

The University of Michigan Radiation Laboratory 3228 EECS Building Ann Arbor, MI 48109-2122 Tel: (734) 764-0500

Fax: (734) 647-2106

Measured Radio Frequency Emissions From

Wayne Dalton Transceiver FCC ID: KJ8-0002119 IC: 3540A-0002119

Test Report No. 417124-465 October 9, 2008

Copyright © 2008

For:

Wayne Dalton Corporation 3395 Addison Drive, Pensacola, Florida 32514 Contact: Doug Gilmore frankc@grtmars.com Phone: (850) 475-6126

Fax: (850) 484-4239

Measurements made by: Valdis V. Liepa

Test report written by: Joseph D. Brunett

Testing supervised by: Maldl U. Report Approved by:

Valdis V. Liepa Research Scientist

Summary

Tests for compliance with FCC Regulations, CFR 47, Part 15 and with Industry Canada RSS-210/Gen, were performed on a Wayne Dalton, FCC ID: KJ8-0002119, IC: 3540A-0002119. This device under test (DUT) is subject to the rules and regulations as a Transceiver.

In testing completed on October 8, 2008, the DUT tested met the allowed specifications for radiated emissions by 2.9 dB. AC Mains conducted emissions meet the allowed specifications by 15.0dB.

Table of Contents

1.	Intro	duction	3
2.	Equip	oment Used	3
3.	Device	ce Under Test	4
	3.1	Description & Block Diagram	4
	3.2	Variants	4
	3.3	Modes of Operation	4
	3.4	Exemptions	4
	3.5	EMC Relevant Modifications	4
4.	Emis	sions Limits	5
	4.1	Radiated Emissions Limits	5
	4.2	Power Line Conducted Emissions Limits	5
5.	Meas	urement Procedures	6
	5.1	Semi-Anechoic Chamber Radiated Emissions	6
	5.2	Outdoor Radiated Emissions	6
	5.3	Radiated Field Computations	6
	5.4	Indoor Power Line Conducted Emissions	6
	5.5	Supply Voltage Variation	7
6.	Test l	Results	7
	6.1	Radiated Emissions	7
	6.1.1	Peak to Quasi-peak and Average Ratio	7
	6.1.2	Emission Spectrum	7
	6.1.3	Emission Bandwidth	7
	6.1.4	Supply Voltage and Supply Voltage Variation	7
	6.2	Conducted Emissions	7

1. Introduction

This Wayne Dalton Transceiver was tested for compliance with FCC Regulations, Part 15, adopted under Docket 87-389, April 18, 1989 as subsequently amended, and with Industry Canada RSS-210/Gen, Issue 7, June 2007. Tests were performed at the University of Michigan Radiation Laboratory Willow Run Test Range following the procedures described in ANSI C63.4-2003 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The Site description and attenuation characteristics of the Open Site facility are on file with FCC Laboratory, Columbia, Maryland (FCC Reg. No: 91050) and with Industry Canada, Ottawa, ON (File Ref. No: IC 2057A-1).

2. Equipment Used

The pertinent test equipment commonly used in our facility for measurements is listed in Table 2.1 below. The middle column identifies the specific equipment used in these tests. The quality system employed at the University of Michigan Radiation Laboratory Willow Run Test Range has been established to ensure all equipment has a clearly identifiable classification, calibration expiry date, and that all calibrations are traceable to national standards.

Table 2.1 Test Equipment.

