

Elliott Laboratories Inc. www.elliottlabs.com 684 West Moude Avenue Sunnyvale, CA 94086-3518 408-245-7800 Phone 408-245-3499 Fax

Electromagnetic Emissions Test Report and Request for Class II Permissive Change pursuant to FCC Part 15, Subpart C for an Intentional on the Savi Technology, Inc. Model: Savi Reader 410R

FCC ID: KL7-410R-V1

GRANTEE: Savi Technology, Inc. 450 National Avenue Mountain View, CA. 94043-2238

TEST SITE: Elliott Laboratories, Inc. 684 W. Maude Avenue Sunnyvale, CA 94086

REPORT DATE: March 2, 2000

FINAL TEST DATE: February 2, 2000

AUTHORIZED SIGNATORY:

Mark R. Briggs Manager, EMC Consulting Services

This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

TABLE OF CONTENTS

COVER PAGE	
TABLE OF CONTENTS	2
SCOPE	4
SCOPE	4
OBJECTIVE	4
STATEMENT OF COMPLIANCE	4
EMISSION TEST RESULTS	
LIMITS OF CONDUCTED INTERFERENCE VOLTAGE	
LIMITS OF RADIATED INTERFERENCE FIELD STRENGTH –15.231 (A) LIMITS OF RADIATED INTERFERENCE FIELD STRENGTH –15.231 (E)	
LIMITS OF RADIATED INTERFERENCE FIELD STRENGTH –15.231 (E) LIMITS OF BANDWIDTH	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	7
GENERAL.	
GENERAL	
PRINTED WIRING BOARDS	
SUBASSEMBLIES	8
ENCLOSURE	8
EMI SUPPRESSION DEVICES	8
MODIFICATIONS	
SUPPORT EQUIPMENT	8
EXTERNAL I/O CABLING	
TEST SOFTWARE	
PROPOSED MODIFICATION DETAILS	. 10
GENERAL	. 10
TEST SITE	. 11
GENERAL INFORMATION	11
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	. 12
RECEIVER SYSTEM	. 12
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	. 13
TEST PROCEDURES	. 14
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	. 14

TABLE OF CONTENTS (Continued)

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	15
CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207	15
RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.231 (A)	15
RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.231 (E)	16
RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209	16
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	17
SAMPLE CALCULATIONS - RADIATED EMISSIONS	18
EXHIBIT 1: Test Equipment Calibration Data	1
EXHIBIT 2: Test Data Log Sheets	2
EXHIBIT 3: Radiated Emissions Test Configuration Photographs	3
EXHIBIT 4: Conducted Emissions Test Configuration Photographs	5
EXHIBIT 5: Proposed FCC ID Label & Label Location	7
EXHIBIT 6: Detailed Photographs of Savi Technology, Inc. Model Savi Reader 410R Construction	8
EXHIBIT 7: Operator's Manual for Savi Technology, Inc. Model Savi Reader 410R	
EXHIBIT 8: Block Diagram of Savi Technology, Inc. Model Savi Reader 410R	
EXHIBIT 9: Schematic Diagrams for Savi Technology, Inc. Model Savi Reader 410R	11
EXHIBIT 10: Theory of Operation for Savi Technology, Inc. Model Savi Reader 410R	

SCOPE

An electromagnetic emissions test has been performed on the Savi Technology, Inc. model Savi Reader 410R pursuant to Subpart C of Part 15 of FCC Rules for intentional radiators. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Savi Technology, Inc. model Savi Reader 410R and therefore apply only to the tested sample. The sample was selected and prepared by Eugene Schlindweinof Savi Technology, Inc.

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart C of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units subsequently manufactured.

STATEMENT OF COMPLIANCE

The tested sample of Savi Technology, Inc. model Savi Reader 410R complied with the requirements of Subpart C of Part 15 of the FCC Rules for low power intentional radiators.

Maintenance of FCC compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

EMISSION TEST RESULTS

The following emissions tests were performed on the Savi Technology, Inc. model Savi Reader 410R. The actual test results are contained in an exhibit of this report.

LIMITS OF CONDUCTED INTERFERENCE VOLTAGE

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.207.

The following measurement was extracted from the data recorded during the conducted emissions scan and represents the highest amplitude emission relative to the specification limit. The actual test data and any correction factors are contained in an exhibit of this report.

0.15 - 50.00 MHZ, 120 V, 00112								
Frequency	Level	Power	FCC Par	rt 15.207	Detector	Comments		
MHz	dBuV	Lead	Limit	Margin	QP/Ave			
11.064	39.5	Line	48.0	-8.5	QP			

0.45 - 30.00 MHz, 120V, 60Hz

LIMITS OF RADIATED INTERFERENCE FIELD STRENGTH -15.231 (a)

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.231 (a) and 15.209 in the case of emissions falling within the frequency bands specified in Section 15.205 when transmitting the control and wake-up signals.

The following measurement was extracted from the data recorded during the radiated electric field emissions scan and represents the highest amplitude emission relative to the specification limit. The actual test data and any correction factors are contained in an exhibit of this report.

	Fundamental Emission. 433.9 WHZ (Wake-Op Signal)								
Frequency	Level	Pol	FCC Pa	rt 15.107	Detector	Azimuth	Height	Comments	
MHz	dBuV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
433.937	73.3	V	54.0	-7.5	Avg	0	1.0		

Fundamental Emission: 133.0 MHz (Wake Un Signal)

Spurious Emissions: 30 – 4330 MHz (Wake-Up Signal)								
Frequency	Level	Pol	FCC Par	t 15.107	Detector	Azimuth	Height	Comments
MHz	dBuV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
3905.385	51.3	V	54.0	-2.7	Avg	137	1.0	

No measurements were made on the control signal. This signal is identical in peak signal level to the data signal, which is subject to the more stringent limits of 15.231(e). In addition, the control signal is a shorter pulse and, therefore, the average value of the control signal emissions would be lower than the average value of the data signal. As the data signal met the 15.231(e) limits the control signal automatically meets the 15.231(a) limits.

LIMITS OF RADIATED INTERFERENCE FIELD STRENGTH –15.231 (e)

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.231 (e) and 15.209 in the case of emissions falling within the frequency bands specified in Section 15.205 and all emissions above 1GHz below when transmitting the data signal.

The following measurement was extracted from the data recorded during the radiated electric field emissions scan and represents the highest amplitude emission relative to the specification limit. The actual test data and any correction factors are contained in an exhibit of this report.

Fundamental Emission: 433.9 MHz (Data Signal)								
Frequency	Level	Pol	FCC Part	15.231(e)	Detector	Azimuth	Height	Comments
MHz	dBuV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
433.936	61.2	V	72.9	-11.7	Avg	121	1.4	

422 0 MIL (D (C'

Spurious Emissions: 30 – 4330 MHz (Data Signal)								
Frequency	Level	Pol	FCC Part	15.231(e)	Detector	Azimuth	Height	Comments
MHz	dBuV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
3905.865	41.7	V	54.0	-12.3	Avg	133	1.0	

LIMITS OF BANDWIDTH

The proposed changes to the device do not affect the bandwidth measurements reported to the FCC in the original submittal for the device.

MEASUREMENT UNCERTAINTIES

ISO Guide 25 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.2

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Savi Technology, Inc. model Savi Reader 410R is an asset tag reader, which is designed to interface with the SaviTag 410 by sending control signals and receiving data (recognition codes) from the TAGs. In addition, it can also transmit data. For control signals the transmitter will be subject to the requirements of 15.231(a) and for data signals it will be subject to the requirements of 15.231(e), both of which govern pulsed transmissions.

The transmitter and receiver circuitry in the device tested is common to all of the SaviReader 410R(-T)-XXX family of readers. The differences between the various members of this product family are in the digital interface (RS232 and/or RS485), the use of an LED and LonWorks as detailed in the product list (refer to Theory of Operations Exhibit). The unit tested (SR-410R-006) contains all options and was considered representative of the worst case configuration of the product family.

The sample was received on February 2, 2000 and tested on February 2, 2000. The EUT consisted of the following component(s):

Manufacturer/Model/Description	Serial Number	FCC ID Number		
Savi Tech. SR-410R-016 Tag Reader	101	KL7-410R-V1		

INPUT POWER

The EUT input is rated at 120/240, 50/60 Hz. The EUT contained the following input power components during emissions testing:

Description	Manufacturer	Model
Power Supply	Savi Tech.	810-0081-010

PRINTED WIRING BOARDS

The EUT contained the following printed wiring boards during emissions testing:

Manufacturer/Description	Assembly #	Rev.	Serial #	Crystals (MHz)
Lon work Module	810-01295-001	В	2749904	10
Savi Tech. Network Interface	810-02425-001	А	068732	3.684
Savi Tech. Interrogator 3.0	810-01290-001	А	068747	16
Savi Tech. RF Comm (x2)	810-01285-001	А	897, 905	433.92(Tx)

SUBASSEMBLIES

The EUT did not contain subassembly modules during emissions testing.

ENCLOSURE

The EUT enclosure is primarily constructed of fabricated polymeric material steel. It has a diameter of 30.5 cm and is 14 cm high.

EMI SUPPRESSION DEVICES

The EUT contained the following EMI suppression devices during emissions testing:

Description	Manufacturer	Part Number	
Ferrite	Ferronics	12-340	

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with the emission specifications.

