Certification Test Report

For a

Cellular Over Fiber Cell Extender System

Manufacturer:

AeroComm, Inc. 19516 Amaranth Drive Germantown, MD 20874

The Cellular Over Fiber Cell Extender System, model 51483-C, has been tested and was found to comply with the requirements of the Federal Communications Commission outlined in the Federal Register CFR 47, Part 2 and Part 22 for Fiber Cell Extender. The product was received on August 16, 2001 and the testing was completed on September 12, 2001.

Evaluation Conducted By:

Jun Chan

Senior EMC Engineer

Report Reviewed By:

Testing Facility:

F-Squared Laboratories

Damascus, MD 20872

10880 Moxley Road

Robert Pellizze Vice President

F-Squared Laboratories 9890 Main Street Damascus, MD 20872 (301) 253-4500 Fax (301) 253-5179

This report shall not be duplicated except in full without the written approval of F-Squared Laboratories. Page 1 of 47

Table of Contents

Exhibit	Title	Page
	Cover Page	1
	Table of Contents	2
Ι	Engineering Statements	3
II	Measurement Instrument List	5
III	EUT Information and Data	6
IV	EUT Configuration and Cables	10
\mathbf{V}	Conducted Emission Test Data	11
	EUT Test Setup	13
VI	Radiated Emission Test Data	15
	EUT Test Setup	21
VII	RF Power Output Measurement Setup	23
	Test Results	24
VIII	Occupied Bandwidth Measurement Setup	25
	Test Results	26
IX	Spurious Emission at Antenna Terminal Measurement Setup	30
	Test Results	31
X	Frequency Stability vs. Voltage Setup and Test Results	37
XI	Frequency Stability vs. Temperature Setup and Test Results	39
XII	Photograph of EUT	41
XIII	Compliance Information	47

Exhibit I

Engineering Statements

This report has been prepared on behalf of AeroComm, Inc. to certify a Fiber Cell Extender. The test was performed for above said device under Parts 2 and Part 22 of the FCC Rules and Regulations. The test results found in this test report relate only to the items tested.

EQUIPMENT UNDER TEST:	Model: 51483-C
FCC ID:	KJA514830111
APPLICABLE RULES:	AC Line Conducted Emissions: 47 CFR 2.1057 Radiated Emissions: 47 CFR 2.153, 22.901(d)(2), 22.917(e) RF Power Output: 47 CFR 2.1046, 22.913(a) Occupied Bandwidth: 47 CFR 2.1049 Spurious Emission at Antenna Terminals: 47 CFR 2.1051, 22.917 Frequency Stability: 47 CFR 2.1055
EQUIPMENT CATEGORY:	Cellular Over Fiber Cell Extender System
MEASUREMENT LOCATION:	F-Squared Laboratories in Damascus, MD. Site description and attenuation data are on file with the FCC's Sampling and Measurement Branch at the FCC Laboratory in Columbia, MD.
MEASUREMENT PROCEDURE:	All measurements were performed according to the 1992 version of ANSI C63.4, a list of the measurement equipment can be found in Exhibit II.

UNCERTAINTY BUDGET:	
	<u>Radiated Emission</u>
	Combined Uncertainty (+ or -) 2.24 dB
	Expanded Uncertainty (+ or -) 4.48 dB
	<u>Conducted Emission</u>
	Combined Uncertainty (+ or -) 1.13 dB
	Expanded Uncertainty (+ or -) 2.26 dB
ENGINEERING STATEMENT #1:	I hereby state that: The measurements shown in this application were made in accordance with the procedures indicated and the energy emitted by this equipment was found to be within the limits. I assume full responsibility for the accuracy and completeness of these measurements.
	I further state that: On the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of Part 2 and Part 22 of the FCC Rules under normal use and maintenance.
ENGINEERING STATEMENT #2:	RADIO FREQUENCY RADIATION EXPOSURE DECLARATION
	The FCC Rules as noted in Part 2.1091 is not applicable for this fixed station device.
	Certified by: That W.

Robert Pellizze, Vice President

Exhibit II

List of Measurement Instrumentation

Equipment Type	Manufacturer	Model #	Serial #	Cal. Due Date
Receiver System	Rohde & Schwarz	ESMI	DE23119	Feb. 2002
LISN #1	Solar	8012-50-R-24-BNC	910488	Dec. 2001
LISN #2	Solar	8012-50-R-24-BNC	933201	Dec. 2001
Biconical Antenna	A.H. Systems Inc.	SAS-521F-2	104	May 2002
Horn Antenna	Antenna Research Associates	DRG-118/A	1105	Jan. 2002
Antenna Mast	Compliance Design Inc.	M100	NA	NA
Turntable	F ² Laboratories	Site 1	NA	NA
AC Adjustable Transformer	Superior Electric	1296DU-3Y	N/A	N/A
RF Signal Generator	Giga-Tronics	6061A	9637902	Feb. 2002
ESG-D Series Signal Generator	HP	E4430B	US38440206	April 2002
Amplifier	HP	8447F	3113A04704	Aug. 2002
Multi Meter (Digital)	Fluke	26 III	S0012	Jan, 2002
Spectrum Analyzer	HP	8391A	3149A07546	Feb. 2002
Temperature Recorder	Honeywell	DR4502	8813722890001	Jan. 2002
Attenuator	HP	11947A	3107A00729	October, 2001
Attenuator	Bird	8306-300N	N/A	Dec. 2001

Exhibit III

Equipment Under Test Information and Data

TEST ITEM CONDITION:

The equipment to be tested was received in good condition.

TESTING ALGORITHM:

The EUT was driven with a -60dBm input signal level at Uplink 836MHz and Downlink 882MHz from signal generator during the test. The worst cases emissions are recorded in the data tables.

CONDUCTED EMISSION TESTING: 47 CFR 2.1057

The EUT was placed on a 0.8 meters high, 1 x 1.5 meters non-conductive table. Power was provided to the EUT through a LISN bonded to a meter ground plane of screen room. The LISN and peripherals were supplied power through a filtered AC power source. The output of the LISN was connected to the input of the receiver and emissions in the range 450kHz to 30 MHz were measured. The measurements were recorded using the quasi-peak values, and the resolution bandwidth during testing was 9kHz. All data for conducted emissions is found in Exhibit V.

