

Digital Control, Inc.

DucTrak Model DDS 12 Model DDT 12 (short and long)

Report No. DIGC0145

Report Prepared By

www.nwemc.com
1-888-EMI-CERT

© 2011 Northwest EMC, Inc

EMC Test Report

22975 NW Evergreen Parkway
Suite 400
Hillsboro, Oregon 97124

Certificate of Test

Last Date of Test: August 24, 2011

Digital Control, Inc.

Models: DucTrak DDS 12, DDT 12 (short and long)

Emissions			
Test Description	Specification	Test Method	Pass/Fail
Field Strength of Fundamental	FCC 15.209:2011	ANSI C63.10:2009	Pass
Field Strength of Spurious Emissions	FCC 15.209:2011	ANSI C63.10:2009	Pass

Modifications made to the product

See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc.
22975 NW Evergreen Parkway, Suite 400
Hillsboro, OR 97124
Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834D-1).

Approved By:

Tim O'Shea, Operations Manager

NVLAP®

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision Number	Description	Date	Page Number
00	None		

Barometric Pressure

The recorded barometric pressure has been normalized to sea level.

Accreditations and Authorizations

FCC

Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP

Northwest EMC, Inc. is accredited under the National Voluntary Laboratory Accreditation Program (NVLAP) for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. NVLAP is administered by the National Institute of Standards and Technology (NIST), an agency of the U.S. Commerce Department. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada

Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2, Brooklyn Park: 2834E-1)

CAB

Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

Australia/New Zealand

The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

Accreditations and Authorizations

VCCI

Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (*Registration Numbers. - Hillsboro: C-1071, R-1025, G-84, C-2687, T-1658, and R-2318, Irvine: R-1943, G-85, C-2766, and T-1659, Sultan: R-871, G-83, C-3265, and T-1511, Brooklyn Park: R-3125, G-86, G-141, C-3464, and T-1634*).

BSMI

Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017).

GOST

Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

KCC

Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (*Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157, Brooklyn Park: US0175*)

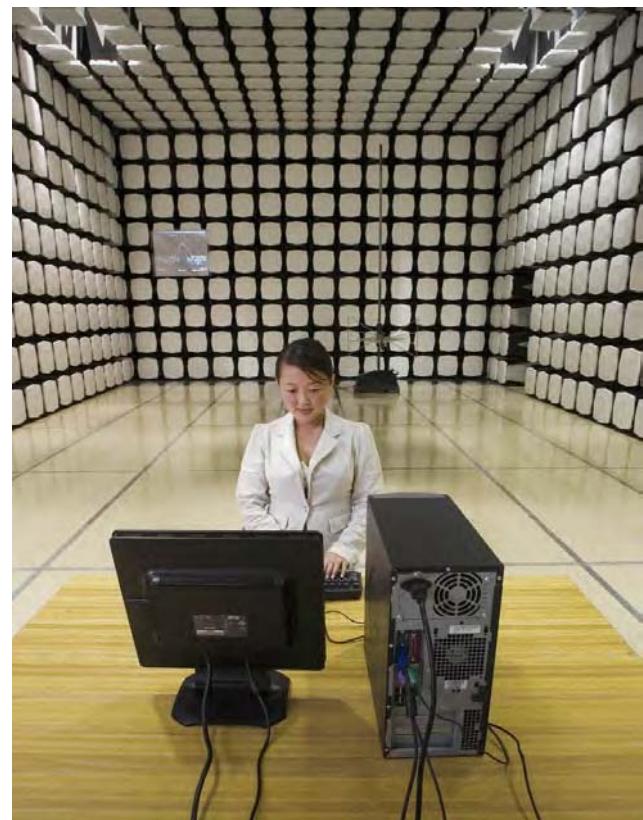
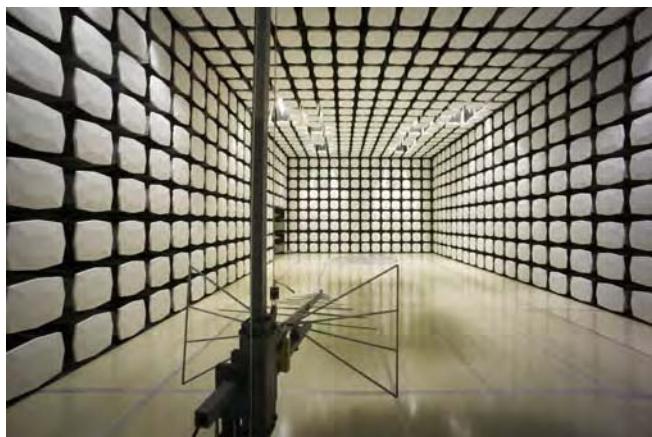
VIETNAM