SUPPORT EQUIPMENT

No support equipment was used during emissions testing.

EXTERNAL I/O CABLING

The I/O cabling configuration during emissions testing was as follows:

Cable Description	Length (m)	From Unit/Port	To Unit/Port
Unshielded	30.0	EUT (RS-485)	Not Terminated
Unshielded	30.0	EUT (RS-485)	Not Terminated

Note: The serial port was not connected during testing. The manufacturer stated that this port is used purely for maintenance and configuration purposes and is not used under normal operating conditions.

TEST SOFTWARE

For all radiated emissions measurements of the fundamental and spurious emissions from the transmitter, the device was configured to transmit the wake-up, data signal continuously from both transmitter/antenna combinations.

For all radiated emissions measurements from the receiver and digital circuitry, the device was configured to receive continuously at 433.985 MHz.

PROPOSED MODIFICATION DETAILS

GENERAL

This section details the modifications to the Savi Technology, Inc. model Savi Reader 410R being proposed. All performance and construction deviations from the characteristics originally reported to the FCC are addressed

Enclosure:

The original enclosure was constructed of aluminum sheet metal. The new enclosure is made of polymeric material.

Output Power:

The output powers of signals have been reduced using firmware (see below).

RF Board:

No changes other than output power that has been reduced using firmware from 72.2 $dB\mu V/m$ to 58.7 $dB\mu V/m$ for Data Signal, 80.3 $dB\mu V/m$ to 72.2 $dB\mu V/m$ for "Wake-up" Control Signal, and 79.2 $dB\mu V/m$ to 57.1 $dB\mu V/m$ for Control Signal. The voltage level is supplied to the final stage using a programmable voltage source on the RF board.

Digital Board:

No modification was made to Digital Board.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on February 2, 2000 at the Elliott Laboratories Open Area Test Site #3 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4-1992. Measurements are made with the EUT connected to the public power network through a nominal standardized RF impedance, provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde and Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors, which are programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these are with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207

Frequency Range (MHz)	Limit (uV)	Limit (dBuV)
0.450 to 30.000	250	48

RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.231 (a)

For a 433.9 MHz fundamental signal the limits in 15.231 (a) are:

Frequency		
Range	Limit	Limit
(MHz)	(uV/m @ 3m)	(dBuV/m @ 3m)
Fundamental	10,965	80.8
Spurious	1096.5	60.8

The general limits apply in restricted bands.

RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.231 (e)

For a 433.9 MHz fundamental signal the limits in 15.231 (e) are:

Frequency		
Range	Limit	Limit
(MHz)	(uV/m @ 3m)	(dBuV/m @ 3m)
Fundamental	4,415.7	72.9
Spurious	441.6	52.9

Above 1 GHz, the general limits of 15.209 permit higher emissions and are, therefore, applicable. The general limits apply in restricted bands below 1GHz

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

C - S = M

where:

 $R_r = Receiver Reading in dBuV$

B = Broadband Correction Factor*

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

^{*} Broadband Level- Per ANSI C63.4, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_{c} - L_{s}$$

where:

- R_r = Receiver Reading in dBuV/m
- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

EXHIBIT 1: Test Equipment Calibration Data

Test Equipment List - SVOATS#3

February 17, 2000

Manufacture	r/Description	Model	<u>Asset #</u>	<u>Interval</u>	Last Cal	Cal Due
Elliott Laboratories	300-1000 MHz Log Periodic	EL300.1000	55	11	11/3/99	10/3/2000
Elliott Laboratories	Biconical Antenna, 30-300 MHz	EL30.300	54	12	12/21/1999	1 2/21/2000
Elliott Laboratories	FCC / CISPR LISN	LISN-4 OATS	362	12	6/10/99	6/10/2000
E MCO	D. Ridge Horn Antenna, 1-18GHz	3115	786	12	1/8/2000	1/8/2001
Filtek	High Pass Filter	HP12/1000-5B	957	12	4/17/99	4/17/2000
Hewlett Packard	EMC Spectrum Analyzer, Opt. 026	8593EM	1141	. 12	12/22/1999	12/22/2000
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785	12	12/2/1999	12/2/2000
🔀 Rohde & Schwarz	Test Receiver, 0.009-30 MHz	ESH3	215, (F197)	12	2/17/99	2/17/2000
🔀 Rohde & Schwarz	Test Receiver, 20-1300MHz	ESVP	273	12	9/9/99	9/9/2000
Rohde & Schwarz	Pulse Limiter	ESH372	812	12	12/08/99	12/08/2000

Date: <u>2-17-2000</u> Engr: <u>Mebran M Birgan</u>i

All calibration of equipment is traceable to a national standard of measurement such as NIST.

