

CORPORATE OFFICE 795 Marconi Avenue Ronkonkoma, NY 11779 631-737-1500 Fax 631-737-1497 (A NY Corporation)

BRANCH LABORATORIES 3131 Detwiler Road Harleysville, PA 19438 215-256-4133 Fax 215-256-4130

WASHINGTON REGULATORY OFFICE 703-533-1614 Fax 703-533-1612

REPORT OF MEASUREMENTS

FOR LAB PARTNERS ASSOCIATES, INC.

FLASH CONTROL TRANSCEIVER

MODEL: POCKETWIZARD MULTIMAX

FCC ID: KDS-PW2-101 IC: 2170A-PW101

Company Name:	Lab Partners, Associates, Inc.
Date of Report:	December 12, 2007
Test Report No:	R-4901N-1
Test Start Date:	October 2, 2007
Test Finish Date:	October 29, 2007
Test Technician:	Matt Seamans
Lab Supervisor:	Todd Hannemann
Report Prepared By:	Jamie Ramsey

Our letters, procedures and reports are for the exclusive use of the customer to whom they are addressed, and their communications to any other or the use of the name of Retlif Testing Laboratories must receive our prior written approval. Our letters, procedures and reports apply only to the sample tested and are not necessarily indicative of the qualities of apparently identical or similar products. The letters, procedures and reports and the name of Retlif Testing Laboratories or insignia are not to be used under any circumstances in advertising to the general public. This test report shall not be reproduced, except in full, without the written approval of Retlif Testing Laboratories.

Certification and Signatures

We certify that this report is a true report of the results obtained from the tests of the equipment stated and relates only to the equipment tested. We further certify that the measurements shown in this report were made in accordance with the procedures indicated and vouch for the qualifications of all Retlif Testing Laboratories personnel taking them.

Scott Wentworth Branch Manager

NVLAP Approved Signatory

Tode Hannemann

Laboratory Supervisor

Non-Warranty Provision

The testing services have been performed, findings obtained, and reports prepared in accordance with generally accepted testing laboratory principles and practices. This warranty is in lieu of all other warranties, either express or implied.

Non-Endorsement

This test report contains only findings and results arrived at after employing the specific test procedures and standards listed herein. It is not intended to constitute a recommendation, endorsement, or certification of the product or material tested. This report must not be used by the client to claim product endorsement by NVLAP, NIST or any agency of the U.S. Government.

APPLICANT

Lab Partners Associates, Inc 41 IDX Drive South Burlington, VT 05403

TEST SPECIFICATIONS: FCC Rules and Regulations Part 15, Subpart C, Para. 15.231

RSS 210, Issue 7

TEST PROCEDURE: ANSI C63.4:2003/RSS-210, Issue 7

PURPOSE:

The purpose of this test program was to demonstrate compliance of the PocketWizard MultiMAX Flash Control Transceiver to the requirements of FCC Part 15.231 and RSS, 210, Issue 7.

TEST SAMPLE DESCRIPTION:

BRANDNAME: PocketWizard

MODEL: MultiMAX

TYPE: Flash Control Transceiver

POWER REQUIREMENTS: 3VDC via 120VAC, 60Hz AC/DC Power Adapter

FREQUENCY BAND OF OPERATION: 344.04MHz to 354.0MHz

MODULATION: OOK (On/Off Keying)

TYPE OF TRANSMISSION: Control Signal (Pulse Recognition Codes)

APPLICATION: Remote Triggering of Flashpack

FREQUENCIES TESTED: 344.04MHz, 354.0MHz

TESTS PERFORMED:

15.231 (b)/RSS-210 Annex 1, Spurious Radiated Emissions (30MHz to 3.6GHz)

15.231 (b)/RSS-210 Annex 1, Field Strength of Fundamental

15.231 (c) Occupied Bandwidth, 0.25% of Fundamental Frequency

RSS-210, Annex 1, A1.1.3, 99% bandwidth, 0.25% of Center Frequency

Duty Cycle Determination

NOTE: Testing was performed at 2 frequencies (low and high) within the operational band as

required for devices operating within a 1 - 10MHz band but not exceeding 10MHz.

TEST SAMPLE OPERATION:

The device is normally manually operated and transmits a control signal for remote triggering of a flashpack. Normal operation of the EUT complies with the parameters required in Part 15. Subpart

flashpack. Normal operation of the EUT complies with the parameters required in Part 15, Subpart

C, Section 15.231 and RSS 210 for momentary operated devices. For testing purposes only the EUT

was configured to continuously transmit.

TEST SAMPLE / TEST PROGRAM

• The transmitter is manually activated and employs a switch that automatically deactivates

the transmitter within 5 seconds of being released.

• The transmitter does not perform periodic transmissions at regularly predetermined intervals.

• The device can not be employed for RC purposes involving security.

• The device uses an external permanently attached rubber coated helix coiled spring antenna.

The fundamental field strength at 344.04MHz did not exceed 7252µV/M (Average) at a test

distance of 3 meters.

The fundamental field strength at 354.0MHz did not exceed 7667µV/M (Average) at a test

distance of 3 meters.

The peak value of fundamental emissions did not exceed a peak field strength limit

corresponding to 20dB above the maximum permitted average limit.

• The field strength of harmonic and spurious emissions did not exceed $725\mu V/M$ or $500\mu V/M$

as applicable for a fundamental frequency of 344.04MHz.

The field strength of harmonic and spurious emissions did not exceed $766\mu V/M$ or $500\mu V/M$

as applicable for a fundamental frequency of 354.0MHz.

No harmonic or spurious emissions were observed within 10dB of the specified limit at test

distances of 1 or 3 meters.

• Radiated Emissions from the EUT were measured in all three axis. The attached Radiated

Emissions test data is representative of the worst case orientation.

TEST SAMPLE / TEST PROGRAM (continued)

• The device can operate within the range of 344.04 to 354.00MHz. The device was tested at the frequencies of 344.04MHz and 354.0MHz. The 20dB bandwidth and 99% bandwidth of emissions did not exceed 0.25% of the center operating frequency and was determined as follows:

Fundamental Frequency = 344.04MHz 0.25% of Center Frequency = 0.860MHz 0.860 divided by 2 = 0.430MHz

Bandwidth Range = Fundamental Frequency + and - 0.430MHz

344.04MHz - 0.430MHz = 343.61MHz344.04MHz + 0.430MHz = 344.47MHz

Bandwidth Range = 343.61MHz - 344.47MHz

Fundamental Frequency = 354.0MHz 0.25% of Center Frequency = 0.885MHz 0.884 divided by 2 = 0.4425MHz

Bandwidth Range = Fundamental Frequency + and - 0.442MHz

354.0MHz - 0.442MHz = 353.558MHz353.5MHz + 0.442MHz = 354.442MHz

Bandwidth Range = 353.558MHz - 354.442MHz

DETERMINATION OF FIELD STRENGTH LIMITS

The field strength limits shown below were calculated as instructed in Section 15.231.

Fundamental Frequency: 344.04MHz

Where F is the frequency in MHz, the formula for calculating the maximum permitted fundamental field strength for the band 260-470MHz, μ V/m at 3 meters is as follows:

41.6667(F) - 7083.3333 = Field Strength Limit (μ V/m)

41.6667 x 344.04 = 14335.011 14335.011 - 7083.3333 = 7252

Field Strength Limit = $7252\mu V/m = 77.21dBuV/M$

The maximum permitted unwanted emission level is 20dB below the maximum permitted fundamental level which equals $725\mu V/m = 57.21dBuV/M$.

