### **MEASUREMENT/TECHNICAL REPORT**

**Wayne Dalton Corporation** 

COMPANY NAME:

| MODEL:                                               | KEP1-0000                                                                                |
|------------------------------------------------------|------------------------------------------------------------------------------------------|
| FCC ID:                                              | KJ8KYE-3725SW                                                                            |
| DATE:                                                | July 23, 1999                                                                            |
| This report concerns (che                            | eck one): Original grant <u>X</u><br>Class II change                                     |
| Equipment type: Low Po                               | ower Transmitter                                                                         |
| Deferred grant requested  If yes, defer until:  date | I per 47 CFR 0.457(d)(1)(ii)? yes No <u>X</u>                                            |
|                                                      | the Commission by N.A.  date  nnouncement of the product so that the grant can be issued |
| Report prepared by:                                  |                                                                                          |
| United State<br>3505 Francis<br>Alpharetta, C        |                                                                                          |
|                                                      | ber: (770) 740-0717<br>:: (770) 740-1508                                                 |
| [                                                    |                                                                                          |

#### **TABLE OF CONTENTS**

## AGENCY AGREEMENT LETTER OF CONFIDENTIALITY

#### **SECTION 1**

#### **GENERAL INFORMATION**

**Product Description** 

#### **SECTION 2**

#### **TESTS AND MEASUREMENTS**

Configuration of Tested
Test Facility
Test Equipment
Modifications
Periodic Operation
Field Strength of Fundamental Emission
Field Strength of Spurious Emissions
20 dB Bandwidth of Fundamental Emission
Frequency Tolerance of Carrier Signal
Radiated Digital Device Emissions
Power Line Conducted Emissions

#### **SECTION 3**

LABELING INFORMATION

**SECTION 4** 

**BLOCK DIAGRAM(S)/SCHEMATICS** 

**SECTION 5** 

**PHOTOGRAPHS** 

**SECTION 6** 

**USER'S MANUAL** 

#### **LIST OF FIGURES AND TABLES**

#### **FIGURES**

Test Configuration
Photograph(s) for Spurious and Fundamental Emissions
Field Strength of Fundamental Emission
Field Strength of Spurious Emissions
Bandwidth of Fundamental Emission

#### **TABLES**

EUT and Peripherals
Test Instruments
Field Strength of Fundamental Emission
Field Strength of Spurious Emissions
Bandwidth of Fundamental Emission
Radiated Emissions
Power Line Conducted Emissions

# SECTION 1 GENERAL INFORMATION

#### **GENERAL INFORMATION**

#### **Product Description**

The Equipment Under Test (EUT) is a Wayne Dalton Corporation, Model KEP1-0000, 372.5 MHz Keyless Entry Transmitter. The EUT is a thirteen button transmitter with a keypad, and part of a system which connects to a garage door opener. The EUT incorporates an internal antenna which is etched directly into the PCB.

#### Related Submittal(s)/Grant(s)

The EUT will be used with a receiver (application already submitted and approved under FCC ID: KJ8SAR-3725GE).

## SECTION 2 TESTS AND MEASUREMENTS

#### **TESTS AND MEASUREMENTS**

#### **Configuration of Tested System**

The sample was tested per ANSI C63.4, Methods of Measurement from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (1992). Conducted and radiated emissions data were taken with the test receiver or spectrum analyzer's resolution bandwidth adjusted to 9 kHz and 120 kHz, respectively. All measurements are peak unless stated otherwise. The video filter associated with the spectrum analyzer was off throughout the evaluation process. Interconnecting cables were manipulated as necessary to maximize emissions. A block diagram of the tested system is shown in Figure 1. Test configuration photographs for spurious and fundamental emissions are shown in Figure 2.

Since the EUT is typically mounted to the wall, it was placed into a continuous mode of transmit and placed in an upright position.

#### **Test Facility**

Testing was performed at US Tech's measurement facility at 3505 Francis Circle, Alpharetta, GA. This site has been fully described and submitted to the FCC, and accepted in their letter marked 31040/SIT. Additionally this site has also been fully described and submitted to Industry Canada (IC), and has been approved under file number IC2982.

#### **Test Equipment**

Table 2 describes test equipment used to evaluate this product.

#### **MODIFICATIONS:**

No modification was made to bring the EUT into compliance with FCC Rules and Regulations.

