OF CONTENTS

TABLE OF CONTE	NTS	2
SCOPE		3
OBJECTIVE		3
STATEMENT OF C	OMPLIANCE	3
EMISSION TEST R	ESULTS	4
LIMITS OF CONI	DUCTED INTERFERENCE VOLTAGE	4
	ATED INTERFERENCE FIELD STRENGTH	
	「UNCERTAINTIES	
EQUIPMENT UNDE	ER TEST (EUT) DETAILS	5
GENERAL		5
	S	
SUPPORT EQUIP	PMENT	5
EXTERNALI/O (CABLING	6
EUT OPERATION	V	6
TEST SITE		7
GENERAL INFO	RMATION	7
	MISSIONS CONSIDERATIONS	
	SSIONS CONSIDERATIONS	
MEASUREMENT IN	STRUMENTATION	8
RECEIVER SYST	EM	8
	ONTROL COMPUTER	
	CE STABILIZATION NETWORK (LISN)	
	IUATORS	
	T AND EQUIPMENT TURNTABLE	
INSTRUMENT C	ALIBRATION	9
TEST PROCEDURE	S	10
EUT AND CABL	E PLACEMENT	10
CONDUCTED EN	MISSIONS	10
RADIATED EMI	SSIONS	10
SPECIFICATION L	IMITS AND SAMPLE CALCULATIONS	11
CONDUCTED EN	MISSIONS SPECIFICATION LIMITS, SECTION 15.207	11
RADIATED EMIS	SSIONS SPECIFICATION LIMITS, SECTION 15.209	11
	JLATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCU	JLATIONS - RADIATED EMISSIONS	
EXHIBIT 1:	Test Equipment Calibration Data	
EXHIBIT 2:	Test Data Log Sheets	
EXHIBIT 3:	Test Configuration Photographs	
EXHIBIT 4:	Proposed FCC ID Label & Label Location	
EXHIBIT 5:	Detailed Photographs of Savi Technology, Inc. Model SMR-640P-110	
EXHIBIT 6: EXHIBIT 7:	Operator's Manual for Savi Technology, Inc. Model SMR-640P-110	
EXHIBIT 7: EXHIBIT 8:	Block Diagram of Savi Technology, Inc. Model SMR-640P-110	
EXHIBIT 9:	Theory of Operation for Savi Technology, Inc. Model SMR-040F-110	
LAIIIDII 7.	incory of Operation for save recumbingly, inc. model shirt-ofor-110	

SCOPE

An electromagnetic emissions test has been performed on the Savi Technology, Inc. model SMR-640P-110 pursuant to Subpart C of Part 15 of FCC Rules for intentional radiators. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Savi Technology, Inc. model SMR-640P-110 and therefore apply only to the tested sample. The sample was selected and prepared by Eugene Schlindwein of Savi Technology, Inc.

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart C of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units which are subsequently manufactured.

STATEMENT OF COMPLIANCE

The tested sample of Savi Technology, Inc. model SMR-640P-110 complied with the requirements of Subpart C of Part 15 of the FCC Rules for low power intentional radiators.

Maintenance of FCC compliance is the responsibility of the manufacturer. Any modification of the product that may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

File: R48374 Page 3 of 13 Pages

EMISSION TEST RESULTS

The following emissions tests were performed on the Savi Technology, Inc. model SMR-640P-110. The actual test results are contained in an exhibit of this report.

LIMITS OF CONDUCTED INTERFERENCE VOLTAGE

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.207.

The following measurement was extracted from the data recorded during the conducted emissions scan and represents the highest amplitude emission relative to the specification limit. The actual test data and any correction factors are contained in an exhibit of this report.

0.45 - 30.00 MHz, 120 V/60 Hz

Frequency	Level	Power	FCC	FCC	Detector	Comments
MHz	dBuV	Lead	Limit	Margin	QP/Ave	
1.132	41.1	Line	48.0	-6.9	QP	

LIMITS OF RADIATED INTERFERENCE FIELD STRENGTH

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.209.

The following measurement was extracted from the data recorded during the radiated electric field emissions scan and represents the highest amplitude emission relative to the specification limit. The actual test data and any correction factors are contained in an exhibit of this report.

