# Radio Systems Corporation FCC Part 15, Certification Application Model RF-125

December 7, 2000

# MEASUREMENT/TECHNICAL REPORT

| COMPANY NAME:                                                                             | Radio Systems Corporation                                                                     |  |  |  |  |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|--|
| MODEL:                                                                                    | RF-125                                                                                        |  |  |  |  |
| FCC ID:                                                                                   | KE3TXRF125                                                                                    |  |  |  |  |
| DATE:                                                                                     | December 7, 2000                                                                              |  |  |  |  |
| This report concerns (ch                                                                  | eck one): Original grant <u>X</u><br>Class II change                                          |  |  |  |  |
| Equipment type: Low F                                                                     | requency, Low Power Transmitter                                                               |  |  |  |  |
| Deferred grant requested per 47 CFR 0.457(d)(1)(ii)? yes No_X_  If yes, defer until: date |                                                                                               |  |  |  |  |
|                                                                                           | y the Commission by <u>NA</u> date nnouncement of the product so that the grant can be issued |  |  |  |  |
| Report prepared by:                                                                       |                                                                                               |  |  |  |  |
| United State<br>3505 Franci<br>Alpharetta,                                                |                                                                                               |  |  |  |  |
| Phone Num<br>Fax Numbe                                                                    | ` '                                                                                           |  |  |  |  |
|                                                                                           |                                                                                               |  |  |  |  |

### **TABLE OF CONTENTS**

### **AGENCY AGREEMENT**

#### **SECTION 1**

### **GENERAL INFORMATION**

Product Description
Related Submittal(s) Grant(s)

#### **SECTION 2**

### **TESTS AND MEASUREMENTS**

Configuration of Tested
Test Facility
Test Equipment
Modifications
Field Strength of Fundamental Emission
Field Strength of Spurious Emissions
Radiated Emissions
Power Line Conducted Emissions

#### **SECTION 3**

**LABELING INFORMATION** 

**SECTION 4** 

**BLOCK DIAGRAM/SCHEMATICS** 

**SECTION 5** 

**PHOTOGRAPHS** 

**SECTION 6** 

**USER'S MANUAL** 

# **LIST OF FIGURES AND TABLES**

# **FIGURES**

Test Configuration Photograph(s) for Spurious and Fundamental Emissions

# **TABLES**

EUT And Peripherals
Test Instruments
Field Strength of Fundamental Emission
Field Strength of Spurious Emissions
Power Line Conducted Emissions

# SECTION 1 GENERAL INFORMATION

#### **GENERAL INFORMATION**

# **Product Description**

The Equipment Under Test (EUT) is a Radio Systems Corporation Low Frequency, Low Power PetSafe Deluxe Radio Fence Transmitter, Model RF125. The EUT consists of a 10.65 kHz dog fence transmitter. This report covers only the transmitter (dog fence) portion of the device.

# Related Submittal(s) Grant(s)

The EUT is subject to the following authorizations:

a) Certification as a low power transmitter (10.65 kHz)

The information contained in this report is presented for the Certification authorization for the transmitter portion of the EUT.

# SECTION 2 TESTS AND MEASUREMENTS

#### **TESTS AND MEASUREMENTS**

# **Configuration of Tested System**

The sample was tested per ANSI C63.4, Methods of Measurement from Low-Voltage Electrical and Electronic Equipment in the Range of 30 MHz -1 GHz (1992). Conducted and radiated emissions data were taken with the test receiver or spectrum analyzer's resolution bandwidth adjusted to 100 Hz (9 kHz – 150 kHz), 9kHz (150 kHz - 30 MHz), and 120 kHz (30 MHz - 1 GHz) respectively. All measurements are peak unless stated otherwise. The video filter associated with the spectrum analyzer was off throughout the evaluation process. Interconnecting cables were manipulated as necessary to maximize emissions. A block diagram of the tested system is shown in Figure 1. Test configuration photographs for spurious and fundamental emissions are shown in Figure 2.