Vietnam MIC has approved Northwest EMC as an accredited test lab. Per Decision No. 194/QD-QLCL (dated December 15, 2009), Northwest EMC test reports can be used for Vietnam approval submissions.

SCOPE

For details on the Scopes of our Accreditations, please visit:
<http://www.nwemc.com/accreditations/>

Northwest EMC Locations



Oregon
Labs EV01-EV12
22975 NW Evergreen Pkwy
Suite 400
Hillsboro, OR 97124
(503) 844-4066

California
Labs OC01-OC13
41 Tesla
Irvine, CA 92618
(949) 861-8918

Minnesota
Labs MN01-MN08
9349 W Broadway Ave.
Brooklyn Park,
MN 55445
(763) 425-2281

Washington
Labs SU01-SU07
14128 339th Ave. SE
Sultan, WA 98294
(360) 793-8675

New York
Labs WA01-WA04
4939 Jordan Rd.
Elbridge, NY 13060
(315) 685-0796

Party Requesting the Test

Company Name:	Digital Control, Inc.
Address:	19625 62nd Avenue South, Suite B103
City, State, Zip:	Kent, WA 98032
Test Requested By:	Amanda Hamm
Model:	DucTrak (short and long)
First Date of Test:	8/23/2011
Last Date of Test:	8/24/2011
Receipt Date of Samples:	8/23/2011
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test**Functional Description of the EUT (Equipment Under Test):**

These are 11.976 kHz transmitters located in a battery powered device. The device has a pulling eye on each end so that it can be pulled through existing duct work. It transmits a non-modulated carrier signal for a receiver to detect and assist in determining the depth and field direction of the device. Long has specified range of 80' (24.4m), short: 40' (12.2m)

Testing Objective:

To demonstrate compliance to FCC 15.209 requirements.

CONFIGURATION 1 DIGC0145

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
11.976 kHz transmitter - Long Range	Digital Control, Inc.	DDT12	1320361

CONFIGURATION 2 DIGC0145

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
11.976 kHz transmitter - Short Range	Digital Control, Inc.	DDS12	1320357

Equipment modifications					
Item	Date	Test	Modification	Note	Disposition of EUT
1	8/23/2011	Field Strength of Fundamental	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
2	8/24/2011	Field Strength of Spurious Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

EMC**Field Strength of Fundamental**

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Default Transmit

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

DIGC0145 - 2

FREQUENCY RANGE INVESTIGATED

Start Frequency	9 kHz	Stop Frequency	490 kHz
-----------------	-------	----------------	---------

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4443A	AFB	1/24/2011	12 mo
Antenna, Loop	EMCO	6502	AOA	6/28/2011	24 mo
EV11 Cables	N/A	3m Test Distance Cables	EVM	3/17/2011	12 mo