RADIATED EMISSIONS: SPURIOUS EMISSIONS TESTING: 47 CFR 2.1053, 22.901 AND 22.917

The EUT was tested at a distance of 3 meters. The emissions were maximized by rotating the table and raising/lowering the antenna mounted on a 4 meter mast. Cable and peripheral positions were also varied to produce maximum emissions. Both horizontal and vertical field components were measured. The output of the antenna was connected to the input of the receiver and emissions were measured in the range 30MHz to 10 GHz. The measured values up to 1GHz with a resolution bandwidth of 120KHz are quasi-peak readings made at 3 meters. Emissions from 1 GHz to 10 GHz were measured with a resolution bandwidth of 1 MHz and placed in the average detector mode. All data for radiated spurious emissions is found in Exhibit VI.

RF POWER OUTPUT MEASUREMENT: 47 CFR 2.1046 AND 22.913

The EUT was tested near the EMI receiver systems and source signal generator with the shortest available length cables to insure correct data collection. The signal generator was used to inject a signal (Uplink 836MHz and Downlink 882MHz at signal level –60dBm) into the RF OUT of the (Server and Donor units). The (Server and Donor unit) RF

Output was connected to the EMI receiver system is input port and the RF power was measured as shown in Exhibit VII.

OCCUPIED BANDWIDTH MEASUREMENT: 47 CFR 2.1049

The EUT was tested near the EMI receiver systems and source HP ESG-D Series signal generator with the shortest available length cables to insure correct data collection. The signal generator was used to inject a signal (Uplink 836MHz and Downlink 882MHz at signal level –60dBm with CDMA modulation 1.23MHz) into the RF OUT of the (Server and Donor units). The (Server and Donor unit) of EUT RF Output was connected to the EMI receiver systems input port and the occupied bandwidth was measured as shown in Exhibit VIII.

RADIATED SPURIOUS EMISSION ANTENNA PORT MEASUREMENT: 47 CFR 2.1051 AND 22.917

The EUT was tested near the EMI receiver systems and source signal generator with the shortest available length cables to insure correct data collection. The signal generator was used to inject a signal (Uplink 836MHz and Downlink 882MHz at signal level –60dBm) into the RF OUT of the (Server and Donor units). The (Server and Donor unit) of EUT RF Output was connected through a 10dB attenuator to the EMI receiver system's input port and the radiated spurious emissions were measured as shown in Exhibit IX.

FREQUENCY STABILITY FOR VOLTAGE MEASUREMENT: 47 CFR 2.1055

An AC adjustable transformer was used to adjust the input AC power to the EUT and was monitored by a digital multi-meter during the test. The EUT was near the HP Spectrum Analyzer and source signal generator with the shortest available length cables to insure correct data collection. The signal generator was used to inject a signal (Uplink 836MHz and Downlink 882MHz at signal level –60dBm) into the RF OUT of the (Server and Donor units). The (Server and Donor unit) of EUT RF Output was connected through a 30dB attenuator to the HP Spectrum Analyzer input port and the radiated spurious emissions were measured as shown in Exhibit X.

FREQUENCY STABILITY FOR TEMPERATURE MEASUREMENT: 47 CFR 2.1055

The EUT was tested and setup in a temperature chamber. The signal generator was used to inject a signal (Uplink 836MHz and Downlink 882MHz at signal level –60dBm) into the RF OUT of the (Server and Donor units). The (Server and Donor unit) EUT RF Output was connected through a 30dB attenuator to the HP Spectrum Analyzer input port and the frequency at various temperature were measured as shown in Exhibit XI.

CALCULATION OF DATA :

RADIATED EMISSIONS - The antenna factors (including cable losses) of the biconical antennas were used along with the pre-amplifier gain, which were entered into the memory of the receiver. The receiver uses these values to correct the reading for amplitude automatically. The field strength reading was taken directly from the receiver and compared to the FCC limits in dBuV/m. The following equation is used to convert to uV/m:

 $E_{uV/m} = antilog(E_{dBuV/m}/20)$

SAMPLE OF FIELD STRENGTH CALCULATION:

Ea = Va + AF + Ae + (-AG)

Where Ea = Field Strength(dBuV/m) $Va= 20 \times log10$ (Measure RF voltage, uV) Ae= Cable Loss Factor, dB AG= Amplifier Gain, dBAF= Antenna Factor dB(m-1)

i.e. if the reading is 57.0 dBuV, the antenna factor 8.0 dB, cable loss factor 1.0 dB and Amplifier gain is 25.0 dB, so the field strength will be:

Ea(dBuV/m) = 57 + 8 + 1 + (-25) = 41 dBuV/m

or

 $Ea(uV/m) = 10^{(41/20)}$ = 112.20 uV/m

Exhibit IV

EUT Configuration and Cables

EUT:

Ststem	Manufacturer	Model #	FCC ID
Cellular Over Fiber Cell Extender Unit	AeroComm, Inc	51483-C	KJA514830111

System consists of a Donor Unit and Server Unit as outlined below:

Cell Donor, Model 51483-02-28 Cell Server, Model 51483-02-27

<u>Operating Frequencies</u> Uplink (824-849 MHz) Downlink (869-894 MHz)

Cable: All one meter or greater in length – bundled according to ANSI C63.4 – 1992

Data Cable x 2: Data - Shielded

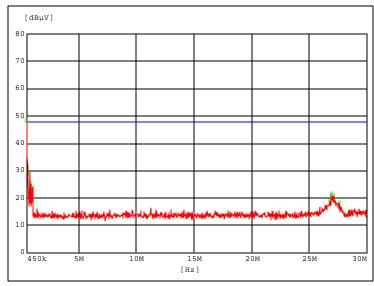
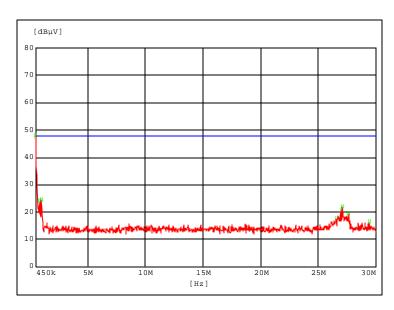

Fiber Optic Cable x 2: Data - Unshielded

Exhibit V


Test Description: Test Item: Equipment Test Setup: Signal Generator RF Output Level: Date Test: Test Results: AC Line Conducted Emission Server Unit, Model 51483-02-27 Page 13 -60dBm, 836 MHz

