

FCC CERTIFICATION TEST REPORT

for

TRW Automotive Electronics
Phoenix Way
Cirencester
Gloucestershire
GL7 1QG
United Kingdom

FCC ID: KHH37AS

June 9, 2000

WLL PROJECT #: 5828X

This report may not be reproduced, except in full, without the prior written consent of Washington Laboratories, Ltd.

TABLE OF CONTENTS

Statement of Qualifications

1.0	INTRODUCTION.....	4
1.1	SUMMARY.....	4
2.0	DESCRIPTION OF EQUIPMENT UNDER TEST (EUT).....	4
2.1	ON-BOARD OSCILLATORS.....	5
3.0	TEST CONFIGURATION.....	5
3.1	TESTING ALGORITHM	5
3.2	CONDUCTED EMISSIONS TESTING	5
3.3	RADIATED EMISSIONS TESTING.....	5
3.3.1	<i>Radiated Data Reduction and Reporting.....</i>	6

TABLES

Table 1. Radiated Emissions Results
Table 2. System Under Test
Table 3. Measurement Equipment Used

EXHIBITS

Exhibit 1. Bandwidth Plot

APPENDICES

Appendix A. Statement of Measurement Uncertainty

WASHINGTON LABORATORIES, LTD.

7560 Lindbergh Drive • Gaithersburg, Maryland 20879 • (301) 417-0220 • Fax (301) 417-9069 • (800) 839-1649
website: <http://www.wll.com> • e-mail: info@wll.com

STATEMENT OF QUALIFICATIONS

for

Steven Koster

Washington Laboratories, Ltd.

I am a NARTE-Accredited EMC Test Laboratory Engineer with over nineteen years of electronics experience, the last ten years being directly involved in EMI testing. I am qualified to perform EMC testing to the methods described in this test report. The measurements taken within this report are accurate within my ability to perform the tests and within the tolerance of the measuring instrumentation.

By:

A handwritten signature in blue ink that appears to read "S. D. Koster".

Steven Koster
Compliance Engineer

Date: 14 JUNE 2000

TRW Automotive Electronics
FCC ID: KHH37AS
WLL Project # 5828X

FCC CERTIFICATION TEST REPORT

for

FCC ID: KHH37AS

1.0 Introduction

This report has been prepared on behalf of TRW Automotive Electronics to support the attached Application for Equipment Authorization. The test and application are submitted for an Intentional Radiator under Part 15.209 of the FCC Rules and Regulations. The Equipment Under Test was the TRW Automotive Electronics Low Power Transceiver.

All measurements herein were performed according to the 1992 version of ANSI C63.4. The measurement equipment conforms to ANSI C63.2 Specifications for Electromagnetic Noise and field Strength Instrumentation. Calibration checks are made periodically to verify proper performance of the measuring instrumentation.

All measurements are performed at Washington Laboratories, Ltd. test center in Gaithersburg, MD. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. Washington Laboratories, LTD. has been accepted by the FCC and approved by NIST NVLAP (NVLAP Lab Code: 200066-0) as an independent FCC test laboratory.

All results reported herein relate only to the equipment tested. The measurement uncertainty of the data contained herein is ± 2.3 dB. Refer to Appendix A for Statement of Measurement Uncertainty. This report shall not be used to claim product endorsement by NVLAP or any agency of the US Government.

1.1 Summary

The TRW Automotive Electronics AS37 Immobiliser System complies with the limits for an Intentional Radiator under Section 15.209.

2.0 Description of Equipment Under Test (EUT)

The TRW Automotive Electronics 37AS Immobiliser System is a 125 kHz low power transceiver that is used as a theft deterrent ignition system switch used in automobiles. The 37AS consists of an energizer coil (15EC) and an immobilizer unit (36AS). The energizer coil is fitted to the end of the ignition lock key barrel of the vehicle and the immobilizer unit is mounted in the vehicle fascia. The energizer coil is connected to the immobilizer unit via twisted pair wiring. The immobilizer communicates with a transponder (5TG) that is mounted in the handle of the vehicle ignition key. With the ignition turned on, the oscillator in the immobilizer unit drives the energizer coil to produce a 125 kHz electromagnetic field that activates the transponder. The transponder and immobilizer exchange data and if a) the transponder identity is recognized by the immobilizer and, b) the immobilizer identity is recognized by the engine management unit, the engine is allowed to run. If recognition does not occur, the engine is immobilized, or not allowed to run.

2.1 On-board Oscillators

The TRW Automotive Electronics 37AS Immobilizer System contains a 2 MHz oscillator and a single chip transceiver which uses an inductor and capacitor to provide a 125 kHz resonant circuit.

3.0 Test Configuration

To complete the test configuration required by the FCC, the 37AS Immobilizer transceiver was mounted on a vehicle ignition key barrel and a key was placed in the ignition to modulate the carrier. The ignition barrel was placed in the horizontal plane in order to simulate "normal" installation in a vehicle. Unshielded wires were connected to the unit to simulate connection to the vehicle wiring. During emissions testing, 14.4 VDC was applied via a bench power supply to simulate a car vehicle battery with a key installed into the switch.