## FIGURE 1 TEST CONFIGURATION

EUT

#### **FIGURE 2A**

## Photograph(s) for Spurious and Fundamental Emissions



#### FIGURE 2B

## Photograph(s) for Spurious and Fundamental Emissions

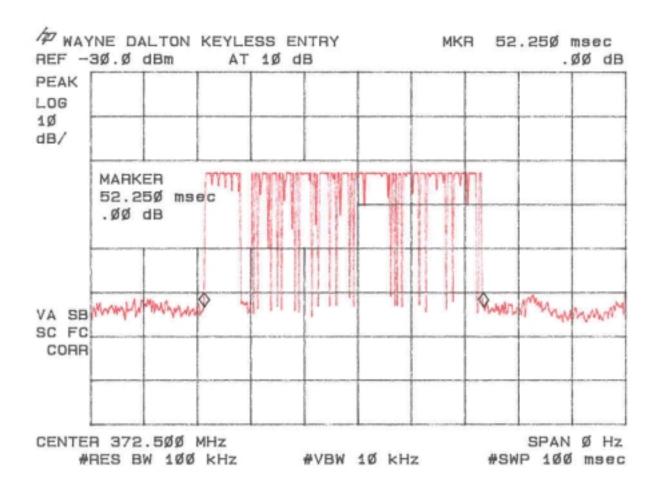


#### TABLE 1

## **EUT and Peripherals**

| PERIPHERAL                                                     | MODEL     | SERIAL | FCC ID:                        | CABLES |
|----------------------------------------------------------------|-----------|--------|--------------------------------|--------|
| MANUFACTURER                                                   | NUMBER    | NUMBER |                                | P/D    |
| Keyless Entry Transmitter<br>Wayne Dalton Corporation<br>(EUT) | KEP1-0000 | None   | KJ8KYE-<br>3725SW<br>(Pending) | None   |

#### TABLE 2


#### **TEST INSTRUMENTS**

| TYPE                    | MANUFACTURER         | MODEL    | SN.           |
|-------------------------|----------------------|----------|---------------|
| SPECTRUM ANALYZER       | HEWLETT-PACKARD      | 8593E    | 3205A00124    |
| SPECTRUM ANALYZER       | HEWLETT-PACKARD      | 8558B    | 2332A09900    |
| S A DISPLAY             | HEWLETT-PACKARD      | 853A     | 2404A02387    |
| COMB GENERATOR          | HEWLETT-PACKARD      | 8406A    | 1632A01519    |
| RF PREAMP               | HEWLETT-PACKARD      | 8447D    | 1937A03355    |
| RF PREAMP               | HEWLETT-PACKARD      | 8449B    | 3008A00480    |
| HORN ANTENNA            | EMCO                 | 3115     | 3723          |
| ROBERTS ANTENNAS        | COMPLIANCE<br>DESIGN | A100     | 167           |
| BICONICAL ANTENNA       | EMCO                 | 3110     | 9307-1431     |
| LOG PERIODIC<br>ANTENNA | EMCO                 | 3146     | 9110-3600     |
| LISN                    | SOLAR ELE.           | 8028     | N/A           |
| THERMOMETER             | FLUKE                | 52       | 5215250       |
| MULTIMETER              | FLUKE                | 85       | 53710469      |
| FUNCTION<br>GENERATOR   | TEKTRONIX            | CFG250   | CFG250TW15059 |
| PLOTTER                 | HEWLETT-PACKARD      | 7475A    | 2325A65394    |
| BILOG                   | CHASE                | CBL6112A | 2238          |

#### Periodic Operation (47 CFR 15.231(a1))

A transmitter manually activated must automatically deactivate within not more than 5 seconds of being released. The transmitter is a 13 button transmitter. The EUT continues to transmit while each button is being pressed. The EUT ceases transmission almost immediately upon being released and appears to finish the current packet being transmitted. Therefore the longest period of time the transmitter should take to deactivate is a packet length, or 52.25 msec as shown in Figure 3.

FIGURE 3
Periodic Operation 15.231(a)(c1)



#### Field Strength of Fundamental Emission (47 CFR 15.231b)

Measurements were made using a peak detector. Field strength of the peak fundamental emission is shown in Table 3 and Figure 4.

#### **Duty Cycle Correction During 100 msec:**

Each function key sends a different series of characters, but each packet period (125.0 msec) never exceeds a series of  $79^*$  long (375.0 µs) and short (150.0 µs) pulses. Assuming any combination of short or long pulses may be obtained due to encoding the worse case transmit duty cycle would be considered  $79 \times 375.0 \,\mu s$  per 125 msec = 30% duty cycle (per 100 msec). Figures 5a through 5f show the characteristics of the pulse train for one of these functions.

\*- Note: 43.25 msec (data transmit time) / 637.5 µs (period of long pulse) = 67.84 7.0 msec (preamble transmit time) / 637.5 µs (period of long pulse) = 10.98 64.84 + 10.98 = 79 pulses

Duty Cycle Correction = 20 log (0.24) = -10.6 dB

Field strength of the average fundamental emission is shown in Table 4.