September 10, 2001 Page 10 ~ 11

Conducted Test Line: L1

Peak Detect	Peak Detected Value				
Frequency	Level				
MHz	dBµV				
0.45	47.65				
0.81	23.80				
0.94	24.26				
26.59	17.48				
26.98	20.22				
27.11	21.79				
27.67	19.15				
29.44	16.08				

Peak Detected Value

Frequency MHz

0.45

0.71

0.81

0.98

26.78

26.91 27.14

27.64

Level

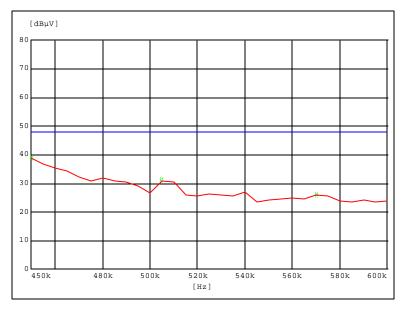
dBµV

48.15

29.01

25.30

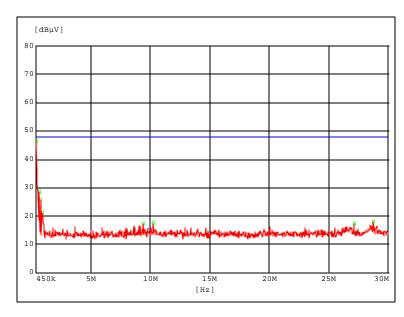
23.98


19.13

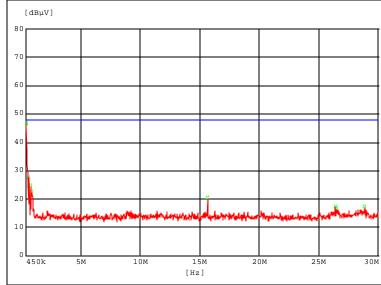
21.46

20.75

18.16



QP Detected Value		
Frequency	Level	
MHz	dBµV	
0.45	38.84	
0.51	30.99	
0.57	25.91	


Test Description:	AC Line Conducted Emission
Test Item:	Donor Unit, Model 51483-02-28
Equipment Test Setup: Signal Generator RF Output Level:	Page 14 -60dBm, 882 MHz
Date Test:	September 10, 2001
Test Results:	Page 12

Conducted Test Line: L1

Peak Detected Value			
Frequency	Level		
MHz	dBµV		
0.45	45.99		
0.71	28.35		
0.81	25.63		
0.94	20.91		
9.45	17.10		
10.27	17.35		
27.11	17.12		
28.75	17.83		

Conducted Test Line: L2

Peak Detected Value				
Frequency	Level			
MHz	dBµV			
0.45	46.20			
0.68	27.32			
0.81	24.43			
0.91	22.15			
15.68	20.19			
26.39	17.04			
26.49	16.31			
28.85	16.87			


Conducted Test – Setup Front and Back View of Server Unit

Conducted Test – Setup Front and Back View of Donor Unit

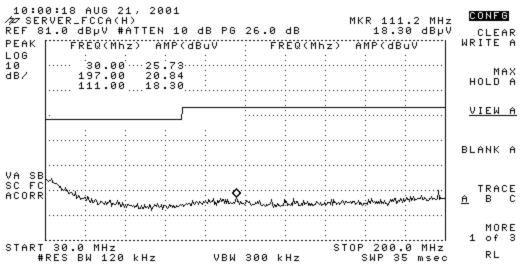
Exhibit VI

Test Description:	Field Strength of Spurious Emissions
Test Item:	Server Unit, Model 51483-02-27
Equipment Test Setup:	Page 21
Signal Generator RF	-60dBm, 836 MHz
Output Level:	
Test Results:	Page 15 ~ 17

Test Date:	8/21/2001	Test Engineer:	Shi-Lun Chau
Limit:	Class B	Air Temperature:	27 °C
Distance:	3 Meters	Barometric Pressure:	993 mb
		Relative Humidity:	52 % RH

Frequency	Antenna	Position		Cable Loss	Antenna	Reading	Emission	FCC Limits	Margins
			Azimuth						_
(MHz)	Polarization	Height (M)	(degree)	(dB)	Factor (dB)	(dBuV)/m	(dBuV)/m	(dBuV)/m	(dBuV/m)
835.98	Н	1.10	46	3.60	23.00	14.02	40.62	80.00	-39.38
835.98	V	2.00	190	3.60	23.00	8.87	35.47	80.00	-44.53

Remark: We have tested a 836MHz fundamental frequency. However, the 10th harmonics up to 10GHz and the other radiated emissions were too small to measure and under the noise floor of receiver system. (Receiver System noise floor at 20 dBuV)

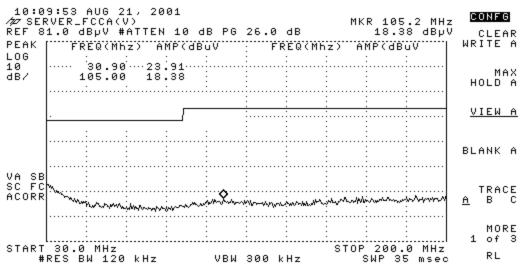

FAIL

Pre-Scan Data in Anechoic Chamber at 3 meters distance

Antenna Polarization:

Horizontal

Server Unit without loading at RF output



∕⊅⁄⁄SEF	5:14 AUG 21, 200: RVER_FCCA(H) 1.0 dBµV #ATTEN : FREQ(Mhz) AMF	10 dB PG 2		MKR 386.0 MHz 28.18 dBµV AMP(dBuV	
L0G 10 dB/		00 : :			MAX Hold A
	: : : :				<u>VIEW A</u>
	••••••••••••••••••••••••••••••••••••••		whice was a subscription of the		BLANK A
VA SB SC FC ACORR		where the second se			TRACE <u>A</u> BC
START	200.0 MHz		ST0	P 1.0000 GHz	MORE 1 of 3
#	RES BW 120 kHz	VBW 3	00 kHz	SWP 170 msec	, RL

Antenna Polarization:

