Whites Electronics, Inc.

Matrix 100

February 09, 2007

Report No. WHIT0025

Report Prepared By

ENC

www.nwemc.com 1-888-EMI-CERT

© 2007 Northwest EMC, Inc

Certificate of Test

Issue Date: February 09, 2007 Whites Electronics, Inc.

Model: Matrix 100

Emissions							
Test Description	Specification	Test Method	Pass	Fail			
Radiated Emissions	FCC 15.109:2006	ANSI C63.4:2003	\boxtimes				
Spurious Radiated Emissions	FCC 15.209:2006	ANSI C63.4:2003	\boxtimes				
Field Strength of Fundamental	FCC 15.209:2006	ANSI C63.4:2003	\boxtimes				
Occupied Bandwidth	RSS-Gen, Issue 1:2005	RSS-212, Issue 1 (Provisional):1999	\boxtimes				

Modifications made to the product See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

Approved By:
ATU.K.P
Greg Kiemel, Director of Engineering

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

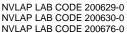
Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision Number	Description	Date	Page Number
00	None		

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 89/336/EEC, ANSI C63.4, MIL-STD 461E, DO-160D and SAE J1113. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.


CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories, available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0604C.

TUV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland, This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

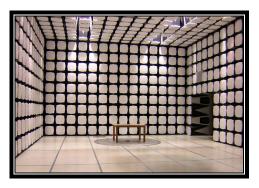
VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (*Registration Numbers. - Hillsboro: C-1071, R-1025, C-2687, T-289, and R-2318, Irvine: C-2094 and R-1943, Sultan: R-871, C-1784, and T-294).*

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

SCOPE For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/scope.asp</u>

BSMI



NEMKO

California – Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 Fax: (503) 844-3826

Oregon – Evergreen Facility Labs EV01 – EV11

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 Fax: (503) 844-3826

Washington – Sultan Facility Labs SU01 – SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378

Rev 11/17/06

Party Requesting the Test

Company Name:	Whites Electronics, Inc.
Address:	1011 Pleasant Valley Drive
City, State, Zip:	Sweet Home, OR 97386
Test Requested By:	Charles Tuchardt
Model:	Matrix 100
First Date of Test:	February 4, 2007
Last Date of Test:	February 6, 2007
Receipt Date of Samples:	January 25, 2007
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

The Matrix 100 is a 125 kHz radio used in a hand-held metal detector. The detector is used in security applications.

Testing Objective:

Seeking TCB certification under 15.209.

CONFIGURATION 1 WHIT0025

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
Security Handheld Metal Detector	White's Electronics	Matrix 100	Unknown			

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Earbuds	White's Electronics	Unknown	Unknown		

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
Audio	No	1.0m	No	Handheld Metal Detector	Earbuds	
PA = Cab	PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

	Equipment modifications							
Item	Date	Test	Modification	Note	Disposition of EUT			
		Spurious	Tested as	No EMI suppression	EUT remained at			
1	2/4/2007	Radiated	delivered to	devices were added or	Northwest EMC			
		Emissions	Test Station.	modified during this test.	following the test.			
		Occupied	Tested as	No EMI suppression	EUT remained at			
2	2/5/2007	Bandwidth	delivered to	devices were added or	Northwest EMC			
		Danuwiutin	Test Station.	modified during this test.	following the test.			
		Field	Tested as	No EMI suppression	EUT remained at			
3	2/5/2007	Strength of	delivered to	devices were added or	Northwest EMC			
		Fundamental	Test Station.	modified during this test.	following the test.			
		Radiated	Tested as	No EMI suppression	Scheduled testing			
4	2/6/2007	Emissions	delivered to	devices were added or	was completed.			
		L1113310115	Test Station.	modified during this test.	was completed.			