TEST SAMPLE / TEST PROGRAM (continued)

Field Strength Limit Calculations continued:

Fundamental Frequency: 354.0MHz

Where F is the frequency in MHz, the formula for calculating the maximum permitted fundamental field strength for the band 260-470MHz, μ V/m at 3 meters is as follows:

41.6667(F) - 7083.3333 = Field Strength Limit (μ V/m)

41.6667 x 353.5 = 14729.178 14729.178 - 7083.3333 = 7666.679

Field Strength Limit = $7666.679 \mu V/m = 77.69 dBuV/M$

The maximum permitted unwanted emission level is 20dB below the maximum permitted fundamental level which equals $766.67\mu\text{V/m} = 57.69\text{dBuV/M}$

DETERMINATION OF DUTY CYCLE

The transmitter controls were adjusted to maximize the transmitted duty cycle. The analyzer was set for a frequency span of 0Hz. The sweep time was then adjusted in order to display one full pulse train. The transmitter on time was then summed and compared to the time for one full cycle in order to obtain the duty cycle. As the cycle time exceeded 100msec then 100msec was used as the cycle time. The on times were determined as follows:

The transmitter pulse train consisted of multiple pulse bursts. The individual pulses within each burst were measured and summed in order to obtain the total "on time".

Fundamental Frequency: 344.04MHz

Transmitter On Time = .6998milliseconds
Transmitter Cycle Time = 100milliseconds

Transmitter Duty Cycle = .6998 %

On Time divided by Cycle Time = Duty Cycle Factor

 .6998 divided by 100
 =
 0.006998

 0.006998 converted to dB (LOG₁₀ .006998)20
 =
 -43.1

 Duty Cycle Factor
 =
 -43.1dB

DETERMINATION OF DUTY CYCLE (continued)

Fundamental Frequency: 354.0MHz

Transmitter On Time = 0.9306 milliseconds
Transmitter Cycle Time = 100 milliseconds

Transmitter Duty Cycle = .9306 %

On Time divided by Cycle Time = Duty Cycle Factor

 $.9306 ext{ divided by } 100 = 0.009306$ $.009306 ext{ converted to dB (LOG}_{10} .009306)20 = -40.63$ **Duty Cycle Factor** = **-40.63dB**

Duty Cycle Factor Determination Plots are included with this application as a separate attachment.

Test Methods

15.231 (b) Fundamental & Spurious Radiated Emissions

The test sample was placed on a 80cm high wooden test stand which was located 3 meters from the test antenna on an FCC listed open area test site. Emissions from the EUT were maximized by rotating the test sample and adjusting the test sample orientation and antenna polarization. The maximized peak field strength of each emission was measured and recorded and compared to the limit specified in 15.35 (b) (peak limit corresponds to 20dB above the maximum permitted average limit). The duty cycle factor was applied to the peak readings in order to determine the average field strength of the emissions for comparison to the specified average limits.

Test Results: The worst case maximum peak field strength of the fundamental frequency at 344.04MHz was 96.55dBuV/M which met the peak limit of 97.21dBuV. The maximum average field strength at 344.04MHz was 53.45dBuV which met the specified average limit of 77.21dBuV. The worst case maximum peak field strength of the fundamental frequency at 354.0MHz was 95.43dBuV/M which met the peak limit of 97.69dBuV. The maximum average field strength at 354.0MHz was 54.80dBuV which met the specified average limit of 77.69 dBuV. No harmonic/spurious frequencies were observed above the noise floor of the test equipment which was a minimum of 10dB below the specified limit.

15.231 (c) Occupied Bandwidth

The test sample was placed on a test bench and configured to transmit its normal modulated signal at maximum power. The spectrum analyzers resolution bandwidth, sweep rate and span were adjusted for the frequency being measured. The upper and lower frequency points corresponding to levels 20dB down from the peak of the modulated carrier frequency were used to determine the occupied bandwidth.

Test Results: The bandwidth of the emission at 344.04MHz and at 354.0MHz was less than 0.25% of the center frequency and met the requirements of 15.231 (c).

RSS 210, A1.1.3, 99% Bandwidth

The test sample was placed on a test bench and configured to transmit its normal modulated signal at maximum power. The spectrum analyzers resolution bandwidth, sweep rate and span were adjusted for the frequency being measured. Using the spectrum analyzer 99% bandwidth function the 99% bandwidth of the modulated carrier frequency was measured and recorded.

Test Results: The 99% bandwidth of the emission at 344.04MHz and at 354.0MHz was less than 0.25% of the center frequency and met the requirements of RSS-210.

15.207 (a) AC Line Conducted Emissions

The test sample was placed on a 0.8m high wooden test stand above the floor of the test area (ground plane). The rear of the test sample was aligned flush with the rear of the test stand. The test stand was situated such that the test sample was located 0.4m from all other grounded surfaces. The power cord of the test sample was connected to an artificial mains network (LISN). The spectrum analyzer was connected to the RF port of the LISN and peak/quasipeak and average measurements were taken in the frequency range of 150kHz to 30MHz on each the hot and neutral leads.

Test Results: The AC line conducted emissions met the limit specified in 15.207 (a).

Test Report No. R-4901N-1 FCC ID: KDS-PW2-101 IC: 2170A-PW101

EQUIPMENT LIST

Fundamental & Spurious Radiated Emissions

		Fundamental &	Spurious Radiated	d Emissions		
EN	Type	Manufacturer	Description	Model No.	Cal Date	Due
3116	Pre-Amplifier	Miteq	0.1 GHz - 18 GHz	AFS42-35	8/27/2007	8/27/2008
3117	Power Supply	B&K Precision	0-30 Vdc, 3.0 A	1630	1/23/2007	1/23/2008
3427B 7034	Biconical Antenna Log Periodic Antenna	Electro-Mechanics EMCO	20MHz - 200MHz 200MHz - 1GHz	3104 3146	8/31/2007 6/7/2007	8/31/2008 6/7/2008
4029B	Test Site Attenuation	Retlif	3 / 10 Meters	RNH	6/20/2007	6/20/2008
4895	Spectrum Analyzer	Hewlett Packard	9kHz - 22GHz	8593EM	7/27/2007	7/27/2008
4984A	High Gain Horn	Microlab/FXR	1.0 - 1.7 GHz	L638A	1/24/2007	1/24/2008
4984B	High Gain Horn	Microlab/FXR	1.7 - 2.6 GHz	R638A	1/24/2007	1/24/2008
4984C	High Gain Horn	Microlab/FXR	2.6 - 3.95 GHz	S638A	1/24/2007	1/24/2008
		Cone	ducted Emissions			
EN	Type	Manufacturer	Description	Model No.	Cal Date	Due
4027	LISN	Solar Electronics	10 KHz - 30 MHz	9252-50-R-24BNC	11/30/2006	11/30/2007
5030C	10 DB Atten. (50 ohm)	Narda	DC - 12.4 GHz	757C-10	5/9/2007	5/9/2008
5070	EMI Test Receiver	Rohde & Schwarz	20Hz - 40GHz	ESIB40	11/22/2006	11/29/2007