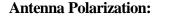
Vertical

Server Unit without loading at RF output

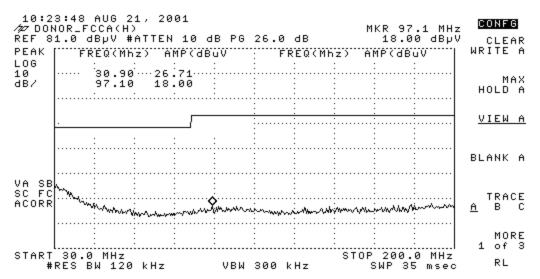
∕⊅⁄∕SEF	2VER_ 1.0 c	FCCA(1BµV 4	#ATTE!	901 4 10 d MP(dB					KR 982 34.5 AMP(dB	7 dBµ∖	
10 dB/	····· 9	982.0	0 34	.57						·····	MAX Hold A
		:	:	:	:	:					<u>view a</u>
VA SB SC FC Acorr					()	mhannan	monorm				BLANK A
ŠČ FČ ACORR	y www.	h	1. june - rederander								TRACE <u>a</u> b c
START #	200. Res e		z 2 3 kHz		VBW	300	k Hz	STOP	1.000 SWP 17		MORE 1 of 3 c RL

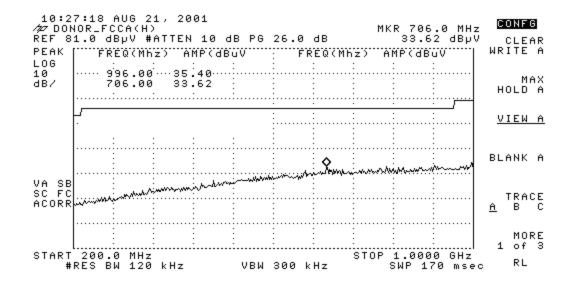
Test Description: Test Item:	Field Strength of Spurious Emissions Donor Unit, Model 51483-02-28
Equipment Test Setup:	Page 22
Signal Generator RF	-60dBm, 882 MHz
Output Level:	
Test Results:	Page 18 ~ 20

Test Date:	8/21/2001	Test Engineer:	Shi-Lun Chau
Limit:	Class B	Air Temperature:	27 °C
Distance:	3 Meters	Barometric Pressure:	993 mb
		Relative Humidity:	52 % RH

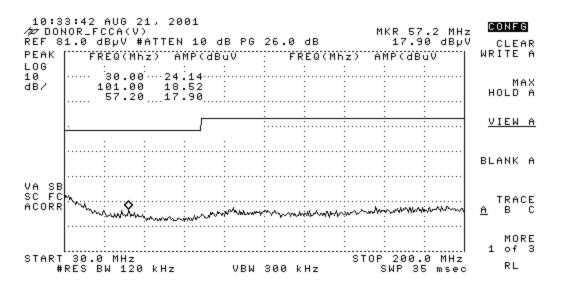

Frequency	Antenna	Position		Cable Loss	Antenna	Reading	Emission	FCC Limits	Margins
		Height	Azimuth			0			U
(MHz)	Polarization	(meters)	(degrees)	(dB)	Factor (dB)	(dBuV)/m	(dBuV)/m	(dBuV)/m	(dBuV/m)
881.99	Н	1.20	225	3.55	23.30	11.95	38.80	80.00	-41.20
881.99	V	1.80	180	3.55	23.30	6.63	33.48	80.00	-46.52

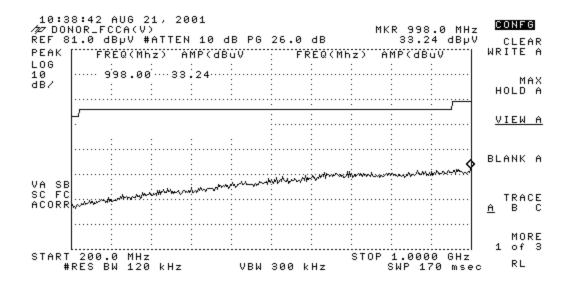
Remark: We have tested a 882MHz fundamental frequency. However, the 10th harmonics up to 10GHz and the other radiated emissions were too small to measure and under the noise floor of receiver system. (Receiver System noise floor at 20 dBuV)


FAIL


Pre-Scan Data in Anechoic Chamber at 3 meters distance

Donor Unit without loading at RF output



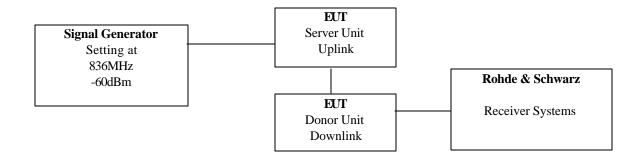


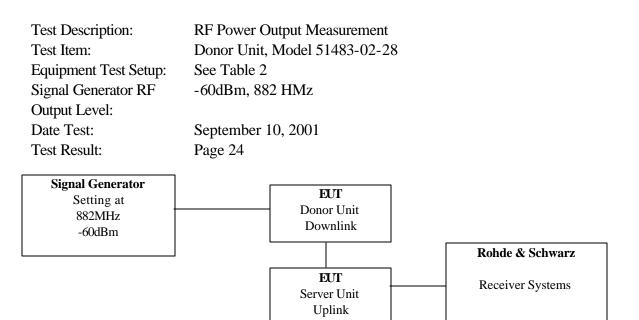
Antenna Polarization:

Vertical

Donor Unit without loading at RF output

Radiated Test – Setup Front and Back View of Server Unit


Radiated Test – Setup Front and Back View of Donor Unit


Exhibit VII

Test Description: Test Item: Equipment Test Setup: Signal Generator RF Output Level: Date Test: Test Results:

RF Power Output Measurement Server Unit, Model 51483-02-27 See Table 1 -60dBm, 836 HMz September 10, 2001 Page 24

Table 1

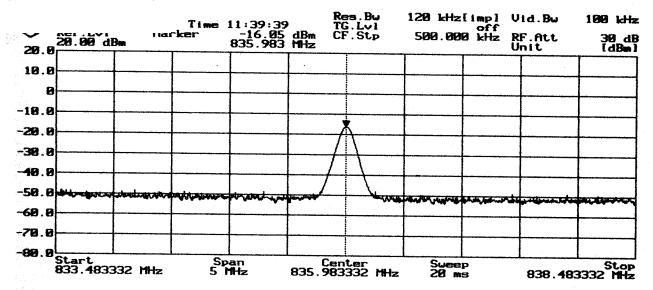
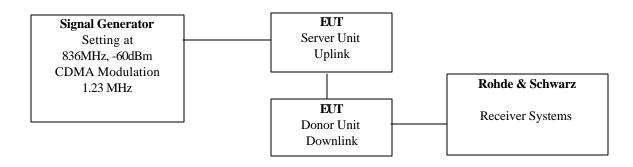