0.12 - 1.2 MHz

Frequency	Level	FCC	FCC	Detector	Azimuth	Height	Notes
kHz	dBuV/m	Limit	Margin	Pk/Avg	Degrees	(m)	
123	6.1	25.8	-19.7	QP	90	1.0	See below

Note: Level calculated by applying the extrapolation factor calculated from measurements at 3m and 10m to the measurement recorded at 10m.

MEASUREMENT UNCERTAINTIES

ISO Guide 25 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.2

File: R48374 Page 4 of 13 Pages

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Savi Technology, Inc. model SMR-640P-110 is a transceiver which is designed to communicate with Savi's RF ID tags. The device transmits at 123kHz and at 433.92 MHz to initiate responses form tags within its vicinity. The Tag's respond at a frequency of 433.92 MHz with their ID code, so the EUT also contains a receiver operating at 433.92 MHz.

The device has a serial (RS232) interface to connect directly to a hand-held PC or similar device and operates from internal, rechargeable batteries. The device has an external DC input used to recharge the batteries via adapter. It is intended to be used as a hand-held device although it can operate while connected to the external AC-DC adapter.

The sample was received on July 23, 2002 and tested on July 23, July 29 and August 6, 2002. The EUT consisted of the following component(s):

Manufacturer/Model/Description	Serial Number
PowDec WP05050I Adaptor	-
Savi SMR-640P-110 Mobile Reader	03865

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 2cm high by 6cm wide by 9cm long.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with the emission specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer/Model/Description	Serial Number	FCC ID Number
IBM 2635 Laptop	78-VA24897/11	ANO9611TBOON
HP 2225 C Printer	3028S76892	
Microsoft Intellimouse Mouse	1310457-10000	

No remote support equipment was used during emissions testing.

File: R48374 Page 5 of 13 Pages

EXTERNAL I/O CABLING

The I/O cabling configuration during emissions testing was as follows:

		Cable(s)				
		Shielded or				
Port	Connected To	Description	Unshielded	Length(m)		
EUT RS232	Laptop	30cm integral cable	shielded	0.4		
EUT DC	AC-DC adapter	2-wire	unshielded	1		

EUT OPERATION

The EUT was placed in either a continuous transmit mode (CW signal) or into a receive-only mode. The laptop was running a batch file that created a scrolling 'H' pattern on the screen.

File: R48374 Page 6 of 13 Pages

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on July 23, July 29 and August 6, 2002 at the Elliott Laboratories Open Area Test Site #1, CCA #1 and Site #4 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing are performed in conformance with ANSI C63.4-1992. Measurements are made with the EUT connected to the public power network through nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

File: R48374 Page 7 of 13 Pages

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

File: R48374 Page 8 of 13 Pages

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND FOUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R48374 Page 9 of 13 Pages

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission, is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions, which have values close to the specification limit, may also be measured with a tuned dipole antenna to determine compliance.

File: R48374 Page 10 of 13 Pages

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207

Frequency Range (MHz)	Limit (uV)	Limit (dBuV)
0.450 to 30.000	250	48

RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

File: R48374 Page 11 of 13 Pages

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

$$C - S = M$$

where:

 R_r = Receiver Reading in dBuV

B = Broadband Correction Factor*

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

* Broadband Level - Per ANSI C63.4, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

File: R48374 Page 12 of 13 Pages

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 $D_m = Measurement Distance in meters$

 D_S = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_C - L_S$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_C = Corrected Reading in dBuV/m

 L_s = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

File: R48374 Page 13 of 13 Pages

EXHIBIT 1:Test Equipment Calibration Data

File: R48374 Exhibit Page 1 of 9

Radiated Emissions, 30 - 1000 MHz, 23-Jul-02

Engineer: Vishal

Manufacturer	<u>Description</u>	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Elliott Laboratories	Biconical Antenna, 30-300 MHz	EL30.300	54	12	1/4/2002	1/4/2003
EMCO	Log Periodic Antenna, 0.2-2 GHz	3148	1347	12	10/16/2001	10/16/2002
Rohde & Schwarz	Test Receiver, 9kHz-2750MHz	ESCS 30 EMI	1337	12	12/26/2001	12/26/2002