MEASUREMENT BANDWIDTHS

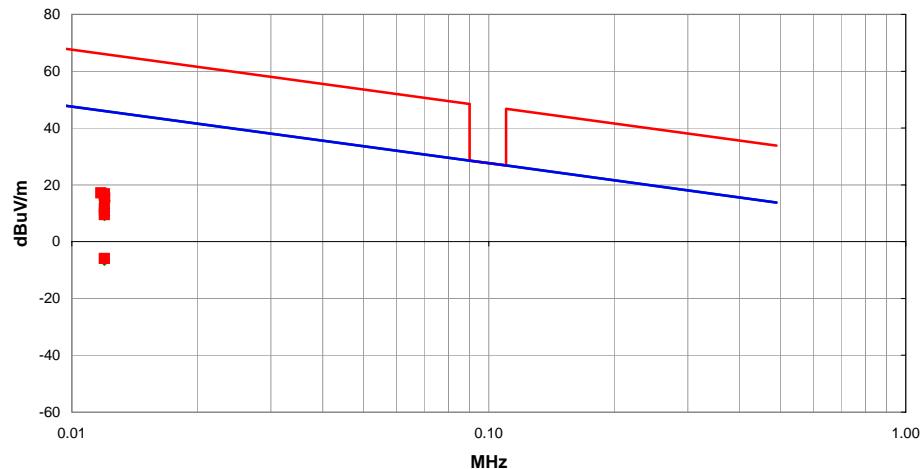
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data
	(MHz)	(kHz)	(kHz)	(kHz)
	0.01 - 0.15	1.0	0.2	0.2
	0.15 - 30.0	10.0	9.0	9.0
	30.0 - 1000	100.0	120.0	120.0
	Above 1000	1000.0	N/A	1000.0

Measurements were made using the IF bandwidths and detectors specified. No video filter was used, except in the case of the FCC Average Measurements above 1GHz. In that case, a peak detector with a 10Hz video bandwidth was used.

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION


The antennas to be used with the EUT were tested. The EUT was transmitting and receiving while set at the channel available. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and orientation in 3 orthogonal plane, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2009). An active loop antenna was used for this test in order to provide sufficient measurement sensitivity.

Field Strength of Fundamental

Work Order:	DIGC0145	Date:	08/23/11	
Project:	None	Temperature:	23.8 °C	
Job Site:	EV11	Humidity:	46.15% RH	
Serial Number:	1320357	Barometric Pres.:	1014.7 mbar	
EUT:	DucTrak (Short)	Tested by:	Travis Rychener	
Configuration:	2			
Customer:	Digital Control, Inc.			
Attendees:	None			
EUT Power:	Battery			
Operating Mode:	Default Transmit			
Deviations:	None			
Comments:	None			

Test Specifications		Test Method	
FCC 15.209:2011		ANSI C63.10:2009	

Run #	14	Test Distance (m)	3	Antenna Height(s)	1-4m	Results	Pass
-------	----	-------------------	---	-------------------	------	---------	------

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
0.012	78.3	18.5	2.0	282.0	3.0	0.0	Horz	AV	-80.0	16.8	46.0	-29.2	EUT Hor Antenna perpendicular to ground and parallel to EUT
0.012	77.7	18.5	2.1	198.0	3.0	0.0	Horz	AV	-80.0	16.2	46.0	-29.8	EUT Hor Antenna perpendicular to ground and perpendicular to EUT
0.012	76.0	18.5	2.0	195.0	3.0	0.0	Horz	AV	-80.0	14.5	46.0	-31.5	EUT Hor Antenna parallel to ground and perpendicular to EUT
0.012	73.2	18.5	2.0	195.0	3.0	0.0	Vert	AV	-80.0	11.7	46.0	-34.3	EUT vert Antenna parallel to ground and perpendicular to EUT
0.012	70.8	18.5	2.5	209.0	3.0	0.0	Horz	AV	-80.0	9.3	46.0	-36.7	EUT Vert Antenna perpendicular to ground and parallel to EUT
0.012	78.6	18.6	2.0	195.0	3.0	0.0	Horz	PK	-80.0	17.2	66.2	-49.0	EUT Hor Antenna parallel to ground and perpendicular to EUT
0.012	78.3	18.5	2.0	282.0	3.0	0.0	Horz	PK	-80.0	16.8	66.0	-49.2	EUT Hor Antenna perpendicular to ground and parallel to EUT
0.012	77.7	18.5	2.1	198.0	3.0	0.0	Horz	PK	-80.0	16.2	66.0	-49.8	EUT Hor Antenna perpendicular to ground and perpendicular to EUT
0.012	76.8	18.5	2.0	195.0	3.0	0.0	Horz	PK	-80.0	15.3	66.0	-50.7	EUT Hor Antenna parallel to ground and perpendicular to EUT
0.012	55.0	18.5	2.0	164.0	3.0	0.0	Horz	AV	-80.0	-6.5	46.0	-52.5	EUT Vert Antenna perpendicular to ground and perpendicular to EUT
0.012	73.3	18.5	2.0	195.0	3.0	0.0	Vert	PK	-80.0	11.8	66.0	-54.2	EUT vert Antenna parallel to ground and perpendicular to EUT
0.012	71.0	18.5	2.5	209.0	3.0	0.0	Horz	PK	-80.0	9.5	66.0	-56.5	EUT Vert Antenna perpendicular to ground and parallel to EUT
0.012	55.6	18.5	2.0	164.0	3.0	0.0	Horz	PK	-80.0	-5.9	66.0	-71.9	EUT Vert Antenna perpendicular to ground and perpendicular to EUT