Test Instrument	Used	Manufacturer/Model	Q Number
Spectrum Analyzer (9kHz-26GHz)	X	Hewlett-Packard 8593E, SN: 3412A01131	HP8593E1
Spectrum Analyzer (9kHz-6.5GHz)	X	Hewlett-Packard 8595E, SN: 3543A01546	JDB8595E
Power Meter		Hewlett-Packard, 432A	HP432A1
Harmonic Mixer (26-40 GHz)		Hewlett-Packard 11970A, SN: 3003A08327	HP11970A1
Harmonic Mixer (40-60 GHz)		Hewlett-Packard 11970U, SN: 2332A00500	HP11970U1
Harmonic Mixer (75-110 GHz)		Hewlett-Packard 11970W, SN: 2521A00179	HP11970W1
Harmonic Mixer (140-220 GHz)		Pacific Millimeter Prod., GMA, SN: 26	PMPGMA1
S-Band Std. Gain Horn	X	S/A, Model SGH-2.6	SBAND1
C-Band Std. Gain Horn	X	University of Michigan, NRL design	CBAND1
XN-Band Std. Gain Horn	X	University of Michigan, NRL design	XNBAND1
X-Band Std. Gain Horn		S/A, Model 12-8.2	XBAND1
X-band horn (8.2- 12.4 GHz)		Narda 640	XBAND2
X-band horn (8.2- 12.4 GHz)	X	Scientific Atlanta, 12-8.2, SN: 730	XBAND3
K-band horn (18-26.5 GHz)	X	FXR, Inc., K638KF	KBAND1
Ka-band horn (26.5-40 GHz)		FXR, Inc., U638A	KABAND1
U-band horn (40-60 GHz)		Custom Microwave, HO19	UBAND1
W-band horn(75-110 GHz)		Custom Microwave, HO10	WBAND1
G-band horn (140-220 GHz)		Custom Microwave, HO5R	GBAND1
Bicone Antenna (30-250 MHz)	X	University of Michigan, RLBC-1	LBBIC1
Bicone Antenna (200-1000 MHz)	X	University of Michigan, RLBC-2	HBBIC1
Dipole Antenna Set (30-1000 MHz)	X	University of Michigan, RLDP-1,-2,-3	UMDIP1
Dipole Antenna Set (30-1000 MHz)		EMCO 3121C, SN: 992 (Ref. Antennas)	EMDIP1
Active Rod Antenna (30 Hz-50 MHz)		EMCO 3301B, SN: 3223	EMROD1
Active Loop Antenna (30 Hz-50 MHz)		EMCO 6502, SN:2855	EMLOOP1
Ridge-horn Antenna (300-5000 MHz)	X	University of Michigan	UMRH1
Amplifier (5-1000 MHz)	X	Avantek, A11-1, A25-1S	AVAMP1
Amplifier (5-4500 MHz)	X	Avantek	AVAMP2
Amplifier (4.5-13 GHz)	X	Avantek, AFT-12665	AVAMP3
Amplifier (6-16 GHz)		Trek	TRAMP1
Amplifier (16-26 GHz)	X	Avantek	AVAMP4
LISN Box	X	University of Michigan	UMLISN1
Signal Generator		Hewlett-Packard 8657B	HPSG1

3. Device Under Test

3.1 Description & Block Diagram

The DUT is a 908.4 MHz Transceiver designed for use as a remote control light. It is activated by a 900 MHz remote control. The device is housed in a plastic case approximately 6 x 6 x 9 inches in dimension. For testing, a unshielded power cord was provided by the manufacturer. The DUT is designed and manufactured by Wayne Dalton Corporation, 3395 Addison Drive, Pensacola, Florida 32514.

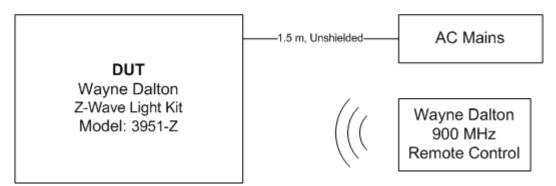


Figure 3.1 Block Diagram/Photo

Equipment Used

Device	[Make], Model	[S/N],P/N	EMC Consideration	
Z-Wave Light Kit (DUT)	[Wayne Dalton], 3951-Z	Proto1	FCC/IC Class B	
Z-Wave Remote	[Wayne Dalton], Home Settings	-	-	

Cables Used

Cable	[Make], Model	Length	EMC Consideration
AC Power	[Generic]	1.5 m	Unshielded

3.2 Variants

There is only a single model/variant of the DUT.

3.3 Modes of Operation

The DUT operates in only a single mode. It is remotely controlled by a Wayne Dalton 900 MHz remote control, transmitting a response data packet when the light changes state (on \rightarrow off, off \rightarrow on).

3.4 Exemptions

None.

3.5 EMC Relevant Modifications

No EMI Relevant Modifications were performed by this test laboratory.

4. Emissions Limits

4.1 Radiated Emissions Limits

The DUT tested falls under the category of an Intentional Radiator. The applicable testing frequencies and corresponding emission limits set by both the FCC and IC are given in Tables 4.1 and 4.2 below.

Table 4.1. TX Emission Limits (FCC: 15.249; IC: RSS-210e A2.9).

Frequency (MHz)	Field Strength of Fundamental (mV/m)	Field Strength of Harmonics (µV/m)
902.0 - 928.0	50	500
2400 - 2483.5	50	500
5725.0 - 5875.0	50	500
24000.0 - 24250.0	250	2500

- 1) Field strength limits are specified at a distance of 3 meters.
- 2) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209 (Class B), whichever is the lesser attenuation.
- 3) Peak field strength of any emission above 1GHz shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. (15.35)

Table 4.2. Spurious Emission Limits (FCC: 15.33, .35, .109/209; IC: RSS-210 2.7, T2)

Freq. (MHz)	E_{lim} (3m) μ V/m	$E_{lim} dB(\mu V/m)$
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
960-2000	500	54.0

Note: Average readings apply above 1000 MHz (1 MHz BW), Quasi-Peak readings apply to 1000 MHz (120 kHz RBW), PRF of intentional emissions > 20 Hz for QPK to apply.

