

Radio Systems Corporation FCC Part 15, Certification Application Model PPT-102RB

December 5, 2002

MEASUREMENT/TECHNICAL REPORT

Radio Systems Corporation

COMPANY NAME:

MODEL:	PPT-102RB
FCC ID:	KE3PPT102RB
DATE:	December 5, 2002
This report conce	rns (check one): Original grant <u>X</u> Class II change
Equipment type:	Low Power Transmitter
Deferred grant red	quested per 47 CFR 0.457(d)(1)(ii)? yes No_X_ date
	to notify the Commission by <u>N.A.</u> date ate of announcement of the product so that the grant can be issued
Report prepared I	oy:
3505	ed States Technologies, Inc. Francis Circle aretta, GA 30004
	ne Number: (770) 740-0717 Number: (770) 740-1508

TABLE OF CONTENTS

AGENCY AGREEMENT LETTER OF CONFIDENTIALITY

SECTION 1

GENERAL INFORMATION

Product Description

SECTION 2

TESTS AND MEASUREMENTS

Configuration of Tested
Test Facility
Test Equipment
Modifications
Periodic Operation
Field Strength of Fundamental Emission
Field Strength of Spurious Emissions
20 dB Bandwidth of Fundamental Emission
Frequency Tolerance of Carrier Signal
Radiated Digital Device Emissions
Power Line Conducted Emissions

SECTION 3

LABELING INFORMATION

SECTION 4

BLOCK DIAGRAM(S)/SCHEMATICS

SECTION 5

PHOTOGRAPHS

SECTION 6

USER'S MANUAL

LIST OF FIGURES AND TABLES

FIGURES

Test Configuration
Photograph(s) for Spurious and Fundamental Emissions
Field Strength of Fundamental Emission
Field Strength of Spurious Emissions
Bandwidth of Fundamental Emission

TABLES

EUT and Peripherals
Test Instruments
Field Strength of Fundamental Emission
Field Strength of Spurious Emissions
Bandwidth of Fundamental Emission
Radiated Emissions
Power Line Conducted Emissions

SECTION 1 GENERAL INFORMATION

GENERAL INFORMATION

Product Description

The Equipment Under Test (EUT) is a Radio Systems Corporation 303.825 MHz Remote Transmitter, which sends a transmitted signal when one of three buttons is pressed.

Related Submittal(s)/Grant(s)

The EUT will be used with DoC approved receivers.

SECTION 2 TESTS AND MEASUREMENTS

TESTS AND MEASUREMENTS

Configuration of Tested System

The sample was tested per ANSI C63.4, Methods of Measurement from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (1992). Radiated emissions data were taken with the test receiver or spectrum analyzer's resolution bandwidth adjusted to 9 kHz and 120 kHz, respectively. All measurements are peak unless stated otherwise. The video filter associated with the spectrum analyzer was off throughout the evaluation process. Interconnecting cables were manipulated as necessary to maximize emissions. A block diagram of the tested system is shown in Figure 1. Test configuration photographs for spurious and fundamental emissions are shown in Figure 2.

Since the EUT is a hand held device, it was rotated about all 3 axis in order to obtain worse case results.

Test Facility

Testing was performed at US Tech's measurement facility at 3505 Francis Circle, Alpharetta, GA. This site has been fully described and submitted to the FCC, and accepted in their letter marked 31040/SIT. Additionally this site has also been fully described and submitted to Industry Canada (IC), and has been approved under file number IC2982.

Modifications

To bring the EUT into compliance with the Part 15.231 limits, the manufacturer made the following changes:

1) C5 was changed from 4.7 to 2.7 pF.

Test Equipment

Table 2 describes test equipment used to evaluate this product.

FIGURE 1 TEST CONFIGURATION

Transmitter (EUT)