#### TABLE 3

#### FIELD STRENGTH OF FUNDAMENTAL EMISSION

**Test Date:** July 18, 1999

UST Project: 99-574

**Customer:** Wayne Dalton Corporation

Model: KEP1-0000

| FREQ.<br>(MHz) | TEST DATA<br>(dBm)<br>@ 3m | ANTENNA FACTOR + CABLE ATTENUATION | RESULTS<br>(uV/m)<br>@ 3m | PEAK<br>FCC LIMITS<br>(uV/m)<br>@ 3m |
|----------------|----------------------------|------------------------------------|---------------------------|--------------------------------------|
| 372.5          | -45.0                      | 19.8                               | 12,260.3                  | 84,375                               |

#### **SAMPLE CALCULATIONS:**

RESULTS uV/m @ 3m = Antilog ((-45.0 + 19.8 + 107)/20) = 12,260.3 CONVERSION FROM dBm TO dBuV = 107 dB

| Test Results |                      |
|--------------|----------------------|
| Reviewed By: | Name: Tim R. Johnson |

#### **TABLE 4**

#### FIELD STRENGTH OF FUNDAMENTAL EMISSION

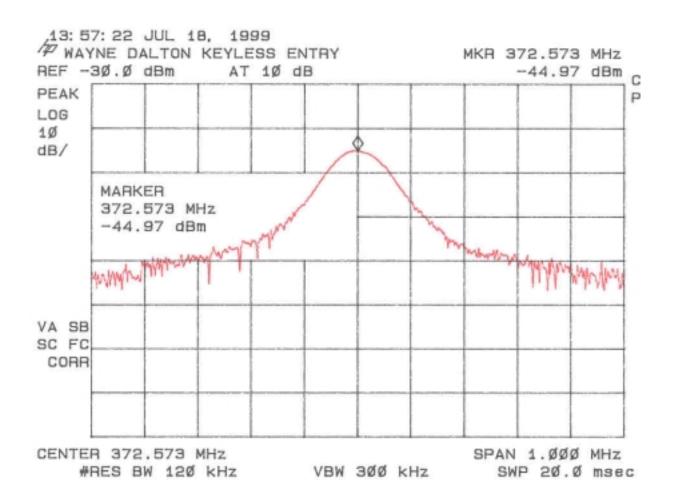
**Test Date:** July 18, 1999

UST Project: 99-574

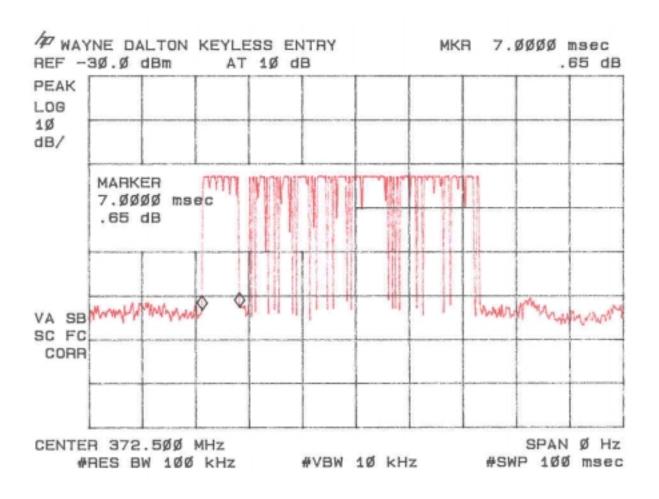
**Customer:** Wayne Dalton Corporation

Model: KEP1-0000

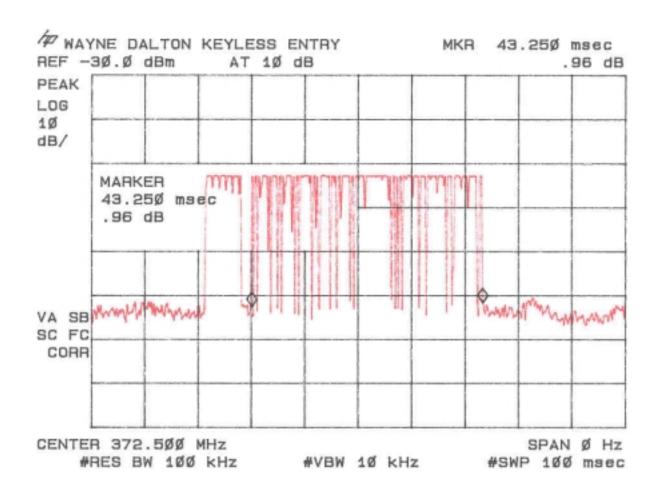
| FREQ.<br>(MHz) | TEST DATA<br>(dBm)<br>@ 3m* | ANTENNA FACTOR + CABLE ATTENUATION | RESULTS<br>(uV/m)<br>@ 3m | AVERAGE<br>FCC LIMITS<br>(uV/m)<br>@ 3m |
|----------------|-----------------------------|------------------------------------|---------------------------|-----------------------------------------|
| 372.5          | -55.6                       | 19.8                               | 3,630.8                   | 8,437.5                                 |