EXHIBIT 2:Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T 35370 14 Pages

	Elliott			EMC	Test Log
Client:	Savi Technology	Date:	2/17/00	Test Eng:	Mehran M Birgani
Product:	SaviReader 410R	File:	T35984	Proj. Eng:	Mark Briggs
Objective:	Final Qualification	Site:	SVOATS		Gene Schlindwein
Spec:	FCC Subparts B and C	Page:	1 of 6	Approved:	
Revision	1.0				
		Ambient C	onditions		
		Temperature:	9°C		
		Humidity:	79 % R	Н	
	-	Гest Obj	ective		
The obje	ctive of this test session is	to perform	final quali	fication testing th	e EUT defined
celow rel	ative to the specification d	efined abov	/e.		
	٦	Fest Sun	nmary		
Run #1 -	Measurement of Local C	scillator and	d Harmon	ics.	
	(Receiver and Digital De				
PASS	Results: FCC Class B	,		423.231 MHz	Vortical
FA33	Results. TCC Class D	-13.5 ub	QF @	423.231 1011 12	Ventical
D	Linmovimized Proliminer	v Podiotod	Emission	Soon 20 100	
Run #2 -		v Raulaleu	Emissions	s Scan. Su – 100	
<u>Run #2</u> -	Unmaximized Preliminar (Receiver and Digital De	•	Emission	s Scan, 50 – 100	
	(Receiver and Digital De	vice)			
<u>Run #2</u> - PASS		vice)		80.044 MHz	Vertical
PASS	(Receiver and Digital De Results: FCC Class A	vice) -4.2 dB	QP @		
PASS Run #3 -	(Receiver and Digital De Results: FCC Class A Maximized Radiated Em	vice) -4.2 dB issions fron	QP @ n Run #2	80.044 MHz	Vertical
PASS Run #3 -	(Receiver and Digital De Results: FCC Class A	vice) -4.2 dB issions fron	QP @ n Run #2	80.044 MHz	
PASS Run #3 - PASS	(Receiver and Digital De Results: FCC Class A Maximized Radiated Em Results: FCC Class A	vice) -4.2 dB issions fron -4.0 dB	QP @ n Run #2 QP @	80.044 MHz 80.044 MHz	Vertical
PASS Run #3 - PASS	(Receiver and Digital De Results: FCC Class A Maximized Radiated Em Results: FCC Class A Measurement of Fundam	vice) -4.2 dB issions fron -4.0 dB nental Emis	QP @ n Run #2 QP @	80.044 MHz 80.044 MHz	Vertical
PASS <u>Run #3</u> - PASS <u>Run #4</u> -	(Receiver and Digital De Results: FCC Class A Maximized Radiated Em Results: FCC Class A Measurement of Fundan ("Wake-Up" Control Sign	vice) -4.2 dB issions fron -4.0 dB nental Emis nal).	QP @ n Run #2 QP @ ssion Field	80.044 MHz 80.044 MHz Strength	Vertical Vertical
PASS <u>Run #3</u> - PASS <u>Run #4</u> -	(Receiver and Digital De Results: FCC Class A Maximized Radiated Em Results: FCC Class A Measurement of Fundam	vice) -4.2 dB issions fron -4.0 dB nental Emis nal).	QP @ n Run #2 QP @ ssion Field	80.044 MHz 80.044 MHz Strength	Vertical Vertical
PASS <u>Run #3</u> - PASS <u>Run #4</u> - PASS	(Receiver and Digital De Results: FCC Class A Maximized Radiated Em Results: FCC Class A Measurement of Fundan ("Wake-Up" Control Sign Results: §15.231(a)	vice) -4.2 dB issions fron -4.0 dB nental Emis nal). -7.5 dB	QP @ n Run #2 QP @ ssion Field Avg. @	80.044 MHz 80.044 MHz Strength 433.937 MHz	Vertical Vertical Horizontal
PASS <u>Run #3</u> - PASS <u>Run #4</u> -	 (Receiver and Digital De Results: FCC Class A Maximized Radiated Em Results: FCC Class A Measurement of Fundan ("Wake-Up" Control Sign Results: §15.231(a) Maximized Radiated Sput 	vice) -4.2 dB issions fron -4.0 dB nental Emis nal). -7.5 dB urious Emis	QP @ n Run #2 QP @ ssion Field Avg. @	80.044 MHz 80.044 MHz Strength 433.937 MHz	Vertical Vertical Horizontal
PASS Run #3 - PASS Run #4 - PASS Run #5 -	 (Receiver and Digital De Results: FCC Class A Maximized Radiated Em Results: FCC Class A Measurement of Fundan ("Wake-Up" Control Sign Results: §15.231(a) Maximized Radiated Spu ("Wake-Up" Control Sign 	vice) -4.2 dB issions fron -4.0 dB nental Emis nal). -7.5 dB urious Emis nal)	QP @ n Run #2 QP @ sion Field Avg. @ sions Sca	80.044 MHz 80.044 MHz Strength 433.937 MHz n, 866 – 4330 M	Vertical Vertical Horizontal Hz
PASS Run #3 - PASS Run #4 - PASS Run #5 -	 (Receiver and Digital De Results: FCC Class A Maximized Radiated Em Results: FCC Class A Measurement of Fundan ("Wake-Up" Control Sign Results: §15.231(a) Maximized Radiated Spu ("Wake-Up" Control Sign Results: §15.231(a) 	vice) -4.2 dB issions fron -4.0 dB nental Emis nal). -7.5 dB urious Emis nal) -2.7 dB	QP @ n Run #2 QP @ sion Field Avg. @ sions Sca Avg. @	80.044 MHz 80.044 MHz Strength 433.937 MHz n, 866 – 4330 Ml 3905.385 MHz	Vertical Vertical Horizontal Hz Vertical
PASS <u>Run #3</u> - PASS <u>Run #4</u> - PASS <u>Run #5</u> - PASS*	 (Receiver and Digital De Results: FCC Class A Maximized Radiated Em Results: FCC Class A Measurement of Fundan ("Wake-Up" Control Sign Results: §15.231(a) Maximized Radiated Spu ("Wake-Up" Control Sign Results: §15.231(a) (Note: limits in §15.209 v 	vice) -4.2 dB issions fron -4.0 dB nental Emis nal). -7.5 dB urious Emis nal) -2.7 dB were used fo	QP @ n Run #2 QP @ sion Field Avg. @ sions Sca Avg. @ or emissic	80.044 MHz 80.044 MHz Strength 433.937 MHz n, 866 – 4330 Ml 3905.385 MHz ons falling in restr	Vertical Vertical Horizontal Hz Vertical icted bands)
PASS <u>Run #3</u> - PASS <u>Run #4</u> - PASS <u>Run #5</u> - PASS* * The d	 (Receiver and Digital De Results: FCC Class A Maximized Radiated Em Results: FCC Class A Measurement of Fundan ("Wake-Up" Control Sign Results: §15.231(a) Maximized Radiated Spu ("Wake-Up" Control Sign Results: §15.231(a) 	vice) -4.2 dB issions fron -4.0 dB nental Emis nal). -7.5 dB urious Emis nal) -2.7 dB vere used fo el of one or	QP @ n Run #2 QP @ ssion Field Avg. @ sions Sca Avg. @ or emissic r more of	80.044 MHz 80.044 MHz Strength 433.937 MHz n, 866 – 4330 Ml 3905.385 MHz ons falling in restr the emissions fr	Vertical Vertical Horizontal Hz Vertical icted bands) om the system
PASS <u>Run #3</u> - PASS <u>Run #4</u> - PASS <u>Run #5</u> - PASS* * The d under	(Receiver and Digital De Results: FCC Class A Maximized Radiated Em Results: FCC Class A Measurement of Fundan ("Wake-Up" Control Sign Results: §15.231(a) Maximized Radiated Spu ("Wake-Up" Control Sign Results: §15.231(a) (Note: limits in §15.209 v ifference between the leve test and the specification	vice) -4.2 dB issions fron -4.0 dB nental Emis nal). -7.5 dB urious Emis nal) -2.7 dB vere used fo el of one or limit is withi	QP @ n Run #2 QP @ sion Field Avg. @ sions Sca Avg. @ or emissic r more of in the mea	80.044 MHz 80.044 MHz Strength 433.937 MHz n, 866 – 4330 Ml 3905.385 MHz ons falling in restr the emissions fra	Vertical Vertical Horizontal Hz Vertical icted bands) om the system
PASS <u>Run #3</u> - PASS <u>Run #4</u> - PASS <u>Run #5</u> - PASS* * The d	(Receiver and Digital De Results: FCC Class A Maximized Radiated Em Results: FCC Class A Measurement of Fundan ("Wake-Up" Control Sign Results: §15.231(a) Maximized Radiated Spu ("Wake-Up" Control Sign Results: §15.231(a) (Note: limits in §15.209 v difference between the leve test and the specification Measurement of Fundan	vice) -4.2 dB issions fron -4.0 dB nental Emis nal). -7.5 dB urious Emis nal) -2.7 dB vere used fo el of one or limit is withi	QP @ n Run #2 QP @ sion Field Avg. @ sions Sca Avg. @ or emissic r more of in the mea	80.044 MHz 80.044 MHz Strength 433.937 MHz n, 866 – 4330 Ml 3905.385 MHz ons falling in restr the emissions fra	Vertical Vertical Horizontal Hz Vertical icted bands) om the system
PASS <u>Run #3</u> - PASS <u>Run #4</u> - PASS <u>Run #5</u> - PASS* * The d under	(Receiver and Digital De Results: FCC Class A Maximized Radiated Em Results: FCC Class A Measurement of Fundan ("Wake-Up" Control Sign Results: §15.231(a) Maximized Radiated Spu ("Wake-Up" Control Sign Results: §15.231(a) (Note: limits in §15.209 v ifference between the leve test and the specification	vice) -4.2 dB issions fron -4.0 dB nental Emis nal). -7.5 dB urious Emis nal) -2.7 dB vere used fo el of one or limit is withi	QP @ n Run #2 QP @ sion Field Avg. @ sions Sca Avg. @ or emissic r more of in the mea	80.044 MHz 80.044 MHz Strength 433.937 MHz n, 866 – 4330 Ml 3905.385 MHz ons falling in restr the emissions fra	Vertical Vertical Horizontal Hz Vertical icted bands) om the system

\mathcal{C}	Elliott		
Client:	Savi Technology	Date:	2/17

EMC Test Log

Client:	Savi Technology	Date:	2/17/00	Test Eng:	Mehran M Birgani
Product:	SaviReader 410R	File:	T35984	Proj. Eng:	Mark Briggs
Objective:	Final Qualification	Site:	SVOATS #3	Contact:	Gene Schlindwein
Spec:	FCC Subparts B and C	Page:	2 of 6	Approved:	
Revision	1.0				•

Test Summary (continued)

- <u>Run #7</u> Maximized Radiated Spurious Emissions Scan, 866 4330 MHz (Pulsed Data Signal)
- PASS Results: §15.231(e) -12.3 dB Avg. @ 3905.865MHz Vertical (Note: limits in §15.209 were used for emissions falling in restricted bands).
- <u>Run #8</u> Conducted Emissions, 0.45 30MHz, 120 V / 60 Hz (Receiver)
- PASS Results: FCC Part 15.107 -8.5 dB QP @ 11.064 MHz Line
- <u>Run #9</u> Conducted Emissions, 0.45 30MHz, 120 V / 60 Hz (Transmitter#1)
- PASS Results: FCC Part 15.207 -7.4 dB QP @ 11.062 MHz Line

Equipment Under Test (EUT) General Description

The EUT is an asset tag reader, which is designed to interface with the SaviTag 410 by sending control signals and receiving data (recognition codes) from the TAGs. In addition, it can also transmit data. For control signals the transmitter will be subject to the requirements of 15.231(a) and for data signals it will be subject to the requirements of 15.231(e), both of which govern pulsed transmissions.

The transmitter and receiver circuitry in the device tested is common to all of the SaviReader 410R(-T)-XXX family of readers. The differences between the various members of this product family are in the digital interface (RS232 and/or RS485), the use of an LED and LonWorks as detailed in the product list (refer to Theory of Operations Exhibit). The unit tested (SR-410R-006) contains all options and was considered representative of the worst case configuration of the product family.

Normally, the EUT will be attached to a pole or similar structure. For the purposes of EMC testing the EUT was treated as tabletop equipment and placed to simulate the orientation of the device in its intended use.

Equipment Under To	est (EUT)
--------------------	-----------

Manufacturer/Model/Description	Serial Number	FCC ID Number
Savi Tech. SR-410R-016 Tag Reader	101	KL7-410R-V1

€Elliott

EMC Test Log

Client:	Savi Technology	Date:	2/17/00	Test Eng:	Mehran M Birgani
Product:	SaviReader 410R	File:	T35984	Proj. Eng:	Mark Briggs
Objective:	Final Qualification	Site:	SVOATS #3	Contact:	Gene Schlindwein
Spec:	FCC Subparts B and C	Page:	3 of 6	Approved:	
Revision	1.0				

Power Supply and Line Filters

The manufacturer provided the following information:

Description	Manufacturer	Model
Power Supply	Savi Tech.	810-0081-010

Printed Wiring Boards in EUT

The manufacturer provided the following information:

Manufacturer/Description	Assembly #	Rev.	Serial Number	Crystals (MHz)
Lon work Module	810-01295-001	В	2749904	10
Savi Tech. Network Interface	810-02425-001	А	068732	3.684
Savi Tech. Interrogator 3.0	810-01290-001	А	068747	16
Savi Tech. RF Comm (x2)	810-01285-001	А	897, 905	433.92(Tx)

Subassemblies in EUT

The manufacturer provided the following information:

Manufacturer/Description	Assembly Number	Rev.	Serial Number
None	-	-	-

EUT Enclosure(s)

The EUT enclosure is primarily constructed of fabricated polymeric material steel. It has a diameter of 30.5 cm and is 14 cm high.