Conducted Emissions and Measurement of 123kHz Fundamental, 29-Jul-02

Engineer: mfaustino

<u>Manufacturer</u>	<u>Description</u>	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
A.H. Systems	Biconical Antenna, 20-200 MHz	SAS-200/540H	866	12	5/8/2002	5/8/2003
Elliott Laboratories	Biconical Antenna, 30-300 MHz	EL30.300	773	12	3/5/2002	3/5/2003
EMCO	LISN, 10kHz-100MHz	3825/2	1292	12	4/24/2002	4/24/2003
EMCO	Magnetic Loop Antenna, 10k-30MHz	6502	296	12	1/16/2002	1/16/2003
Rohde& Schwarz	Pulse Limiter	ESH3 Z2	1401	12	3/12/2002	3/12/2003
Rohde & Schwarz	Test Receiver, 0.009-30 MHz	ESH3	215	12	3/14/2002	3/14/2003

Conducted Emissions, 06-Aug-02 Engineer: Conrad

<u>Manufacturer</u>	<u>Description</u>	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Rohde& Schwarz	Pulse Limiter	ESH3 Z2	1401	12	3/12/2002	3/12/2003
Rohde & Schwarz	Test Receiver, 0.009-30 MHz	ESH3	215	12	3/14/2002	3/14/2003
Fischer Custom Comm.	LISN, Freq. 0.9 -30 MHz,16 Amp	FCC-LISN-50/250-16-2	1079	12	7/2/2002	7/2/2003
EMCO	LISN	-	1293	12	6/3/2002	6/3/2003

EXHIBIT 2:Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T 47882 10 Pages

File: R48374 Exhibit Page 2 of 9

Elliott EMC Test L			C Test Data
Client:	Savi	Job Number:	J47863
Model:	SMR-640P-111 (123 kHz version)	T-Log Number:	T47882
		Proj Eng:	Mark Briggs
Contact:	Gene Schlindwein		
Emissions Spec:	FCC 15.209	Class:	N/A
Immunity Spec:	-	Environment:	-

For The

Savi

Model

SMR-640P-111 (123 kHz version)

$\mathbf{E}_{\mathbf{J}}$	liott
	Cliant, Car

Client:	Savi	Job Number:	J47863
Model:	SMR-640P-111 (123 kHz version)	T-Log Number:	T47882
		Proj Eng:	Mark Briggs
Contact:	Gene Schlindwein		
Emissions Spec:	FCC 15.209	Class:	N/A
Immunity Spec:	-	Environment:	-

EUT INFORMATION

General Description

The EUT is a transceiver which is designed to communicate with Savi's RF ID tags. The device transmits at 123kHz and at 433.92 MHz to initiate responses form tags within its vicinity. The Tag's respond at a frequency of 433.92 MHz with their ID code, so the EUT also contains a receiver operating at 433.92 MHz.

The device has a serial (RS232) interface to connect directly to a hand-held PC or similar device and operates from internal, rechargeable batteries. The device has an external DC input used to recharge the batteries via adapter. It is intended to be used as a hand-held device although it can operate while connected to the external AC-DC adapter.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
PowDec	WP05050I	Adaptor	N/A	None
Savi	SMR-640P-110	Mobile reader	03865	None

EUT Enclosure

The EUT enclosure is primarily constructed of plastic. It measures approximately 2cm high by 6cm wide by 9cm long.

Modification History

Mod. #	Test	Date	Modification
1			
2			
3			

E E	lliott
	Cliont: Say

Client:	Savi	Job Number:	J47863
Model:	SMR-640P-111 (123 kHz version)	T-Log Number:	T47882
		Proj Eng:	Mark Briggs
Contact:	Gene Schlindwein		
Emissions Spec:	FCC 15.209	Class:	N/A
Immunity Spec:	-	Environment:	-

Test Configuration #1

Local Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID		
IBM	2635	Laptop	78-VA24897/11	ANO9611TBOON		
HP	2225C	Printer	3028S76892			
Microsoft	Intellimouse	Mouse	1310457-10000			

Remote Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
None	-	-	-	-

Interface Ports

		Cable(s)		
Port	Connected To	Description	Shielded or Unshielded	Length(m)
EUT RS232	Laptop	30cm integral cable	shielded	0.4
EUT DC	AC-DC adapter	2-wire	unshielded	1

EUT Operation During Emissions

The EUT was placed in either a continuous transmit mode (CW signal) or into a receive-only mode. The laptop was running a batch file that created a scrolling 'H' pattern on the screen.

