

Testing Tomorrow's Technology

## Report of

Title 47 CFR Part 95 Subpart J, Multi User Radio Services (MURS) and TIA-603-E (2016) Land Mobile FM or PM- Communications Equipment Measurement and Performance Standard

For the Radio Systems Corporation

Model: RIF00-15976 Assembly Number: 300-3170 FCC ID: KE3-3003170

Issue Date: March 9, 2018 Test Dates: February 9-19, 2018, March 8, 2018

UST Project No.: 18-0013

Total Number of Pages Contained in this Report: 17

3505 Francis Circle Alpharetta, GA 30004 PH: 770-740-0717 Fax: 770-740-1508 www.ustech-lab.com



Testing Tomorrow's Technology

I certify that I am authorized to sign for the test facility and that all of the statements in this report and in the Exhibits attached hereto are true and correct to the best of my knowledge and belief:

US TECH (Agent Responsible For Test):

By:

Name: George Yang

Title: Laboratory Manager

Date: March 9, 2018



TESTING NVLAP LAB CODE 200162-0

This report shall not be reproduced except in full. This report may be copied in part only with the prior written approval of US Tech. The results contained in this report are subject to the adequacy and representative character of the sample provided. This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the Federal Government.

> 3505 Francis Circle Alpharetta, GA 30004 PH: 770-740-0717 Fax: 770-740-1508 www.ustech-lab.com

## Table of Contents

#### Paragraph Title

#### 1 Product Description......5 1.1 1.2 Related Submittal(s)/Grant(s).....5 1.3 Test Facility......5 1.4 1.5 1.6 Modifications to EUT ......7 2 Maximum Transmitter Power (FCC 2.1046 & 95.2767) ......9 2.1 2.1.1Maximum Power Allowed ......9 Measured Fundamental Signal.....9 2.1.2 3 Emissions Bandwidth (Part 95.2773(a)) ..... 10 3.1 Unwanted Radiation Emissions (CFR 95.2779 (b).(1)&(2)) ...... 11 4 5 Field Strength of Spurious Radiation, (FCC 2.1051 & 95.2779)......13 5.1 Test Method ......13 5.2 5.3 6 Frequency Stability (CFR 2.1055) and Accuracy (CFR 95.2765(a)) ...... 16 Test Method ......16 6.1 6.2 6.3

## Page

#### List of Figures

| Figure 1. Test Configuration Block Diagram                    | 7 |
|---------------------------------------------------------------|---|
| Figure 2. Bandwidth Measurement                               |   |
| Figure 3. Transmitter Spurious Emissions at Antenna Terminals |   |

## List of Tables

| Table | Title |
|-------|-------|
|       |       |

| Table 1. Test Instruments                        | 6  |
|--------------------------------------------------|----|
| Table 2. EUT and Peripherals                     |    |
| Table 3. Antennas                                |    |
| Table 4. Field Strength of Fundamental Radiation | 9  |
| Table 5. Field Strength of Spurious Radiation    | 14 |
| Table 6. Field Strength of Spurious Radiation    | 15 |
| Table 7. Frequency Deviation/Stability           | 17 |
| Table 8. Voltage Deviation/Stability             | 17 |

<u>Title</u>

**Figure** 

# <u>Page</u>

# <u>Page</u>

## 1 General Information

## **1.1 Product Description**

The Equipment Under Test (EUT) is the Radio Systems Corp, Invisible Fence Brand Model RIF00-15976, GPS pet containment collar. The product uses GPS coordinates to keep a pet within a desired area. The Unit also communicates via 151.82 MHz to a base station to relay battery levels and pet activity.

Rated Maximum Output Power: +16 dBm Modulation type: GFSK

## 1.2 Related Submittal(s)/Grant(s)

The EUT is subject to the following authorizations:

- a) Certification as a 151.82 MHz, MURS transmitter per FCC Part 95, Subpart J, MURS.
- b) Verification under 15.101 as a digital device and receiver.

## 1.3 Test Methodology

These measurements were conducted in accordance with the requirements of Title 47 CFR Part 95, Subpart J and TIA-603-E (2016). All measurements are in terms of peak values unless stated otherwise. The measurement system video bandwidth was set to at least three times that of the resolution bandwidth to prevent the introduction of amplitude smoothing throughout the evaluation process. If interconnecting cables are part of the measurement setup then they were manipulated as necessary to maximize emissions. A block diagram of the tested system is shown in Figure 1.