EMI Suppression Devices (filters, gaskets, etc.)

The manufacturer provided the following information:

Ferrite Ferronics	12-340

€Elliott

EMC Test Log

Client:	Savi Technology	Date:	2/17/00	Test Eng:	Mehran M Birgani
Product:	SaviReader 410R	File:	T35984	Proj. Eng:	Mark Briggs
Objective:	Final Qualification	Site:	SVOATS #3	Contact:	Gene Schlindwein
Spec:	FCC Subparts B and C	Page:	4 of 6	Approved:	
Revision	1.0				

Changes to Previously Certified Device

The EUT had been modified from the device originally certified and has the following modifications:

1) Enclosure:

The original enclosure was constructed of aluminum sheet metal. The new enclosure is made of polymeric material.

2) Output Power:

The output powers of signals have been reduced using firmware (see below).

3) RF Board:

No changes other than output power that has been reduced using firmware from 72.2 dBµV/m to 58.7 dBµV/m for Data Signal, 80.3 dBµV/m to 72.2 dBµV/m for "Wake-up" Control Signal, and 79.2 dBµV/m to 57.1 dBµV/m for Control Signal. The voltage level is supplied to the final stage using a programmable voltage source on the RF board.

4) Digital Board:

No modification was made to Digital Board.

Modifications

No modification was made to the EUT during testing.

Local Support Equipment

Manufacturer/Model/Description	Serial Number	FCC ID Number
None	-	-

Remote Support Equipment

Manufacturer/Model/Description	Serial Number	FCC ID Number
None	-	-

€ Elliott	
------------------	--

EMC Test Log

Client:	Savi Technology	Date:	2/17/00	Test Eng:	Mehran M Birgani
Product:	SaviReader 410R	File:	T35984	Proj. Eng:	Mark Briggs
Objective:	Final Qualification	Site:	SVOATS #3	Contact:	Gene Schlindwein
Spec:	FCC Subparts B and C	Page:	5 of 6	Approved:	
Revision	1.0				

Interface Cabling

Cable Description	Length (m)	From Unit/Port	To Unit/Port
Unshielded	30.0	EUT (RS-485)	Not Terminated
Unshielded	30.0	EUT (RS-485)	Not Terminated

Note: The serial port was not connected during testing. The manufacturer stated that this port is used purely for maintenance and configuration purposes and is not used under normal operating conditions.

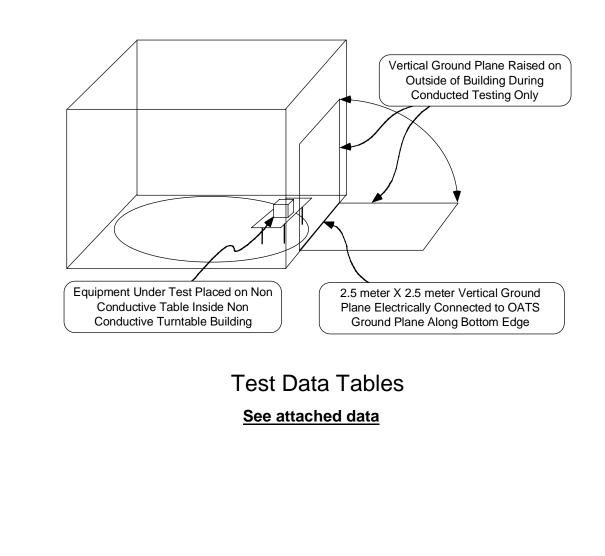
Antenna

The antenna system for the EUT is contained within the enclosure of the device. There are two sizes of antenna - measurements were made on each antenna

Test Software

For all radiated emissions measurements of the fundamental and spurious emissions from the transmitter, the device was configured to transmit the wake-up, data signal continuously from both transmitter/antenna combinations.

For all radiated emissions measurements from the receiver and digital circuitry, the device was configured to receive continuously at 433.985 MHz.


EMC Test Log

Client:	Savi Technology	Date:	2/17/00	Test Eng:	Mehran M Birgani
Product:	SaviReader 410R	File:	T35984	Proj. Eng:	Mark Briggs
Objective:	Final Qualification	Site:	SVOATS #3	Contact:	Gene Schlindwein
Spec:	FCC Subparts B and C	Page:	6 of 6	Approved:	
Revision	1.0				

General Test Conditions

During radiated testing, the EUT was connected to 120 V, 60 Hz power input. The EUT and all local support equipment were located on the turntable for radiated testing and conducted testing.

During conducted emissions testing, the EUT was connected to 120 V, 60 Hz power input as noted. A 2.5 x 2.5 meter ground plane was raised to a vertical position 40 cm from the EUT as shown below:

ani
ein

Ambient Conditions Temperature: 9 °C

Humidity: 79 %

Run #1: Preliminary Radiated Emissions, Receiver LO at 423.231 MHz and Harmonics.

*Measured at 3m with FCC Class B limits.

Frequency	Level	Pol	FCC 1	15.109	Detector	Azimuth	Height	Comments			
MHz	dBuV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
423.231	30.5	V	46.0	-15.5	QP	272	1.1	First Harmonic of Receiver			
423.231	30.1	Н	46.0	-15.9	QP	290	1.9	First Harmonic of Receiver			
846.494	29.2	Н	46.0	-16.8	QP	146	1.1	Second Harmonic of Receiver			
846.495	27.0	V	46.0	-19.0	QP	158	1.0	Second Harmonic of Receiver			

Run #2: Preliminary Radiated Emissions, Digital Device, 30-1000 MHz

*Measured at 10m with FCC Class A limits.

Medsured at form with the olds 7 minute.								
Frequency	Level	Pol	FCC 1	15.109	Detector	Azimuth	Height	Comments
MHz	dBuV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
80.044	34.9	V	39.1	-4.2	QP	252	1.4	
164.995	33.0	V	43.5	-10.5	QP	215	1.0	
76.041	27.8	V	39.1	-11.3	QP	233	1.2	
68.035	27.3	V	39.1	-11.8	QP	233	1.2	
64.996	26.7	V	39.1	-12.4	QP	215	1.0	
140.000	30.3	V	43.5	-13.2	QP	199	1.0	
52.024	24.6	V	39.1	-14.5	QP	233	1.0	
60.034	23.3	V	39.1	-15.8	QP	310	1.2	
80.044	23.1	Н	39.1	-16.0	QP	300	1.8	
140.000	24.0	Н	43.5	-19.5	QP	284	4.0	
108.058	23.1	V	43.5	-20.4	QP	260	1.0	
164.995	21.3	Н	43.5	-22.2	QP	284	4.0	
76.041	16.6	Н	39.1	-22.5	QP	247	1.8	
116.064	20.8	V	43.5	-22.7	QP	264	1.0	

Run #3: Maximized Readings from Run #2, Sorted by Margin.

*Measured at 10m with FCC Class A limits.

Level	Pol	FCC 1	15.109	Detector	Azimuth	Height	Comments		
dBuV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
35.1	V	39.1	-4.0	QP	255	1.3			
33.0	V	43.5	-10.5	QP	215	1.0			
27.8	V	39.1	-11.3	QP	233	1.2			
27.3	V	39.1	-11.8	QP	233	1.2			
26.7	V	39.1	-12.4	QP	215	1.0			
30.3	V	43.5	-13.2	QP	199	1.0			
	dBuV/m 35.1 33.0 27.8 27.3 26.7	dBuV/m v/h 35.1 V 33.0 V 27.8 V 27.3 V 26.7 V	dBuV/m v/h Limit 35.1 V 39.1 33.0 V 43.5 27.8 V 39.1 27.3 V 39.1 26.7 V 39.1	dBuV/m v/h Limit Margin 35.1 V 39.1 -4.0 33.0 V 43.5 -10.5 27.8 V 39.1 -11.3 27.3 V 39.1 -11.8 26.7 V 39.1 -12.4	dBuV/m v/h Limit Margin Pk/QP/Avg 35.1 V 39.1 -4.0 QP 33.0 V 43.5 -10.5 QP 27.8 V 39.1 -11.3 QP 27.3 V 39.1 -11.8 QP 26.7 V 39.1 -12.4 QP	dBuV/m v/h Limit Margin Pk/QP/Avg degrees 35.1 V 39.1 -4.0 QP 255 33.0 V 43.5 -10.5 QP 215 27.8 V 39.1 -11.3 QP 233 27.3 V 39.1 -11.8 QP 233 26.7 V 39.1 -12.4 QP 215	dBuV/m v/h Limit Margin Pk/QP/Avg degrees meters 35.1 V 39.1 -4.0 QP 255 1.3 33.0 V 43.5 -10.5 QP 215 1.0 27.8 V 39.1 -11.3 QP 233 1.2 27.3 V 39.1 -11.8 QP 233 1.2 26.7 V 39.1 -12.4 QP 215 1.0		