	CEMOU		C Test Data
Client:	Savi	Job Number:	J47863
Model:	SMR-640P-111 (123 kHz version)	T-Log Number:	T47882
		Proj Eng:	Mark Briggs
Contact:	Gene Schlindwein		
Spec	FCC 15 200	Class.	Ν/Δ

Conducted Emissions - Power Ports

Test Specifics

EIliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 8/6/2002 Config. Used: 1

Test Engineer: Conrad Config Change: No printer or mouse connected to laptop PC

Test Location: CCA #1 EUT Voltage: 120V/60Hz

General Test Configuration

For tabletop equipment, the EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment.

Ambient Conditions: Temperature: 21°C

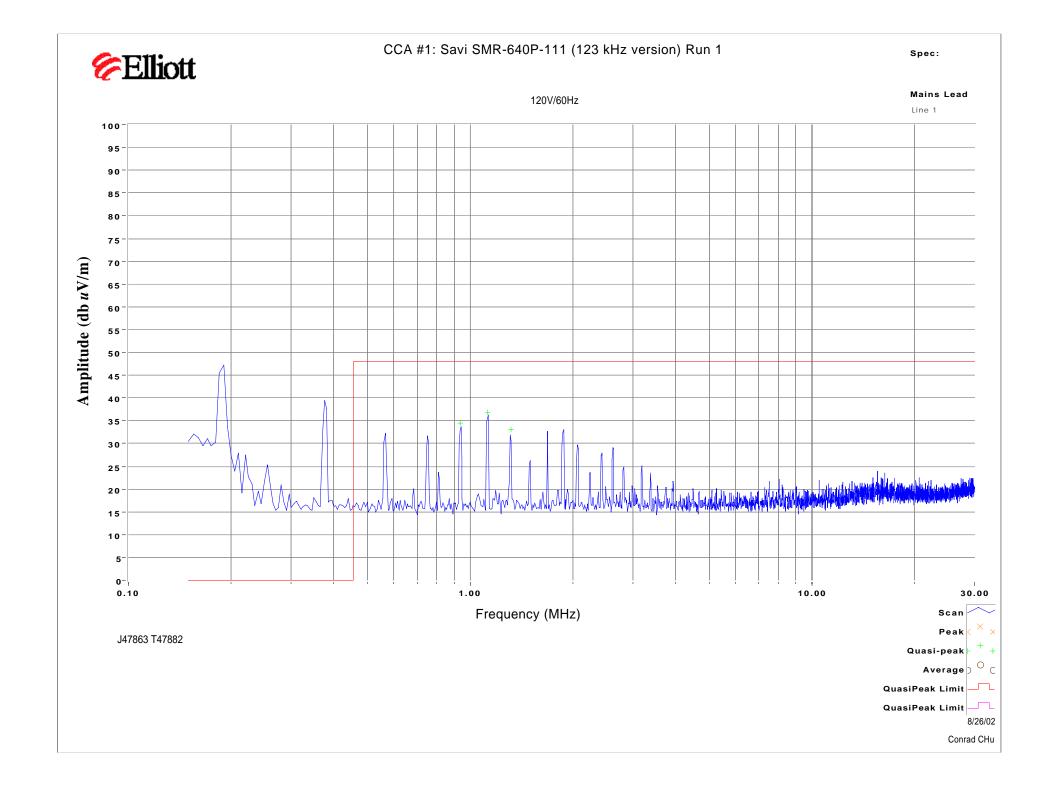
Rel. Humidity: 41%

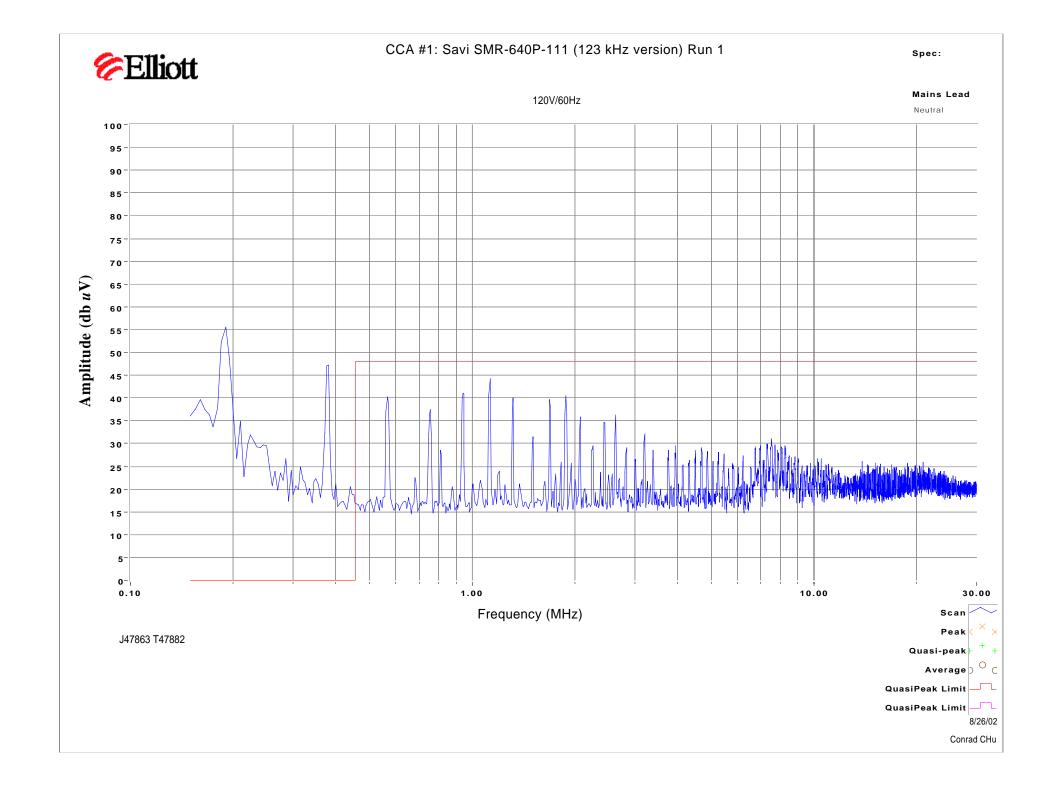
Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power 120V/60Hz	FCC Class B	Pass	-6.9 dB @ 1.132 MHz

Modifications Made During Testing:

No modifications were made to the EUT during testing


Deviations From The Standard


No deviations were made from the requirements of the standard.

Test Notes

Note that this is a different unit of the same model AC-DC adaptor previously tested. No serial was recorded since the AC-DC adaptor does not have any serial number.

<u> </u>	Elli	ott					EMC Test
Client:							Job Number: J47863
Model:	SMR-640)P-111 (12	3 kHz vers	ion)			T-Log Number: T47882