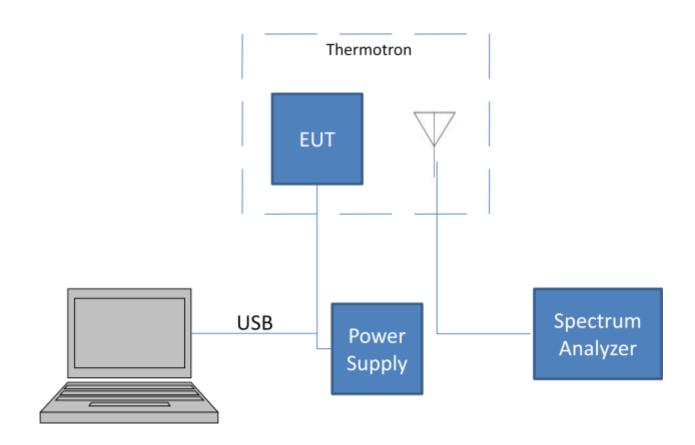
#### 1.4 Test Facility

Testing was performed at US Tech's measurement facility at 3505 Francis Circle, Alpharetta, GA 30004. This site has been fully described and registered with the FCC. Its designation number is US5301. Additionally this site has been fully described and submitted to Industry Canada (IC), and has been approved under file number 9900A-1.

## 1.5 Test Equipment

Table 1 describes test equipment used to evaluate this product.

#### Table 1. Test Instruments


| Instrument Type           | Manufacturer       | Model    | Serial Number | Calibration<br>Due Date           |
|---------------------------|--------------------|----------|---------------|-----------------------------------|
| Spectrum Analyzer         | Agilent            | E4407B   | US41442935    | 6/22/2018                         |
| Spectrum Analyzer         | Agilent            | N9342CN  | SG05310114    | 7/21/2018                         |
| RF Preamp                 | Hewlett-Packard    | 8449B    | 3008A00480    | 12/1/2018                         |
| RF Preamp                 | Hewlett-Packard    | 8447D    | 1937A02980    | 3/7/2018*                         |
| Biconical Antenna         | EMCO               | 3110B    | 9306-1708     | 5/2/2019<br>2 yr.                 |
| Biconical Antenna         | EMCO               | 3110B    | 9307-1431     | 10/23/2019<br>2 yr.               |
| Log Periodic<br>Antenna   | EMCO               | 3146     | 9305-3600     | 5/1/2019<br>2 yr.                 |
| Log Periodic<br>Antenna   | EMCO               | 3146     | 9110-3236     | 9/21/2019<br>2 yr.                |
| Environmental<br>Chamber  | Thermotron         | SM16     | 17095         | 8/7/2018                          |
| Regulated Power<br>Supply | TekPower           | TP3005T  | 218311        | Verified with 867B<br>Fluke Meter |
| Multimeter<br>(Graphical) | Fluke              | 867B     | DM7060268     | 10/10/2018                        |
| Signal Generator          | Rhode &<br>Schwarz | SMiQ 06B | 100403        | 10/25/2018                        |

Note: The calibration interval of the above test instruments is 12 months unless stated otherwise and all calibrations are traceable to NIST/USA.

\*This equipment was used only for testing completed prior to March 7, 2018; last use of this equipment for testing described herein was on February 16, 2018

## **1.6 Modifications to EUT**

No modifications were necessary to bring the EUT into compliance with FCC Part 95.





Note: Thermotron Chamber used for Frequency Stability testing.