lient:	Savi Tech	nologies			Date:	02/17/2000		Test Engr:	Mehran M Birgani
roduct:	SaviRead	er 410R			File:	T35984		Proj. Engr:	Mark Briggs
bjective	Final Qua	lification			Site:	SVOATS #3		Contact:	Gene Schlindwein
pec:	FCC Part	15 Subpa	arts B and C		Distance:	See Data Log		Approved:	
•								•	
Device op	erating u				mental Fre				
Measured a	1				1				
Frequency	Level	Polarity		5.231(a)	Detector	Azimuth	Height	Comments	
MHz	dBuV	H/V	Limit	Margin	Pk/QP/Avg	degrees	meters		a alverialda
433.937	73.3	H	80.8	-7.5	Avg	0		120kHz bai	
433.937	73.1 75.0	V	80.8	-7.7	Avg	114 0		120kHz bai	
433.937 433.937	75.0	H V	100.8 100.8	-25.8 -27.6	Pk Pk	114		120kHz bai 120kHz bai	
400.301	13.2	v	100.0	-21.0	ΓN	114	1.3	IZUNI IZ Udi	IGWIGHT
	aximized	Radiate	d Emissic	ons, 866 M	Hz - 4333 N	s 2.5 seconds, /Hz, Spurio al)			factor.
Run #5: Ma Device ope Measured a	aximized erating un at 3m aga	Radiate nder 15.	d Emissic 231(a) - W C 15.231(a	ons, 866 M /ake-Up Co) limits (15.	Hz - 4333 M ontrol Sign 209 in resti	/IHz, Spuric al) icted bands	ous Emis	sions	
Run #5: Ma Device ope Measured a Frequency	eximized erating un at 3m aga	Radiate nder 15. inst FCC	d Emissic 231(a) - W C 15.231(a FCC 1	ons, 866 Mi /ake-Up Co) limits (15. 5.231(a)	Hz - 4333 N ontrol Sign 209 in restr Detector	/IHz, Spurio al) ricted bands Azimuth	ous Emis) Height		
Run #5: Ma Device ope Measured a Frequency MHz	erating un erating un at 3m aga Level dBuV/m	Radiate nder 15. inst FCC Pol H/V	d Emissic 231(a) - W C 15.231(a FCC 1 Limit	ons, 866 M /ake-Up Co) limits (15. 5.231(a) Margin	Hz - 4333 M ontrol Sign 209 in resti Detector Pk/QP/Avg	IHz, Spuric al) icted bands Azimuth degrees) Height meters	sions Comments	
Run #5: Ma Device ope Measured a Frequency MHz 3905.38	aximized erating un at 3m aga Level dBuV/m 5 51.3	Radiate nder 15. inst FCC Pol H/V V	d Emissic 231(a) - W C 15.231(a FCC 1 Limit 54.0	ons, 866 M /ake-Up Co) limits (15. 5.231(a) Margin -2.7	Hz - 4333 M ontrol Sign 209 in resti Detector Pk/QP/Avg Avg	IHz, Spurio al) icted bands Azimuth degrees 137) Height meters 1.0	Sions Comments 1MHz band	width. In restricted band
Run #5: Ma Device ope Measured a Frequency MHz 3905.38 3905.38	aximized erating un at 3m aga Level dBuV/m 5 51.0	Radiate nder 15. inst FCC Pol H/V V H	d Emissic 231(a) - W C 15.231(a FCC 1 Limit 54.0 54.0	ons, 866 M /ake-Up Cc) limits (15. 5.231(a) Margin -2.7 -3.0	Hz - 4333 M ontrol Sign 209 in restr Detector Pk/QP/Avg Avg Avg	IHz, Spuric al) icted bands Azimuth degrees 137 205) Height meters 1.0 1.1	Comments 1MHz banc 1MHz banc	width. In restricted band
Run #5: Ma Device ope Measured a Frequency MHz 3905.38 3905.38 2603.61	aximized erating un at 3m aga Level dBuV/m 5 51.3 5 51.0 5 48.1	Radiate nder 15. inst FCC Pol H/V V	d Emissic 231(a) - W C 15.231(a FCC 1 Limit 54.0 54.0 60.8	ons, 866 M /ake-Up Cc) limits (15. 5.231(a) Margin -2.7 -3.0 -12.7	Hz - 4333 M ontrol Sign 209 in restr Detector Pk/QP/Avg Avg Avg Avg	IHz, Spuric al) icted bands Azimuth degrees 137 205 220) Height meters 1.0 1.1 1.0	Sions Comments 1MHz banc 1MHz banc 1MHz banc	width. In restricted band width. In restricted band width
Run #5: Ma Device ope Measured a Frequency MHz 3905.38 3905.38	aximized erating un at 3m aga Level dBuV/m 5 51.3 5 51.0 6 48.1 5 46.8	Radiate nder 15. inst FCC Pol H/V V H H H V	d Emissic 231(a) - W C 15.231(a FCC 1 Limit 54.0 54.0	ons, 866 M /ake-Up Cc) limits (15. 5.231(a) Margin -2.7 -3.0	Hz - 4333 M ontrol Sign 209 in restr Detector Pk/QP/Avg Avg Avg	IHz, Spuric al) icted bands Azimuth degrees 137 205) Height meters 1.0 1.1 1.0 1.1	Sions Comments 1MHz banc 1MHz banc 1MHz banc 1MHz banc	width. In restricted band width. In restricted band width
Run #5: Ma Device ope Measured a Frequency MHz 3905.38 3905.38 2603.61 2169.92	aximized erating un at 3m aga Level dBuV/m 5 51.3 5 51.0 6 48.1 5 46.8 5 59.8	Radiate nder 15. inst FCC Pol H/V V H H H V V	d Emissic 231(a) - W C 15.231(a FCC 1 Limit 54.0 54.0 60.8 60.8	ons, 866 M /ake-Up Co) limits (15. 5.231(a) Margin -2.7 -3.0 -12.7 -14.0	Hz - 4333 M Dentrol Sign 209 in restr Detector Pk/QP/Avg Avg Avg Avg Avg Avg Avg	IHz, Spuric al) icted bands Azimuth degrees 137 205 220 249) Height meters 1.0 1.1 1.0 1.1	Sions Comments 1MHz banc 1MHz banc 1MHz banc 1MHz banc 1MHz banc 1MHz banc	width. In restricted band width. In restricted band width width
Run #5: Ma Device ope Measured a Frequency MHz 3905.38 3905.38 2603.61 2169.92 3905.38	aximized erating un at 3m aga Level dBuV/m 5 51.3 5 51.0 6 48.1 5 46.8 5 59.8 5 59.5	Radiate nder 15. inst FCC Pol H/V V H H H V V H	d Emissic 231(a) - W C 15.231(a FCC 1 Limit 54.0 54.0 60.8 60.8 74.0	ons, 866 M /ake-Up Cc) limits (15. 5.231(a) Margin -2.7 -3.0 -12.7 -14.0 -14.2	Hz - 4333 N pontrol Sign 209 in restr Detector Pk/QP/Avg Avg Avg Avg Avg Avg Pk	IHz, Spuric al) icted bands Azimuth degrees 137 205 220 249 137) Height meters 1.0 1.1 1.0 1.1 1.0 1.1	Sions Comments 1MHz banc 1MHz banc 1MHz banc 1MHz banc 1MHz banc 1MHz banc	width. In restricted band width. In restricted band width width width. In restricted band width. In restricted band
Run #5: Ma Device ope Measured a Frequency MHz 3905.38 3905.38 2603.61 2169.92 3905.38 3905.38 3905.38	aximized erating un at 3m aga Level dBuV/m 5 51.3 5 51.0 5 48.1 5 46.8 5 59.8 5 59.5 5 42.5	Radiate nder 15. inst FCC Pol H/V V H H H V H H H	d Emissic 231(a) - W C 15.231(a FCC 1 Limit 54.0 60.8 60.8 74.0 74.0	ons, 866 Mi /ake-Up Cc) limits (15. 5.231(a) Margin -2.7 -3.0 -12.7 -14.0 -14.2 -14.5	Hz - 4333 N ontrol Sign 209 in resti Detector Pk/QP/Avg Avg Avg Avg Avg Pk Pk Pk	IHz, Spuric al) icted bands Azimuth degrees 137 205 220 249 137 205) Height meters 1.0 1.1 1.0 1.1 1.0 1.1 1.1	Sions Comments 1MHz banc 1MHz banc 1MHz banc 1MHz banc 1MHz banc 1MHz banc 1MHz banc 1MHz banc	width. In restricted band width. In restricted band width width width. In restricted band width. In restricted band
Run #5: Ma Device ope Measured a Frequency MHz 3905.38 3905.38 2603.61 2169.92 3905.38 3905.38 3905.38 2169.92	aximized erating un at 3m aga dBuV/m 5 51.3 5 51.0 5 48.1 5 46.8 5 59.8 5 59.5 5 42.5 3 34.5 5 55.2	Radiate nder 15. inst FCC Pol H/V V H H H H H H H H	d Emissic 231(a) - W C 15.231(a FCC 1 Limit 54.0 60.8 60.8 74.0 74.0 60.8	ons, 866 Mi /ake-Up Cc) limits (15. 5.231(a) Margin -2.7 -3.0 -12.7 -14.0 -14.2 -14.5 -18.3	Hz - 4333 M Detector Pk/QP/Avg Avg Avg Avg Avg Avg Avg Avg	Altz, Spuric al) icted bands Azimuth degrees 137 205 220 249 137 205 228) Height meters 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.1 1.1	Sions Comments 1MHz banc 1MHz banc 1MHz banc 1MHz banc 1MHz banc 1MHz banc 1MHz banc 1MHz banc	width. In restricted band width. In restricted band width width width. In restricted band width. In restricted band width. In restricted band width. In restricted band