4.2 Power Line Conducted Emissions Limits

Table 4.3 Emission Limits (FCC:15.107 (CISPR); IC: RSS-Gen, 7.2.2 T2).

Frequency	Class A	$(dB\mu V)$	Class B (dBµV)			
(MHz)	Quasi-peak	Average	Quasi-peak	Average		
.150 - 0.50	79	66	66 - 56*	56 - 46*		
0.50 - 5	73	60	56	46		
5 - 30	73	60	60	50		

Notes:

- 1. The lower limit shall apply at the transition frequency
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15-0.50 MHz:
 - *Class B Quasi-peak: $dB\mu V = 50.25 19.12*log(f)$
 - *Class B Average: $dB\mu V = 40.25 19.12*log(f)$
- 3. 9 kHz RBW

5. Measurement Procedures

5.1 Semi-Anechoic Chamber Radiated Emissions

To become familiar with the radiated emission behavior of the DUT, the device is first studied and measured in our shielded semi-anechoic chamber. In the chamber there is a set-up similar to that of an outdoor 3-meter site, with a turntable, an antenna mast, and a ground plane. Instrumentation includes spectrum analyzers and other equipment as needed.

The DUT is laid on the test table as shown in the included block diagram. A shielded loop antenna is employed when studying emissions from 9 kHz to 30 MHz. Above 30 MHz and below 250 MHz a biconical antenna is employed. Above 250 MHz a ridge or and standard gain horn antennas are used. The spectrum analyzer resolution and video bandwidths are set so as to measure the DUT emission without decreasing the emission bandwidth (EBW) of the device. Emissions are studied for all orientations (3-axes) of the DUT and all test antenna polarizations. In the chamber spectrum and modulation characteristics of the carrier are recorded. This data is presented in subsequent sections.

5.2 Outdoor Radiated Emissions

After measurements are performed indoors, emissions on our outdoor 3-meter Open Area Test Site (OATS) are made. If the DUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.4 are employed. Alternatively, an on-table layout more representative of actual use may be employed if the resulting emissions appear to be worst-case in such a configuration. Any intentionally radiating elements are placed on the test table flat, on their side, and on their end (3-axes) and worst case emissions are recorded. For devices with intentional emissions below 30 MHz, our shielded loop antenna is used and low frequency field extrapolation to the regulatory limit distance is employed as needed. Emissions between 30 MHz and 1 GHz are measured using tuned dipoles and/or biconical antennas. Care is taken to ensure that the RBW and VBW used meet the regulatory requirements, and that the EBW of the DUT is not reduced. The Photographs included in this report show the DUT on the OATS.

5.3 Radiated Field Computations

To convert the dBm values measured on the spectrum analyzer to $dB(\mu V/m)$, we use expression

 $E3(dB\mu V/m) = 107 + PR + KA - KG + KE - CF$

where PR = power recorded on spectrum analyzer, dB, measured at 3 m

KA = antenna factor, dB/m

KG = pre-amplifier gain, including cable loss, dB

KE = duty correction factor, dB

CF = distance conversion (employed only if limits are specified at alternate distance), dB

When presenting the data at each frequency, the highest measured emission under all of the possible DUT orientations (3-axes) is given.

5.4 Indoor Power Line Conducted Emissions

When applicable, power line conducted emissions are measured in our semi-anechoic chamber. If the DUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.4 are employed. Alternatively, an on-table layout more representative of actual use may be employed if the resulting emissions appear to be worst-case in such a configuration.

The conducted emissions measured with the spectrum analyzer and recorded (in $dB\mu V$) from 0-2 MHz and 2-30 MHz for both the ungrounded (Hi) and grounded (Lo) conductors. The spectrum analyzer is set to peak-hold mode in order to record the highest peak throughout the course of functional operation. Only when the emission exceeds or is near the limit are quasi-peak and average detection used.

5.5 Supply Voltage Variation

Measurements of the variation in the fundamental radiated emission were performed with the supply voltage varied by no less than 85% and 115% of the nominal rated value. For battery operated equipment, tests were performed using a new battery, and worst case emissions are re-checked employing a new battery.

6. Test Results

6.1 Radiated Emissions

6.1.1 Peak to Average Ratio

When the transmitter is activated by button press (it responds to an interrogation by a 900 MHz remote control), it responds with a 19.0 ms FSK data packet. See Figure 6.1. Computing the duty factor (used only for average limits above 1 GHz) results in:

$$K_E = (19.0 \text{ ms}) / 100 \text{ ms} = 0.190 \text{ or } -14.4 \text{ dB}.$$

6.1.2 Emission Spectrum

The relative DUT emission spectrum is recorded and is shown in Figure 6.2.

6.1.3 Emission Bandwidth

The emission bandwidth of the signal is shown in Figure 6.3. Therein the 99% (20 dB) bandwidth measured to be 92 kHz.