## Table 2. EUT and Peripherals

|     | EUT<br>MANUFACTURER                          | MODEL<br>NUMBER          | SERIAL<br>NUMBER      | FCC/ IC ID:                | CABLES<br>P/D |
|-----|----------------------------------------------|--------------------------|-----------------------|----------------------------|---------------|
|     | GPSC Gen 3 Collar<br>(EUT)<br>Radio Systems  | RIF00-15976              | Engineering<br>Sample | FCC: KE3-300170<br>IC: N/A | N/A           |
|     | PERIPHERAL<br>MANUFACTURER                   | MODEL<br>NUMBER          | SERIAL<br>NUMBER      | FCC/ IC ID                 | CABLES<br>P/D |
|     | Battery<br>Dongguan Large<br>Electronics Co. | NCR18500A-<br>00BQ001-29 | Engineering<br>Sample | N/A                        | N/A           |
|     | Programming Tool<br>Radio Systems            | RIF00-16436              | Engineering<br>Sample | N/A                        | 1 m UD        |
|     | Laptop<br>HP                                 | Various                  | Various               | Various                    | 1 m UD        |
| P = | Power D = Data                               | U = Unshielded           | S= Shieldec           | 1                          |               |

#### Table 3. Antennas

| REPORT<br>REFERENCE | MANUFACTURER  | TYPE OFPARTANTENNANUMBER |     | GAIN<br>dB <sub>i</sub> | TYPE OF<br>CONNECTOR |  |
|---------------------|---------------|--------------------------|-----|-------------------------|----------------------|--|
| TX Antenna          | Radio Systems | Integrated               | N/A | -19                     | N/A                  |  |

#### 2 **Output Power**

## 2.1 Maximum Transmitter Power (FCC 2.1046 & 95.2767)

Maximum Transmitter Power was measured using the substitution method outlined in TIA-603-E, 2.2.12 and 2.2.17. The EUT uses an integral antenna therefore the integral antenna technique was applied.

#### 2.1.1 Maximum Power Allowed

The maximum power allowed is 2 Watts (or 33 dBm) per FCC 95.2767.

#### 2.1.2 Measured Fundamental Signal

The maximum output power of the EUT as measured below is .026 mW. Limit = 2 Watts, Result: PASS

The EUT was determined to comply with the Maximum Allowed Power.

The maximum output power of the EUT using the substitution method was -15.75 dBm at a distance of 3m. The EUT Antenna gain is rated at -19 dBi

| Freque<br>ncy<br>MHz | Maximu<br>m RX<br>Reading<br>(Units A) | Recreated<br>Reading<br>During<br>Substitutio<br>n (Using<br>Same Units<br>A) - Ideally | Differe<br>nce<br>Colum<br>n<br>A - B | TX<br>Cabl<br>e<br>Loss<br>(dB) | TX Gain<br>Relative<br>to<br>Dipole<br>(dB) | RF Power<br>into TX<br>antenna<br>(dBm)<br>(SG<br>Value-CL) | RF Power<br>into<br>substitution<br>TX antenna<br>(dBm) | Limit<br>(dBm) | Margin<br>Below<br>Limit<br>(dB) |
|----------------------|----------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------|---------------------------------|---------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|----------------|----------------------------------|
|                      |                                        | 0                                                                                       |                                       |                                 |                                             | ,                                                           |                                                         |                |                                  |
| 151.82               | 95.74                                  | 95.63                                                                                   | 0.11                                  | 1.1                             | 1.1                                         | -18.3                                                       | -18.17                                                  | 33             | 51.17                            |
| 151.82               | 93.68                                  | 93.65                                                                                   | 0.03                                  | 0.9                             | 0.9                                         | -15.6                                                       | -15.75                                                  | 33             | 48.75                            |

#### Table 4. Field Strength of Fundamental Radiation

Test Dates: February 9 and 15, 2018

Tested By

Signature: <u>Brue</u> Abd

## 3 Emissions Bandwidth (Part 95.2773(a))

The EUT was modulated by its own internal sources. The Bandwidth of the Fundamental was measured using a spectrum analyzer, as shown below. A RBW that was > 1% of the authorized bandwidth was used to measure the EUT's bandwidth.

Using the Emission Bandwidth measurement technique of ANSI C63.10-2013 as a guide, the measurement of the Emission Bandwidth is found to be 4.261 kHz.

#### 3.1 Maximum Authorized Bandwidth

The maximum authorized Bandwidth per 95.2773 (a) = 11.25 kHz. The EUT was found to comply with the Maximum Authorized Bandwidth since 4.261 kHz < 11.25 kHz.