The EUT was set up with a 320' length of wire connected to it, to simulate a typical installation. The wire was not buried, as it would be in a typical installation (approximately 2-3 inches). Measurements were taken at all three antenna polarities on each side of the rectangle and intervals in between, at a distance of 3 meters. The side with the worst case results was re-measured at a distance of 10 meters. Results between 100 kHz and 30 MHz were corrected to 30 meters by the following 40 log (300/10) = 59.1 dB. Those results below 100 kHz were corrected to 300 meters by the following 60 log (300/10) = 88.6 dB (which has been applied to other submittals and is allowed per previous discussions with Greg Czumak at the FCC).

# **Test Facility**

Conducted and digital device testing was performed at US Tech's measurement facility as described to the FCC and acknowledged in their letter marked 31040/SIT/USTECH.

Additional radiated testing was performed at a vacant area that would allow measurements to be made 10 meters away from the EUT with the 320' length of wire connected to it.

### **Test Equipment**

Table 2 describes test equipment used to evaluate this product.

#### **Modifications**

No modifications were made to bring the EUT into compliance with FCC Part 15, Class B Requirements:

FIGURE 1
TEST CONFIGURATION

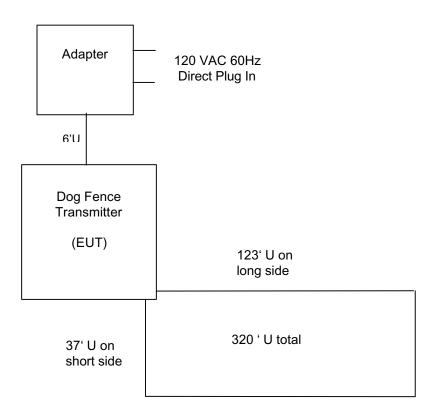



FIGURE 2a

Photograph(s) for Spurious and Fundamental Emissions



# FIGURE 2b

# Photograph(s) for Spurious and Fundamental Emissions

(Photograph Shows 1<sup>st</sup> portion of testing at 3 meters)



Note: Personnel taking photograph normally monitored spectrum analyzer during test.

# FIGURE 2c

# **Photograph(s) for Spurious and Fundamental Emissions**

(Photograph Shows 1<sup>st</sup> portion of testing at 3 meters)



Note: Personnel taking photograph normally monitored spectrum analyzer during test.

# FIGURE 2d

# Photograph(s) for Spurious and Fundamental Emissions

(Photograph Shows 1<sup>st</sup> portion of testing at 3 meters)



Note: Personnel taking photograph normally monitored spectrum analyzer during test.

# FIGURE 2e Photograph(s) for Digital Device Emissions



FIGURE 2f
Photograph(s) for Digital Device Emissions



FIGURE 2g
Photograph(s) for Conducted Emissions



### FCC ID: KE3TXRF125

# **EUT and Peripherals**

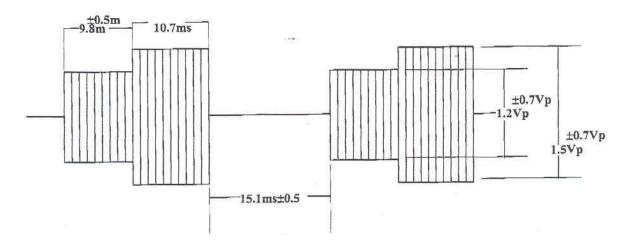
| PERIPHERAL<br>MANUFACTURER                                     | MODEL<br>NUMBER            | SERIAL<br>NUMBER | FCC ID:                 | CABLES<br>P/D |
|----------------------------------------------------------------|----------------------------|------------------|-------------------------|---------------|
| Dog Fence Transmitter<br>Radio Systems<br>Corporation<br>(EUT) | RF-125                     | None             | KE3TXRF125<br>(pending) | 320' U        |
| Adapter<br>Radio Systems<br>Corporation                        | 41A-12-830<br>P/N: 300-006 | None             | None                    | 6' U          |