EMC**Field Strength of Fundamental**

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Default Transmit

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

DIGC0145 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency	9 kHz	Stop Frequency	490 kHz
-----------------	-------	----------------	---------

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4443A	AFB	1/24/2011	12 mo
EV11 Cables	N/A	3m Test Distance Cables	EVM	3/17/2011	12 mo
Antenna, Loop	EMCO	6502	AOA	6/28/2011	24 mo

MEASUREMENT BANDWIDTHS

	Frequency Range	Peak Data	Quasi-Peak Data	Average Data
	(MHz)	(kHz)	(kHz)	(kHz)
	0.01 - 0.15	1.0	0.2	0.2
	0.15 - 30.0	10.0	9.0	9.0
	30.0 - 1000	100.0	120.0	120.0
	Above 1000	1000.0	N/A	1000.0

Measurements were made using the IF bandwidths and detectors specified. No video filter was used, except in the case of the FCC Average Measurements above 1GHz. In that case, a peak detector with a 10Hz video bandwidth was used.

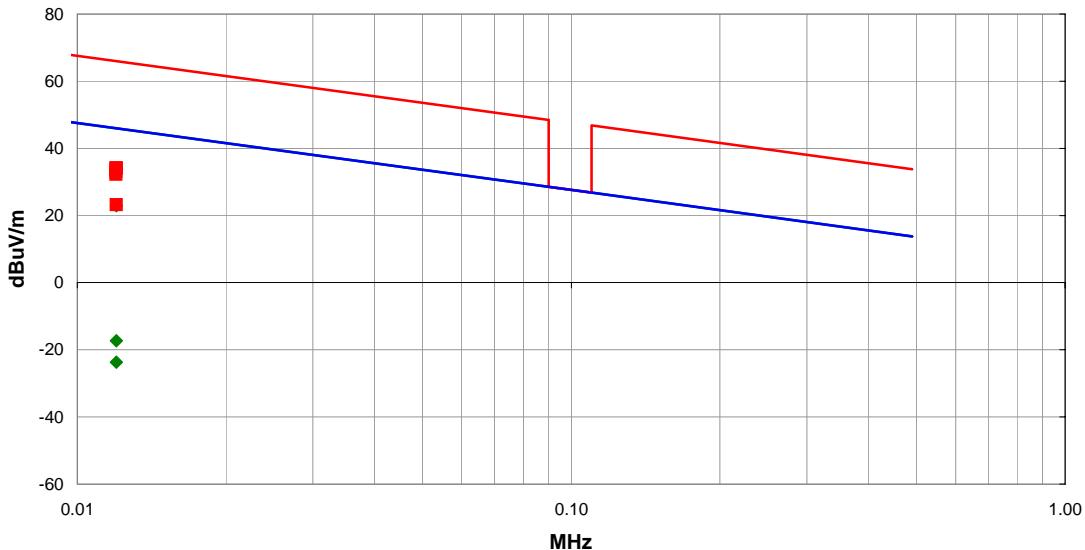
MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting and receiving while set at the channel available. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and orientation in 3 orthogonal plane, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2009). An active loop antenna was used for this test in order to provide sufficient measurement sensitivity.