<sup>\*</sup> Adjusted by duty cycle = 20 log (0.30) = -10.6 dB

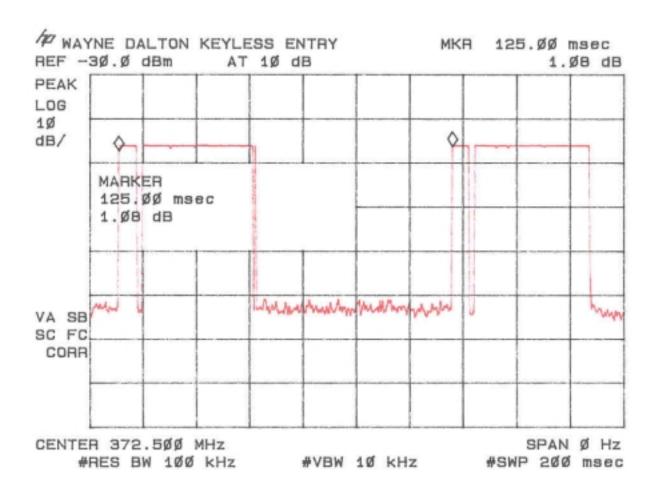
#### **SAMPLE CALCULATIONS:**


RESULTS uV/m @ 3m = Antilog ((-55.6 + 19.8 + 107)/20) = 3,630.8 CONVERSION FROM dBm TO dBuV = 107 dB

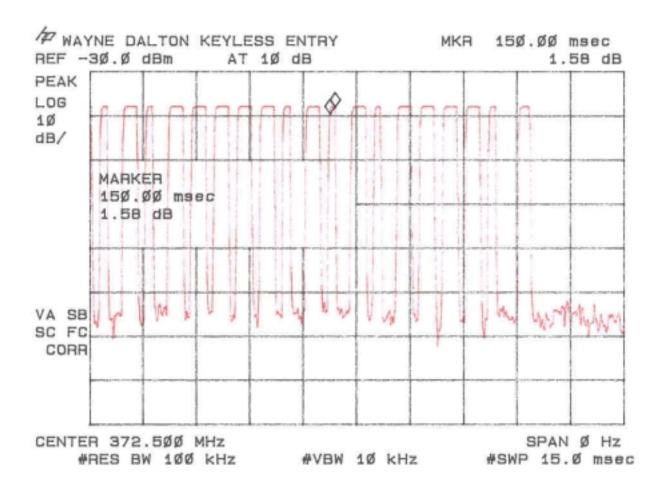
| Test Results |                      |
|--------------|----------------------|
| Reviewed By: | Name: Tim R. Johnson |


FIGURE 4
FIELD STRENGTH OF FUNDAMENTAL EMISSION 15.231(b)