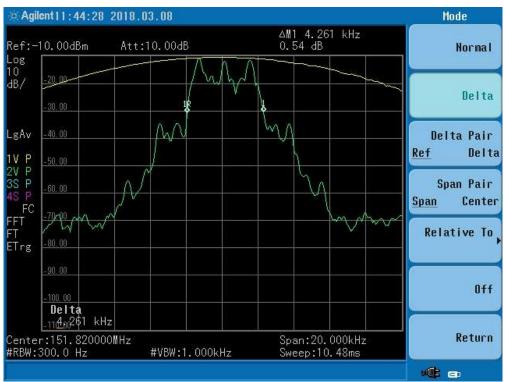



Figure 2. Bandwidth Measurement

Test Date: March 8, 2018

Tested By Signature: 1v

Name: George Yang

#### 4 Unwanted Radiation Emissions (CFR 95.2779 (b),(1)&(2))

This requirement is from 47 CFR Part 2, Subpart J, Sections 1053 and 95.2779. The power of each unwanted emission shall be less than TP (Transmitter Power) as specified in paragraph 4.2 below.

#### 4.1 Test Method

These emissions were measured on the Spectrum Analyzer and test jig.

#### 4.2 FCC Limits

Per CFR Part 95.2779

(b) Attenuation requirements. The power of unwanted emissions must be attenuated below the transmitter output power in Watts (P) by at least:

(1) 7.27( $f_d$ -2.88 kHz) dB on any frequency removed from the channel center frequency by a displacement frequency ( $f_d$  in kHz) that is more than 5.625 kHz, but not more than 12.5 kHz.

(2) 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation, on any frequency removed from the channel center frequency by more than 12.5 kHz.

| US Tech Test Report: | FCC Part 95               |
|----------------------|---------------------------|
| Report Number:       | 18-0013                   |
| Issue Date:          | March 9, 2018             |
| Customer:            | Radio Systems Corporation |
| Model:               | RIF00-15976               |
| FCC ID:              | KE3-3003170               |

#### 4.3 Test Results

The EUT is designed to operate at 151.8200 MHz and is assumed not to be using any audio low pass filter circuits, therefore only Emissions Mask 1 was applied.

The measured emissions comply with the specified mask as shown below.

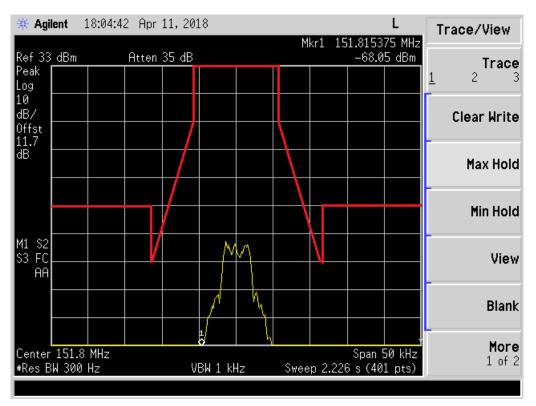



Figure 3. Transmitter Spurious Emissions at Antenna Terminals

Test Date: April 11, 2018

Tested By Signature:

Name: George Yang

## 5 Field Strength of Spurious Radiation, (FCC 2.1051 & 95.2779)

#### 5.1 Test Method

Spurious emissions were evaluated by the substitution method from 30 MHz to 1.0 GHz at a EUT to antenna distance of 3 meters. The EUT was tested in the far field. Measurements for 30 to 1000 MHz were made with the analyzer's bandwidth set to 100 kHz. Measurements above 1000 MHz were made with analyzer's resolution bandwidth set to 1 MHz and video bandwidth set to 3 MHz. Since the EUT is part of a portable handheld configuration, the EUT was rotated through the three orthogonal planes to produce the highest emissions relative to the limits. Results are shown in the Table below.

## 5.2 FCC Limits

The limit is determined using the following information: On any frequency removed from the center of the authorized bandwidth by a displacement frequency ( $f_d$  in kHz) of more than 12.5 kHz, the limit will be at least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.