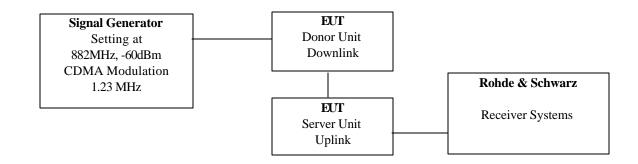
Table 2

Test Results:

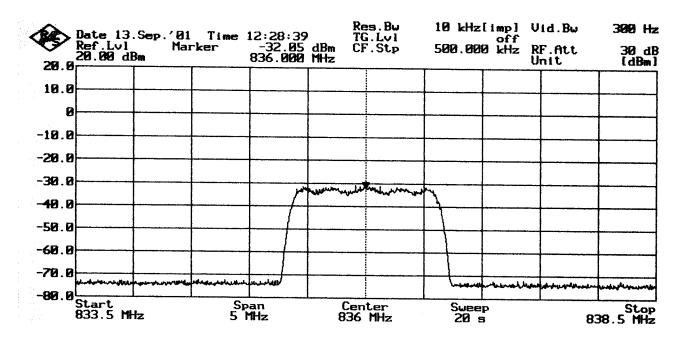
Model	Frequency (MHz)	Receiver Reading (dBm)	Total Power (dBm)	Total Power (Watts)
Server, Model 51483-02-27	Uplink 836	-16.05	22	0.16
Donor, Model 51483-02-28	Downlink 882	-10.57	23	0.20



20.00 dBm	Time 11:43:19 Sker -10.57 881.984	9 TC	s.Bw L∨I Stp	120 kHz 500.00	off ØkHz	Jid.Bw RF.Att Jnit	100 k 30 (dB
20.0		T		T			
10.0							ļ
. 0							
-10.0		ļ	·				
-28.8							
-30.0							
40.0			1			1	<u> </u>
			1	1		1	<u>†</u>
-50. 8 where the way	the state of the s	ALTO-AL	Winshiel	all and the second	1	-	al war
60.0		1			*****	+	<u> </u>
-70.0		+				+	
-80.01 Start 879.484443 MHz	Span 5 MHz	Cen 881 . 984		Swee) 20 m	P	884.48	St

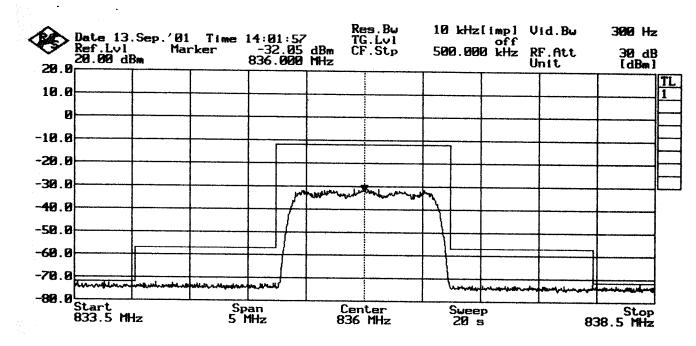

Exhibit VIII

Test Description:Occupied BandwidthTest Item:Server Unit, Model 51483-02-27Equipment Test Setup:See Table 3Signal Generator RF-60dBm, 836 MHz with CDMA ModulationOutput Level:-60dBm, 836 MHz with CDMA ModulationDate Test:September 12, 2001Test Results:Page 26 ~ 27

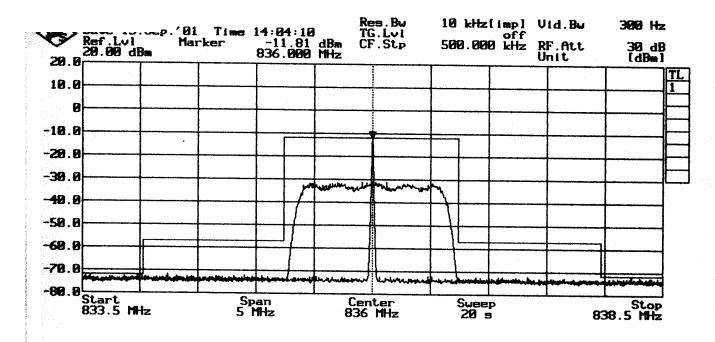

Table 3

Client: AeroComm, Inc.	
FCC ID: KJA514830111	
Model: 51483-C	
Test Description:	Occupied Bandwidth
Test Item:	Donor Unit, Model 51483-02-28
Equipment Test Setup:	See Table 4
Signal Generator RF	-60dBm, 882 MHZ with CDMA Modulation
Output Level:	
Date Test:	September 12, 2001
Test Results:	Page 28 ~ 29