Run #5: Ma Device ope Measured a Frequency MHz 3905.38 3905.38 2603.61 2169.92 3905.38 3905.38 2169.92 1301.80	aximized erating un at 3m aga bereiting un at 3m aga bereiting un bereiting un bere	Radiate nder 15. inst FCC Pol H/V V H H H H H H H H H	d Emissic 231(a) - W C 15.231(a FCC 1 Limit 54.0 54.0 60.8 60.8 74.0 74.0 60.8 54.0	ons, 866 M /ake-Up Cc) limits (15. 5.231(a) Margin -2.7 -3.0 -12.7 -14.0 -14.2 -14.5 -18.3 -19.5	Hz - 4333 M Detector Pk/QP/Avg Avg Avg Avg Avg Avg Avg Avg	AHz, Spuric al) icted bands Azimuth degrees 137 205 220 249 137 205 220 249 137 205 228 160) Height meters 1.0 1.1 1.0 1.1 1.0 1.1 1.1 1.0 1.1 1.0 1.0	Sions Comments 1MHz banc 1MHz banc 1MHz banc 1MHz banc 1MHz banc 1MHz banc 1MHz banc 1MHz banc 1MHz banc	width. In restricted band width. In restricted band width width width. In restricted band width. In restricted band width. In restricted band width. In restricted band width. In restricted band
Run #5: Ma Device ope Measured a Frequency MHz 3905.38 3905.38 2603.61 2169.92 3905.38 3905.38 2169.92 1301.80 2603.61 2169.92 1301.80	aximized erating unation at 3m aga Level dBuV/m 5 6 5 5 6 5 5 5 5 5 5 5 5 5 5 5 5 6 5 5 5 5 5 5 5	Radiate nder 15. inst FCC Pol H/V V H H V V H H H H H H H H H H H	d Emissic 231(a) - W C 15.231(a FCC 1 Limit 54.0 54.0 60.8 60.8 74.0 74.0 60.8 54.0 80.8 80.8 80.8 74.0	ons, 866 M /ake-Up Cc) limits (15. 5.231(a) Margin -2.7 -3.0 -12.7 -14.0 -14.2 -14.5 -18.3 -19.5 -25.6 -26.0 -28.9	Hz - 4333 M Detector Pk/QP/Avg Avg Avg Avg Avg Avg Avg Avg	AHz, Spuric al) icted bands Azimuth degrees 137 205 220 249 137 205 228 160 220 249) Height meters 1.0 1.1 1.0 1.1 1.0 1.1 1.1 1.0 1.1 1.0 1.0	Sions Comments 1MHz banc 1MHz banc	width. In restricted band width. In restricted band width width width. In restricted band width. In restricted band width. In restricted band width. In restricted band width. In restricted band
Run #5: Ma Device ope Measured a Frequency MHz 3905.38 3905.38 2603.61 2169.92 3905.38 3905.38 2169.92 1301.80 2603.61 2169.92 1301.80 2603.61	aximized erating unat at 3m aga Level dBuV/m 5 6 5 5 5 5 5 5 5 5 5 6 5 6 6 6 5 5 5 5 5 5 <	Radiate nder 15. inst FCC Pol H/V V H H H H H H H H H H H H H H H	d Emissic 231(a) - W C 15.231(a FCC 1 Limit 54.0 60.8 60.8 74.0 74.0 60.8 54.0 80.8 80.8 74.0 80.8 80.8 74.0 80.8	ons, 866 M /ake-Up Cc) limits (15. 5.231(a) Margin -2.7 -3.0 -12.7 -14.0 -14.2 -14.5 -14.5 -19.5 -25.6 -26.0 -28.9 -29.0	Hz - 4333 N Detector Pk/QP/Avg Avg Avg Avg Avg Pk Pk Pk Avg Avg Pk Pk Pk Pk Pk Pk Pk Pk Pk Pk	Altz, Spuric al) icted bands Azimuth degrees 137 205 220 249 137 205 220 249 137 205 228 160 228 160 228) Height meters 1.0 1.1 1.0 1.1 1.0 1.1 1.1 1.0 1.0 1.0	Sions Comments 1MHz banc 1MHz banc	width. In restricted band width. In restricted band width width width. In restricted band width. In restricted band width width. In restricted band width width. In restricted band width width. In restricted band width
Run #5: Ma Device ope Measured a Frequency MHz 3905.38 3905.38 2603.61 2169.92 3905.38 2169.92 1301.80 2603.61 2169.92 1301.80 2169.92 867.87	aximized erating unat at 3m aga Level dBuV/m 5 6 5 6 6 6 6 5 5 5 5 6 7 <	Radiate nder 15. inst FCC Pol H/V V H H H H H H H H H H V V H H H V V	d Emissic 231(a) - W C 15.231(a FCC 1 Limit 54.0 60.8 60.8 74.0 74.0 60.8 54.0 80.8 80.8 74.0 80.8 80.8 74.0 80.8 60.8	ons, 866 Mi /ake-Up Cc) limits (15. 5.231(a) Margin -2.7 -3.0 -12.7 -14.0 -14.2 -14.5 -18.3 -19.5 -25.6 -26.0 -28.9 -29.0 -30.6	Hz - 4333 N Detector Pk/QP/Avg Avg Avg Avg Avg Avg Pk Pk Pk Avg Avg Pk Pk Pk Pk Pk Pk Pk Pk	AHz, Spuric al) icted bands Azimuth degrees 137 205 220 249 137 205 220 249 137 205 228 160 228 160 228 114) Height meters 1.0 1.1 1.0 1.1 1.0 1.1 1.1 1.0 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.1	Comments 1MHz banc 1MHz banc	width. In restricted band width. In restricted band width width width. In restricted band width. In restricted band width. width. In restricted band width width. In restricted band width width. In restricted band width hwidth. In restricted band
Run #5: Ma Device ope Measured a Frequency MHz 3905.38 3905.38 2603.61 2169.92 3905.38 2003.61 2169.92 1301.80 2603.61 2169.92 1301.80 2603.61 2169.92 867.87 867.87	aximized arating unat at 3m aga Level dBuV/m 5 6 5 6 5 5 6 5 5 5 5 5 5 6 5 6 7 8 4 27.0	Radiate nder 15. inst FCC Pol H/V V H H H H H H H H H H H H V H H H H	d Emissic 231(a) - W C 15.231(a FCC 1 Limit 54.0 60.8 60.8 74.0 74.0 60.8 54.0 80.8 54.0 80.8 54.0 80.8 60.8 60.8 60.8	ons, 866 Mi /ake-Up Cc) limits (15. 5.231(a) Margin -2.7 -3.0 -12.7 -14.0 -14.2 -14.5 -18.3 -19.5 -25.6 -26.0 -28.9 -29.0 -30.6 -33.8	Hz - 4333 N ontrol Sign 209 in restr Detector Pk/QP/Avg Avg Avg Avg Avg Pk Pk Pk Avg Avg Pk Pk Pk Pk Pk Pk Pk Pk Avg Avg Avg Avg Avg Avg Avg Avg	AHz, Spuric al) icted bands Azimuth degrees 137 205 220 249 137 205 220 249 137 205 228 160 228 114 0) Height meters 1.0 1.1 1.0 1.1 1.0 1.1 1.1 1.0 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.0	Sions Comments 1MHz banc 1MHz banc 120kHz banc	width. In restricted band width. In restricted band width width width. In restricted band width. In restricted band width. In restricted band width width. In restricted band width width. In restricted band width width. In restricted band width huwidth. In restricted band
Run #5: Ma Device ope Measured a Frequency MHz 3905.38 3905.38 2603.61 2169.92 3905.38 2169.92 1301.80 2603.61 2169.92 1301.80 2169.92 867.87	aximized arating unat 3m aga Level dBuV/m 5 5 5 5 5 5 5 5 5 5 6 5 5 5 6 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 7 7 7 7 7 8 4 38.9	Radiate nder 15. inst FCC Pol H/V V H	d Emissic 231(a) - W C 15.231(a FCC 1 Limit 54.0 60.8 60.8 74.0 74.0 60.8 54.0 80.8 80.8 74.0 80.8 80.8 74.0 80.8 60.8	ons, 866 Mi /ake-Up Cc) limits (15. 5.231(a) Margin -2.7 -3.0 -12.7 -14.0 -14.2 -14.5 -18.3 -19.5 -25.6 -26.0 -28.9 -29.0 -30.6	Hz - 4333 N pontrol Sign 209 in restr Detector Pk/QP/Avg Avg Avg Avg Avg Pk Pk Avg Avg Pk Pk Pk Pk Pk Pk Pk Pk Pk Pk	AHz, Spuric al) icted bands Azimuth degrees 137 205 220 249 137 205 220 249 137 205 228 160 228 160 228 114) Height meters 1.0 1.1 1.0 1.1 1.0 1.1 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.0	Comments 1MHz banc 1MHz banc	width. In restricted band width. In restricted band width width. In restricted band width. In restricted band width. In restricted band width width. In restricted band width width width. In restricted band width width howidth ndwidth ndwidth