TABLE 2
TEST INSTRUMENTS

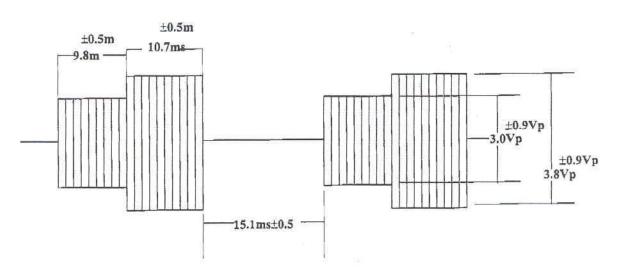
| TYPE                    | MANUFACTURER    | MODEL      | SN.           |
|-------------------------|-----------------|------------|---------------|
| SPECTRUM ANALYZER       | HEWLETT-PACKARD | 8593E      | 3205A00124    |
| SPECTRUM ANALYZER       | HEWLETT-PACKARD | 8558B      | 2332A09900    |
| S A DISPLAY             | HEWLETT-PACKARD | 853A       | 2404A02387    |
| COMB GENERATOR          | HEWLETT-PACKARD | 8406A      | 1632A01519    |
| RF PREAMP               | HEWLETT-PACKARD | 8447D      | 1937A03355    |
| RF PREAMP               | HEWLETT-PACKARD | 8449B      | 3008A00480    |
| HORN ANTENNA            | EMCO            | 3115       | 3723          |
| BICONICAL ANTENNA       | EMCO            | 3110       | 9307-1431     |
| LOOP ANTENNA            | AH SYSTEMS      | SAS200/562 | 142           |
| LOG PERIODIC<br>ANTENNA | EMCO            | 3146       | 9110-3600     |
| BILOG                   | CHASE           | CBL6112A   | 2238          |
| LISN                    | SOLAR ELE.      | 8028       | N/A           |
| THERMOMETER             | FLUKE           | 52         | 5215250       |
| MULTIMETER              | FLUKE           | 85         | 53710469      |
| FUNCTION<br>GENERATOR   | TEKTRONIX       | CFG250     | CFG250TW15059 |
| PLOTTER                 | HEWLETT-PACKARD | 7475A      | 2325A65394    |

# Field Strength of Fundamental Emission (47 CFR 15.209)

Measurements were made using a peak detector. Field strength of the peak fundamental emission is shown in Tables 3 and 4.


For purposes of this test, the EUT was set to a range control of 10 and the slide switch set to 'B'.

# **Duty Cycle Correction During 100 msec:**


The EUT has only one type of transmit cycle which consists of 20.5 ms of transmit time every 35.6 ms (57.6% Duty Cycle). Figure 3 shows the characteristics of the pulse train for this cycle.

Duty Cycle Correction = 20 log (0.576) = - 4.8 dB

FIGURE 3



RF1010 and RF125 Output Signal Slide Switch Position "A"



RF1010 and RF125 Output Signal Slide Switch Position "B"

# **TABLE 3a**

# FIELD STRENGTH OF FUNDAMENTAL EMISSION

Test Date: Novemeber 2, 2000

UST Project: 00-0440

**Customer:** Radio Systems Corporation

Model: RF-125

| FREQ.<br>(kHz) | TEST DATA<br>(dBm)<br>@ 10m | ANTENNA FACTOR + CABLE ATTENUATION | PEAK<br>RESULTS<br>(uV/m)<br>@ 300m | PEAK<br>FCC LIMITS<br>(uV/m)<br>@ 300m |
|----------------|-----------------------------|------------------------------------|-------------------------------------|----------------------------------------|
| 10.65          | -76.7                       | 78.2                               | 9.9                                 | 2253.5                                 |

### **SAMPLE CALCULATIONS:**

RESULTS uV/m @ 3m = Antilog ((-76.7 + 78.2 + 107 – 88.6)/20) = 9.9 CONVERSION FROM dBm TO dBuV = 107 dB CORRECTION FROM 10m TO 300m = -88.6 dB

| Tested By: | Name: | Austin E. Thompson, Jr. |
|------------|-------|-------------------------|