FIGURE 2a

Photographs for Spurious and Fundamental Emissions

FIGURE 2b

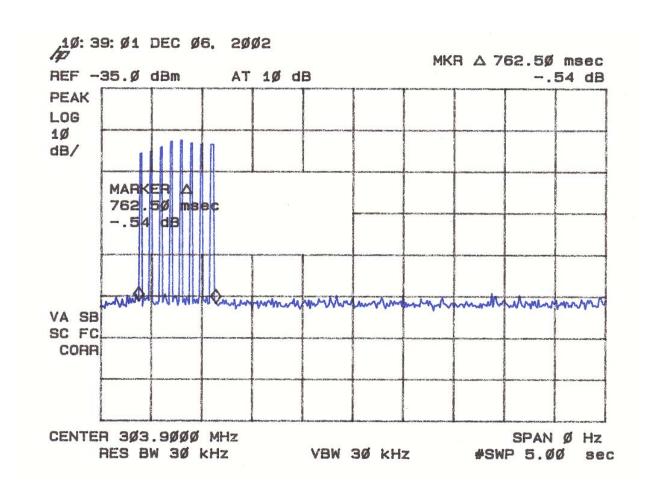
Photograph(s) for Spurious and Fundamental Emissions

TABLE 1

EUT and Peripherals

PERIPHERAL	MODEL	SERIAL	FCC ID:	CABLES
MANUFACTURER	NUMBER	NUMBER		P/D
Remote Transmitter Radio Systems Corporation (EUT)	PPT-102RB	None	KE3PPT102RB	None

TABLE 2


TEST INSTRUMENTS

EQUIPMENT	MODEL NUMBER	MANUFACTURER	SERIAL NUMBER	DATE OF LAST CALIBRATION
SPECTRUM ANALYZER	8558B	HEWLETT-PACKARD	2332A09900	3/27/02
SPECTRUM ANALYZER	8558B	HEWLETT-PACKARD	2332A10055	2/15/02
SPECTRUM ANALYZER	8593E	HEWLETT-PACKARD	3205A00124	2/14/02
SIGNAL GENERATOR	8648B	HEWLETT-PACKARD	3642U01679	08/22/01
COMB GENERATOR	8406A	HEWLETT-PACKARD	2246A02168	10/7/02
RF PREAMP	8447D	HEWLETT-PACKARD	2944A07436	5/6/02
RF PREAMP	8449B	HEWLETT-PACKARD	3008A00480	5/6/02
HORN ANTENNA	3115	EMCO	9107-3723	7/12/02
BILOG ANTENNA	CBL6112B	CHASE	2584	2/31/02
BICONICAL ANTENNA	3110	EMCO	9307-1431	7/23/02
LOG PERIODIC ANTENNA	3146	EMCO	3236	11/26/01
CALCULATION PROGRAM	N/A	N/A	Ver. 5.2	N/A

Periodic Operation (47 CFR 15.231(a1))

A transmitter manually activated must automatically deactivate within not more than 5 seconds of being released. The transmitter is a 3 button transmitter. The EUT continues to transmit while each button is being pressed. The EUT ceases transmission < 1 second upon being released as shown in Figure 3.

FIGURE 3
Periodic Operation 15.231(a)(c1)

Field Strength of Fundamental Emission (47 CFR 15.231b)

Measurements were made using a peak detector. Field strength of the peak fundamental emission is shown in Table 3 and Figure 4.

Duty Cycle Correction During 100 msec:

For detailed information regarding the duty cycle, please see Figures 5a through 5d. The transmission packet consists of a header followed by 12 pulse position encoded pulses (1.4 msec + 12 * 0.510 ms = 7.52 msec per 100 msec)

Duty Cycle Correction = $20 \log (0.0752) = -22.5 dB$

Field strength of the average fundamental emission is shown in Table 4.

TABLE 3

FIELD STRENGTH OF FUNDAMENTAL EMISSION

rest Date: October 29, 2002
UST Project: 02-0209
Customer: Radio Systems Co
Model: PPT-102RP **Radio Systems Corporation**

Peak Measurement

FREQ. (GHz)	TEST DATA (dBm) @ 3m	ANTENNA FACTOR + CABLE ATTENUATION	RESULTS (uV/m) @ 3m	PEAK FCC LIMITS (uV/m) @ 3m
303.825	-29.88	17.8	55533.9	55760.0

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-29.88 + 17.8 + 107)/20) = 55533.9 CONVERSION FROM dBm TO dBuV = 107 dB