FIELD STRENGTH OF FUNDAMENTAL

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting in a typical mode

FREQUENCY RANGE INVESTIGATED

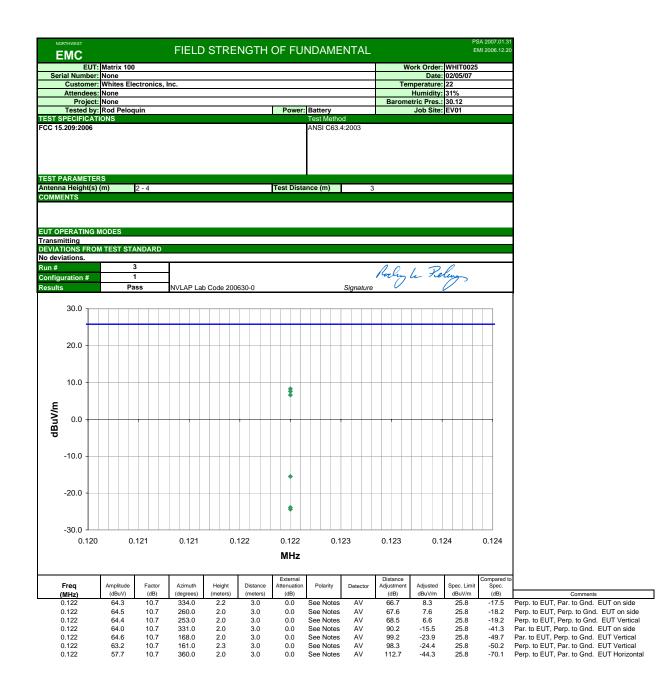
Fundamental Frequency 122.5 kHz

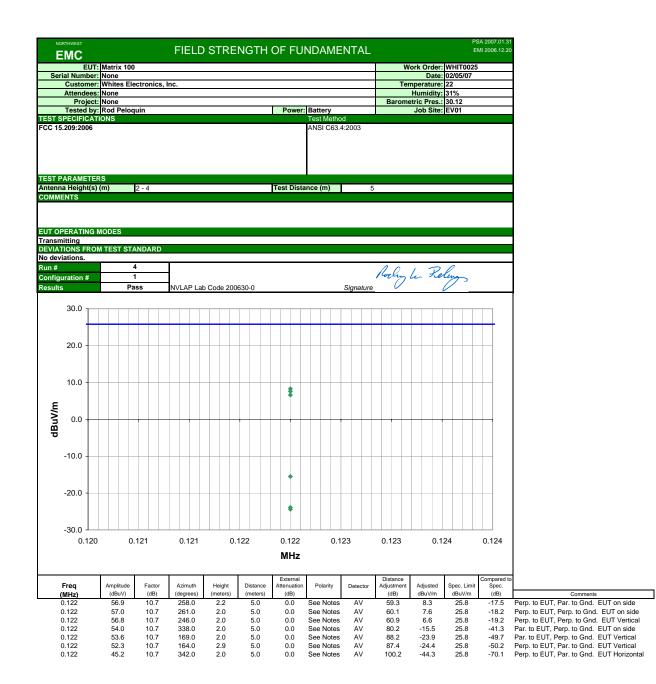
SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAT	12/7/2006	13
Antenna, Loop	EMCO	6502	AOA	5/4/2005	24
EV01 cables c,g, h			EVA	12/29/2006	13

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
 Above 1000	1000.0	N/A	1000.0


MEASUREMENT UNCERTAINTY


Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The EUT was transmitting while set at the only operating channel available. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003).

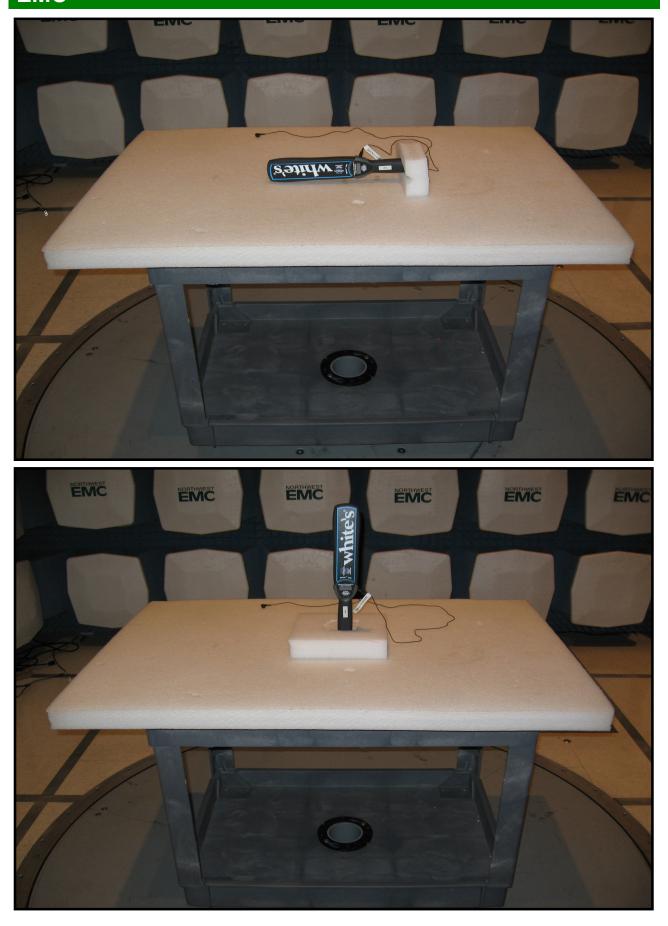
Per FCC 15.31(f)(2), the measurement results were extrapolated to the specification distance by making measurements at 3 and 5 meter test distances on the same radial to determine the proper extrapolation factor.