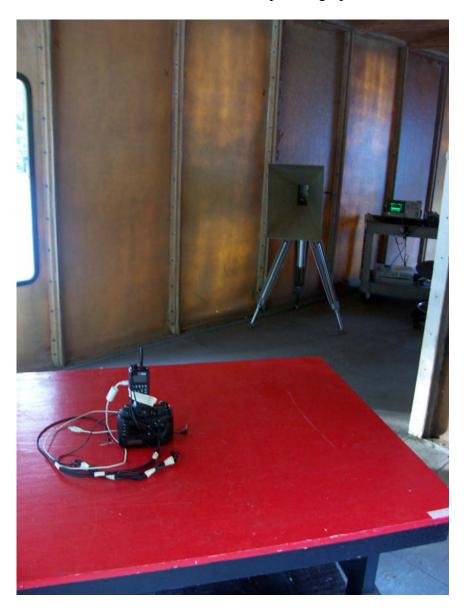
Occupied Bandwidth and Duty Cycle

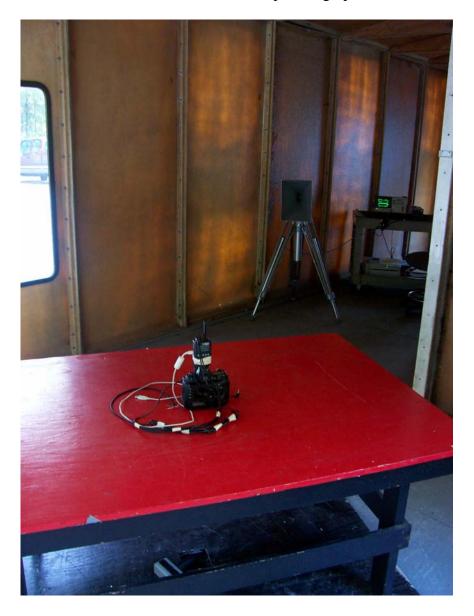

EN	Type	Manufacturer	Description	Model No.	Cal Date	Due
5070	EMI Test Receiver	Rohde & Schwarz	20Hz - 40GHz	ESIB40	11/22/2006	11/29/2007

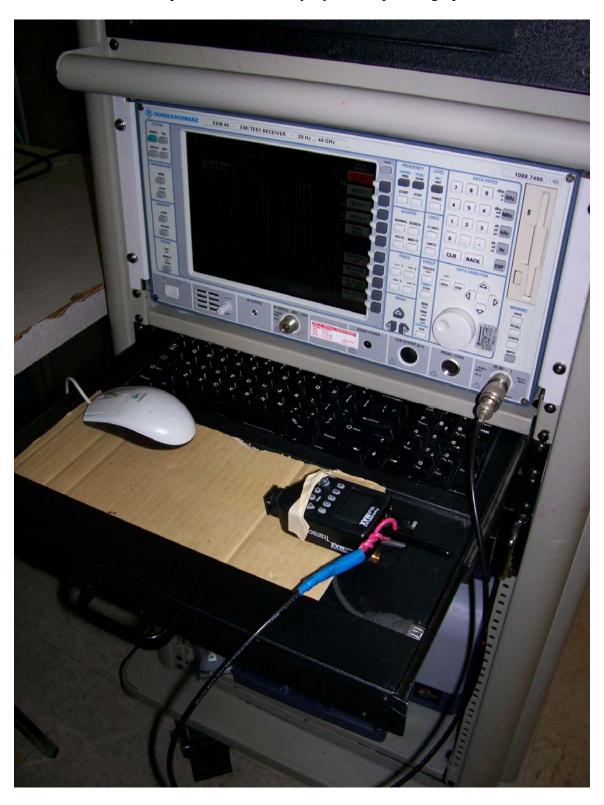
99% Bandwidth

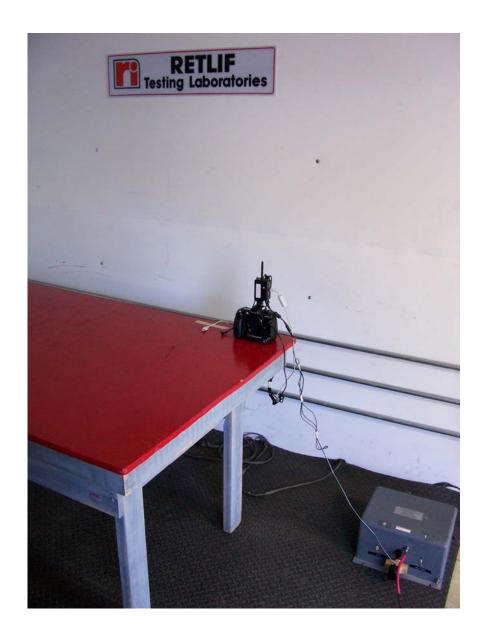
EN	Type	Manufacturer	Description	Model No.	Cal Date	Due
763	Spectrum Analyzer	Agilent	30 Hz - 13.2 GHz	E4405B	8/14/2007	8/14/2008