Maximum allowed power = 2 Watts = TP Attenuation Calculation = 50 + 10Log(2) = 53 dB, 33 dBm - 53 dB = -20 dBmUnwanted emissions Limit= -20 dBm

## 5.3 Test Results

| Table 5. Field Strength of Spurious Radiation |                                       |                                                                                          |                               |                     |                                                              |                                                   |                |                                  |                       |
|-----------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------|-------------------------------|---------------------|--------------------------------------------------------------|---------------------------------------------------|----------------|----------------------------------|-----------------------|
| Frequency<br>MHz                              | Maximum<br>RX<br>Reading<br>(Units A) | Recreated<br>Reading<br>During<br>Substitution<br>(Using Same<br>Units A) -<br>Ideally 0 | Difference<br>Column<br>A - B | TX<br>Gain<br>(dBi) | RF Power<br>into TX<br>antenna<br>(dBm)<br>(SG Value-<br>CL) | RF Power into<br>substitution TX<br>antenna (dBm) | Limit<br>(dBm) | Margin<br>Below<br>Limit<br>(dB) | Cable<br>loss<br>(dB) |
| 303.64                                        | 45.09                                 | 45.22                                                                                    | -0.13                         | 4.9                 | -69.0                                                        | -65.77                                            | -20            | 45.77                            | 1.67                  |
| 455.46                                        | 39.26                                 | 39.45                                                                                    | -0.19                         | 6.5                 | -74.7                                                        | -70.35                                            | -20            | 50.35                            | 1.72                  |
| 607.28                                        | 46.25                                 | 46.26                                                                                    | -0.01                         | 7.1                 | -63.7                                                        | -58.88                                            | -20            | 38.88                            | 2.28                  |
| 759.10                                        | 50.02                                 | 50.05                                                                                    | -0.03                         | 6.4                 | -56.7                                                        | -52.85                                            | -20            | 32.85                            | 2.55                  |
| 910.92                                        | 40.33                                 | 40.42                                                                                    | -0.09                         | 6.5                 | -66.2                                                        | -62.57                                            | -20            | 42.57                            | 2.87                  |

## Table 5. Field Strength of Spurious Radiation

Sample Calculation at 303.64 MHz:

SG Power Into TX Antenna = Pg (dBm) – cable loss (dB) + antenna gain (dBi)

Pg (column 6) = -69.0 Cable loss (column 10) = 1.67Antenna gain (column 5)= 4.9

SG Power Into TX Antenna = -65.77 dBm

| Limit                    | -20.00 (dBm) |
|--------------------------|--------------|
| RF Power into TX Antenna | -65.77 (dBm) |
| Margin                   | 45.77 (dB)   |

Test Date: February 9-16, 2018

|                  | Table 6. Field Strength of Spurious Radiation |                                                                                          |                               |                     |                                              |                                                              |                                                   |                |                                  |                       |
|------------------|-----------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------|---------------------|----------------------------------------------|--------------------------------------------------------------|---------------------------------------------------|----------------|----------------------------------|-----------------------|
| Frequency<br>MHz | Maximum<br>RX<br>Reading<br>(Units A)         | Recreated<br>Reading<br>During<br>Substitution<br>(Using Same<br>Units A) -<br>Ideally 0 | Difference<br>Column<br>A - B | TX<br>Gain<br>(dBi) | TX Gain<br>Relative<br>to<br>Dipole<br>(dBd) | RF Power<br>into TX<br>antenna<br>(dBm)<br>(SG Value-<br>CL) | RF Power into<br>substitution TX<br>antenna (dBm) | Limit<br>(dBm) | Margin<br>Below<br>Limit<br>(dB) | Cable<br>loss<br>(dB) |
| 1062.74          | 56.37                                         | 56.19                                                                                    | 0.18                          | 6.9                 | 4.8                                          | -57.7                                                        | -54.86                                            | -20            | 34.89                            | 1.96                  |
| 1214.56          | 58.70                                         | 58.67                                                                                    | 0.03                          | 7.6                 | 5.5                                          | -54.3                                                        | -50.90                                            | -20            | 30.90                            | 2.11                  |
| 1366.38          | 51.34                                         | 51.34                                                                                    | 0.00                          | 7.9                 | 5.8                                          | -65.9                                                        | -62.24                                            | -20            | 42.24                            | 2.14                  |
| 1518.20          | 57.38                                         | 57.10                                                                                    | 0.28                          | 8.9                 | 6.8                                          | -54.7                                                        | -50.28                                            | -20            | 30.28                            | 2.35                  |