							Proj Eng: Mark Briggs
Contact:	Gene Sc	hlindwein					
Spec:	FCC 15.2	209					Class: N/A
un #1: A0	C Power I	Port Condi	ucted Emi	ssions, 0.4	5 - 30MHz,	120V/60Hz	
requency	Level	AC	FC	СВ	Detector	Comments	
MHz	dBμV	Line	Limit	Margin	QP/Ave		
1.132	41.1	Line	48.0	-6.9	QP		
1.316	38.1	Line	48.0	-9.9	QP		
0.935	37.9	Line	48.0	-10.1	QP		
1.127	36.8	Neutral	48.0	-11.2	QP		
0.939	34.4	Neutral	48.0	-13.6	QP		
1.315	33.1	Neutral	48.0	-14.9	QP		

	СШОЦ	EIVI	C Test Data
Client:	Savi	Job Number:	J47863
Model:	SMR-640P-111 (123 kHz version)	T-Log Number:	T47882
		Proj Eng:	Mark Briggs
Contact:	Gene Schlindwein		
Spec:	FCC 15.209	Class:	N/A

Radiated Emissions - FCC 15.209 Radio

Test Specifics

6 Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 7/29 & 8/20/02 Config. Used: #1 (transmitter on)
Test Engineer: Marissa/Rafael Config Change: See run notes
Test Location: SVOATS #4 EUT Voltage 120V/60Hz

General Test Configuration

The radio and integral antenna were located on a table during testing.

For radiated emissions testing below 30 MHz the measurement antenna was located 4.6, 10, and 20 meters from the EUT as noted. Radiated magnetic field measurements were made with the loop antenna located one meter above the ground plane. The loop was place 0 degress (Open Loop) and 90 degress (Close Loop).