FIELD STRENGTH OF FUNDAMENTAL

Distance Adjustment Factor for Radiated Emissions below 30 MHz

Method: Per 47 CFR 15.31(f)(2), the data was extrapolated based upon a the measured fall-off (at each frequency / polarity).

EUT: Matrix 100 S/N: Date: 2/6/2007 Job Number: WHIT0025


Average Detector - 15.209(d) RBW = 100 Hz - ANSI C63.4-2003, 4.2

Frequency	Loop Antenna Polarity	EUT Orientation	Test Distance	Adjusted Level	Fall-Off from 3 to 5 m	Extrapolation Factor for Specification Limit	Test Distance of Spec. Limit	Distance Adjustment Factor
(MHz)			(meters)	(dBuV/m)	(dB)	(dB / decade)	(meters)	(dB)
0.1225	Par/EUT, Perp/Gnd	Vertical	35	75.3 64.3	11.0	49.6	300.0	99.2 88.2
0.1225	Perp/EUT, Perp./Gnd	On side	3	75.2 67.7	7.5	33.8	300.0	67.6 60.1
0.1225	Perp/EUT, Perp./Gnd	Vertical	3	75.1 67.5	7.6	34.3	300.0	68.5 60.9
0.1225	Perp/EUT, Par./Gnd	On side	3	75.0 67.6	7.4	33.4	300.0	66.7 59.3
0.1225	Par/EUT, Perp/Gnd	On side	35	74.7 64.7	10.0	45.1	300.0	90.2 80.2
0.1225	Perp/EUT, Par./Gnd	Vertical	35	73.9 63.0	10.9	49.1	300.0	98.3 87.4
0.1225	Perp/EUT, Par./Gnd	Horizontal	<u>3</u> 5	68.4 55.9	12.5	56.3	300.0	112.7 100.2
0.1225	Par/EUT, Par./Gnd	Horizontal	<u>3</u> 5	64.8 40.1	24.7	111.3	300.0	222.7 198.0

PSA 2007.01.3 EMI 2006.12.2 **EMC**

FIELD STRENGTH OF FUNDAMENTAL

PSA 2007.01.31

NORTHWEST

FIELD STRENGTH OF FUNDAMENTAL

PSA 2007.01.31

NORTHWEST

OCCUPIED BANDWIDTH

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

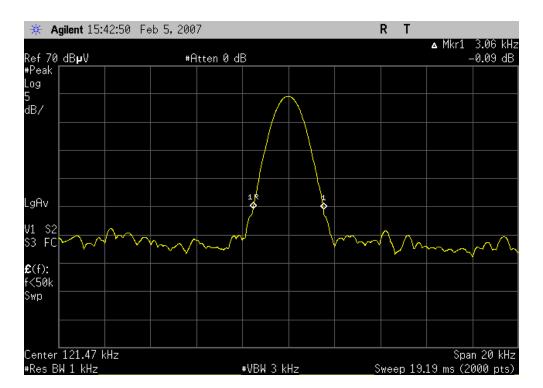
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAT	12/7/2006	13
Antenna, Loop	EMCO	6502	AOA	5/4/2005	24
EV01 cables c,g, h			EVA	12/29/2006	13

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The occupied bandwidth was measured with the EUT configured for continuous modulated operation at its single transmit frequency. The spectrum analyzer's resolution bandwidth was $\geq 1\%$ of the 20dB bandwidth and the video bandwidth was at least 3 times the resolution bandwidth. Since the EUT has an integral antenna, a near field probe was used to couple the transmit signal to the input of the spectrum analyzer.