## Table 6 Field Strength of Spurious Padiation

Sample Calculation at 1062.74 MHz:

SG Power Into TX Antenna = Pg (dBm) – cable loss (dB) + antenna gain (dBi)

Pg (column 7) = -57.7 Cable loss (column 11) = 1.96 Antenna gain (column 6)= 4.8

SG Power Into TX Antenna = -54.86 dBm

| Limit                    | -20.00 (dBm) |
|--------------------------|--------------|
| RF Power into TX Antenna | -54.86 (dBm) |
| Margin                   | 34.86 (dB)   |

Test Date: February 9-16, 2018

| Tested By  | a all   |
|------------|---------|
| Signature: | Mar Ald |

#### 6 Frequency Stability (CFR 2.1055) and Accuracy (CFR 95.2765(a))

#### 6.1 Test Method

The EUT was tested in the Thermotron Environmental Chamber. The humidity was tested to a relative value of no more than 50%. The temperature was varied between  $-30^{\circ}$ C to  $+50^{\circ}$ C in  $10^{\circ}$  increments. All measurements were referenced back to the frequency measured at  $+20^{\circ}$ C. At each set point the temperature was allowed to stabilize for no less than 30 minutes before measurements were recorded and the temperature changed.

The battery for the EUT was removed and the EUT was powered with a variable DC power supply. The voltage was varied between the nominal operating voltage 85 % of the nominal value and 115 % of the nominal value. The fundamental frequency for each voltage setting was compared to the nominal voltage ambient temperature measurement and reported as compared to the limit.

#### 6.2 FCC Limits

MURS transmitters must maintain a frequency stability of 2.0 ppm if designed to operate with a bandwidth of 6.25 kHz or less. Since this EUT was measured to have a bandwidth of 4.26 kHz the limit applied was 2.0 ppm.

#### 6.3 Test Results

| Temperature<br>(°C) | Measured<br>Frequency<br>(MHz) | Allocated<br>Frequency<br>(MHz) | Deviation<br>(ppm) | Limit<br>(ppm) |
|---------------------|--------------------------------|---------------------------------|--------------------|----------------|
| -30                 | 151.820100                     | 151.820025                      | 0.5                | 2.00           |
| -20                 | 151.820050                     | 151.820025                      | 0.2                | 2.00           |
| -10                 | 151.820025                     | 151.820025                      | 0.1                | 2.00           |
| 0                   | 151.820022                     | 151.820025                      | 0.0                | 2.00           |
| 10                  | 151.820032                     | 151.820025                      | 0.1                | 2.00           |
| 20                  | 151.820025                     | 151.820025                      | 0.1                | 2.00           |
| 30                  | 151.820005                     | 151.820025                      | -0.1               | 2.00           |
| 40                  | 151.819970                     | 151.820025                      | -0.3               | 2.00           |
| 50                  | 151.819942                     | 151.820025                      | -0.5               | 2.00           |

## Table 7. Frequency Deviation/Stability

Actual TX Frequency was: 151.820025 MHz

Sample Calculation at -30°C

Deviation = <u>|(151.820100 - 151.820025)|</u> = 0.00000049 = 0.5 ppm < 2 ppm 151.820025

#### Table 8. Voltage Deviation/Stability

| Voltage Variation | Measured<br>Frequency<br>(MHz) | Allocated<br>Frequency<br>(MHz) | Deviation<br>(ppm) | Limit<br>(ppm) |
|-------------------|--------------------------------|---------------------------------|--------------------|----------------|
| 85.7%*            | 151.820017                     | 151.820017                      | 0.00               | 2.00           |
| 100%              | 151.820017                     | 151.820017                      | 0.00               | 2.00           |
| 115%              | 151.820017                     | 151.820017                      | 0.00               | 2.00           |

\* NOTE: The EUT shut down when the voltage was set to 85% therefore the test was performed at the lowest possible voltage.

Sample Calculation at 115%

Deviation = <u>|(151.820017 - 151.820017)|</u> = 0.0000000 = 0.00 ppm < 2 ppm 151.820017

Test Date: February 14-15, 2018

Tested By Signature: Brue Abd