Work Order:	DIGC0145	Date:	08/23/11	
Project:	None	Temperature:	23.8 °C	
Job Site:	EV11	Humidity:	46.15% RH	
Serial Number:	13200361	Barometric Pres.:	1014.8 mbar	
EUT:	DucTrak (Long)			
Configuration:	1			
Customer:	Digital Control, Inc.			
Attendees:	None			
EUT Power:	Battery			
Operating Mode:	Default Transmit			
Deviations:	None			
Comments:	Antenna perpendicular to ground and parallel to EUT			


Test Specifications

FCC 15.209:2011

Test Method

ANSI C63.10:2009

Run #	8	Test Distance (m)	3	Antenna Height(s)	1-4m	Results	Pass

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
0.012	95.6	18.5	2.0	0.0	3.0	0.0	Horz	AV	-80.0	34.1	46.0	-11.9	EUT Hor Ant Para to EUT, perp to gnd
0.012	94.8	18.5	1.4	197.0	3.0	0.0	Vert	AV	-80.0	33.3	46.0	-12.7	EUT Hor Ant Para to EUT, para to gnd
0.012	94.6	18.5	2.0	183.0	3.0	0.0	Horz	AV	-80.0	33.1	46.0	-12.9	EUT Vert Ant Perp to EUT, perp to gnd
0.012	84.4	18.5	2.0	0.0	3.0	0.0	Horz	AV	-80.0	22.9	46.0	-23.1	EUT Hor Ant Perp to EUT, perp to gnd
0.012	95.7	18.5	2.0	0.0	3.0	0.0	Horz	PK	-80.0	34.2	66.0	-31.8	EUT Vert Ant Para to EUT, perp to gnd
0.012	95.6	18.5	1.4	197.0	3.0	0.0	Vert	PK	-80.0	34.1	66.0	-31.9	EUT Vert Ant Para to EUT, perp to gnd
0.012	95.6	18.5	2.0	109.0	3.0	0.0	Vert	PK	-80.0	34.1	66.0	-31.9	EUT Hor Ant Para to EUT, para to gnd
0.012	94.6	18.5	2.0	183.0	3.0	0.0	Horz	PK	-80.0	33.1	66.0	-32.9	EUT Hor Ant Para to EUT, para to gnd
0.012	93.8	18.5	1.4	197.0	3.0	0.0	Vert	PK	-80.0	32.3	66.0	-33.7	EUT Hor Ant Perp to EUT, perp to gnd
0.012	84.7	18.5	2.0	0.0	3.0	0.0	Horz	PK	-80.0	23.2	66.0	-42.8	EUT Vert Ant Perp to EUT, perp to gnd
0.012	44.2	18.5	1.4	197.0	3.0	0.0	Vert	AV	-80.0	-17.3	46.0	-63.3	EUT Vert Ant Para to EUT, perp to gnd
0.012	38.0	18.3	2.1	121.0	3.0	0.0	Horz	AV	-80.0	-23.7	45.6	-69.4	EUT Vert Ant Para to EUT, para to gnd

EMC**Field Strength of Spurious Emissions**

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Default Transmit

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

DIGC0145 - 2

FREQUENCY RANGE INVESTIGATED

Start Frequency 9 kHz Stop Frequency 30 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4443A	AFB	1/24/2011	12 mo
Antenna, Loop	EMCO	6502	AOA	6/28/2011	24 mo
EV11 Cables	N/A	3m Test Distance Cables	EVM	3/17/2011	12 mo