NOR THWEST		OCCUPIED	BANDWIDTH			XMit 2006.11.13
EUT:	Matrix 100				Work Order: WH	T0025
Serial Number:					Date: 02/0	5/07
	Whites Electronics, Inc.				Temperature: 22°C	
Attendees:					Humidity: 32%	
Project:				Bi	arometric Pres.: 30.1	
	Rod Peloquin		Power: Battery		Job Site: EV0	1
TEST SPECIFICATI			Test Method			
RSS-Gen, Issue 1:2	2005		RSS-212, Iss	ue 1 (Provisional):199	9	
COMMENTS						
	•	d perpendicular to the ground				
DEVIATIONS FROM	M TEST STANDARD					
Configuration #	1	Signature	he Reling			
				Value	Limit	Results
OCCUPIED BANDW	VIDTH			3.06 kHz	N/A	N/A

Result: N/A

OCCUPIED BANDWIDTH

OCCUPIED BANDWIDTH Value: 3.06 kHz

Limit: N/A

NORTHWEST EMC

OCCUPIED BANDWIDTH

NORTHWEST EMC

RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION Transmitting, typical operating mode

POWER SETTINGS INVESTIGATED

Battery

FREQUENCY RANGE INVESTIGATED						
Start Frequency	30 MHz	Stop Frequency	1 GHz			

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
EV11 cables a,b,c			EVL	4/5/2006	13
Pre-Amplifier	Miteq	AM-1551	AOY	4/5/2006	13
Antenna, Biconilog	EMCO	3142	AXB	12/28/2006	24
Spectrum Analyzer	Agilent	E4443A	AAS	12/7/2006	13

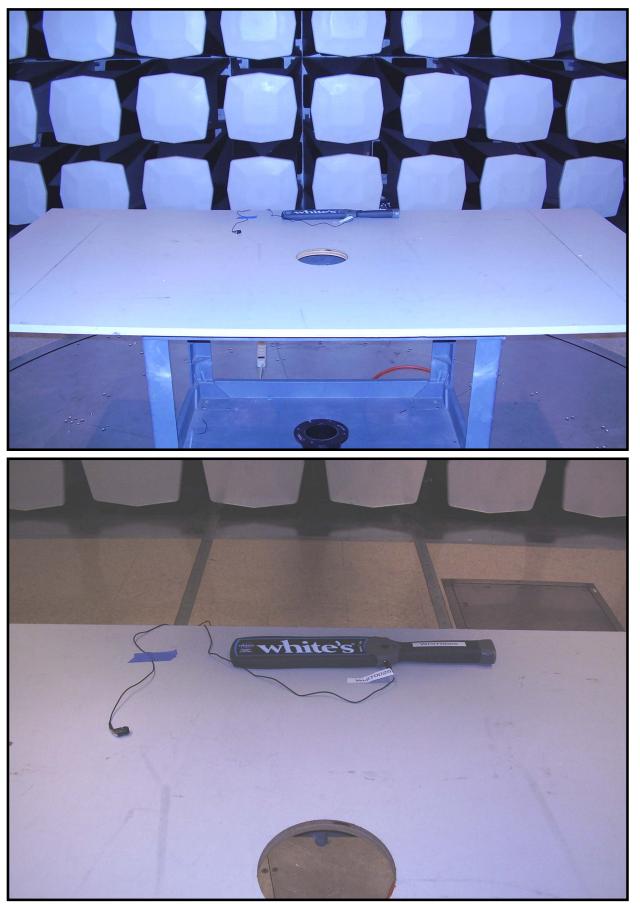
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data
	(MHz)	(kHz)	(kHz)	(kHz)
	0.01 - 0.15	1.0	0.2	0.2
	0.15 - 30.0	10.0	9.0	9.0
Γ	30.0 - 1000	100.0	120.0	120.0
Γ	Above 1000	1000.0	N/A	1000.0

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, a final radiated emissions test was performed. The frequency range investigated (scanned), is also noted in this report. Radiated emissions measurements were made at the EUT azimuth and antenna height such that the maximum radiated emissions level will be detected. This requires the use of a turntable and an antenna positioner. The preferred method of a continuous azimuth search is utilized for frequency scans of the EUT field strength with both polarities of the measuring antenna. A calibrated, linearly polarized antenna was positioned at the specified distance from the periphery of the EUT.