Test Report No. R-4901N-1 FCC ID: KDS-PW2-101 IC: 2170A-PW101


Radiated Emissions Setup Photograph


Radiated Emissions Setup Photograph


Radiated Emissions Setup Photograph


Radiated Emissions Setup Photograph

Occupied Bandwidth/Duty Cycle Setup Photograph

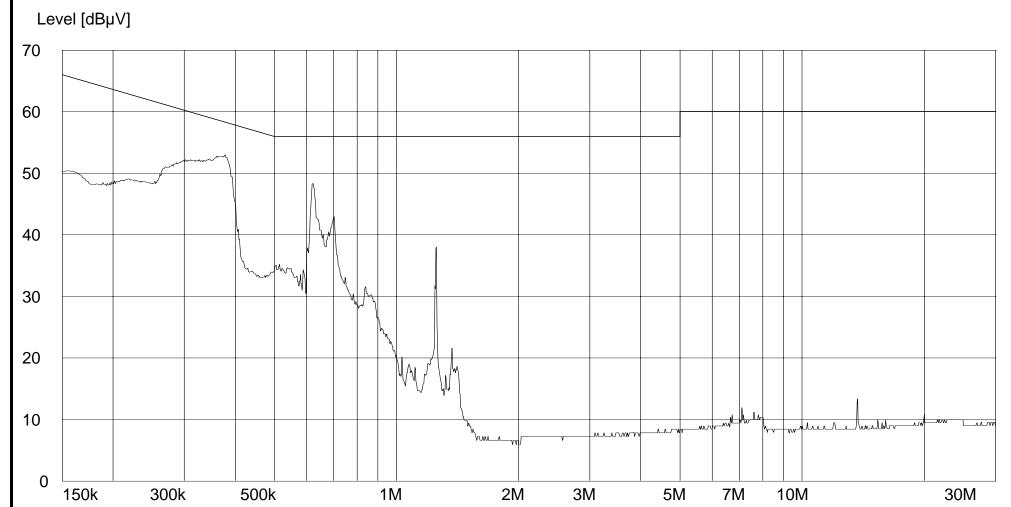
Conducted Emissions Setup Photograph

				TABUL	AR DATA	SHEET				
Test Method:		Fundamental F	ield Strength							
Customer:		LPA Design, In	C.			Job No:	R-4901N-1			
Test Sample:		PocketWizard I		nsceiver						
Model No:		PocketWizard I	MultiMAX			Serial No:	5561324			
Test Specific	ation:	FCC Part 15, S								
,						Paragraph: 1	5.231(b)			
Operating Mo	ode:	Continuously T	ransmitting							
Technician:		M.Seamans				Date:	October 2, 20	007		
Notes:		Corrected peak	readings me	eet peak limit (2	20dB above av		er 15.35			
Transmit		Antenna/EUT	Meter	Correction	Corrected	Duty Cycle	Corrected	Average Limit	Converted	Limit
Frequency		Position	Reading	Factor	Peak	Correction	Reading	at 3 Meters	Reading	at 3 Meters
MHz		Polarization/Axis	dBuV	dB	dBuV/m	dB	dBuV/m	dBuV	uV/m	uVm
344.04 354.00		X/H Z/H	81.70 80.47	14.85 14.96	96.55 95.43	-43.10 -40.63	53.45 54.80	77.21 77.69	470.38 549.67	7251.78 7666.78
334.00		2/11	00.47	14.90	90.40	-40.03	34.60	77.09	349.07	7000.70
		+								
					_					
		+ +								
		+								
		1								
		+								
		+								
		+								
		+								
	1 of 1									

Test Sample: Model No: Test Specification: Operating Mode: Technician:	PocketWizar PocketWizar FCC Part 15 Continuously M.Seamans Fundamental	d MultiMAX Tra	to 3.6GHz	AR DATA	Job No: Serial No: Paragraph:	R-4901N-1 5561324 15.231(b)		
MHz 688.08 1032.12 1376.16 1720.20 2064.24 2408.28 2752.32 3096.36	PocketWizar PocketWizar FCC Part 15 Continuously M.Seamans Fundamental	Inc. d MultiMAX Tra d MultiMAX Subpart C Transmitting			Serial No:	5561324		
Model No: Test Specification: Operating Mode: Technician: Notes: Harmonic Frequency MHz 688.08 1032.12 1376.16 1720.20 2064.24 2408.28 2752.32 3096.36	PocketWizard PocketWizard FCC Part 15. Continuously M.Seamans Fundamenta	d MultiMAX Trad MultiMAX Subpart C Transmitting	ansceiver		Serial No:	5561324		
Model No: Test Specification: Operating Mode: Technician: Notes: Harmonic Frequency MHz 688.08 1032.12 1376.16 1720.20 2064.24 2408.28 2752.32 3096.36	PocketWizard FCC Part 15 Continuously M.Seamans Fundamental	d MultiMAX Subpart C Transmitting	ANGOLIVO		4			
Test Specification: Operating Mode: Technician: Notes: Harmonic Frequency MHz 688.08 1032.12 1376.16 1720.20 2064.24 2408.28 2752.32 3096.36	FCC Part 15. Continuously M.Seamans Fundamenta Antenna/EUT	Subpart C Transmitting			4			
Operating Mode: Technician: Notes: Harmonic Frequency MHz 688.08 1032.12 1376.16 1720.20 2064.24 2408.28 2752.32 3096.36	Continuously M.Seamans Fundamenta Antenna/EUT	Transmitting			Paragraph: 1	15.231(b)		
Technician: Notes: Harmonic Frequency MHz 688.08 1032.12 1376.16 1720.20 2064.24 2408.28 2752.32 3096.36	M.Seamans Fundamenta Antenna/EUT				r aragrapii.	10:201(0)		
Harmonic Frequency MHz 688.08 1032.12 1376.16 1720.20 2064.24 2408.28 2752.32 3096.36	Fundamenta Antenna/EUT	Frequency: 34						
Harmonic Frequency MHz 688.08 1032.12 1376.16 1720.20 2064.24 2408.28 2752.32 3096.36	Antenna/EUT	Frequency: 34			Date:	10/3/2007		
Harmonic Frequency MHz 688.08 1032.12 1376.16 1720.20 2064.24 2408.28 2752.32 3096.36	Antenna/EUT	i i roquonoy. o	14 04 MHz					
MHz 688.08 1032.12 1376.16 1720.20 2064.24 2408.28 2752.32 3096.36			14.04 WII 12					
MHz 688.08 1032.12 1376.16 1720.20 2064.24 2408.28 2752.32 3096.36	l	Meter	Correction	Duty Cycle	Corrected		Converted	Limit
688.08 1032.12 1376.16 1720.20 2064.24 2408.28 2752.32 3096.36	Position	Reading	Factor	Correction	Reading		Reading	at 3 Meters
1032.12 1376.16 1720.20 2064.24 2408.28 2752.32 3096.36	Polarization/Axis	dBuV	dB	dB	dBuV/m		uV/m	uVm
1376.16 1720.20 2064.24 2408.28 2752.32 3096.36	-	-	-	-	-		-	725.18
1720.20 2064.24 2408.28 2752.32 3096.36	-	-	-	-	-		-	500.00
2064.24 2408.28 2752.32 3096.36	-	-	-	-	-		-	500.00
2408.28 2752.32 3096.36	-	-	-	-	-		-	725.18
2752.32 3096.36	-	-	-	-	-		-	725.18
3096.36	-	-	-	-	-		-	725.18
	-	-	-	-	-		-	500.00 725.18
3440.40	-	-	-	-	-		-	725.18
		1	<u> </u>	-	-			723.10
NI - I	rmonio fraguestaise	oro observati	hove the retire	floor of the te	ot ogvines set	which was a minimum	m of 10 dD	
	rmonic frequencies w	ere observed a	idove the noise	noor of the te	si equipment	wnich was a minimu	π σε τυ αΒ	
pelow	the limit.							
Data Sheet 1 of	1							R-4901N-1

				TABUL	AR DATA	SHEET			
Test Method	l:	Spurious Emis	sions 30MHz						
Customer:		LPA Design, Ir				Job No:	R-4901N-1		
Test Sample	<u>):</u>	PocketWizard		nsceiver					
	•	· oononnaa							
Model No:		PocketWizard	MultiMAX			Serial No:	5561324		
Test Specific	cation:	FCC Part 15, S	Subpart C			Paragraph: 1	15 231(h)		
Operating M	ode:	Continuously T	ranemitting			i alagiapii.	13.231(b)		
operating in	ouc.	Continuously	ransmung						
Technician:		M.Seamans				Date:	October 2, 2007		
Notes:		Fundamental F	requency: 35	4 MHz					
Harmonic		Antenna/EUT	Meter	Correction	Duty Cycle	Corrected		Converted	Limit
Frequency		Position	Reading	Factor	Correction	Reading		Reading	at 3 Meters
MHz		Polarization/Axis	dBuV	dB	dB	dBuV/m		uV/m	u∨m
708.00		-	-	-	-	-		-	766.68
1062.00		-	-	-	-	-		-	500.00
1416.00		-	-	-	-	-		-	500.00
1770.00		-	-	-	-	-		-	766.68
2124.00 2478.00		-	-	-	-	-			766.68 766.68
2832.00		-	<u>-</u>	<u>-</u>	-	-			500.00
3186.00		-	<u> </u>			_			766.68
3540.00		-	_	_	_	_			766.68
		+							
		+ +					+ +		
	No harmon	ic frequencies wer	e observed a	bove the noise	floor of the te	st equipment	which was a minimum o	of 10 dB	
	below the li					1. 1			
Data Shee	t 1 of 1								R-4901N-