CDMA Modulation - Input Signal

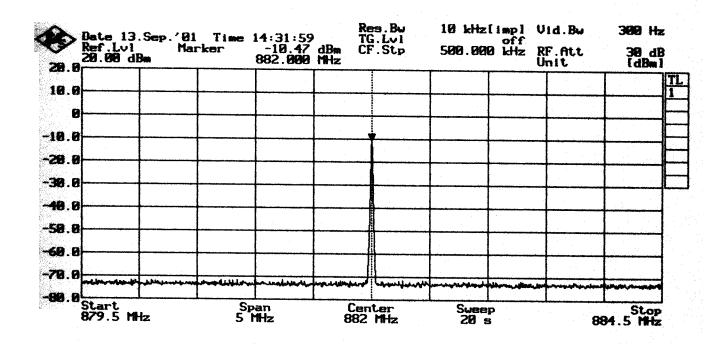


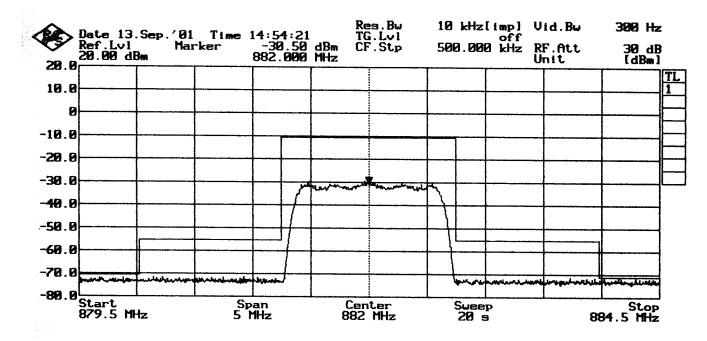
CW Signal- Input Signal

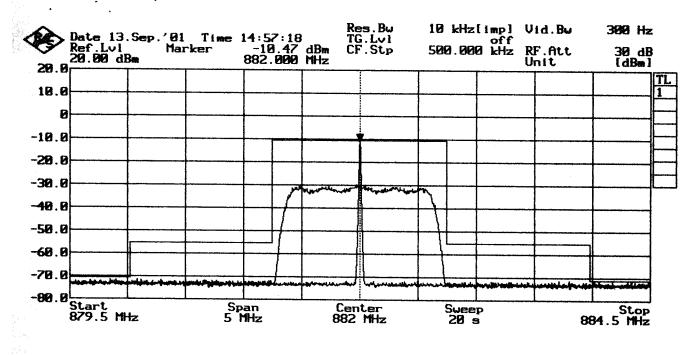

Client: AeroComm, Inc. FCC ID: KJA514830111 Model: 51483-C

Date 13.Sep. Ref.Lvl 20 00 dB-	'01 Time 12:26 Marker -11. 836.0	Res.Bw 193 TG.Lv1 74 dBm CF.Stp 199 MHz	10 kHz[imp] Vi off 500.000 kHz RI	7.Att 30 a
20.0	B.600		Ur	ait IdBm
10.0				
0				
18.8				
28.0				
30.0				
40.0				
50.0				
68.0			· · ·	
78.8				
88.8		an present and the second	man and the second second second second	an palore and quiticsing and

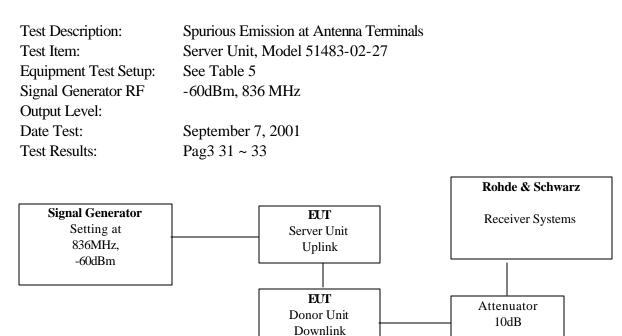

Output from Server Unit, Model 51483-02-27 CDMA Modulation @ 836 MHz


Output from Server Unit, Model 51483-02-27 CDMA Modulation and CW @ 836 MHz


CDMA Modulation-Input Signal


CW Signal-Input Signal

Output from Donor Unit, Model 51483-02-28 CDMA Modulation @ 882 MHz


Output from Donor Unit, Model 51483-02-28 CDMA Modulation and CW @ 882 MHz

836MHz,

-60dBm

Exhibit IX

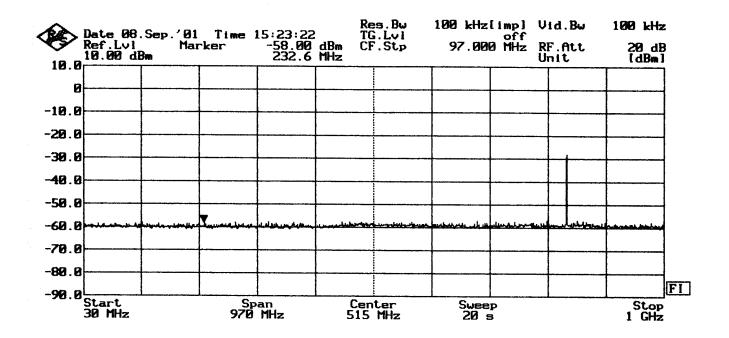
Table 5

Test Description:	Spurious Emission at Antenna Terminals	
Test Item:	Donor Unit, Model 51483-02-28	
Equipment Test Setup:	See Table 6	
Signal Generator RF	-60dBm, 882 MHz	
Output Level:		
Date Test:	September 7, 2001	
Test Results:	Page 34 ~ 36	
		Rohde & Schwarz
Signal Generator	EUT	
Setting at	Donor Unit	Receiver Systems

Downlink

EUT

Server Unit


Uplink

Attenuator

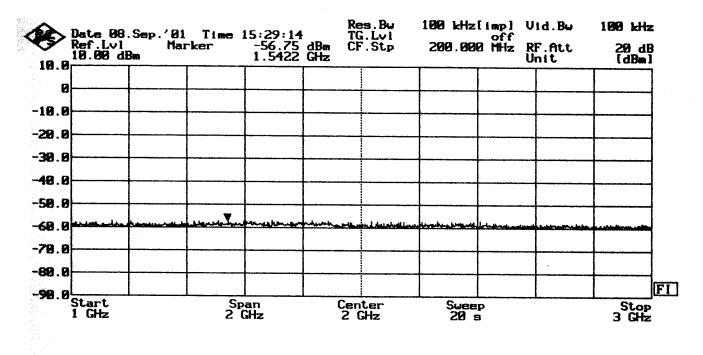
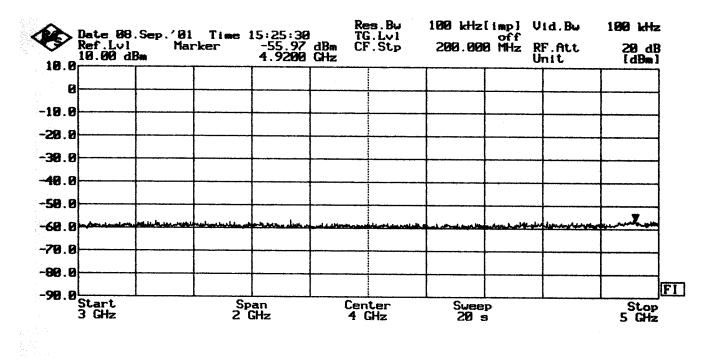
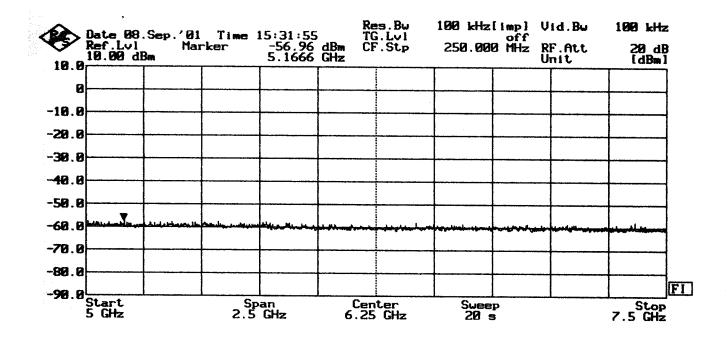
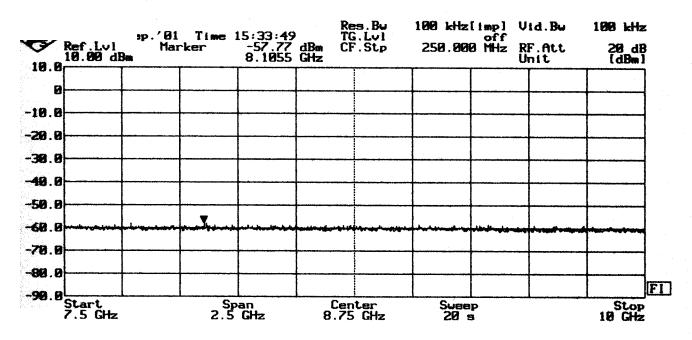
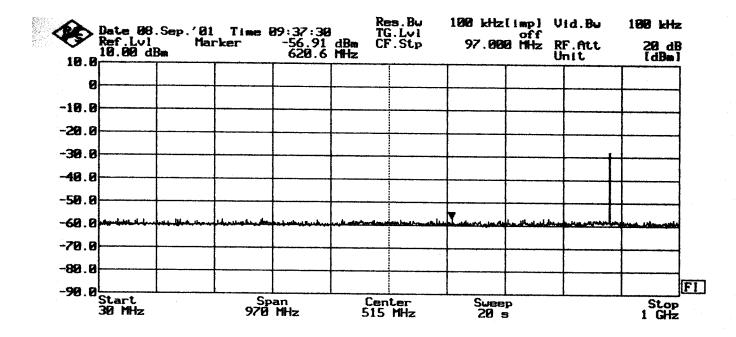