FCC ID: KE3TXRF125

### **TABLE 3b**

### FIELD STRENGTH OF FUNDAMENTAL EMISSION

Test Date: November 2, 2000

**UST Project:** 00-0440

**Customer:** Radio Systems Corporation

Model: RF-125

| FREQ.<br>(kHz) | TEST<br>DATA*<br>(dBm)<br>@ 10m | ANTENNA FACTOR + CABLE ATTENUATION | AVERAGE<br>RESULTS<br>(uV/m)<br>@ 300m | AVERAGE<br>FCC LIMITS<br>(uV/m)<br>@ 300m |
|----------------|---------------------------------|------------------------------------|----------------------------------------|-------------------------------------------|
| 10.65          | -81.5                           | 78.2                               | 5.7                                    | 225.4                                     |

<sup>\* =</sup> Corrected for worse case duty cycle, 20 log (0.576) = -4.8 dB

# **SAMPLE CALCULATIONS:**

RESULTS uV/m @ 3m = Antilog ((-81.5 + 78.2 + 107 - 88.6)/20) = 5.7 CONVERSION FROM dBm TO dBuV = 107 dB CORRECTION FROM 10m TO 300m = -88.6 dB

| Tested By: | Name:   | Austin E. Thompson, Jr.  |
|------------|---------|--------------------------|
| rested by. | maille. | Austin L. Hibinpson, Jr. |

# Field Strength Of Spurious Emissions (47 CFR 15.209)

Measurements were made using a peak detector. Field strength of Spurious Emissions are shown in Table 4. For all emission measurements made the limits given in 15.209 were applied.

For purposes of this test, in order to yield the maximum field strength readings the EUT was set to a range control of 10 and the slide switch set to 'B'.

## **TABLE 4a**

# FIELD STRENGTH OF SPURIOUS EMISSIONS

Test Date: November 2, 2000

**UST Project:** 00-0440

**Customer:** Radio Systems Corporation

Model: RF-125

# Peak Readings (< 30 MHz)

| FREQ.<br>(kHz.) | TEST DATA<br>(dBm)<br>@ 10m | ANTENNA FACTOR + CABLE ATTENUATION | PEAK<br>RESULTS<br>(uV/m)<br>@ 300m | PEAK<br>FCC LIMITS<br>(uV/m)<br>@ 300m |
|-----------------|-----------------------------|------------------------------------|-------------------------------------|----------------------------------------|
| 21.3            | -78.1                       | 71.2                               | 3.8                                 | 1126.7                                 |
| 31.8            | -83.6                       | 68.9                               | 1.5                                 | 754.7                                  |
| 42.6            | -92.9                       | 65.7                               | 0.4                                 | 563.4                                  |

<sup>\*\* =</sup> Ground Floor

### **SAMPLE CALCULATIONS:**

RESULTS uV/m @ 3m = Antilog ((-78.1 + 71.2 + 107 – 88.6)/20) = 3.8 CONVERSION FROM dBm TO dBuV = 107 dB CORRECTION FROM 10m TO 300m = -88.6 dB

| Tested By: | Name: | Austin E. Thompson Jr. |
|------------|-------|------------------------|
| -          | -     |                        |

### **TABLE 4b**

### FIELD STRENGTH OF SPURIOUS EMISSIONS

Test Date: November 2, 2000

UST Project: 00-0440

**Customer:** Radio Systems Corporation

Model: RF-125

# Average Readings (< 30 MHz)

| FREQ.<br>(kHz.) | TEST<br>DATA*<br>(dBm)<br>@ 10m | ANTENNA FACTOR + CABLE ATTENUATION | AVERAGE<br>RESULTS<br>(uV/m)<br>@ 300m | AVERAGE<br>FCC LIMITS<br>(uV/m)<br>@ 300m |
|-----------------|---------------------------------|------------------------------------|----------------------------------------|-------------------------------------------|
| 21.3            | -82.9                           | 71.2                               | 2.2                                    | 112.6                                     |
| 31.8            | -88.4                           | 68.9                               | 0.9                                    | 75.5                                      |
| 42.6            | -97.7                           | 65.7                               | 0.2                                    | 56.3                                      |

