US Tech Test Report:	FCC Part 15 Certification/ RSS 210
FCC ID:	KE3-3003444
IC:	2721A-3003444
Test Report Number:	23-0110
Issue Date:	July 13, 2023
Customer:	Radio Systems Corporation
Model:	STD00-17813

MPE/SAR exclusion/RF Exposure Evaluation

Maximum Permissible Exposure to RF (MPE) CFR 15.247 (i), CFR 1.1310 (e)

The maximum exposure level to the public from the RF power of the EUT shall not exceed a power density, **S** as per the respective limits in Table 1 below, at a distance, d, of 5 cm (portable condition) from the EUT.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)		
Limits for General Population/Uncontrolled Exposure						
0.3-1.34	614	1.63	*100	30		
1.34-30	824/f	2.19/f	*180/f ²	30		
30-300	27.5	0.073	0.2	30		
300-1,500			f/1500	30		
1,500-100,000			1.0	30		

|--|

f = frequency in MHz * = Plane-wave equivalent power density

Therefore, for:

MPE for 902 MHz – 928 MHz:

Limit: f/1500 mW/cm² = 915/1500 = 0.61 mW/cm² Peak Power (dBm) = +27.08 dBm Peak Power (Watts) = 0.5105 W Gain of Transmit Antenna = +2.0 dB_i = 1.585 numeric

d = Distance = 5 cm = 0.05 m

S = (**PG**/ $4\pi d^2$) = EIRP/4A = 0.5105 (1.585)/4* π *0.05*0.05) = 0.8092/0.0314 = 25.771 W/m² = (25.771 W/m²) (1m²/W) (0.1 mW/cm²) = 2.5771 mW/cm² US Tech Test Report: FCC ID: IC: Test Report Number: Issue Date: Customer: Model:

MPE for 2400 – 2483.5 MHz:

 $Limit = 1.0 \text{ mW/cm}^2$

Peak Power (dBm) = +10.33 dBm (FCC ID: QOQ-GM240S) Peak Power (Watts) = 0.0108 W Gain of Transmit Antenna = +2.8 dBi = 1.905 numeric d = Distance = 5 cm = 0.05 m

> **S** = (PG/ $4\pi d_2$) = EIRP/4A = 0.0108 (1.905)/4* π *0.05*0.05 = 0.0206/0.0314 = 0.6561 W/^{m2} = (0.6561 W/m²) (1m²/W) (0.1 mW/cm²) = 0.06561 mW/cm²

Simultaneous MPE (900 MHz band +2.4 GHz band) Calculation:

Total MPE (%) = [(900 MHz MPE result*100%] + [(2.4 GHz MPE result*100%] << 100%

= [(2.5771%] + [(0.06561%] = 2.6427% << 100%Calculation above shows device complies with the simultaneous MPE requirement.

SAR Exclusion:

General SAR test exclusion per KDB 447498 D01 V06 section 4.3

Test exclusion conditions are based on source-based time averaged maximum conducted output power of the RF channel, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions.

For 100 MHz to 6 GHz and test separation distances \leq 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

[(max. power of channel mW) / (min. test separation distance, mm)] * [($\sqrt{f_{GHz}}$)]

Where the result must be \leq 3.0 for 1-g SAR and \leq 7.0 for 10-g SAR

EUT source based time averaged (SBTA) = (output power + antenna gain * duty cycle)

SBTA= 27.08 dBm + 2.0 dBm * (809.09 mW) * (0.06%) = 48.59 mW

<u>48.59 mW/15 mm * ($\sqrt{0.915 \text{ GHz}}$) = 3.09 \leq 7.0 for 10-g SAR Extremity</u>

EUT duty cycle measurement:

US Tech Test Report:	FCC Part 15 Certification/ RSS 210
FCC ID:	KE3-3003444
IC:	2721A-3003444
Test Report Number:	23-0110
Issue Date:	July 13, 2023
Customer:	Radio Systems Corporation
Model:	STD00-17813

RSS-102, 2.5.1 Exemption Limits for Routine Evaluation SAR Evaluation:

SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm except when the device operates at or below the applicable output power levels presented in Table 1 below.