Tests were made with the antenna positioned in both the horizontal and vertical planes of polarization. The antenna was varied in height above the conducting ground plane to obtain the maximum signal strength. Though specified in the report, the measurement distance shall be 3 meters or 10 meters. At any measurement distance, the antenna height was varied from 1 meter to 4 meters. These height scans apply for both horizontal and vertical polarization, except that for vertical polarization the minimum height of the center of the antenna shall be increased so that the lowest point of the bottom of the antenna clears the ground surface by at least 25 cm.

PSA 2007.01.3

			R/		FD E	MIS	S	0	NS	DATA	SHE	FT				PSA 2007.01.31 EMI 2006.12.20
		T: Matrix 10			20 L						FORIL		ork O	rder	WHIT002	
Sei	rial Numbe		0									**			02/06/07	5
		r: Whites El	lectronics,	Inc.								Ter	npera			
	Attendee	s: None t: None										Barome		idity:		
		y: Holly Ash	nkannejha	d				F	ower:	Battery		Daronik			EV11	
	SPECIFICA	TIONS								Test Metho						
	5.109:2006 22:2006 C	lass B								ANSI C63.4 CISPR 22:2						
-	PARAMET							-		· 						
Antenr COMM	na Height(s IENTS	s) (m)	1 - 4					Tes	st Dista	ance (m)	10					
	PERATING		<u>.</u>													
		ical operatii DM TEST ST														
	viations.															
Run #			1													2
	juration #		1								Signature	Holy	, <i>/</i> 3	u	N	/
Result	S	P	ass	NVLAP La	b Code 20	0630-0					Signature	<u> </u>				
	00.0															
	80.0															
	70.0															
	60.0															-
	50.0															
_	50.0															
dBuV/m																
	40.0															<u> </u>
E E																
	30.0															
	50.0															
											•					
	20.0							_							•	
				*							•				•	
	10.0				•		•		• •	• •			•			
	10.0															
							•									
	0.0 🗕								-							
	10.00	0						100	.000						1(000.000
								м	Hz							
								141	112							
								E)	xternal			Distance	1			Compared to
	Freq	Amplitude	Factor	Azimuth	Height	Dista		Atte	enuation	Polarity	Detector	Adjustment		usted	Spec. Limit	t Spec.
	(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(mete			(dB)	H-Bilog	00	(dB)		IV/m	dBuV/m	(dB)
	229.329 32.007	45.9 33.7	-21.8 -16.5	340.0 93.0	3.5 3.5	10. 10.			0.0 0.0	H-Bilog	QP QP	0.0 0.0		4.1 7.2	30.0 30.0	-5.9 -12.8
	229.526	37.5	-21.8	281.0	3.4	10.			0.0	V-Bilog	QP	0.0		5.7	30.0	-14.3
	31.650	31.5	-16.3	0.0	2.3	10.			0.0	V-Bilog	QP	0.0		5.2	30.0	-14.8
	393.977 24.616	30.8 40.1	-9.1 -26.9	257.0 138.0	1.5 3.8	10. 10.			0.0 0.0	H-Bilog H-Bilog	QP QP	0.0 0.0		1.7 3.2	37.0 30.0	-15.3 -16.8
	52.509	40.1 38.4	-26.9 -25.3	246.0	3.8 1.0	10.			0.0	н-віюд H-Bilog	QP QP	0.0		3.2 3.1	30.0 30.0	-16.8
	77.815	40.6	-27.5	360.0	3.5	10.			0.0	H-Bilog	QP	0.0		3.1	30.0	-16.9
1	02.213	38.9	-27.0	170.0	3.5	10.	.0		0.0	H-Bilog	QP	0.0	11	1.9	30.0	-18.1
	644.403	30.9	-12.3	0.0	3.5	10.			0.0	H-Bilog	QP	0.0		3.6	37.0	-18.4
	39.577 155.157	31.4 30.2	-20.1 -15.6	124.0 141.0	3.5 3.5	10. 10.			0.0 0.0	H-Bilog H-Bilog	QP QP	0.0 0.0		1.3 4.6	30.0 37.0	-18.7 -22.4
	152.845	30.2	-15.7	158.0	3.5	10.			0.0	H-Bilog	QP	0.0		4.3	37.0	-22.7
	77.796	32.5	-27.5	77.0	3.3	10.			0.0	V-Bilog	QP	0.0		.0	30.0	-25.0