Tested Savid R. Aletten Name:	
By: _ Sand for the Mame: _	David Blethen

TABLE 4

FIELD STRENGTH OF FUNDAMENTAL EMISSION

Test Date: October 29, 2002

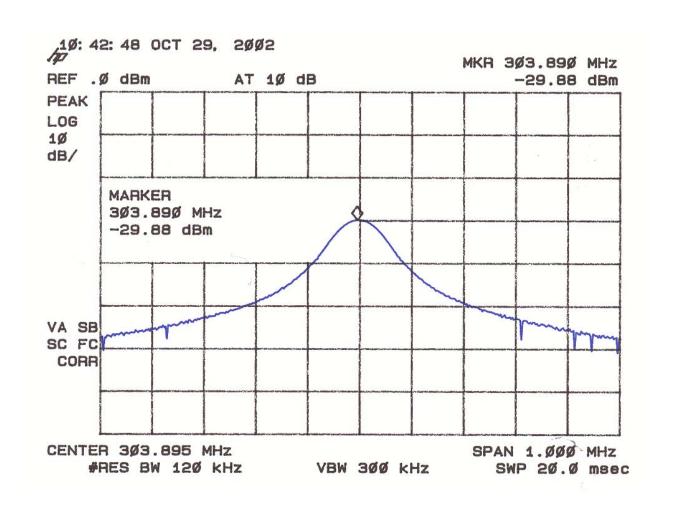
Test Date: UST Project: Customer: Model: 02-0209

Radio Systems Corporation

PPT-102RB Model:

Average Measurement

FREQ. (MHz)	TEST DATA (dBm) @ 3m*	ANTENNA FACTOR + CABLE ATTENUATION	RESULTS (uV/m) @ 3m	AVERAGE FCC LIMITS (uV/m) @ 3m
303.825	-52.38	17.8	4164.5	5576.0


^{*} Duty Cycle Correction = 20 log (0.0752) = -22.5 dB

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-52.38 + 17.8 + 107)/20) = 4164.5 CONVERSION FROM dBm TO dBuV = 107 dB

Tested P		
By: Lavel &	Dlettre Name:	David Blethen

FIGURE 4
FIELD STRENGTH OF FUNDAMENTAL EMISSION 15.231(b)