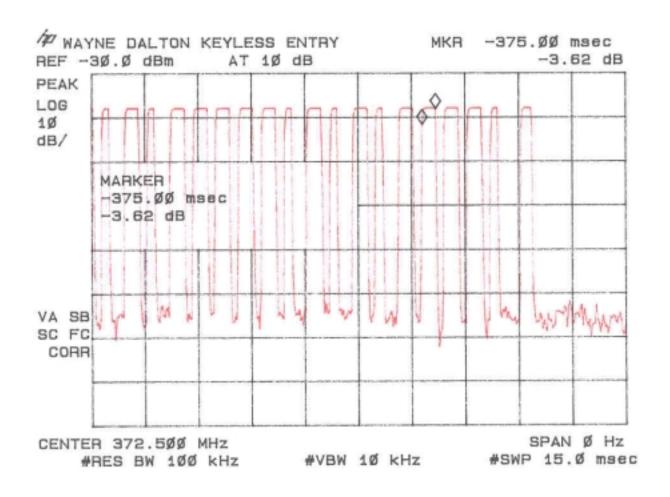



#### FIGURE 5a

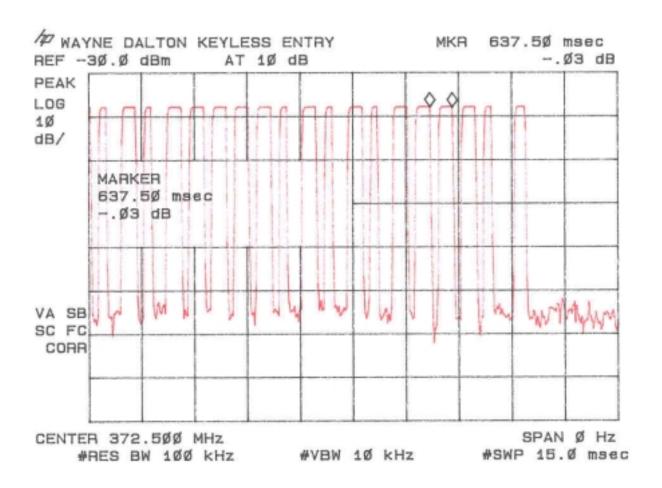



#### FIGURE 5b




#### FIGURE 5c




#### FIGURE 5d



#### FIGURE 5e



#### FIGURE 5f



#### Field Strength Of Spurious Emissions (47 CFR 15.231b)

Measurements were made using a peak detector. Field strength of Spurious Emissions are shown in Table 5 and Figures 6. For comparison to the average limits, duty cycle corrections were made as given in the previous section. Any emission less than 1000 MHz and falling within the restricted bands of 15.205 were not adjusted for averaging and the limits of 15.209 were applied.

#### **TABLE 5a**

#### FIELD STRENGTH OF SPURIOUS EMISSIONS

**Test Date: July 18, 1999** 

UST Project: 99-574

**Customer:** Wayne Dalton Corporation

Model: KEP1-0000

| FREQ.<br>(MHz.) | TEST DATA<br>(dBm)<br>@ 3m | ANTENNA FACTOR + CABLE ATTENUATION - AMP GAIN | RESULTS<br>(uV/m)<br>@ 3m | PEAK<br>FCC LIMITS<br>(uV/m)<br>@ 3m |
|-----------------|----------------------------|-----------------------------------------------|---------------------------|--------------------------------------|
| 745.2           | -66.7                      | 28.6                                          | 2700.0                    | 8437.5                               |
| 1117.70**       | -40.7                      | -6.2                                          | 1015.6                    | 5000.0                               |
| 1490.20**       | -45.3                      | -5.5                                          | 651.6                     | 5000.0                               |
| 1862.83         | -51.9                      | -3.4                                          | 385.3                     | 8437.5                               |
| 2235.50**       | -66.4#                     | -1.2                                          | 92.4                      | 5000.0                               |
| 2608.38         | -66.4#                     | 0.4                                           | 111.9                     | 8437.5                               |
| 2980.60         | -65.8#                     | 0.9                                           | 127.0                     | 8437.5                               |
| 3353.25**       | -63.8#                     | 2.4                                           | 189.1                     | 5000.0                               |
| 3725.75**       | -67.9#                     | 4.1                                           | 145.5                     | 5000.0                               |

<sup>#-</sup> The measurements were taken @ 1m to achieve better dynamic range. They have been corrected by 20 log ( $\alpha$ ) = -9.54 dB

#### **SAMPLE CALCULATIONS:**

RESULTS uV/m @ 3m = Antilog ((-66.7 + 28.6 + 107)/20) = 2780.0 CONVERSION FROM dBm TO dBuV = 107 dB

| Test Results |                      |
|--------------|----------------------|
| Reviewed By: | Name: Tim R. Johnson |