Note 1: Note 2: Average readings measured using analyzer - pulse width is 2.5 seconds, no average correction factor. In restricted bands, the limit is FCC15.209 limit, otherwise average limit is 60.8dBuV/m

2					
Client:	Savi Technologies	Date:	02/17/2000	Test Engr:	Mehran M Birgani
Product:	SaviReader 410R	File:	T35984	Proj. Engr:	Mark Briggs
Objective	Final Qualification	Site:	SVOATS #3	Contact:	Gene Schlindwein
Spec:	FCC Part 15 Subparts B and C	Distance:	See Data Log	Approved:	

Run #6: Maximized Radiated Emissions, Fundamental Frequency (Device operating under 15.231(e) - DATA Signal)

*Measured at 3m

ivicasuleu a	UJII							
Frequency	Level	Polarity	FCC 15	FCC 15.231(e)		Azimuth	Height	Comments
MHz	dBuV	H/V	Limit	Margin	Pk/QP/Avg	degrees	meters	
433.936	61.2	V	72.9	-11.7	Avg	121	1.4	120kHz bandwidth
433.936	61.2	Н	72.9	-11.7	Avg	0	1.0	120kHz bandwidth
433.936	79.9	V	92.9	-13.0	Pk	121	1.4	120kHz bandwidth
433.936	79.7	Н	92.9	-13.2	Pk	0	1.0	120kHz bandwidth
								·

Note 1: Average readings calculated from peak readings using correction factor of -18.4dB, pulse width =12mS

Run #7: Maximized Radiated Emissions, 866 MHz - 4333 MHz, Spurious Emissions (Device operating under 15.231(e) - DATA Signals)

*Measured at 3m

Note: Output of Control Signal and Data Signal are identical, Since limit of Data System is more stringent than Control Signal, also correction factor for average limits for Control Signal is -1.6 dB more than Data Signal. Therefor, by passing Data Signal Control Signal passes as well.

	ge innits it		Signal is -1.0	ub more tria	n Dala Siyilai	. mereior, b	iy passing L	dia Signal Control Signal passes as well.
Frequency	Level	Pol	FCC 15.231(e)		Detector	Azimuth	Height	Comments
MHz	dBuV/m	H/V	Limit	Margin	Pk/QP/Avg	degrees	meters	
3905.865	41.7	V	54.0	-12.3	Avg	133	1.0	1MHz bandwidth. In restricted band
3905.865	60.1	V	74.0	-13.9	Pk	133	1.0	1MHz bandwidth. In restricted band
2603.616	38.0	Н	54.0	-16.0	Avg	223	1.0	1MHz bandwidth
2603.616	56.4	Н	74.0	-17.6	Pk	223	1.0	1MHz bandwidth
2603.616	36.3	V	54.0	-17.7	Avg	197	1.0	1MHz bandwidth
2603.616	54.7	V	74.0	-19.3	Pk	197	1.0	1MHz bandwidth
2169.680	33.7	V	54.0	-20.3	Avg	195	1.2	1MHz bandwidth
3905.865	33.7	Н	54.0	-20.3	Avg	216	1.1	1MHz bandwidth. In restricted band
2169.680	52.1	V	74.0	-21.9	Pk	195	1.2	1MHz bandwidth
3905.865	52.1	Н	74.0	-21.9	Pk	216	1.1	1MHz bandwidth. In restricted band
1301.808	27.4	V	54.0	-26.6	Avg	180	1.0	1MHz bandwidth. In restricted band
1301.808	45.8	V	74.0	-28.2	Pk	180	1.0	1MHz bandwidth. In restricted band
867.970	20.2	V	52.9	-32.7	Avg	121	1.4	120kHz bandwidth
867.970	20.0	Н	52.9	-32.9	Avg	0	1.0	120kHz bandwidth
867.970	38.6	V	72.9	-34.3	Pk	121	1.4	120kHz bandwidth
867.970	38.4	Н	72.9	-34.5	Pk	0	1.0	120kHz bandwidth

 Note 1:
 Average readings calculated from peak readings using correction factor of -18.4dB, pulse width =12mS

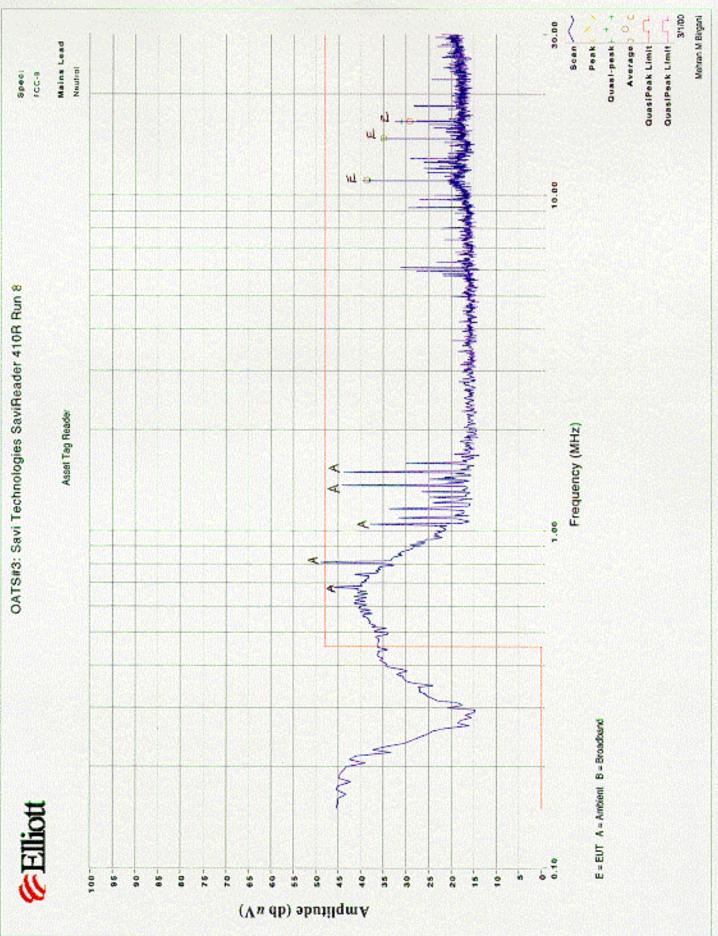
 Note 2:
 Above 1GHz the FCC15.209 limit is used since it permits higher radiation than the 15.231(e) limit.

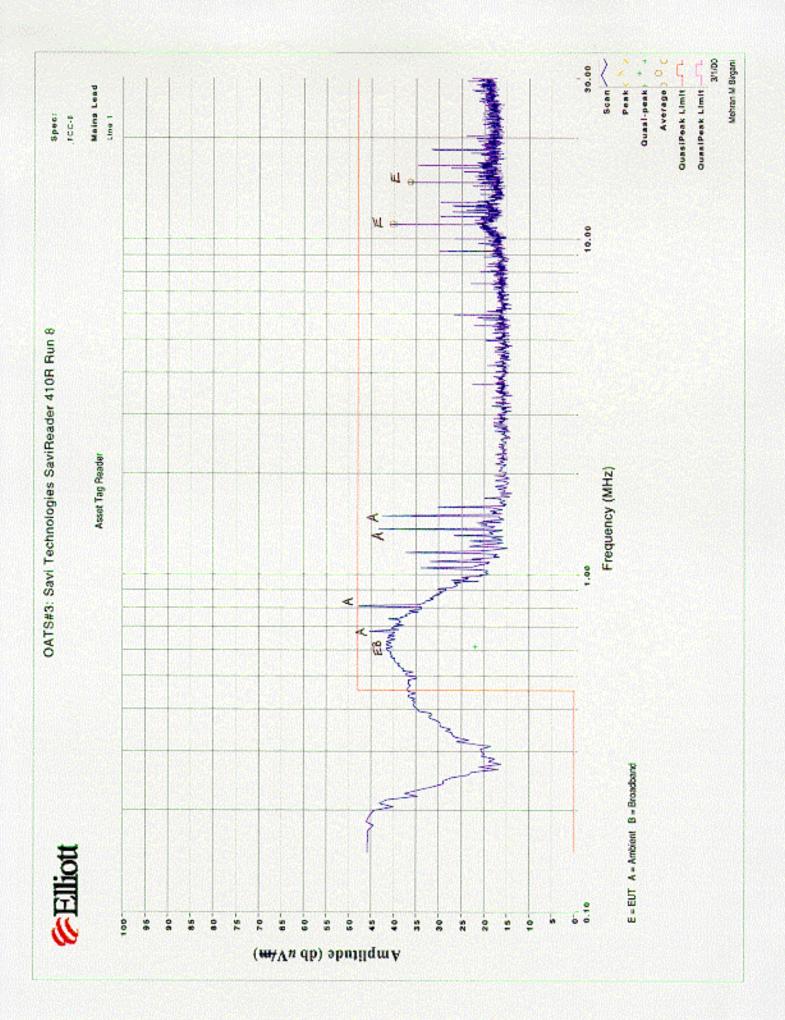
Client:	Savi Technologies	Date:	02/17/2000	Test Engr:	Mehran M Birgani
Product:	SaviReader 410R	File:	T35984	Proj. Engr:	Mark Briggs
Objective	Final Qualification	Site:	SVOATS #3	Contact:	Gene Schlindwein
Spec:	FCC Part 15 Subparts B and C	Distance:	See Data Log	Approved:	