FIGURE 5a DUTY CYCLE CHARACTERISTICS

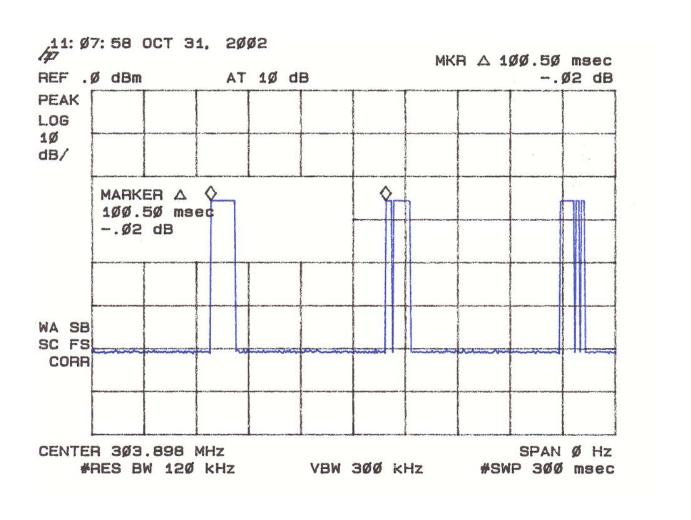


FIGURE 5b

DUTY CYCLE CHARACTERISTICS

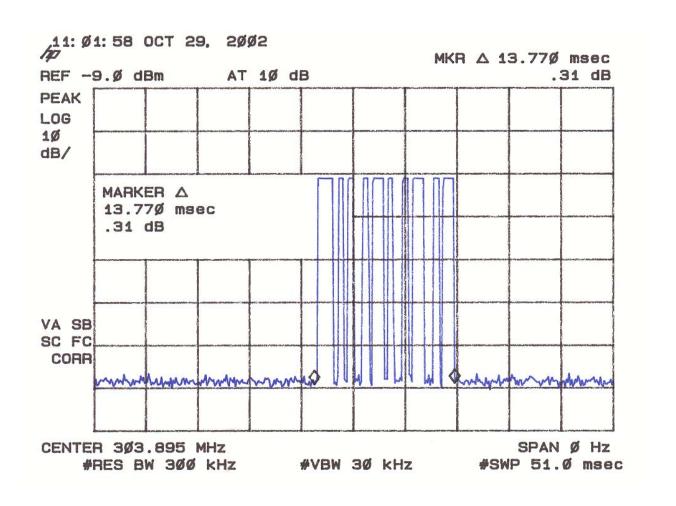


FIGURE 5c

DUTY CYCLE CHARACTERISTICS

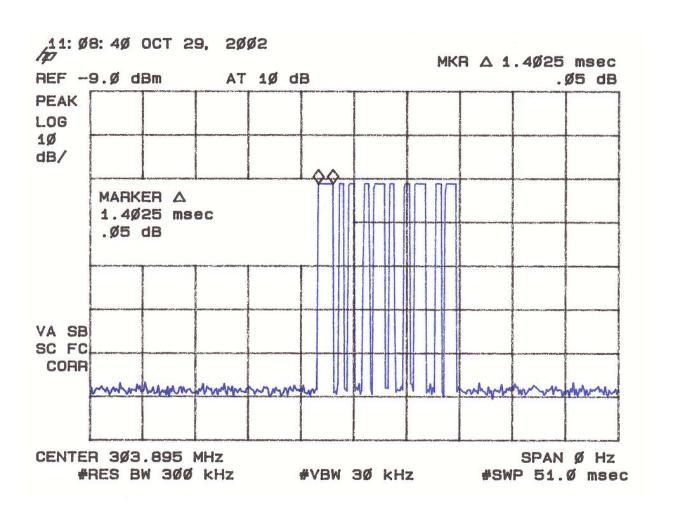
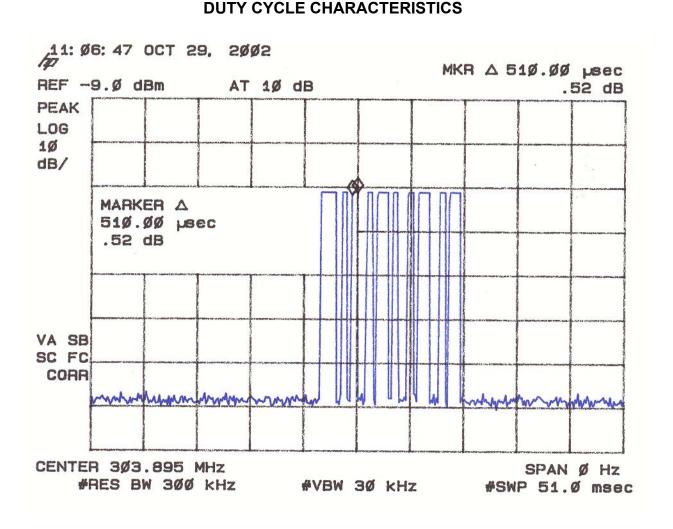



FIGURE 5d

Field Strength Of Spurious Emissions (47 CFR 15.231b)

Measurements were made using a peak detector. Field strength of Spurious Emissions are shown in Table 5 and Figures 6. For comparison to the average limits, duty cycle corrections were made as given in the previous section. Any emission less than 1000 MHz and falling within the restricted bands of 15.205 were not adjusted for averaging and the limits of 15.209 were applied.

Analyzer Settings:

30 – 1000 MHz Peak Measurements, RBW = 120 kHz, VBW = Auto

Greater than 1000 MHz Peak Measurements, RBW = 1 MHz, VBW = 1 MHz

TABLE 5a

FIELD STRENGTH OF SPURIOUS EMISSIONS

Test Date: October 29, 2002
UST Project: 02-0209
Customer: Radio Systems Co
Model: PPT-102RB **Radio Systems Corporation**

Peak Measurement

FREQ. (MHz.)	TEST DATA (dBm) @ 3m	ANTENNA FACTOR + CABLE ATTENUATION - AMP GAIN	RESULTS (uV/m) @ 3m	PEAK FCC LIMITS (uV/m) @ 3m
0.6078	-69.92	25.1	1277.2	5576.0
0.9117	-76.96	29.2	919.2	5576.0
1.21548 **	-39.87	-6.3	1101.7	5000.0
1.51948 **	-35.66	-5.2	2026.8	5000.0
1.82335	-56.25	-2.9	246.2	5576.0

^{** -} Denotes a Restricted Band of Operation

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-69.92 + 25.1 + 107)/20) = 1277.2 CONVERSION FROM dBm TO dBuV = 107 dB