<sup>\*\*</sup> Denotes restricted band of operation

#### TABLE 5b

#### FIELD STRENGTH OF SPURIOUS EMISSIONS

**Test Date: July 18, 1999** 

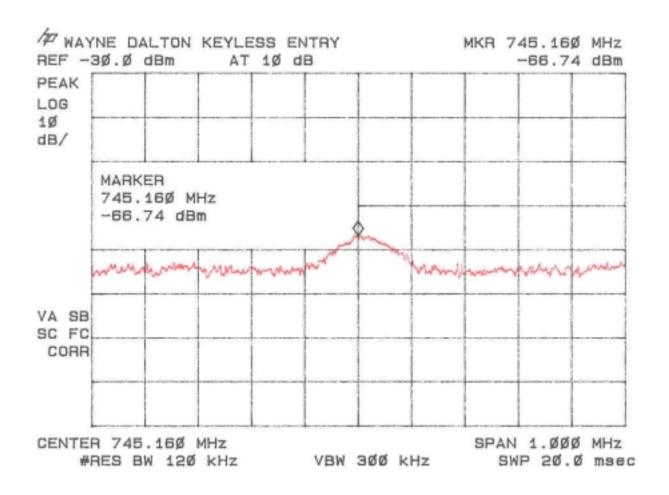
UST Project: 99-574

**Customer:** Wayne Dalton Corporation

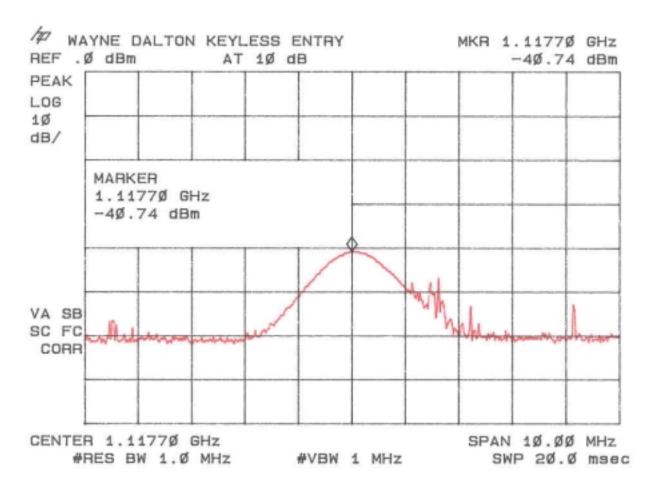
Model: KEP1-0000

| FREQ.<br>(MHz.) | TEST DATA<br>(dBm)<br>@ 3m* | ANTENNA FACTOR + CABLE ATTENUATION - AMP GAIN | RESULTS<br>(uV/m)<br>@ 3m | AVERAGE<br>FCC LIMITS<br>(uV/m)<br>@ 3m |
|-----------------|-----------------------------|-----------------------------------------------|---------------------------|-----------------------------------------|
| 745.7           | -77.3                       | 28.6                                          | 822.2                     | 843.8                                   |
| 1117.70**       | -51.3                       | -6.2                                          | 298.5                     | 500.0                                   |
| 1490.20**       | -55.9                       | -5.5                                          | 190.5                     | 500.0                                   |
| 1862.83         | -62.5                       | -3.4                                          | 113.5                     | 843.8                                   |
| 2235.50**       | -77.0*#                     | -1.2                                          | 27.5                      | 500.0                                   |
| 2608.38         | -77.0*#                     | 0.4                                           | 33.1                      | 843.8                                   |
| 2980.60         | -76.4*#                     | 0.9                                           | 37.6                      | 843.8                                   |
| 3353.25**       | -74.4*#                     | 2.4                                           | 56.2                      | 500.0                                   |
| 3725.75**       | -78.5*#                     | 4.1                                           | 42.7                      | 500.0                                   |

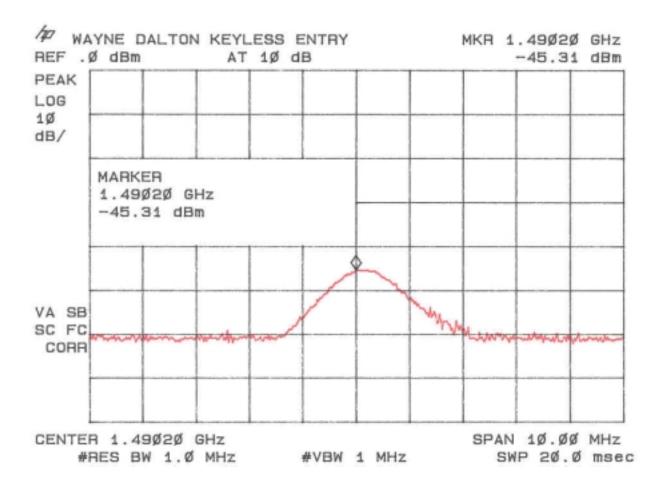
<sup>\*</sup> Adjusted by duty cycle = 20 log (0.30) = -10.6 dB


#### **SAMPLE CALCULATIONS:**

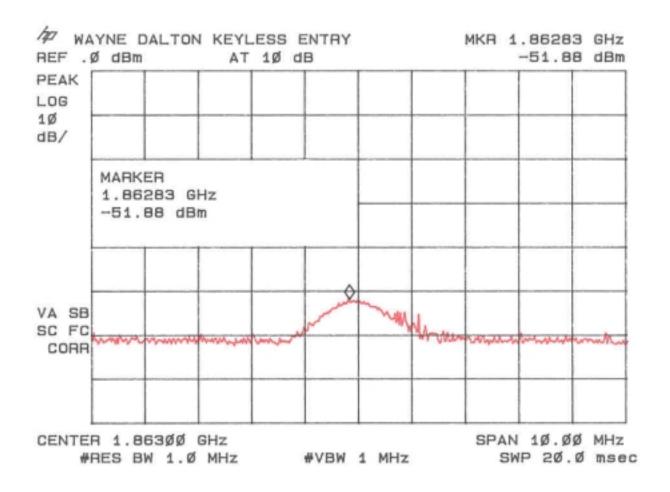
RESULTS uV/m @ 3m = Antilog ((-77.3 + 28.6 + 107)/20) = 822.2 CONVERSION FROM dBm TO dBuV = 107 dB


| Test Results |                      |
|--------------|----------------------|
| Reviewed By: | Name: Tim R. Johnson |