6.1.4 Supply Voltage and Supply Voltage Variation

The DUT has been designed to be powered from 115 VAC mains power. For this test, relative radiated power was measured at the fundamental as the voltage was varied from 60.0 to 140.0 volts. The emission variation is shown in Figure 6.4.

Nominal Voltage V = 115 VAC

Ave. current from batteries I = 0.48 AAC (pulsed)

6.2 Conducted Emissions

AC Mains power line conducted emissions meet the Class B limits by 15.0 dB. Worst case emissions are reported in Table 6.2.

The University of Michigan Radiation Laboratory 3228 EECS Building Ann Arbor, MI 48109-2122

Tel: (734) 764-0500 Fax: (734) 647-2106

Table 6.1 Worst Case Radiated Emissions

Radiated Emissions										Martec 908 TX; FCC/IC	
	Freq.	Ant.	Ant.	Pr. (PK)	Det.	Ka	Kg	E3*	E3lim	Pass	
#	MHz	Used	Pol.	dBm	Used	dB/m	dB	dBμV/m	dBμV/m	dB	Comments
1	908.4	Dip	Н	-45.1	Pk	28.4	16.2	74.1	94.0	19.9	end
2	908.4	Dip	V	-40.2	Pk	28.4	16.2	79.0	94.0	15.0	end
3	908.4	Dip	Н	-28.1	Pk	28.4	16.2	91.1	94.0	2.9	side
4	908.4	Dip	V	-38.6	Pk	28.4	16.2	80.6	94.0	13.4	side
5	1816.9	Horn RG	H/V	-54.1	Pk	22.1	28.0	32.6	54.0	21.4	max all
6	2725.3	Horn RG	H/V	-42.8	Pk	24.8	25.8	48.7	54.0	5.3	max all
7	3633.7	Horn RG	H/V	-54.6	Pk	27.4	23.9	41.5	54.0	12.5	max all
8	4542.1	Horn C	H/V	-38.6	Pk	24.5	33.5	45.1	54.0	8.9	max all
9	5450.6	Horn C	H/V	-36.2	Pk	24.7	38.0	43.1	54.0	10.9	max all
10	6359.0	Horn Xn	H/V	-41.3	Pk	24.4	38.0	37.7	54.0	16.3	max all
11	7267.4	Horn Xn	H/V	-51.0	Pk	25.2	36.8	30.0	54.0	24.0	max all
12	8175.8	Horn X	H/V	-51.7	Pk	27.0	36.8	31.1	54.0	22.9	max all
13	9084.3	Horn X	H/V	-52.4	Pk	27.5	36.8	30.9	54.0	23.1	max all
14											
15	* No dut	y has been	applied	to the fur	damenta	l emissio	n.				
		-						GHz to s	how com	pliance v	with the average limits.
17				, i						<u> </u>	
18											
19											
		D	igital/S	purious/	Receive	r Radia	ted Emi	ssions			
	_	A .			Г.	17	17			- T	~
	Freq.	Ant.	Ant.	Pr	Det.	Ka	Kg	E3	E3lim	Pass	Comments
#	Freq. kHz	Ant. Used	Ant. Pol.	Pr dBm	Det. Used	Ka dB/m		E3 dBµV/m		Pass dB	Comments
#	_										Digital, all noise
-	kHz	Used	Pol.	dBm	Used	dB/m	dB	dBμV/m	dBμV/m	dB	
#	kHz 30.1	Used Bic	Pol. H,V	dBm -80.2	Used Pk	dB/m 13.2	dB 26.0	dΒμV/m 14.0	dBμV/m 40.0	dB 26.0	
# 24	kHz 30.1 50.3	Used Bic Bic	Pol. H,V H,V	dBm -80.2 -77.0	Used Pk Pk	dB/m 13.2 9.1	dB 26.0 25.7	dBμV/m 14.0 13.3	dBμV/m 40.0 40.0	dB 26.0 26.7	
# 24 25	30.1 50.3 80.7	Used Bic Bic Bic	Pol. H,V H,V	dBm -80.2 -77.0 -74.5	Used Pk Pk Pk	dB/m 13.2 9.1 7.6	dB 26.0 25.7 25.3	dBμV/m 14.0 13.3 