MEASUREMENT BANDWIDTHS

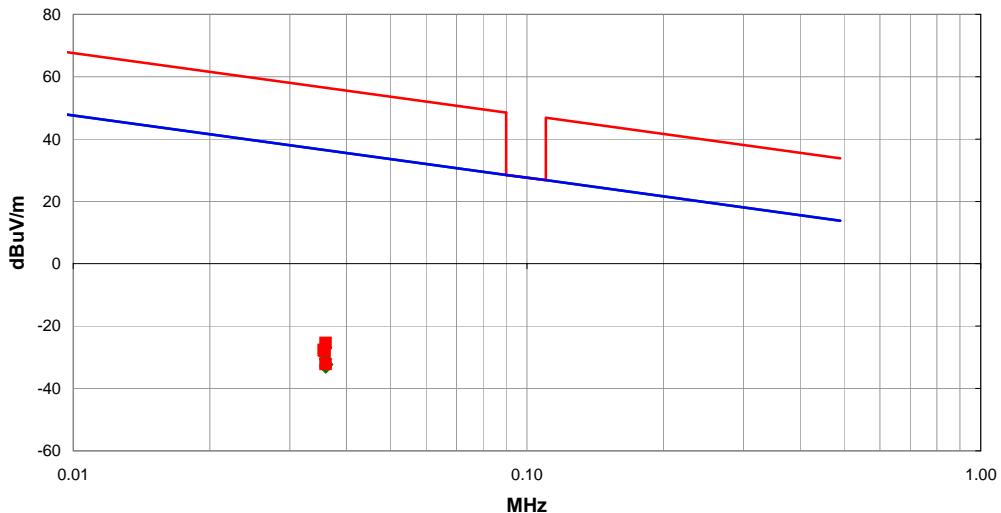
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data
	(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2	
0.15 - 30.0	10.0	9.0	9.0	
30.0 - 1000	100.0	120.0	120.0	
Above 1000	1000.0	N/A	1000.0	

Measurements were made using the IF bandwidths and detectors specified. No video filter was used, except in the case of the FCC Average Measurements above 1GHz. In that case, a peak detector with a 10Hz video bandwidth was used.

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION


The antennas to be used with the EUT were tested. The EUT was transmitting and receiving while set at the channel available. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and orientation in 3 orthogonal plane, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2009). An active loop antenna was used for this test in order to provide sufficient measurement sensitivity.

Field Strength of Spurious Emissions

Work Order:	DIGC0145	Date:	08/24/11	
Project:	None	Temperature:	23.57 °C	
Job Site:	EV11	Humidity:	49.37% RH	
Serial Number:	1320357	Barometric Pres.:	1014.5 mbar	
EUT:	DucTrak (Short)	Tested by:	Travis Rychener	
Configuration:	2			
Customer:	Digital Control, Inc.			
Attendees:	None			
EUT Power:	Battery			
Operating Mode:	Default Transmit			
Deviations:	None			
Comments:	None			

Test Specifications		Test Method	
FCC 15.209:2011		ANSI C63.10:2009	

Run #	22	Test Distance (m)	3	Antenna Height(s)	1-4m	Results	Pass
-------	----	-------------------	---	-------------------	------	---------	------

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
0.036	40.3	12.8	2.0	0.0	3.0	0.0	Vert	AV	-80.0	-26.9	36.5	-63.3	EUT Hor, Antenna parallel to EUT, perp to ground
0.036	40.0	12.9	2.0	271.0	3.0	0.0	Horz	AV	-80.0	-27.1	36.5	-63.6	EUT Hor, Antenna parallel to EUT, perp to ground
0.036	36.6	12.8	2.2	172.0	3.0	0.0	Horz	AV	-80.0	-30.6	36.5	-67.0	EUT Hor, Antenna perp to EUT, perp to ground
0.036	34.9	12.8	2.0	363.0	3.0	0.0	Horz	AV	-80.0	-32.3	36.4	-68.7	EUT Vert, Antenna perp to ground, perp to EUT
0.036	34.8	12.8	2.0	248.0	3.0	0.0	Vert	AV	-80.0	-32.4	36.4	-68.8	EUT Vert, Antenna parallel to ground, perp to EUT
0.036	34.6	12.8	2.0	0.0	3.0	0.0	Vert	AV	-80.0	-32.6	36.5	-69.0	EUT Hor, Antenna parallel to ground perp to EUT
0.036	34.5	12.8	2.9	248.0	3.0	0.0	Horz	AV	-80.0	-32.7	36.5	-69.1	EUT Vert, Antenna parallel to EUT, perp to ground
0.036	34.0	12.8	2.0	0.0	3.0	0.0	Vert	AV	-80.0	-33.2	36.5	-69.6	EUT Hor, Antenna parallel to ground perp to EUT
0.036	41.8	12.8	2.0	248.0	3.0	0.0	Vert	PK	-80.0	-25.4	56.5	-81.8	EUT Vert, Antenna parallel to ground, perp to EUT
0.036	39.5	12.9	2.9	248.0	3.0	0.0	Horz	PK	-80.0	-27.6	56.5	-84.2	EUT Vert, Antenna parallel to EUT, perp to ground
0.036	39.1	12.9	2.0	363.0	3.0	0.0	Horz	PK	-80.0	-28.0	56.5	-84.5	EUT Vert, Antenna perp to ground, perp to EUT
0.036	35.0	12.8	2.0	248.0	3.0	0.0	Vert	PK	-80.0	-32.2	56.5	-88.6	EUT Hor, Antenna perp to EUT, perp to ground