					MISSIONS D	ATA SHEE	T				
ethod:	Occupio	ed Bandwidth									
ner:	LPA De	sign, Inc.			Test Sample:	PocketWizard	MultiMAX Trans	ceiver		Job No:	R-4901
No:	PocketV	Vizard MultiMAX			Serial No:	N/A				Technician:	M. Sear
ecification:	FCC Pa	rt 15, Subpart C				15.231(c)				Date:	10/3/20
ing Mode:	Contino	usly Transmiting									
	Transmi	t Frequency 344.0	04 MHz								
>			Delta :	1 [T1]		RBW	100	kHz	RF Att	20 d	B
Ref		_			.38 dB	VBW	100	kHz		1	
9/	db7/		50.	1.00200	401 KHZ	SWT	7.5	ms	Unit	aB	
	93.	1 dbyv-									,
, o					 						$-\parallel$
					1 /\ I						
30					 						$-\parallel$
	_D2	73.1 dB	V77		₹ ₽						
70		, o • 1 GE			-/ \	1					
1MAX	.					\					
50											
				2000000		M.					
			- Marie Mari				and the same	- L			
~~~~\	nem	Agree -						a married	-mune		
10									-Vie	money	-vije-v
		والمراجع المرا	. 10 11	La contra	المليجة ببا	4. 1	0.161		Jan I.,	Landa de	
"° HAND	ML 7							MANA	P) / H PILLUM II	4/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	
ll .	י "ו			La Alaba	• •			. I I I M	Մի ավ		
20											
.0											
-3											$-\parallel$
	er:	344.4 M	 Hz	•	1.25	MHz/		<u> </u>	Span	12.5 M	HZ
e:		.OCT.20		28:32		-			_		

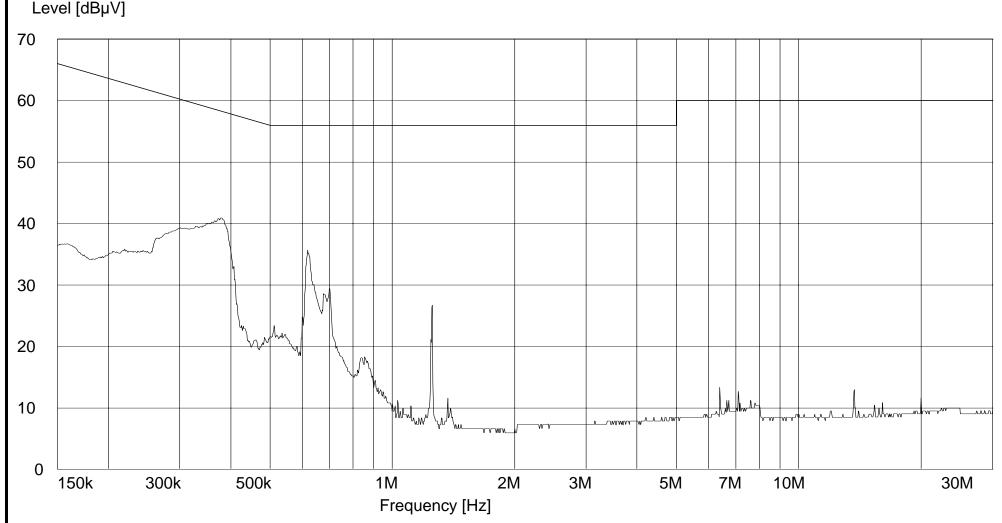

					MISSIONS D	ATA SHEE	•				
lethod:		ed Bandwidth									_
mer:		esign, Inc.			Test Sample:		MultiMAX Trans	sceiver		Job No:	R-49011
No:		Wizard MultiMAX			Serial No:	N/A				Technician:	
pecification:	FCC Pa	art 15, Subpart C				15.231(c)				Date:	10/3/200
ting Mode:	Contino	ously Transmiting									
	Transm	it Frequency 354 I	MHz								
>			Delta 1			RBW	100	kHz	RF Att	20 0	dB
Ref		_			.80 dB	VBW	100	kHz			
97/ 97/	db7.	~	501	L.002004	101 kHz	SWT	7.5	ms	Unit	CIE	37V
	92.	7 dbyv-									
90					<del>                                     </del>						*
					/  i						
80						<b>\</b>					
					_/	1					
70	-D2	72.7 dB	77		7	<u> </u>					
					/	<i>\</i> √					
1MAX	:				1	\u_					
60					, market	The same of the sa					_  *
							January .				
50			~~~~~	~-				man and a second	·~		-
~~~	~ <del>Մ</del>	be many							when the same	mener	اداد
40										7	
30	المسا	بر العجاليات	A	بالمال أحال			4.1		Line black	لنجيال القباب	
		andh/Malat	A) PI Innadación			411/24/14/1		LUNA/LAN		WY TO SUM	41.1
		0 9		ן יין		40	agen Ad	An name	S N	յ Մի	
20		· ·									
10											
0											
–з <u>L</u>		354 MHz		<u> </u>	1.25		<u> </u>			n 12.5 M	

		RJ	ETLIF TH				LES			
			EN	IISSIONS D	ATA SHEE	T				
Test Method:	99% Bandwidth									
Customer:	LPA Design, Inc.			Test Sample:	PocketWizard	MultiMAX Transc	eiver		Job No:	R-4901N-1
Model No:	PocketWizard MultiMAX			Serial No:	N/A				Technician:	T. Hannemanı
Test Specification:	RSS-210								Date:	10/29/2007
Operating Mode:	Continously Transmiting									
Notes:	Transmit Frequency 344.0	04 MHz, 99% OBW	: 709.4188 KHz							
•	Lv1 dBm	Marker 344		35 dBm 22 MHz	RBW VBW SWT	30 k 100 k 44 m	Hz	RF Att Jnit	0 dB	m
-30	× mmmmm						3 7 L [T1] 3 2 [T1]	709.41883 -49 343.74148	768 kH: .18 dB: 297 MH: .41 dB:	z n z
Cen Data Sheet 1 of 2	ter 344 MHz			200 k	Hz/			Spa	ın 2 MH:	R-4901N-

RETLIF TESTING LABORATORIES EMISSIONS DATA SHEET Test Method: 99% Bandwidth Customer: PocketWizard MultiMAX Transceiver LPA Design, Inc. Test Sample: Job No: R-4901N-1 PocketWizard MultiMAX N/A Model No: Serial No: Technician: T. Hannemann Test Specification: RSS-210 0 Date: 10/29/2007 Operating Mode: Continously Transmiting Notes: Transmit Frequency 354 MHz, 99% OBW: 681.3622 KHz Marker 1 [T1] RBW 30 kHz RF Att 40 dB Ref Lvl -50.47 dBm VBW 100 kHz 15 dBm 353.0000000 MHz SWT 86 ms Unit dBm **▼**1 [T1] -50.47 dBm 10 353.00000000 OPB 681.36272545 kHz [T1] -36.01 dBm 353.70140281 MHz **▽**_T½ [T1] -38.91 dBm -10354.38276553 MHz IN1 1MAX 1MA -20 -30The work was -40-60 -70-80 -85 Center 354 MHz 200 kHz/ Span 2 MHz Data Sheet 2 of 2