14.8	dBμV/m 40.0 40.0 40.0	dB 26.0 26.7 25.2	
# 24 25 26	kHz 30.1 50.3 80.7 150.0	Used Bic Bic Bic	Pol. H,V H,V H,V	dBm -80.2 -77.0 -74.5 -77.9	Used Pk Pk Pk Pk	dB/m 13.2 9.1 7.6 12.5	dB 26.0 25.7 25.3 24.2	dBµV/m 14.0 13.3 14.8 17.4	dBμV/m 40.0 40.0 40.0 43.5	dB 26.0 26.7 25.2 26.1	
# 24 25 26 27	80.7 150.0 210.2	Used Bic Bic Bic Bic Bic	Pol. H,V H,V H,V H,V	dBm -80.2 -77.0 -74.5 -77.9 -79.3	Used Pk Pk Pk Pk Pk	dB/m 13.2 9.1 7.6 12.5 14.8	dB 26.0 25.7 25.3 24.2 23.4	dBμV/m 14.0 13.3 14.8 17.4 19.1	dBμV/m 40.0 40.0 40.0 43.5 43.5	dB 26.0 26.7 25.2 26.1 24.4	
# 24 25 26 27 28	80.7 150.0 210.2	Used Bic Bic Bic Bic Bic	Pol. H,V H,V H,V H,V	dBm -80.2 -77.0 -74.5 -77.9 -79.3	Used Pk Pk Pk Pk Pk	dB/m 13.2 9.1 7.6 12.5 14.8	dB 26.0 25.7 25.3 24.2 23.4	dBμV/m 14.0 13.3 14.8 17.4 19.1	dBμV/m 40.0 40.0 40.0 43.5 43.5	dB 26.0 26.7 25.2 26.1 24.4	
# 24 25 26 27 28 29	kHz 30.1 50.3 80.7 150.0 210.2 249.5	Used Bic Bic Bic Bic Bic SBic	Pol. H,V H,V H,V H,V H,V	dBm -80.2 -77.0 -74.5 -77.9 -79.3 -78.7	Used Pk Pk Pk Pk Pk Pk	dB/m 13.2 9.1 7.6 12.5 14.8 14.6	dB 26.0 25.7 25.3 24.2 23.4 23.0	dBμV/m 14.0 13.3 14.8 17.4 19.1	dBμV/m 40.0 40.0 40.0 43.5 43.5 46.0	dB 26.0 26.7 25.2 26.1 24.4 26.1	Digital, all noise
# 24 25 26 27 28 29 30	kHz 30.1 50.3 80.7 150.0 210.2 249.5 908.6	Used Bic Bic Bic Bic Bic SBic	Pol. H,V H,V H,V H,V H,V	dBm -80.2 -77.0 -74.5 -79.3 -78.7	Used Pk Pk Pk Pk Pk Pk Pk	dB/m 13.2 9.1 7.6 12.5 14.8 14.6	dB 26.0 25.7 25.3 24.2 23.4 23.0	dBμV/m 14.0 13.3 14.8 17.4 19.1 19.9	dBμV/m 40.0 40.0 40.0 43.5 43.5 46.0	dB 26.0 26.7 25.2 26.1 24.4 26.1	Digital, all noise
# 24 25 26 27 28 29 30 31 32	kHz 30.1 50.3 80.7 150.0 210.2 249.5 908.6 908.6 1817.2	Used Bic Bic Bic Bic Bic Sic Bic Sic Bic	Pol. H,V H,V H,V H,V H,V H,V H,V	dBm -80.2 -77.0 -74.5 -77.9 -79.3 -78.7 -79.2 -81.2	Used Pk Pk Pk Pk Pk Pk Pk Pk	dB/m 13.2 9.1 7.6 12.5 14.8 14.6	dB 26.0 25.7 25.3 24.2 23.4 23.0 17.5	dBμV/m 14.0 13.3 14.8 17.4 19.1 19.9 39.7 37.7	dBμV/m 40.0 40.0 40.0 43.5 43.5 46.0 46.0	dB 26.0 26.7 25.2 26.1 24.4 26.1 6.3 8.3	Digital, all noise Rx. LO, noise
# 24 25 26 27 28 29 30 31 32 33	8Hz 30.1 50.3 80.7 150.0 210.2 249.5 908.6 908.6 1817.2 2725.8	Used Bic Bic Bic Bic Bic Sic Bic Bic Horn RG	Pol. H,V H,V H,V H,V H,V H,V H,V H,V	dBm -80.2 -77.0 -74.5 -77.9 -79.3 -78.7 -79.2 -81.2 -59.1	Used Pk Pk Pk Pk Pk Pk Pk Ave	dB/m 13.2 9.1 7.6 12.5 14.8 14.6 29.4 29.4 22.1	dB 26.0 25.7 25.3 24.2 23.4 23.0 17.5 17.5 28.0	dBμV/m 14.0 13.3 14.8 17.4 19.1 19.9 39.7 37.7 42.0	dBμV/m 40.0 40.0 40.0 43.5 43.5 46.0 46.0 54.0	