EMC**Field Strength of Spurious Emissions**

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Default Transmit

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

DIGC0145 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency	9 kHz	Stop Frequency	30 MHz
-----------------	-------	----------------	--------

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

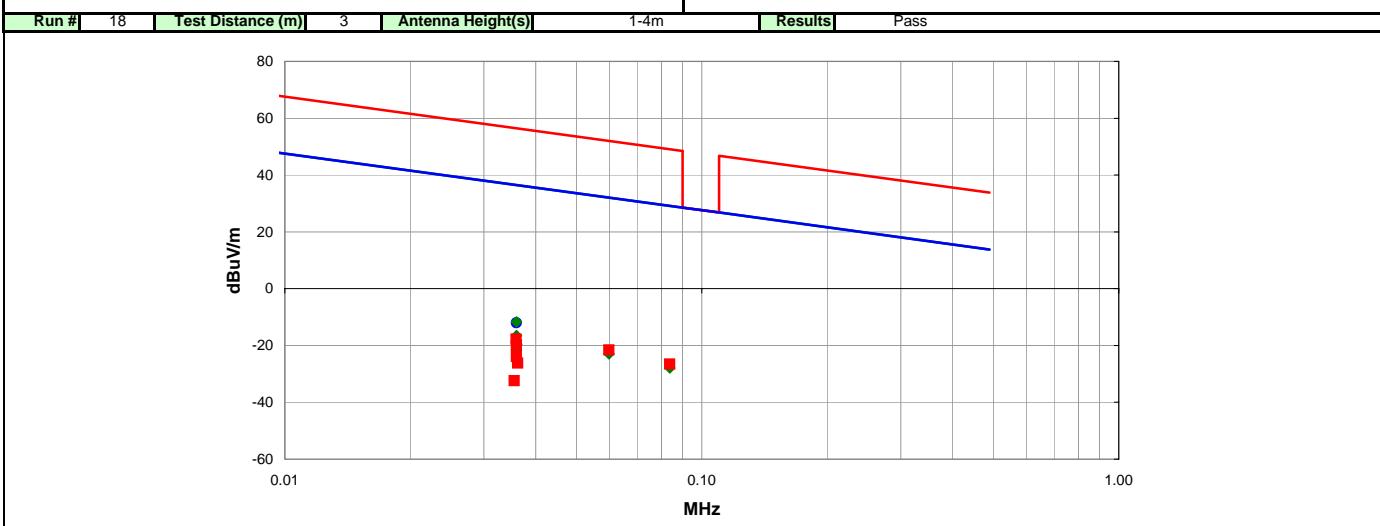
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4443A	AFB	1/24/2011	12 mo
Antenna, Loop	EMCO	6502	AOA	6/28/2011	24 mo
EV11 Cables	N/A	3m Test Distance Cables	EVM	3/17/2011	12 mo

MEASUREMENT BANDWIDTHS

	Frequency Range	Peak Data	Quasi-Peak Data	Average Data
	(MHz)	(kHz)	(kHz)	(kHz)
	0.01 - 0.15	1.0	0.2	0.2
	0.15 - 30.0	10.0	9.0	9.0
	30.0 - 1000	100.0	120.0	120.0
	Above 1000	1000.0	N/A	1000.0

Measurements were made using the IF bandwidths and detectors specified. No video filter was used, except in the case of the FCC Average Measurements above 1GHz. In that case, a peak detector with a 10Hz video bandwidth was used.