R-4901N-1

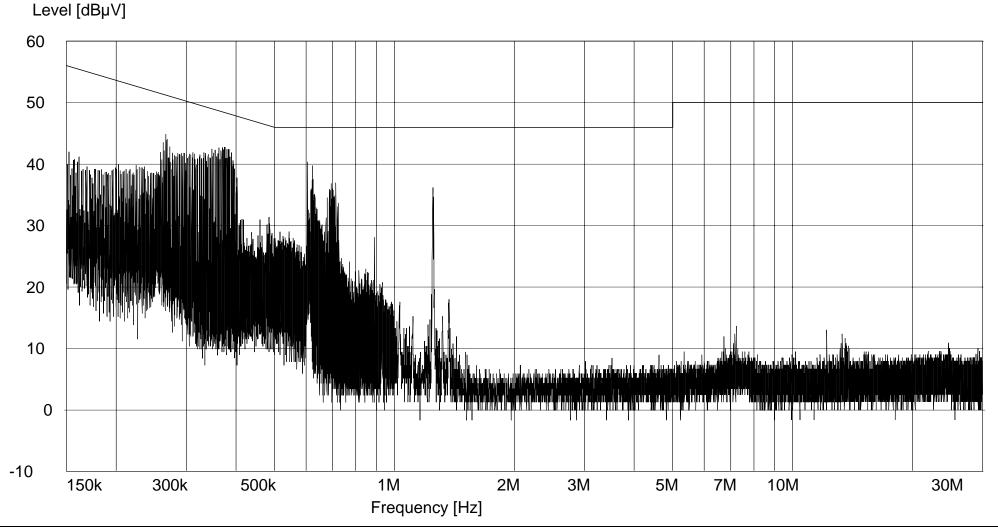
RETLIF TESTING LABORATORIES EMISSIONS DATA SHEET Conducted Emissions 150 kHz to 30 MHz Test Method: PocketWizard MultiMAX Transceiver R-4901N-1 LPA Design, Inc. Job No: **Customer:** Test Sample: PocketWizard MultiMAX 5561324 Model No: Serial No: M. Seamans Technician: FCC Part 15, Subpart C Paragraph: 15.207 (a) Test Specification: Date: October 9, 2007 Transmitting signal @ 344MHz to 354 MHz Operating Mode: Lead Tested: 120 VAC 60 Hz Hot Quasi-Peak Readings to Quasi-Peak Limits. Notes: Level [dBµV]



R-4901N-1

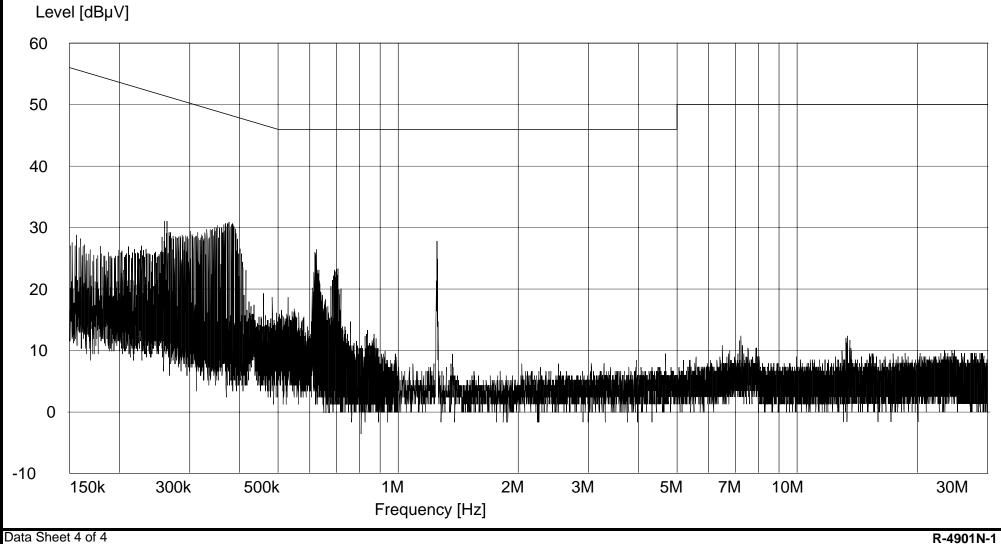
Frequency [Hz]

Data Sheet 1 of 4


RETLIF TESTING LABORATORIES EMISSIONS DATA SHEET Conducted Emissions 150 kHz to 30 MHz Test Method: PocketWizard MultiMAX Transceiver R-4901N-1 LPA Design, Inc. Job No: **Customer:** Test Sample: PocketWizard MultiMAX 5561324 Model No: Serial No: M. Seamans Technician: FCC Part 15, Subpart C Paragraph: 15.207 (a) **Test Specification:** Date: October 9, 2007 Operating Mode: Transmitting signal @ 344MHz to 354 MHz Quasi-Peak Readings to Quasi-Peak Limits. Notes: Lead Tested: 120 VAC 60 Hz Neutral Level [dBµV]

R-4901N-1

Data Sheet 2 of 4


RETLIF TESTING LABORATORIES **EMISSIONS DATA SHEET** Conducted Emissions 150 kHz to 30 MHz Test Method: PocketWizard MultiMAX Transceiver LPA Design, Inc. Job No: R-4901N-1 **Customer:** Test Sample: PocketWizard MultiMAX 5561324 Model No: Serial No: M. Seamans Technician: FCC Part 15, Subpart C Paragraph: 15.207 (a) **Test Specification:** Date: October 9, 2007 Operating Mode: Transmitting signal @ 344MHz to 354 MHz Notes:

R-4901N-1

Data Sheet 3 of 4

RETLIF TESTING LABORATORIES EMISSIONS DATA SHEET Conducted Emissions 150 kHz to 30 MHz Test Method: PocketWizard MultiMAX Transceiver LPA Design, Inc. Job No: R-4901N-1 **Customer:** Test Sample: PocketWizard MultiMAX 5561324 Model No: Serial No: M. Seamans Technician: FCC Part 15, Subpart C Paragraph: 15.207 (a) **Test Specification:** Date: October 9, 2007 Operating Mode: Transmitting signal @ 344MHz to 354 MHz Average Readings to Average Limits. Notes: Lead Tested: 120 VAC 60 Hz Neutral