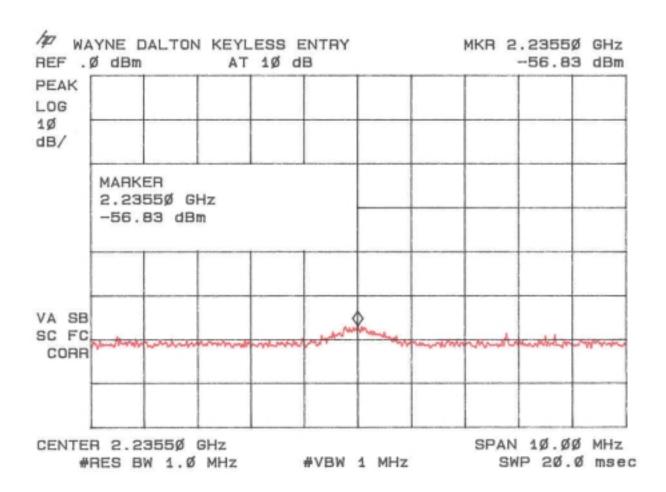
<sup>\*\*</sup> Denotes restricted band of operation


<sup>#-</sup> The measurements were taken @ 1m to achieve better dynamic range. They have been corrected by 20 log ( $\alpha$ ) = -9.54 dB