dB 26.0 26.7 25.2 26.1 24.4 26.1 6.3 8.3 12.0	Digital, all noise Rx. LO, noise 2 x Rx. LO
# 24 25 26 27 28 29 30 31 32 33	8Hz 30.1 50.3 80.7 150.0 210.2 249.5 908.6 1817.2 2725.8 3634.4	Used Bic Bic Bic Bic Bic Sic Bic Horn RG	Pol. H,V H,V H,V H,V H,V H,V H,V H,V	dBm -80.2 -77.0 -74.5 -77.9 -79.3 -78.7 -79.2 -81.2 -59.1 -71.5	Used Pk Pk Pk Pk Pk Pk Ave Ave	dB/m 13.2 9.1 7.6 12.5 14.8 14.6 29.4 29.4 22.1 24.8	dB 26.0 25.7 25.3 24.2 23.4 23.0 17.5 17.5 28.0 25.8	dBμV/m 14.0 13.3 14.8 17.4 19.1 19.9 39.7 37.7 42.0 34.4	dBμV/m 40.0 40.0 43.5 43.5 46.0 46.0 54.0 54.0	dB 26.0 26.7 25.2 26.1 24.4 26.1 6.3 8.3 12.0 19.6	Digital, all noise Rx. LO, noise 2 x Rx. LO noise noise
# 24 25 26 27 28 29 30 31 32 33 34	8Hz 30.1 50.3 80.7 150.0 210.2 249.5 908.6 1817.2 2725.8 3634.4	Used Bic Bic Bic Bic SBic SBic Horn RG Horn RG	Pol. H,V H,V H,V H,V H,V H,V H,V H,V	dBm -80.2 -77.0 -74.5 -77.9 -79.3 -78.7 -79.2 -81.2 -59.1 -71.5 -70.5	Used Pk Pk Pk Pk Pk Pk Ave Ave	dB/m 13.2 9.1 7.6 12.5 14.8 14.6 29.4 29.4 22.1 24.8 27.4	dB 26.0 25.7 25.3 24.2 23.4 23.0 17.5 17.5 28.0 25.8 23.9	dBμV/m 14.0 13.3 14.8 17.4 19.1 19.9 39.7 37.7 42.0 34.4 40.0	dBμV/m 40.0 40.0 43.5 43.5 46.0 46.0 54.0 54.0	dB 26.0 26.7 25.2 26.1 24.4 26.1 6.3 8.3 12.0 19.6 14.0	Digital, all noise Rx. LO, noise 2 x Rx. LO noise
# 24 25 26 27 28 29 30 31 32 33 34	8Hz 30.1 50.3 80.7 150.0 210.2 249.5 908.6 1817.2 2725.8 3634.4	Used Bic Bic Bic Bic SBic SBic Horn RG Horn RG	Pol. H,V H,V H,V H,V H,V H,V H,V H,V	dBm -80.2 -77.0 -74.5 -77.9 -79.3 -78.7 -79.2 -81.2 -59.1 -71.5 -70.5	Used Pk Pk Pk Pk Pk Pk Ave Ave	dB/m 13.2 9.1 7.6 12.5 14.8 14.6 29.4 29.4 22.1 24.8 27.4	dB 26.0 25.7 25.3 24.2 23.4 23.0 17.5 17.5 28.0 25.8 23.9	dBμV/m 14.0 13.3 14.8 17.4 19.1 19.9 39.7 37.7 42.0 34.4 40.0	dBμV/m 40.0 40.0 43.5 43.5 46.0 46.0 54.0 54.0	dB 26.0 26.7 25.2 26.1 24.4 26.1 6.3 8.3 12.0 19.6 14.0	Digital, all noise Rx. LO, noise 2 x Rx. LO noise noise
# 24 25 26 27 28 29 30 31 32 33 34	8Hz 30.1 50.3 80.7 150.0 210.2 249.5 908.6 1817.2 2725.8 3634.4	Used Bic Bic Bic Bic SBic SBic Horn RG Horn RG	Pol. H,V H,V H,V H,V H,V H,V H,V H,V	dBm -80.2 -77.0 -74.5 -77.9 -79.3 -78.7 -79.2 -81.2 -59.1 -71.5 -70.5	Used Pk Pk Pk Pk Pk Pk Ave Ave	dB/m 13.2 9.1 7.6 12.5 14.8 14.6 29.4 29.4 22.1 24.8 27.4	dB 26.0 25.7 25.3 24.2 23.4 23.0 17.5 17.5 28.0 25.8 23.9	dBμV/m 14.0 13.3 14.8 17.4 19.1 19.9 39.7 37.7 42.0 34.4 40.0	dBμV/m 40.0 40.0 43.5 43.5 46.0 46.0 54.0 54.0	dB 26.0 26.7 25.2 26.1 24.4 26.1 6.3 8.3 12.0 19.6 14.0	Digital, all noise Rx. LO, noise 2 x Rx. LO