Ambient Conditions: Temperature: 20°C For 7/29/02

Rel. Humidity: 55%

Ambient Conditions: Temperature: 26°C For 8/20/02

Rel. Humidity: 39%

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	Fundamental on 8/20/02	15.209	Pass	-19.7dB @ 123.000KHz
2	Spurious	15.209	Pass	see test log for details

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

E E	liott
Y L	ШОСС

Client:	Savi	Job Number:	J47863
Model:	SMR-640P-111 (123 kHz version)	T-Log Number:	T47882
		Proj Eng:	Mark Briggs
Contact:	Gene Schlindwein		
Spec:	FCC 15.209	Class:	N/A

Run #1: Fundamental Signal Level

Measurements of the fundamental signal were made on the OATS at test distances of 3m and 10m and are recorded in the table below.

Data for 7/29/02

Frequency	Level	AF	Level	Pol	Detector	Azimuth	Height	Comments
kHz	dBμV	dBm ⁻¹	dBμV/m	(O / I)	Pk/QP/Avg	degrees	meters	
123.000	82.0	10.4	92.4	0	Pk	90	1.0	Tested at 3m - Note 1
123.000	51.0	10.4	61.4	0	Pk	90	1.0	Tested at 10m - Note 2
123.000	77.5	10.4	87.9		Pk	170	1.0	Tested at 3m - Note 1
123.000	47.6	10.4	58.0		Pk	170	1.0	Tested at 10m - Note 2
Data for 8/2	20/02							
Recalibrate	ed transm	itter						
123.000	84.8	10.4	95.2	0	Pk	360	1.0	Tested at 3m - Note 1
123.000	61.5	10.4	71.9	0	Pk	360	1.0	Tested at 10m - Note 2
123.000	79.1	10.4	89.5		Pk	215	1.0	Tested at 3m - Note 1
123.000	57.5	10.4	67.9		Pk	85	1.0	Tested at 10m - Note 2

Note 1:	The maximum signal level was with the device oriented upright.
Note 2:	The maximum signal level was with the device oriented upright .
Note 3:	Polarization of O indicates the loop was facing the EUT. Lindicates that the loop was perpendicular to the EUT.

Extrapolation Factor Calculation:

Level at 3m: 95.2

Level at 10m: 71.9 Extrapolation from 3m to 10m: 44.6

Extrapolation from 10m to 300m: 65.8 (This factor used to calculate the level in the table below)

Frequency	Level	FCC		Detector	Azimuth	Height	Comments
KHz	dBμV/m	Limit	Margin	Pk/QP/Avg	degrees	meters	
123	6.1	25.8	-19.7	QP	90	1.0	Note 1

Note 1: Level calculated by applying the extrapolation factor calculated from the measurements at 3m and 10m (-65.8dB) to the measurement recorded at 10m (71.9dBuV/m).

Client:	Elli(Job Number: J47863
		P ₋ 111 <i>(</i> 1	23 kHz vers	sion)			T-Log Number: T47882
WIOGCI.	Sivil (-040)	-111 (1.	ZJ KI IZ VCI S	siori)			Proj Eng: Mark Briggs
Contact	Gene Sch	lindwoin					Froj Liig. Wark briggs
							Class NI/A
	FCC 15.20		001.11- 1.4	NALI-			Class: N/A
requency			00kHz - 1.2 15.209	Detector	Azimuth	Uoight	Comments
KHz	dBμV/m	Limit	Margin	Pk/QP/Avg	degrees	Height meters	Comments
246		19.8	>20dB	QP	ucgices	-	Note 2
369	_	16.3	>20dB	QP	_	_	Note 2
492	-	33.8	>20dB	QP	-	_	Note 3
615	-	31.8	>20dB	QP	-	-	Note 3
738	-	30.2	>20dB	QP	-	-	Note 3
861	-	28.9	>20dB	QP	-	-	Note 3
984	-	27.7	>20dB	QP	-	-	Note 3
1107	-	26.7	>20dB	QP	-	-	Note 3
1230	-	25.8	>20dB	QP	-	-	Note 3
	fundamen	tal sinna	I ΔII sinna	kHz were le			
lote 3:	is equivale	ent to a le	evel of 3.4d	BuV/m at the	specification	ss than 43.4 on distance	als at a distance of 3m from the EUT other than t 4dBuV/m (-8.2dBuA/m) at a distance of 3m, which of 30m if using the suggested extrapolation facto
lote 3:	is equivale	ent to a le	evel of 3.4d		specification	ss than 43.4 on distance	4dBuV/m (-8.2dBuA/m) at a distance of 3m, whic