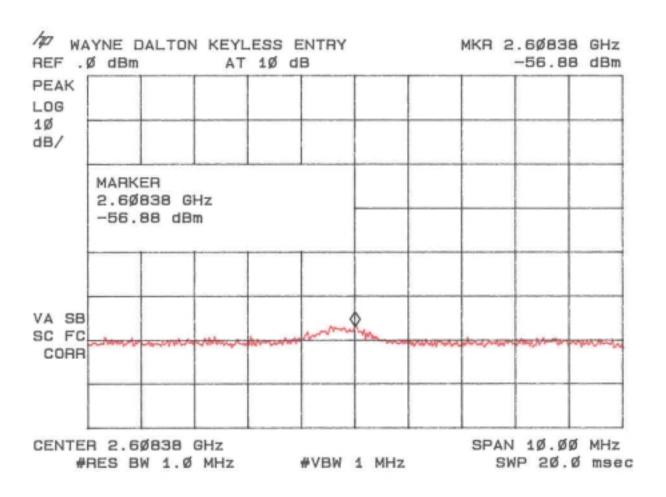



#### FIGURE 6b

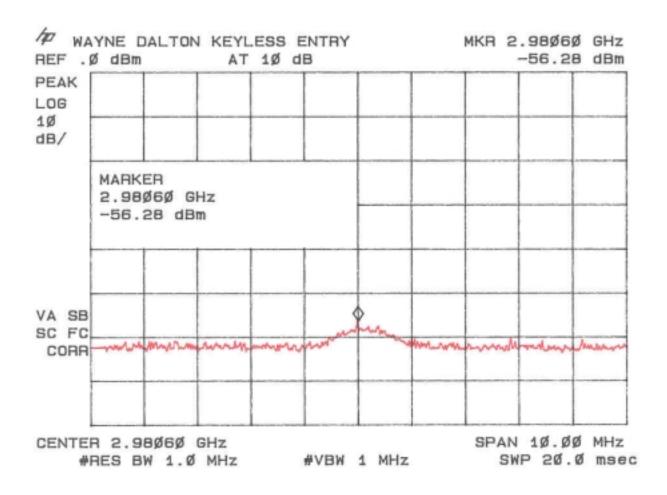



#### FIGURE 6c

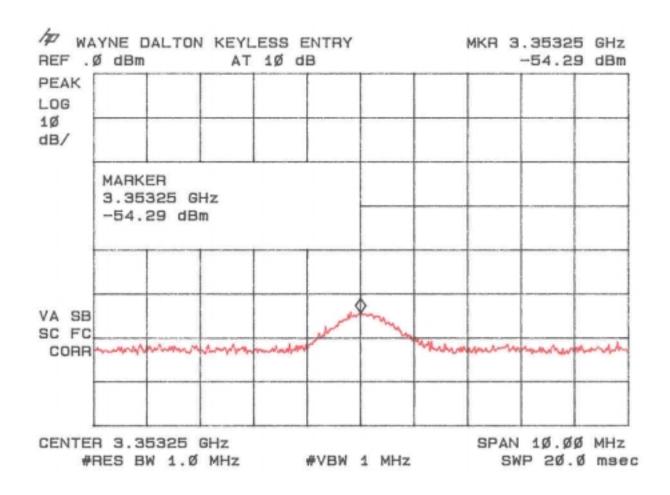



#### FIGURE 6d

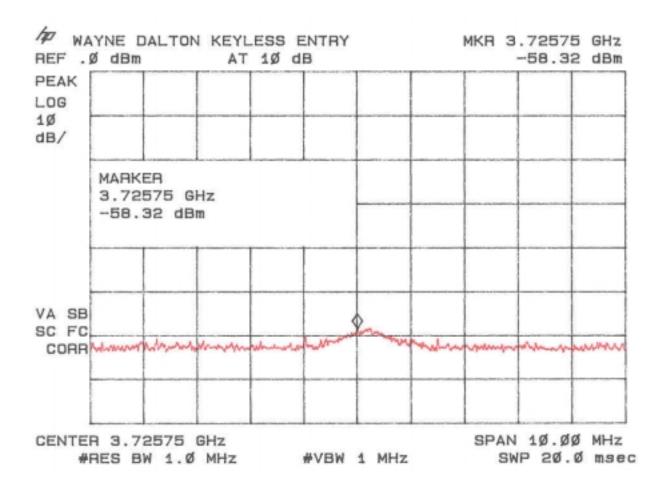



#### FIGURE 6e




#### FIGURE 6f




#### FIGURE 6g



#### FIGURE 6h



#### FIGURE 6i



#### 20 dB Bandwidth of Fundamental Emission (47 CFR 15.231c)

The peak 20 dB bandwidth measurement of the fundamental emission is shown in Table 6 and Figure 7.

#### **TABLE 6**

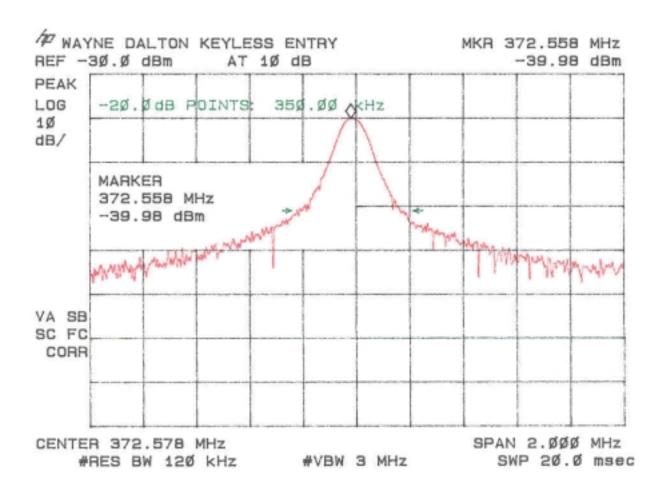
#### 20 dB BANDWIDTH OF FUNDAMENTAL EMISSION

**Test Date:** July 18, 1999

UST Project: 99-574

Customer: Wayne Dalton Corporation

Model: KEP1-0000


| FREQUENCY | 20 dB BANDWIDTH | FCC LIMITS |
|-----------|-----------------|------------|
| (MHz)     | (kHz)           | (kHz)      |
| 372.5     | 350.0           | 931        |

FCC Limit = (0.25%) (Center Frequency) = (0.0025)(372.5) = 931 kHz

| Test Results |                             |
|--------------|-----------------------------|
| Reviewed By: | Name: <u>Tim R. Johnson</u> |

FIGURE 7

20 dB BANDWIDTH OF FUNDAMENTAL EMISSION 15.231(c)



### Frequency Tolerance of Carrier Signal (47 CFR 15.231d)

The EUT does not operate in the 40.66 - 40.70 MHz band, therefore frequency tolerance measurements were deemed unnecessary.

#### Radiated Digital Device Emissions (47 CFR 15.109a)

Radiated emissions were evaluated from 30 to 1000 MHz. Measurements were made with the analyzer's bandwidth set to 120 kHz. Emissions are shown in Table 7.

#### **TABLE 7**

#### **CLASS B RADIATED EMISSIONS**

Test Date: July 18, 1999

**UST Project:** 99-574

Wayne Dalton Corporation KEP1-0000 Customer:

Model:

|--|

#### NO EMISSIONS DETECTED WITHIN 10 dB OF THE FCC LIMITS

| lest Results |                             |
|--------------|-----------------------------|
| Reviewed By: | Name: <u>Tim R. Johnson</u> |

#### **Power Line Conducted Emissions (47 CFR 15.107a)**

The EUT is operated by internal battery power only, therefore power line conducted emissions was deemed unnecessary.