Tested P	Bletten Name:	
By: Lavall	Dlettre Name:	David Blethen

TABLE 5b

FIELD STRENGTH OF SPURIOUS EMISSIONS

Test Date: October 2 & 28, 2002

UST Project: 02-0209

Customer: Radio Systems Corporation

Model: PPT-102RB

Average Measurement

FREQ. (MHz.)	TEST DATA (dBm) @ 3m*	ANTENNA FACTOR + CABLE ATTENUATION - AMP GAIN	RESULTS (uV/m) @ 3m	AVERAGE FCC LIMITS (uV/m) @ 3m
0.6078	-92.43	25.1	96.2	557.6
0.9117	-99.46	29.2	68.7	557.6
1.21548 **	-62.37	-6.3	82.6	500.0
1.51948 **	-61.50	-5.2	103.5	500.0
1.82335	-78.75	-2.9	18.5	557.6

^{* -} Duty Cycle Correction = 20 log (0.0752) = -22.5 dB

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-92.43 + 25.1 + 107)/20) = 96.2 CONVERSION FROM dBm TO dBuV = 107 dB

By: ______Name: _____David Blethen____

^{** -} Denotes a Restricted Band of Operation

FIGURE 6 SPURIOUS EMISSIONS 16.231(b)

Plots Not Available

20 dB Bandwidth of Fundamental Emission (47 CFR 15.231c)

The peak 20 dB bandwidth measurement of the fundamental emission is shown in Table 6 and Figure 7.

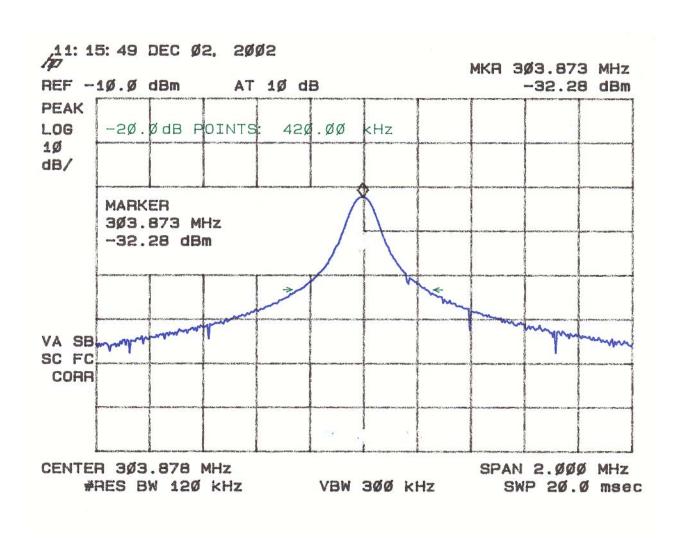
TABLE 6

20 dB BANDWIDTH OF FUNDAMENTAL EMISSION

Test Date: December 2, 2002

UST Project: 02-0209

Customer: Radio Systems Corporation


Model: PPT-102RB

FREQUENCY	20 dB BANDWIDTH	FCC LIMITS
(MHz)	(kHz)	(kHz)
303.825	420	760

FCC Limit = (0.25%) (Center Frequency) = (0.0025)(303.825 MHz) = 760 kHz

Tested By Signature: David Blethen Name: David Blethen

FIGURE 7
20 dB BANDWIDTH OF FUNDAMENTAL EMISSION 15.231(c)

Frequency Tolerance of Carrier Signal (47 CFR 15.231d)

The EUT does not operate in the 40.66 - 40.70 MHz band, therefore frequency tolerance measurements were deemed unnecessary.

Radiated Digital Device Emissions (47 CFR 15.109a)

Radiated emissions were evaluated from 30 to 1000 MHz. Measurements were made with the analyzer's bandwidth set to 120 kHz. Emissions are shown in Table 7.

TABLE 7

CLASS B RADIATED EMISSIONS

Test Date: October 29, 2002

UST Project: 02-0209

Customer: Radio Systems Corporation

Model: PPT-102RB

FREQ. (MHz)	TEST DATA (dBm) @ 3m	ANTENNA FACTOR + CABLE ATTENUATION	RESULTS (uV/m) @ 3m	FCC LIMITS (uV/m) @ 3m

Since the digital devices circuitry is used only to enable operation of the transmitter and did not control additional functions or capability, testing of digital device emissions was deemed not necessary.

Tested Pavid Robbetteen Name: <u>David Blethen</u>

Power Line Conducted Emissions (47 CFR 15.107a)

The EUT is operated by internal battery power only, therefore power line conducted emissions was deemed unnecessary.