noise noise
# 24 25 26 27 28 29 30 31 32 33 34 35	8Hz 30.1 50.3 80.7 150.0 210.2 249.5 908.6 1817.2 2725.8 3634.4	Used Bic Bic Bic Bic SBic SBic Horn RG Horn RG	Pol. H,V H,V H,V H,V H,V H,V H,V H,V	dBm -80.2 -77.0 -74.5 -77.9 -79.3 -78.7 -79.2 -81.2 -59.1 -71.5 -70.5	Used Pk Pk Pk Pk Pk Pk Ave Ave	dB/m 13.2 9.1 7.6 12.5 14.8 14.6 29.4 29.4 22.1 24.8 27.4	dB 26.0 25.7 25.3 24.2 23.4 23.0 17.5 17.5 28.0 25.8 23.9	dBμV/m 14.0 13.3 14.8 17.4 19.1 19.9 39.7 37.7 42.0 34.4 40.0	dBμV/m 40.0 40.0 43.5 43.5 46.0 46.0 54.0 54.0	dB 26.0 26.7 25.2 26.1 24.4 26.1 6.3 8.3 12.0 19.6 14.0	Digital, all noise Rx. LO, noise 2 x Rx. LO noise noise
# 24 25 26 27 28 29 30 31 32 33 34 35	8Hz 30.1 50.3 80.7 150.0 210.2 249.5 908.6 1817.2 2725.8 3634.4	Used Bic Bic Bic Bic SBic SBic Horn RG Horn RG	Pol. H,V H,V H,V H,V H,V H,V H,V H,V	dBm -80.2 -77.0 -74.5 -77.9 -79.3 -78.7 -79.2 -81.2 -59.1 -71.5 -70.5	Used Pk Pk Pk Pk Pk Pk Ave Ave	dB/m 13.2 9.1 7.6 12.5 14.8 14.6 29.4 29.4 22.1 24.8 27.4	dB 26.0 25.7 25.3 24.2 23.4 23.0 17.5 17.5 28.0 25.8 23.9	dBμV/m 14.0 13.3 14.8 17.4 19.1 19.9 39.7 37.7 42.0 34.4 40.0	dBμV/m 40.0 40.0 43.5 43.5 46.0 46.0 54.0 54.0	dB 26.0 26.7 25.2 26.1 24.4 26.1 6.3 8.3 12.0 19.6 14.0	Digital, all noise Rx. LO, noise 2 x Rx. LO noise noise
# 24 25 26 27 28 29 30 31 32 33 34 35 36 37	8Hz 30.1 50.3 80.7 150.0 210.2 249.5 908.6 1817.2 2725.8 3634.4	Used Bic Bic Bic Bic SBic SBic Horn RG Horn RG	Pol. H,V H,V H,V H,V H,V H,V H,V H,V	dBm -80.2 -77.0 -74.5 -77.9 -79.3 -78.7 -79.2 -81.2 -59.1 -71.5 -70.5	Used Pk Pk Pk Pk Pk Pk Ave Ave	dB/m 13.2 9.1 7.6 12.5 14.8 14.6 29.4 29.4 22.1 24.8 27.4	dB 26.0 25.7 25.3 24.2 23.4 23.0 17.5 17.5 28.0 25.8 23.9	dBμV/m 14.0 13.3 14.8 17.4 19.1 19.9 39.7 37.7 42.0 34.4 40.0	dBμV/m 40.0 40.0 43.5 43.5 46.0 46.0 54.0 54.0	dB 26.0 26.7 25.2 26.1 24.4 26.1 6.3 8.3 12.0 19.6 14.0	Digital, all noise Rx. LO, noise 2 x Rx. LO noise noise
# 24 25 26 27 28 29 30 31 32 33 34 35	8Hz 30.1 50.3 80.7 150.0 210.2 249.5 908.6 1817.2 2725.8 3634.4	Used Bic Bic Bic Bic SBic SBic Horn RG Horn RG	Pol. H,V H,V H,V H,V H,V H,V H,V H,V	dBm -80.2 -77.0 -74.5 -77.9 -79.3 -78.7 -79.2 -81.2 -59.1 -71.5 -70.5	Used Pk Pk Pk Pk Pk Pk Ave Ave	dB/m 13.2 9.1 7.6 12.5 14.8 14.6 29.4 29.4 22.1 24.8 27.4	dB 26.0 25.7 25.3 24.2 23.4 23.0 17.5 17.5 28.0 25.8 23.9	dBμV/m 14.0 13.3 14.8 17.4 19.1 19.9 39.7 37.7 42.0 34.4 40.0	dBμV/m 40.0 40.0 43.5 43.5 46.0 46.0 54.0 54.0	dB 26.0 26.7 25.2 26.1 24.4 26.1 6.3 8.3 12.0 19.6 14.0	Digital, all noise Rx. LO, noise 2 x Rx. LO noise noise