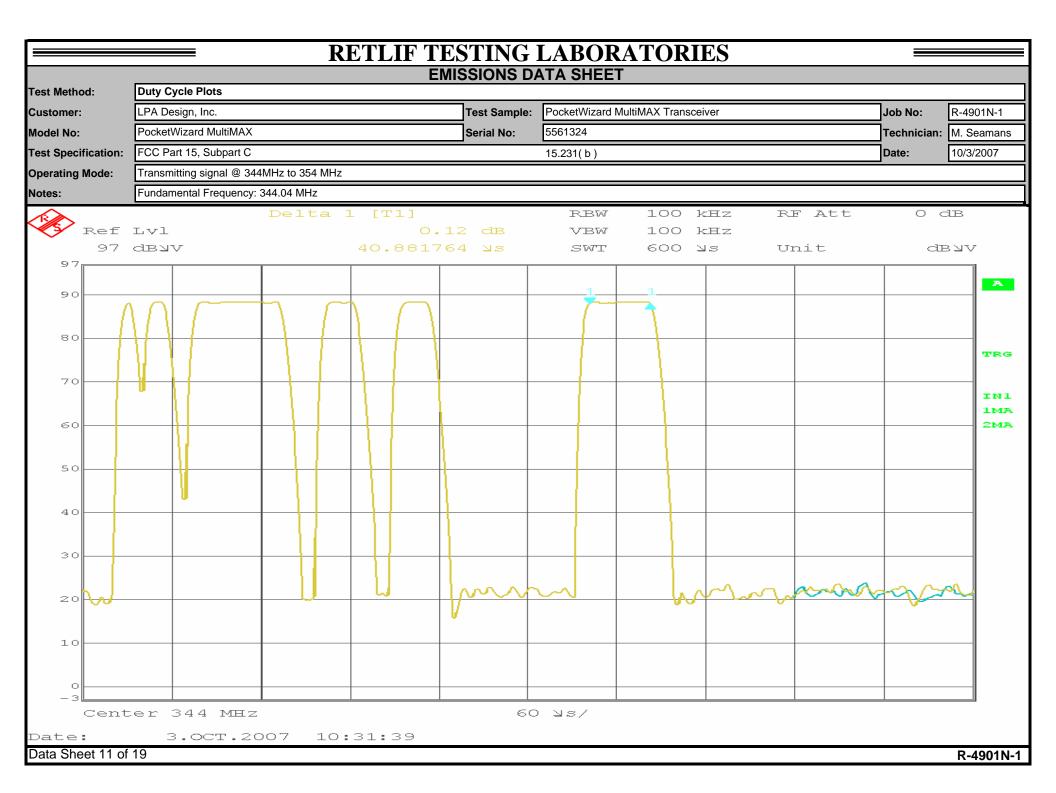
RETLIF TESTING LABORATORIES EMISSIONS DATA SHEET Duty Cycle Plots Test Method: PocketWizard MultiMAX Transceiver LPA Design, Inc. R-4901N-1 Customer: Test Sample: Job No: PocketWizard MultiMAX Model No: Serial No: 5561324 M. Seamans Technician: FCC Part 15, Subpart C Test Specification: Date: 10/3/2007 15.231(b) Transmitting signal @ 344MHz to 354 MHz Operating Mode: Notes: Fundamental Frequency: 344.04 MHz Delta 1 [T1] RBW 100 kHz RF Att 0 dB Ref Lvl 100 kHz -0.03 dB VBW 97 dbyv 26.052104 ms SWT 100 ms Unit dbyv 97 A 90 80 TRG 70 IN1 1MA 2MA 60 50 40 30 20 10 Center 344 MHz 10 ms/ 3.0CT.2007 10:11:43 Date: Data Sheet 1 of 19 R-4901N-1

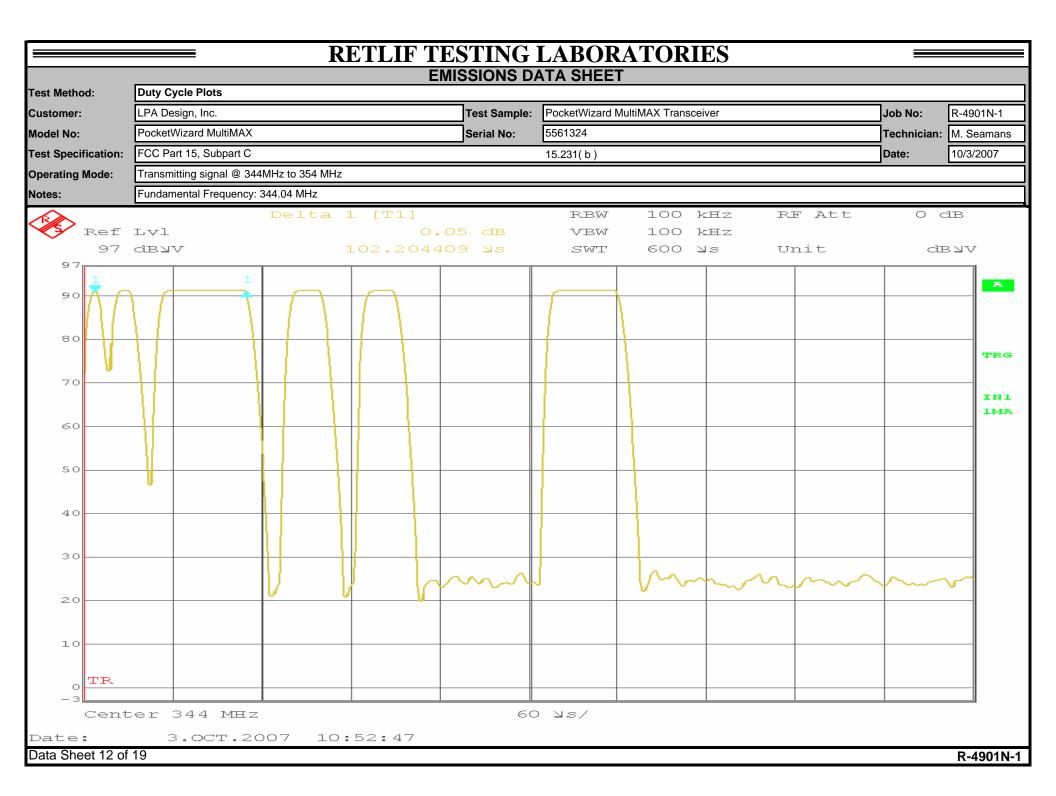
RETLIF TESTING LABORATORIES EMISSIONS DATA SHEET Duty Cycle Plots Test Method: PocketWizard MultiMAX Transceiver LPA Design, Inc. R-4901N-1 Customer: Test Sample: Job No: PocketWizard MultiMAX Model No: Serial No: 5561324 M. Seamans Technician: FCC Part 15, Subpart C Test Specification: Date: 10/3/2007 15.231(b) Transmitting signal @ 344MHz to 354 MHz Operating Mode: Notes: Fundamental Frequency: 344.04 MHz Marker 1 [T1] RBW 100 kHz RF Att 0 dB Ref Lvl 92.36 dBUV VBW 100 kHz 97 dbyv 25.189319 ms SWT 100 ms Unit db yv 97 A 90 80 TRG 70 INL 1MA 2MA 60 50 40 30 20 10 TR Center 344 MHz 10 ms/ Date: 3.0CT.2007 10:13:07 Data Sheet 2 of 19 R-4901N-1

RETLIF TESTING LABORATORIES EMISSIONS DATA SHEET Duty Cycle Plots Test Method: PocketWizard MultiMAX Transceiver LPA Design, Inc. R-4901N-1 Customer: Test Sample: Job No: PocketWizard MultiMAX Model No: Serial No: 5561324 M. Seamans Technician: FCC Part 15, Subpart C Test Specification: Date: 10/3/2007 15.231(b) Transmitting signal @ 344MHz to 354 MHz Operating Mode: Fundamental Frequency: 344.04 MHz Notes: RBW 100 kHz RF Att dB Ref Lvl 92.40 dByv VBW 100 kHz 97 dbyv 51.041022 ms 100 ms Unit db 7a SWT 97 A 90 80 TRG 70 INL 1MA 2MA 60 50 40 30 20 10 TR 10 ms/ Center 344 MHz Date: 3.OCT.2007 10:13:54 Data Sheet 3 of 19 R-4901N-1