Radiated Emissions

Radiated Emissions

NORTHWEST

Spurious Radiated Emissions

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION	
Transmitting	
POWER SETTINGS INVESTIGATED	

Battery

FREQUENCY RANGE INVESTIGATED						
Start Frequency	9 kHz	Stop Frequency	30 MHz			

SAMPLE CALCULATIONS

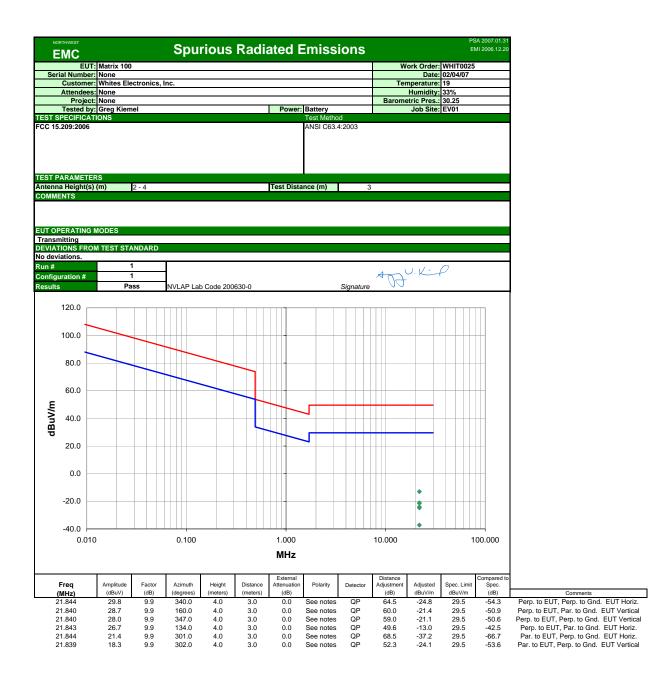
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

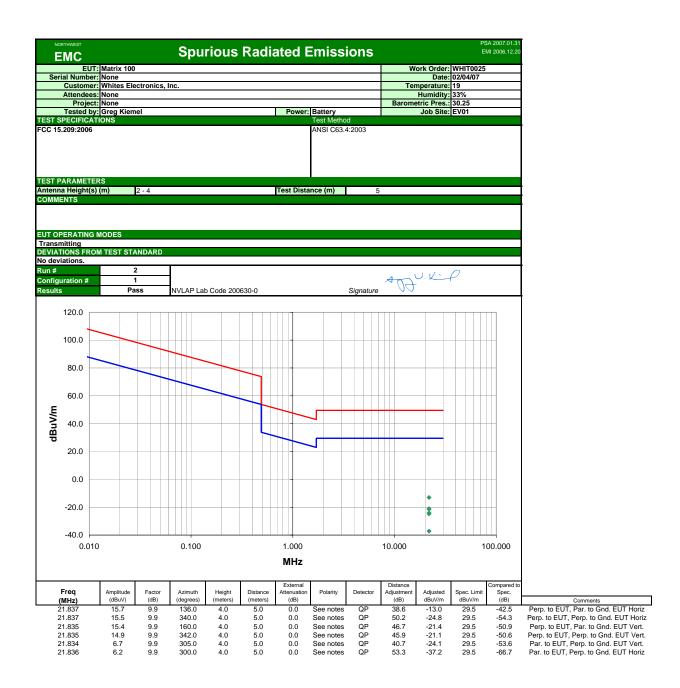
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Loop	EMCO	6502	AOA	5/4/2005	24
Spectrum Analyzer	Agilent	E4446A	AAT	12/7/2006	13

MEASUREMENT BANDWIDTHS			
Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0
Measurements were made us	ing the bandwidths and dete	ctors specified No video filt	er was used

Measurements were made using the bandwidths and detectors specified. No video filter was used.

MEASUREMENT UNCERTAINTY


Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.