3.1 Testing Algorithm

The transceiver was turned on and modulated by the transponder in the key. Worst case emissions are recorded in the data tables.

3.2 Conducted Emissions Testing

Conducted emissions testing were not performed as the EUT is battery powered.

3.3 Radiated Emissions Testing

The EUT was placed on an 80 cm high 1 x 1.5 meters non-conductive motorized turntable for radiated testing on a 3 meter open field test site. The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. Biconical, log periodic and loop antennas were mounted on an antenna mast to determine the height of maximum emissions. The height of the antenna was varied between 1 and 4 meters. The loop antenna was rotated about its' horizontal and vertical axis to maximize the emissions. Cables were varied in position to produce maximum emissions. Both the horizontal and vertical field components were measured.

The output from the antenna was connected, via a preamplifier, to the input of the spectrum analyzer. The detector function was set to quasi-peak or peak, as appropriate. For emissions above 30 MHz, the measurement bandwidth on the spectrum analyzer system was set to at least 120 kHz, with all post-detector filtering no less than 10 times the measurement bandwidth. For emissions below 30 MHz, the measurement bandwidth on the spectrum analyzer system was set to at least 9 kHz, with all post-detector filtering no less than 10 times the measurement bandwidth.

3.3.1 Radiated Data Reduction and Reporting

To convert the raw spectrum analyzer radiated data into a form that can be compared with the FCC limits, it is necessary to account for various calibration factors that are supplied with the antennas and other measurement accessories. These factors are grouped into a composite antenna factor (AFc) and are supplied in the AFc column of Table 1. The AFc in dB/m is algebraically added to the Spectrum Analyzer Voltage in $\text{dB}\mu\text{V}$ to obtain the Radiated Electric Field in $\text{dB}\mu\text{V/m}$. This level is then compared with the FCC limit.

Example:

Spectrum Analyzer Voltage: $\text{VdB}\mu\text{V}$

Composite Antenna Factor: AFcdB/m

Electric Field: $\text{EdB}\mu\text{V/m} = \text{VdB}\mu\text{V} + \text{AFcdB/m}$

To convert to linear units: $\text{E}\mu\text{V/m} = \text{antilog}(\text{EdB}\mu\text{V/m}/20)$

Data is recorded in Table 1.

Table 1. FCC 15.209 3M Radiated Emissions Data

CLIENT: TRW Automotive
 MODEL NO: 37AS Immobilizer
 DATE: 12 May 00
 BY: Steve Koster
 JOB #: 5828X

Frequency kHz	Polarity H/V	Azimuth Degree	Antenna Height m	SA Level (Peak) dBuV	Extrapolation Factor 40dB/Decade	AFc dB/m	E-Field dBuV/m	E-Field uV/m	Limit uV/m	Margin dB
123.48	V	180.00	1.3	23.5	-80.0	52.0	-4.5	0.60	19.43	-30.3
123.48	V	180.00	1.5	-9.0	-69.5	52.0	-26.5	0.05	19.40	-52.3
246.87	V	270.00	1.0	-0.1	-80.0	51.0	-29.1	0.04	9.72	-48.9
370.31	V	270.00	1.0	-0.7	-80.0	51.0	-29.7	0.03	6.48	-45.9
493.73	V	270.00	1.0	-1.3	-40.0	50.9	9.6	3.02	48.60	-24.1
617.16	V	270.00	1.0	-1.3	-40.0	50.9	9.6	3.02	38.88	-22.2
740.51	V	270.00	1.0	-3.2	-40.0	50.7	7.5	2.37	32.40	-22.7
863.83	V	270.00	1.0	1.1	-40.0	50.7	11.8	3.89	27.80	-17.1
987.19	V	270.00	1.0	-1.2	-40.0	50.7	9.5	2.99	24.30	-18.2
1234.10	V	270.00	1.0	-3.6	-40.0	50.0	6.4	2.09	19.44	-19.4

The measurements made below 30 MHz were extrapolated using the square of an inverse linear distance extrapolation factor; (40 dB/decade).

Average measurements were not made as the peak levels comply with the specified limit. Two measurements at two test distances were made at the fundamental frequency to show proper extrapolation of the test data.