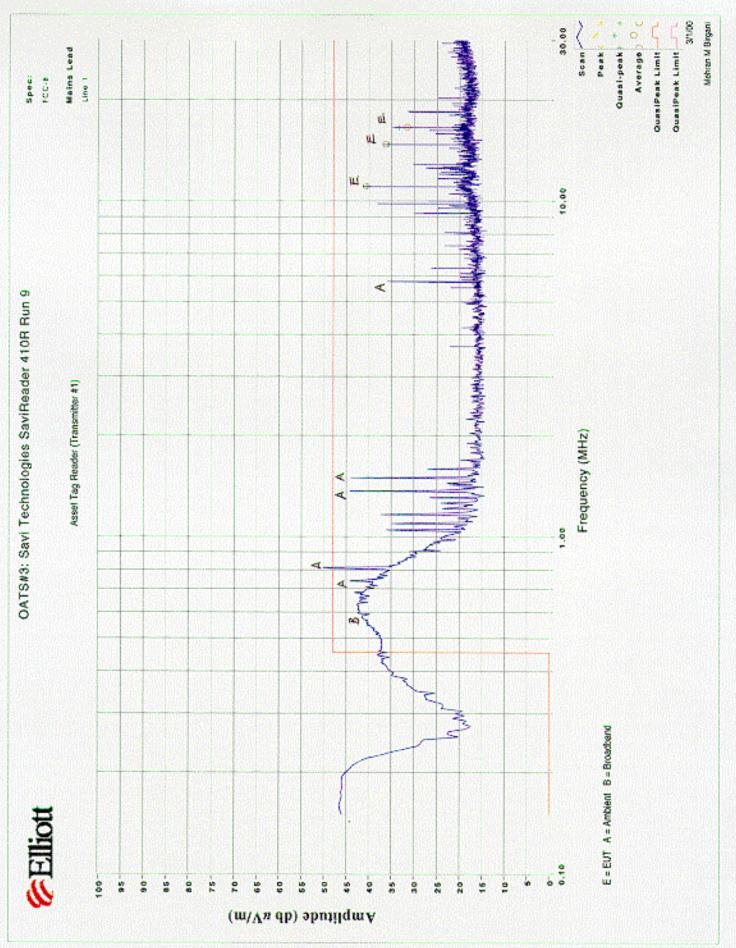
Run #8: Conducted Emissions, 120V/60Hz, Receiver

At 120V/60Hz against FCC Class B limits.

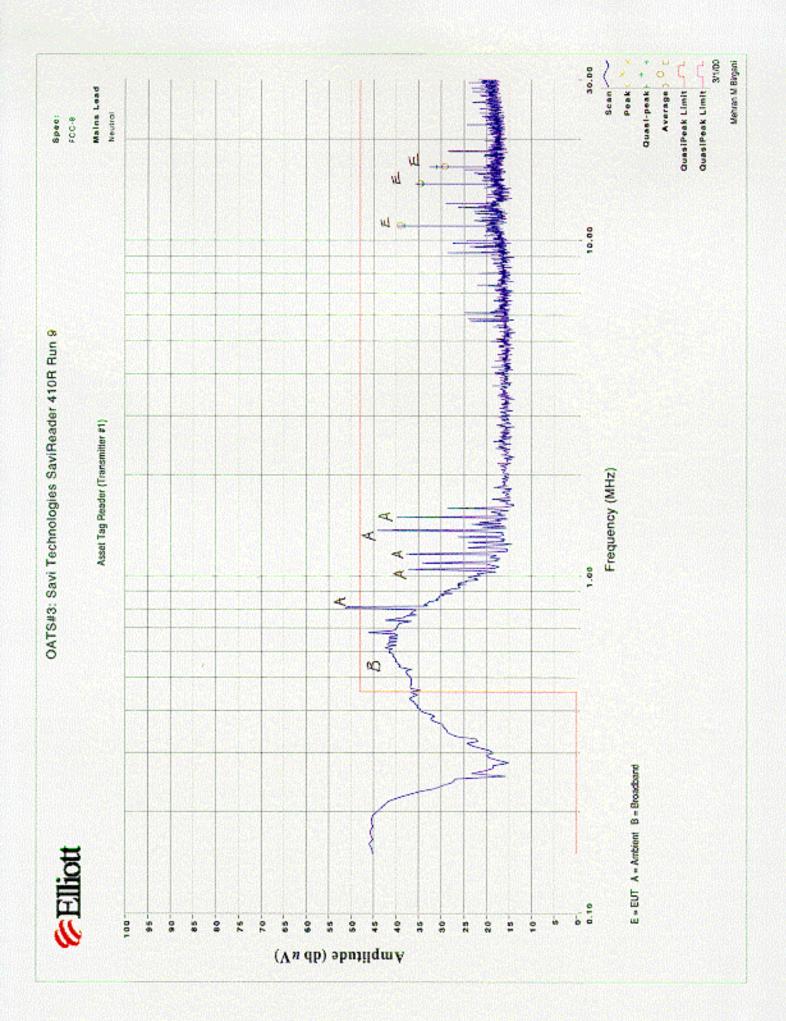
Frequency	Level	Power	FCC Pa	rt 15.107	Detector	Comments
MHz	dBuV	Lead	Limit	Margin	QP/Ave	
11.064	39.5	Line	48.0	-8.5	QP	
11.060	38.0	Neutral	48.0	-10.0	QP	
14.749	36.0	Line	48.0	-12.0	QP	
14.749	35.1	Neutral	48.0	-12.9	QP	
16.592	31.0	Neutral	48.0	-17.0	QP	
0.613	21.9	Line	48.0	-26.1	QP	Note 1

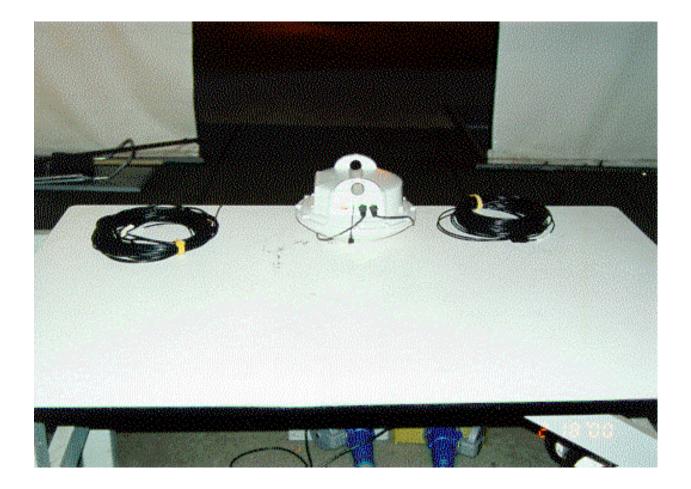

Note 1:


Broadband corrcetion factor of -13db applied to the QP reading as the avergae reading was 6dB lower than the QP reading.


Run #9: Conducted Emissions, 120V/60Hz, Transmitter #1

At 120V/60Hz against FCC Class B limits.


	- 0					
Frequency	Level	Power	FCC Pa	rt 15.207	Detector	Comments
MHz	dBuV	Lead	Limit	Margin	QP/Ave	
11.062	40.6	Line	48.0	-7.4	QP	
11.064	38.3	Neutral	48.0	-9.7	QP	
14.748	35.9	Line	48.0	-12.1	QP	
14.750	34.3	Neutral	48.0	-13.7	QP	
16.591	33.4	Line	48.0	-14.6	QP	
16.592	31.0	Neutral	48.0	-17.0	QP	


Section.

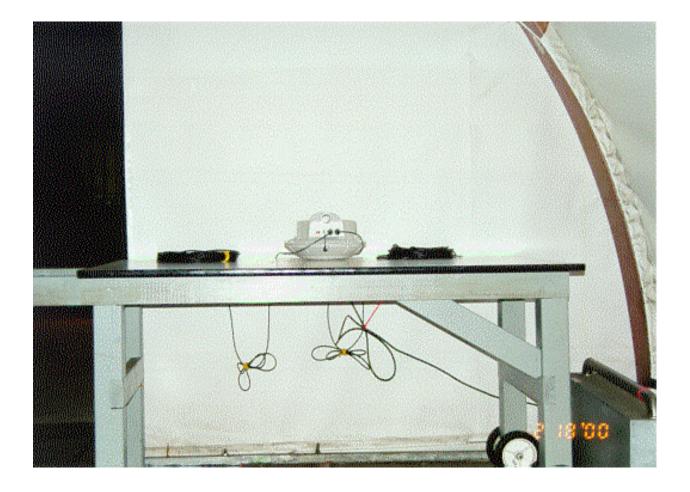

EXHIBIT 3: Radiated Emissions Test Configuration Photographs

EXHIBIT 3: Radiated Emissions Test Configuration Photographs

EXHIBIT 4: Conducted Emissions Test Configuration Photographs

EXHIBIT 4: Conducted Emissions Test Configuration Photographs

EXHIBIT 5: Proposed FCC ID Label & Label Location

EXHIBIT 6:Detailed Photographs of Savi Technology, Inc. Model Savi Reader 410R Construction

6 Pages

EXHIBIT 7: Operator's Manual for Savi Technology, Inc. Model Savi Reader 410R

EXHIBIT 8: Block Diagram of Savi Technology, Inc. Model Savi Reader 410R

EXHIBIT 9: Schematic Diagrams for Savi Technology, Inc. Model Savi Reader 410R

EXHIBIT 10: Theory of Operation for Savi Technology, Inc. Model Savi Reader 410R