<sup>\* =</sup> Corrected for worse case duty cycle, 20 log (0.577) = -4.8 dB

### **SAMPLE CALCULATIONS:**

RESULTS uV/m @ 3m = Antilog ((-82.9 + 71.9 + 107 – 88.6)/20) = 2.2 CONVERSION FROM dBm TO dBuV = 107 dB CORRECTION FROM 10m TO 300m = -88.6 dB

| Гested By: | Name: _ | Austin E. Thompson, Jr. |
|------------|---------|-------------------------|
|            |         |                         |

# Radiated Emissions (47 CFR 15.109a)

Radiated emissions were evaluated from 30 to 1000 MHz. Measurements were made with the analyzer's bandwidth set to 120 kHz. These results are shown Table 5.

### **TABLE 5**

# FIELD STRENGTH OF SPURIOUS EMISSIONS (47 CFR 15.209)

# **CLASS B**

Test Date: October 31, 2000

**UST Project:** 00-0440

**Customer:** Radio Systems Corporation

Model: RF-125

# Digital Device Emissions actually tested while in TX Mode

| Frequency<br>(MHz) | Test Data<br>(dBm)<br>@3m | Ant. Factor<br>+<br>Cable Atten.<br>- Amp Gain | Results<br>(uV/m) | FCC Limits<br>(uV/m)<br>@3m | Margin Below<br>FCC Limit<br>(dB) |
|--------------------|---------------------------|------------------------------------------------|-------------------|-----------------------------|-----------------------------------|
|--------------------|---------------------------|------------------------------------------------|-------------------|-----------------------------|-----------------------------------|

No emissions signals were seen from the EUT between the range of  $\,30\,\mathrm{MHz}\,$  to  $\,1\,\mathrm{GHz}\,$ 

| Tested By: | Name: _ | Austin E. Thompson Jr. |
|------------|---------|------------------------|
|            |         |                        |

# **Power Line Conducted Emissions (47 CFR 15.107a)**

Conducted Emissions were evaluated from 450 kHz to 30 MHz. Measurements were made with the analyzer's bandwidth set to 9 kHz, emissions are shown in Table 6. The EUT was checked with a 320' fence length.

#### FCC ID: KE3TXRF125

# TABLE 6 CONDUCTED EMISSIONS DATA

# **CLASS B**

Test Date: November 3, 2000

**UST Project:** 00-0440

**Customer:** Radio Systems Corporation

Model: RF-125

| FREQUENCY<br>(MHz) | TEST DATA<br>(dBm) |         | RESULTS<br>(uV) |         | FCC<br>LIMITS |
|--------------------|--------------------|---------|-----------------|---------|---------------|
|                    | PHASE              | NEUTRAL | PHASE           | NEUTRAL | (uV)          |
| 0.45               | -71.0              | -79.0   | 63.1            | 25.1    | 250           |
| 9.6                | -75.0              | -77.0   | 39.8            | 31.6    | 250           |
| 11.7               | -66.0              | -72.0   | 112.2           | 56.2    | 250           |
| 11.8               | -67.0              | -74.0   | 100.0           | 44.7    | 250           |
| 13.7               | -72.0              | -79.0   | 56.2            | 25.1    | 250           |
| 13.8               | -72.0              | -78.0   | 56.2            | 28.2    | 250           |
| 15.3               | -74.0              | -76.0   | 44.7            | 35.5    | 250           |

# **SAMPLE CALCULATIONS:**

RESULTS uV = Antilog ((-71.0 + 107)/20) = 63.1CONVERSION FROM dBm TO dBuV = 107 dB

| Tested By: | Name: | Austin E. Thompson, Jr. |
|------------|-------|-------------------------|
|            |       |                         |