MEASUREMENT UNCERTAINTY


A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting and receiving while set at the channel available. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and orientation in 3 orthogonal plane, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2009). An active loop antenna was used for this test in order to provide sufficient measurement sensitivity.

Work Order:	DIGC0145	Date:	08/24/11	
Project:	None	Temperature:	23.57 °C	
Job Site:	EV11	Humidity:	49.37% RH	
Serial Number:	13200361	Barometric Pres.:	1014.5 mbar	
EUT:	DucTrak (Long)	Tested by:	Travis Rychener	
Configuration:	1			
Customer:	Digital Control, Inc.			
Attendees:	None			
EUT Power:	Battery			
Operating Mode:	Default Transmit			
Deviations:	None			
Comments:	None			

Test Specifications		Test Method	
FCC 15.209:2011		ANSI C63.10:2009	

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
0.036	55.1	12.9	2.0	283.0	3.0	0.0	Horz	AV	-80.0	-12.0	36.5	-48.5	EUT Hor, Antenna perpendicular to ground and parallel to EUT
0.036	48.8	12.9	2.0	202.0	3.0	0.0	Horz	AV	-80.0	-18.3	36.5	-54.8	EUT Hor, Antenna perpendicular to ground and parallel to EUT
0.060	45.8	11.3	2.0	91.0	3.0	0.0	Horz	AV	-80.0	-22.9	32.0	-54.9	EUT Hor, Antenna perpendicular to ground and perpendicular to EUT
0.036	47.6	12.8	2.0	233.0	3.0	0.0	Horz	AV	-80.0	-19.6	36.5	-56.0	EUT Hor, Antenna perpendicular to ground and parallel to EUT
0.084	41.3	10.8	2.0	286.0	3.0	0.0	Horz	AV	-80.0	-27.9	29.1	-57.1	EUT Hor, Antenna parallel to ground and perpendicular to EUT
0.036	45.5	12.9	2.0	80.0	3.0	0.0	Vert	AV	-80.0	-21.6	36.5	-58.1	EUT Hor, Antenna perpendicular to ground and parallel to EUT
0.036	41.7	12.9	2.9	294.0	3.0	0.0	Horz	AV	-80.0	-25.4	36.5	-61.9	EUT Vert, Antenna parallel to ground and perpendicular to EUT
0.036	55.5	12.9	2.0	283.0	3.0	0.0	Horz	PK	-80.0	-11.6	56.5	-68.1	EUT Vert, Antenna perpendicular to ground and parallel to EUT
0.036	34.7	12.9	2.0	22.0	3.0	0.0	Horz	AV	-80.0	-32.4	36.6	-69.0	EUT Hor, Antenna perpendicular to ground and parallel to EUT
0.036	50.6	12.9	2.0	233.0	3.0	0.0	Horz	PK	-80.0	-16.5	56.5	-73.0	EUT Vert, Antenna perpendicular to ground and perpendicular to EUT
0.060	47.1	11.3	2.0	91.0	3.0	0.0	Horz	PK	-80.0	-21.6	52.0	-73.6	EUT Hor, Antenna parallel to ground and perpendicular to EUT
0.036	49.4	12.9	2.0	202.0	3.0	0.0	Horz	PK	-80.0	-17.7	56.5	-74.2	EUT Hor, Antenna perpendicular to ground and parallel to EUT
0.084	42.7	10.8	2.0	286.0	3.0	0.0	Horz	PK	-80.0	-26.5	49.1	-75.7	EUT Hor, Antenna perpendicular to ground and perpendicular to EUT
0.036	47.3	12.9	2.0	80.0	3.0	0.0	Vert	PK	-80.0	-19.8	56.5	-76.3	EUT Hor, Antenna perpendicular to ground and parallel to EUT
0.036	43.3	12.8	2.9	294.0	3.0	0.0	Horz	PK	-80.0	-23.9	56.5	-80.3	EUT Vert, Antenna parallel to ground and perpendicular to EUT
0.036	41.0	12.8	2.0	22.0	3.0	0.0	Horz	PK	-80.0	-26.2	56.4	-82.6	EUT Vert, Antenna perpendicular to ground and parallel to EUT