Table 2. System Under Test

FCC ID: KHH37AS

EUT: TRW Automotive Electronics Immobilizer; M/N: 37AS; S/N: N/A;
FCC ID: KHH37AS

DC Power Supply: BK Precision DC Power Supply; M/N: 1610; S/N: 145-08663

Table 3. Measurement Equipment Used

The following equipment is used to perform measurements:

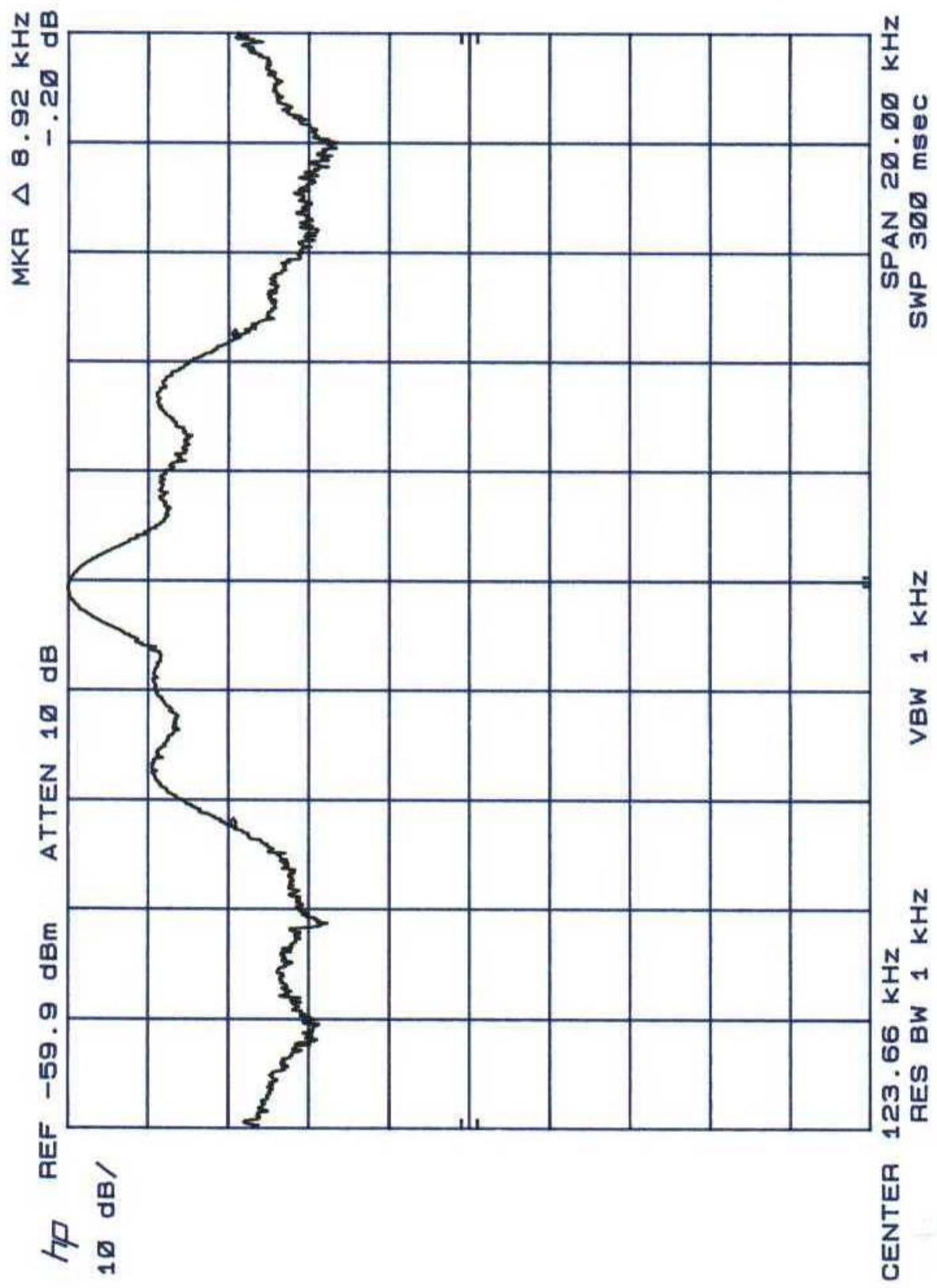
Hewlett-Packard Spectrum Analyzer: HP 8568B

Hewlett-Packard Quasi-Peak Adapter: HP 85650A

Hewlett-Packard Preselector: HP 85685A

Antenna Research Associates, Inc. Biconical Log Periodic Antenna: LPB-2520A (Site 2)

Electromechanics Company Passive Loop Antenna: 6511


AH Systems, Inc. Portable Antenna Mast: AMS-4 (Site 2)

AH Systems, Inc. Motorized Turntable (Site 2)

RG-214 semi-rigid coaxial cable

RG-223 double-shielded coaxial cable

Exhibit 1. Bandwidth Plot

Appendix A

Statement of Measurement Uncertainty

For the purposes of the measurements performed by Washington Laboratories, the measurement uncertainty is ± 2.3 dB. This has been calculated for a *worst-case situation* (radiated emissions measurements performed on an open area test site).

The following measurement uncertainty calculation is provided:

$$\text{Total Uncertainty} = (A^2 + B^2 + C^2)^{1/2}/(n-1)$$

where:

A = Antenna calibration uncertainty, in dB = 2 dB

B = Spectrum Analyzer uncertainty, in dB = 1 dB

C = Site uncertainty, in dB = 4 dB

n = number of factors in uncertainty calculation = 3

Thus, Total Uncertainty = $0.5 (2^2 + 1^2 + 4^2)^{1/2} = \pm 2.3$ dB