9/25,26/08; U of Mich.

Table 6.2 Highest Conducted Emissions Measured

# N 1 2 3 4 5	Freq. MHz 0.21 0.23	Line Side	Peak De	t dBuV	D							neDalton Light; FCC/CISPR B
# N 1 2 3 4 5	MHz 0.21			, upu /	Pass	OP Det	., dBµV	Pass	Ave. Det., dBµV Pass			
2 3 4 5			Vtest	Vlim*	dB*	Vtest	Vlim	dB	Vtest	Vlim	dB	Comments
3 4 5	0.22	Hi	28.3	53.3	25.0		63.4			53.3		
5	0.23	Hi	29.4	52.3	22.9		62.4			52.3		
5	0.44	Hi	28.6	47.1	18.5		57.1			47.1		
	0.57	Hi	28.7	46.0	17.3		56.0			46.0		
6	0.77	Hi	28.6	46.0	17.4		56.0			46.0		
	0.84	Hi	29.0	46.0	17.0		56.0			46.0		
	0.87	Hi	28.4	46.0	17.6		56.0			46.0		
8	1.09	Hi	26.8	46.0	19.2		56.0			46.0		
9	1.50	Hi	28.6	46.0	17.4		56.0			46.0		
	1.56	Hi	27.7	46.0	18.3		56.0			46.0		
	3.54	Hi	31.0	46.0	15.0		56.0			46.0		
	7.04	Hi	31.6	50.0	18.4		60.0			50.0		
13												
	0.46	Lo	25.7	46.6	20.9		56.7			46.6		
	0.55	Lo	26.7	46.0	19.3		56.0			46.0		
	0.93	Lo	26.8	46.0	19.2		56.0			46.0		
	1.17	Lo	24.6	46.0	21.4		56.0			46.0		
	1.23	Lo	25.8	46.0	20.2		56.0			46.0		
	1.33	Lo	25.9	46.0	20.1		56.0			46.0		
	1.50	Lo	26.1	46.0	19.9		56.0			46.0		
	3.54	Lo	29.9	46.0	16.1		56.0			46.0		
	6.97	Lo	28.6	50.0	21.4		60.0			50.0		
23												
24												
25												
26												
27												
28												
29												1
30												
31												
33												
33												
35												
36												
37												
38												1
39												1
40												
41												
42												
40												

*Average limit Meas. 10/08/2008; U of Mich.

Since Vpeak >= Vap >= Vave and if Vtestpeak < Vavelim, then Vqplim and Vavelim are met.

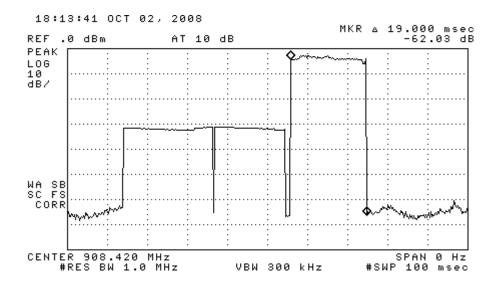


Figure 6.1. Transmission modulation characteristics. (top) complete transmission, (bottom) expanded transmission (lower power signal is transmitted from remote control, higher signal is DUT response transmission.

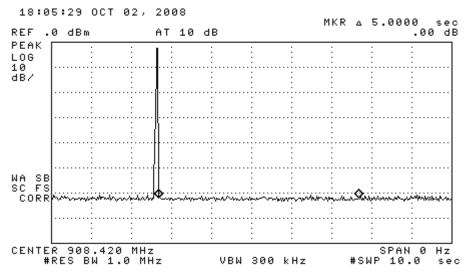


Figure 6.2. Emission spectrum of the DUT (pulsed emission). Amplitudes are only indicative (not calibrated).

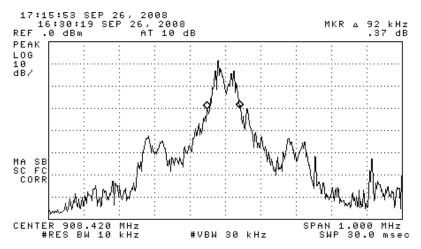


Figure 6.3. Measured emission bandwidth of the DUT (pulsed).

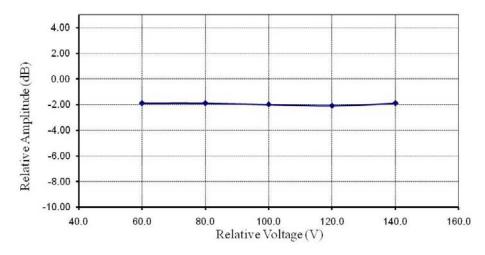


Figure 6.4. Relative emission at fundamental vs. supply voltage (pulsed).

Photograph 6.5. DUT on OATS (one of three axes tested)

Photograph 6.6. Close-up of DUT on OATS + Conducted Emissions Setup