Frequency	Exemption Limits (mW)				
(MHz)	At separation distance of ≤5 mm	At separation distance of 10 mm	At separation distance of 15 mm	At separation distance of 20 mm	At separation distance of 25 mm
≤300	71 mW	101 mW	132 mW	162 mW	193 mW
450	52 mW	70 mW	88 mW	106 mW	123 mW
835	17 mW	30 mW	42 mW	55 mW	67 mW
1900	7 mW	10 mW	18 mW	34 mW	60 mW
2450	4 mW	7 mW	15 mW	30 mW	52 mW
3500	2 mW	6 mW	16 mW	32 mW	55 mW
5800	1 mW	6 mW	15 mW	27 mW	41 mW

Table 1: SAR evaluation – Exemption limits for routine evaluation based
on frequency and separation distance ^{4,5}

Frequency	Exemption Limits (mW)				
(MHz)	At separation	At separation	At separation	At separation	At separation
	distance of	distance of	distance of	distance of	distance of
	30 mm	35 mm	40 mm	45 mm	≥50 mm
≤300	223 mW	254 mW	284 mW	315 mW	345 mW
450	141 mW	159 mW	177 mW	195 mW	213 mW
835	80 mW	92 mW	105 mW	117 mW	130 mW
1900	99 mW	153 mW	225 mW	316 mW	431 mW
2450	83 mW	123 mW	173 mW	235 mW	309 mW
3500	86 mW	124 mW	170 mW	225 mW	290 mW
5800	56 mW	71 mW	85 mW	97 mW	106 mW

Output power level shall be the higher of the maximum conducted or equivalent isotopically radiated power (e.i.r.p) source-based time averaged (SBTA) output power.

In this case the maximum SBTA value = 48.59 mW is used.

The limit at a separation distance of 15 mm @ 925 MHz = (37.8 mW * 2.5) = 94.5 mW for limb exposure. The EUT meets the Exemption Limits.

The 2402-2480 MHz radio is not used at a distance less than 12 mm where it was pre-approved under FCC ID: QOQ-GM240S and IC: 5123A-GM240S; therefore, it is considered to be exempt from routine evaluations. A 2.5 multiplication factor is also added to the limit for limb exposure.

All calculations performed by: Test Engineer: <u>Gabriel Medina</u>

Signature: Jantus melli

Date: July 13, 2023

RSS-102, 2.5.2 compliance:

At or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $1.31 \times 10^{-2} f_{0.6834}$ W (adjusted for tune-up tolerance), where *f* is in MHz;

for 905 - 925 MHz:

Limit= 1.31 x 10-2 x 9150.6834 = 1.38 Watts

Max EIRP = +7.35 dBm + 1.0 dBi = 8.35 dBm = 6.8mW << 1380 mW

2402 MHz – 2480 MHz:

Limit= 1.31 x 10-2 x 24400.6834 = 2.7 Watts

Max EIRP = 10.33 dBm + 2.8 dBi = 13.13 dBm = 20.55mW << 2700 mW

Simultaneous Evaluation Percentage:

[Max EIRP (2.4 GHz)/ Limit in Watts * 100] + [Max EIRP (900 MHz)/Limit in Watts * 100] <<< 100%

[(0.02055/2.71) * 100] + [(0.0068/1.38) *100] = 1.251 % << 100 %

All calculations performed by:

Date: July 13, 2023 Test Engineer: Gabriel Medina

Signature:______

US Tech Test Report: FCC ID: IC: Test Report Number: Issue Date: Customer: Model: FCC Part 15 Certification/ RSS 210 KE3-3003444 2721A-3003444 23-0110 July 13, 2023 Radio Systems Corporation STD00-17813

Antenna Separation Photographs

Figure 1. Side View

Antenna identified with Blue arrow shows that there is at least 15 mm separation from the antenna to the pet wearing the collar.

US Tech Test Report: FCC ID: IC: Test Report Number: Issue Date: Customer: Model: FCC Part 15 Certification/ RSS 210 KE3-3003444 2721A-3003444 23-0110 July 13, 2023 Radio Systems Corporation <u>STD00-17813</u>

Figure 2. Top View

This shows there is at least 15 mm separation between the antenna element and the pet that will wear this collar.