10dB

Table 6

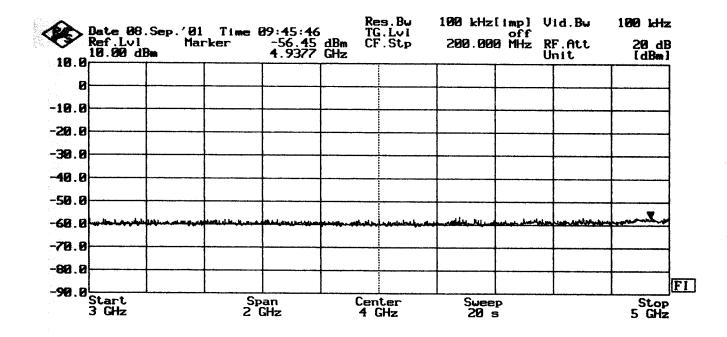

Uplink (836 MHz)

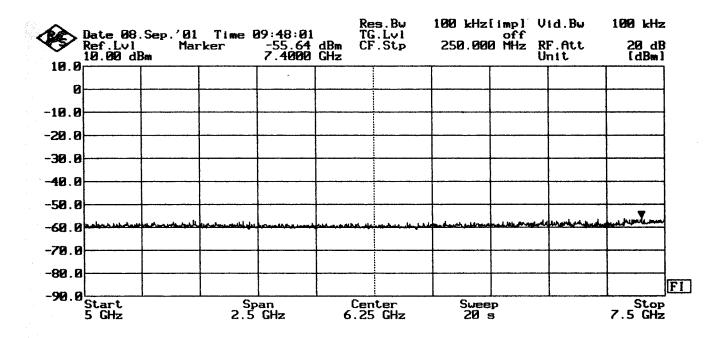

Uplink (836 MHz)

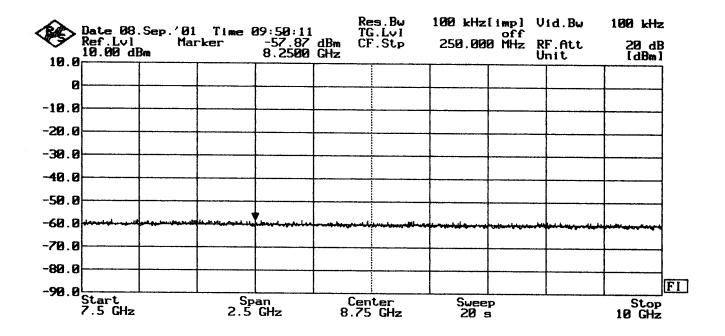

Uplink (836 MHz)

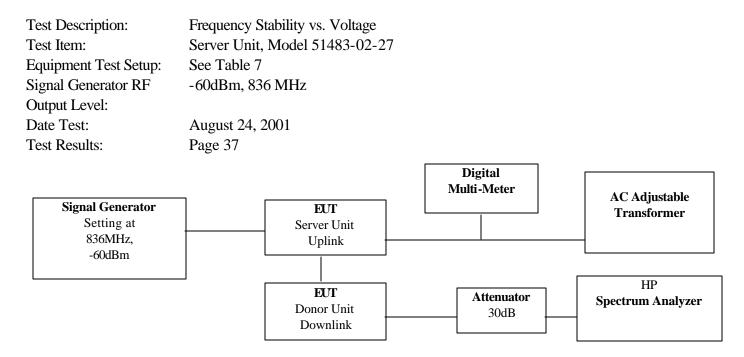

Uplink (836 MHz)


Uplink (836 MHz)


Downlink (882 MHz)


Downlink (882 MHz)


Downlink (882 MHz)


Downlink (882 MHz)

Downlink (882 MHz)

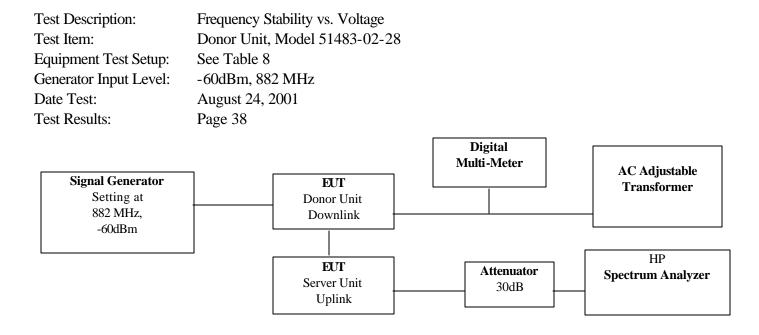

Exhibit VIII

Table '	7
---------	---

Voltage	% of Nominal	Frequency	Frequency
VAC	Voltage	MHz	Stability (ppm)
98	85	835.981610	< 1.5
115	Nominal	835.981168	
321	115	835.981270	< 1.5