TEST DESCRIPTION

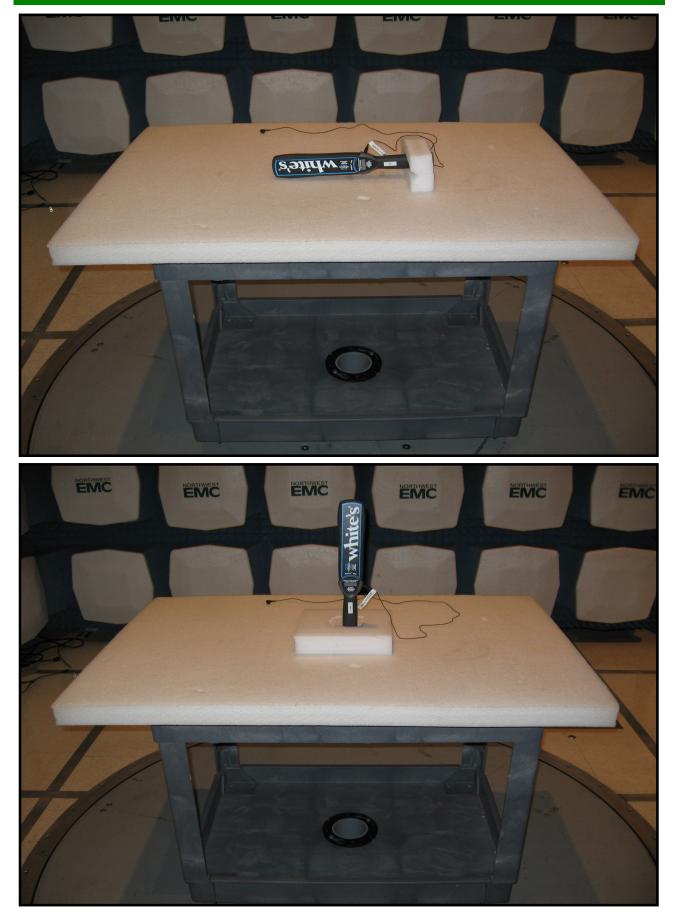
The antennas to be used with the EUT were tested. The EUT was transmitting at its only available channel. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT in 3 orthogonal planes (per ANSI C63.4:2003).

Per FCC 15.31(f)(2), the measurement results were extrapolated to the specification distance by making measurements at 3 and 5 meter test distances on the same radial to determine the proper extrapolation factor.

PSA 2007.01.31

Spurious Radiated Emissions

Distance Adjustment Factor for Radiated Emissions below 30 MHz


Per 47 CFR 15.31(f)(2), a test distance correction factor was applied to the measurement data based upon the measured fall-off (at each frequency / polarity).

EUT:	Matrix 100
S/N:	none
Date:	2/4/2007
Job Number:	WHIT0025

Frequency	Loop Antenna Polarity	EUT Orientation	Test Distance	Adjusted Level	Fall-Off from 3 to 5 m	Extrapolation Factor for Specification Limit	Test Distance of Spec. Limit	Distance Adjustment Factor
(MHz)			(meters)	(dBuV/m)	(dB)	(dB / decade)	(meters)	(dB)
21.8440	Perp. EUT /	Horiz	3	39.7	14.3	64.5	30.0	64.5
21.0440	Perp. Gnd	110112	5	25.4	14.5			50.2
21,8400	Perp. EUT/	Vert.	3	38.6	13.3	60.0	30.0	60.0
21.8400	Par. Gnd		5	25.3				46.7
21,8400	Perp. EUT /	Vert.	3	37.9	13.1	59.0	30.0	59.0
21.0400	Perp. Gnd	ven.	5	24.8	13.1	59.0	30.0	45.9
21.8430	Perp. EUT/	Horiz.	3	36.6	11.0	40.0	20.0	49.6
21.8430	Par. Gnd	HOUZ.	5	25.6	11.0	49.6	30.0	38.6
21.8440	Par. EUT/	Horiz.	3	31.3	15.0	60 E	20.0	68.5
21.8440	Perp. Gnd	HUNZ.	5	16.1	15.2	68.5	30.0	53.3
21.8390	Par. EUT/	Vert.	3	28.2	11.6	ED 0	30.0	52.3
21.8390	Perp. Gnd	ven.	5	16.6	11.0	52.3		40.7

Spurious Radiated Emissions

Spurious Radiated Emissions

Attestation by the Responsible Party

Regulatory authorities require the "Responsible Party" to retain the test report. The test report must include the name and signature of an official of the Responsible Party.

To satisfy this requirement, the Responsible Party should complete the following attestation and maintain a copy with the test report:

Test Report #:	Test Date(s):
Model(s):	Responsible Party:

As an official of the Responsible Party, I attest that the product tested is representative of all production units bearing the same Model number(s)

Name:	 Position:	
Signature:	 Date:	

Additional information regarding product labeling and user manual information can be found at www.nwemc.com.