Client: AeroComm, Inc. **FCC ID:** KJA514830111 **Model:** 51483-C

Voltage	% of Nominal	Frequency	Frequency
VAC	Voltage	MHz	Stability (ppm)
98	85	881.985540	< 1.5
115	Nominal	881.985598	
321	115	881.985848	< 1.5

Exhibit XI

Test Description:	Frequency Stability vs. Temperature
Test Item:	Server Unit, Model 51483-02-27
Equipment Test Setup:	See Table 9
Signal Generator RF	-60dBm, 836 MHz
Output Level:	
Date Test:	August 24 ~ 25, 2001
Test Results:	Page 39

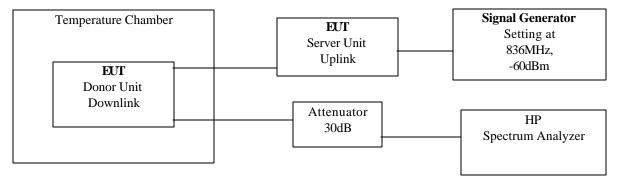
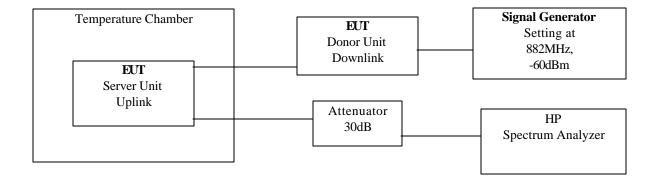



Table 9

Temperature	Frequency	Duration	Frequency
Degrees Centigrade	MHz	Minutes	Stability (ppm)
-30	835.960250	> 30	< 1.5
-20	835.959805	> 30	< 1.5
-10	835.962373	> 30	< 1.5
0	835.961195	> 30	< 1.5
10	835.960000	> 30	< 1.5
20	835.961250	> 30	< 1.5
30	835.961250	> 30	< 1.5

-				
	40	835.967500	> 30	< 1.5
	50	835.968750	> 30	< 1.5

Test Description:	Frequency Stability vs. Temperature
Test Item:	Donor Unit, Model 51483-02-28
Equipment Test Setup:	See Table 10
Generator Input Level:	-60dBm, 882 MHz
Date Test:	August 24 ~ 25, 2001
Test Results:	Page 40

Table 11

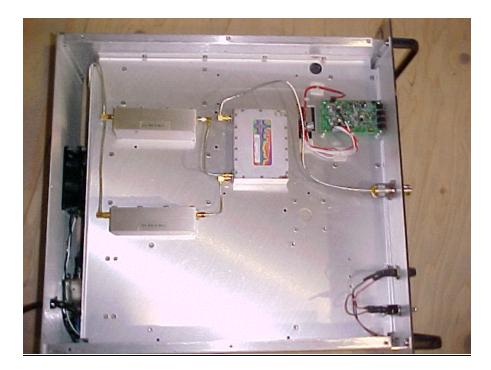
Temperature Degrees Centigrade	Frequency MHz	Duration Minutes	Frequency Stability (ppm)
-30	881.972735	> 30	< 1.5
-20	881.975763	> 30	< 1.5
-10	881.971250	> 30	< 1.5
0	881.971410	> 30	< 1.5
10	881.970750	> 30	< 1.5
20	881.970750	> 30	< 1.5
30	881.967500	> 30	< 1.5

40	881.971250	> 30	< 1.5
50	881.968750	> 30	< 1.5

PHOTOGRAPH OF EUT – Server and Donor Unit Whole View

PHOTOGRAPH OF EUT – Donor Unit Front View

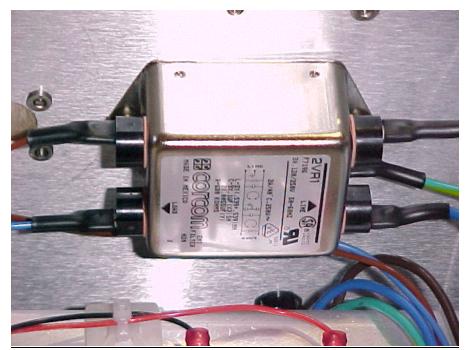
PHOTOGRAPH OF EUT – Donor Unit Back View

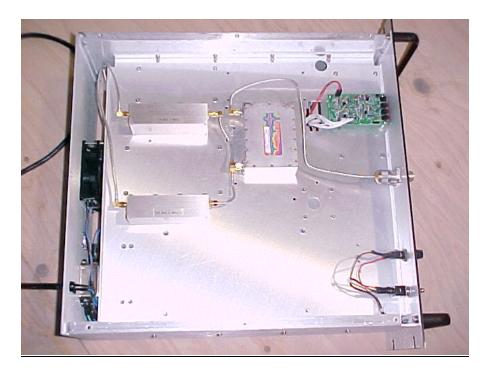

PHOTOGRAPH OF EUT – Donor Unit Top Inside View

PHOTOGRAPH OF EUT – Donor Unit Power Outlet With A Line Filter

PHOTOGRAPH OF EUT – Donor Unit Bottom Inside View

PHOTOGRAPH OF EUT – Server Unit Front View


PHOTOGRAPH OF EUT – Server Unit Back View



PHOTOGRAPH OF EUT – Server Unit Top Inside View

PHOTOGRAPH OF EUT – Server Unit Power Outlet With A Line Filter

PHOTOGRAPH OF EUT – Donor Unit Power Outlet With A Line Filter

Exhibit XI

Compliance Information

The following statement, or equivalent, is required to be in the user's manual.

FCC COMPLIANCE STATEMENT

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class B digital device pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and if not installed and used properly, that is, in strict accordance with the manufacturer's instructions, as well as the instructions of any peripheral and accessories to be attached to this device, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause interference to radio or television Client: AeroComm. Inc. FCC ID: KJA514830111 **Model:** 51483-C reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna ٠
- Increase the separation between the equipment and receiver •
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected •
- Consult the dealer or an experienced radio/TV technician for help ٠

Notice:

- To meet FCC requirements, shielded AC power cord and shielded interface cables are required to connect the device to a personal computer peripheral, or other Class B device.
- Any peripheral and/or accessories that will be attached to this equipment must also be compliant to Part 15 of • the FCC Rules.

Warning to the User:

Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.