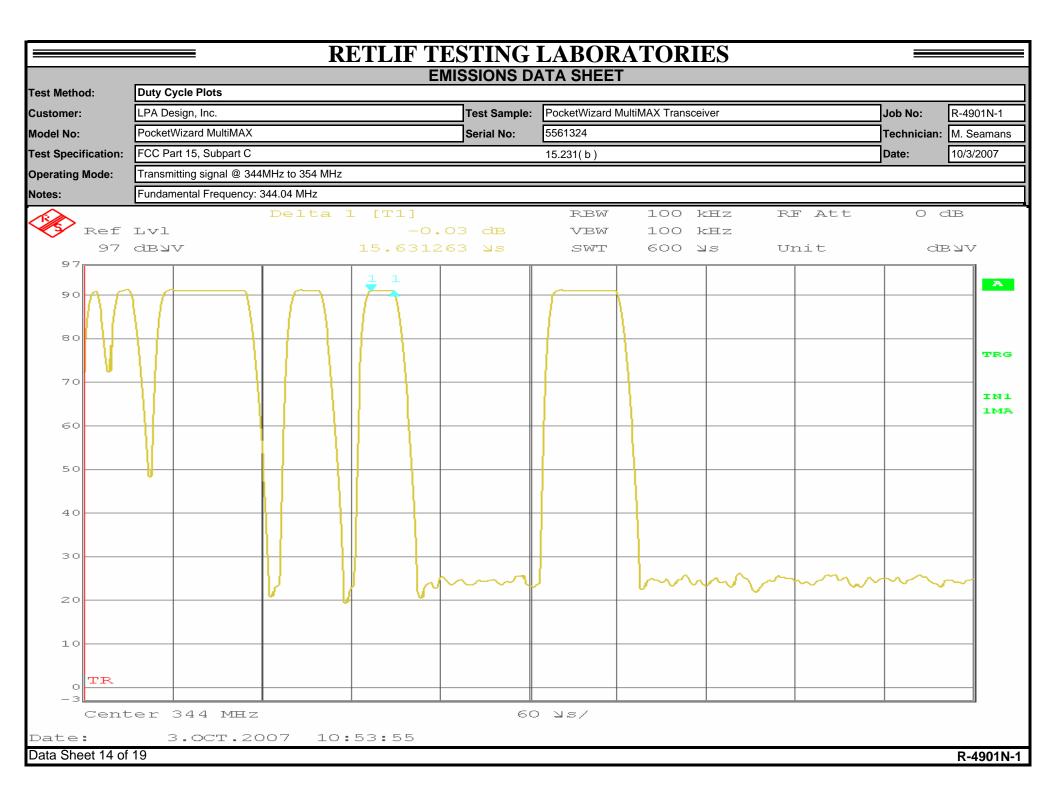
RETLIF TESTING LABORATORIES EMISSIONS DATA SHEET Duty Cycle Plots Test Method: PocketWizard MultiMAX Transceiver LPA Design, Inc. Job No: R-4901N-1 Customer: Test Sample: PocketWizard MultiMAX Model No: Serial No: 5561324 M. Seamans Technician: FCC Part 15, Subpart C Test Specification: Date: 10/3/2007 15.231(b) Transmitting signal @ 344MHz to 354 MHz Operating Mode: 0.5 & 1.0 Notes: Fundamental Frequency: 344.04 MHz Delta 1 [T1] RBW 100 kHz RF Att 0 dB Ref Lvl 0.11 dB VBW 100 kHz 97 dbyv 102.204409 Ns SWT 600 Ys Unit db yv 97 A 90 80 TRG 70 IN1 1MA 2MA 60 50 40 30 20 10 TR Center 344 MHz 60 Ys/ Date: 3.0CT.2007 10:19:40 Data Sheet 4 of 19 R-4901N-1

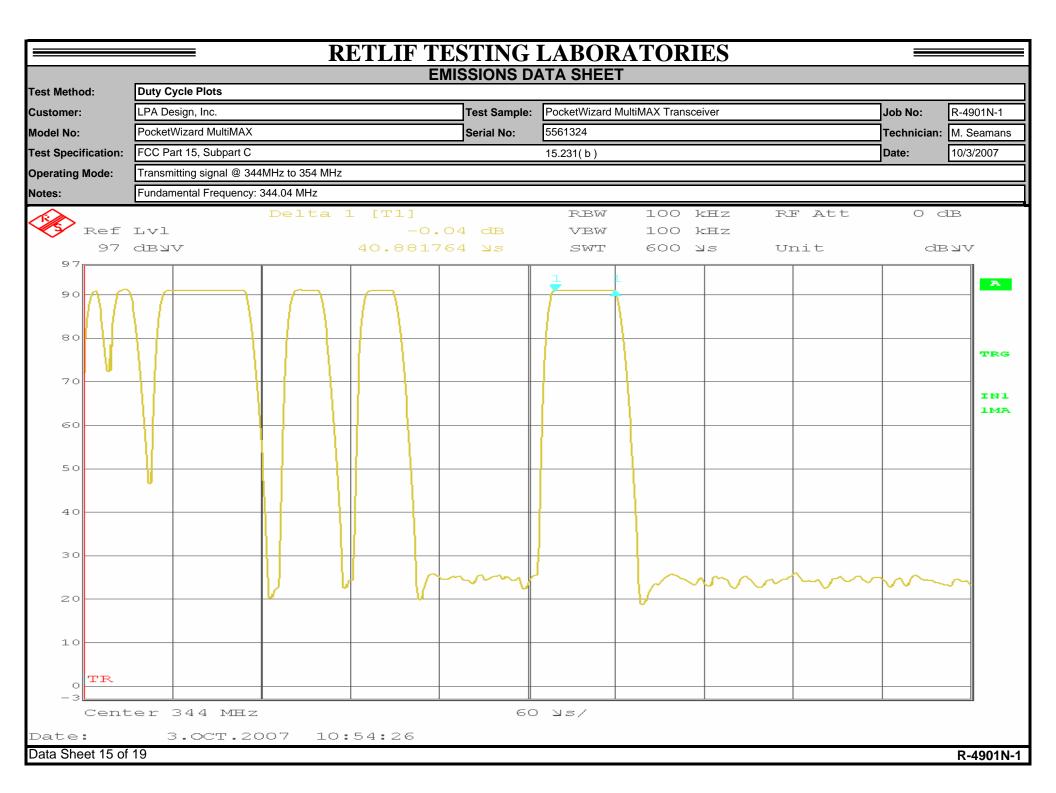
RETLIF TESTING LABORATORIES EMISSIONS DATA SHEET Duty Cycle Plots Test Method: PocketWizard MultiMAX Transceiver LPA Design, Inc. R-4901N-1 Customer: Test Sample: Job No: PocketWizard MultiMAX Model No: Serial No: 5561324 M. Seamans Technician: FCC Part 15, Subpart C Test Specification: Date: 10/3/2007 15.231(b) Transmitting signal @ 344MHz to 354 MHz Operating Mode: Notes: Fundamental Frequency: 344.04 MHz Delta 1 [T1] RBW 100 kHz RF Att 0 dB Ref Lvl -0.11 dB 100 kHz VBW 97 dbyv 16.833667 <u>U</u>s SWT 600 Ys Unit dbyv A 90 80 TRG 70 IN1 1MA 2MA 60 50 40 30 20 10 TR Center 344 MHz 60 Ns/ Date: 3.0CT.2007 10:20:19 Data Sheet 5 of 19 R-4901N-1

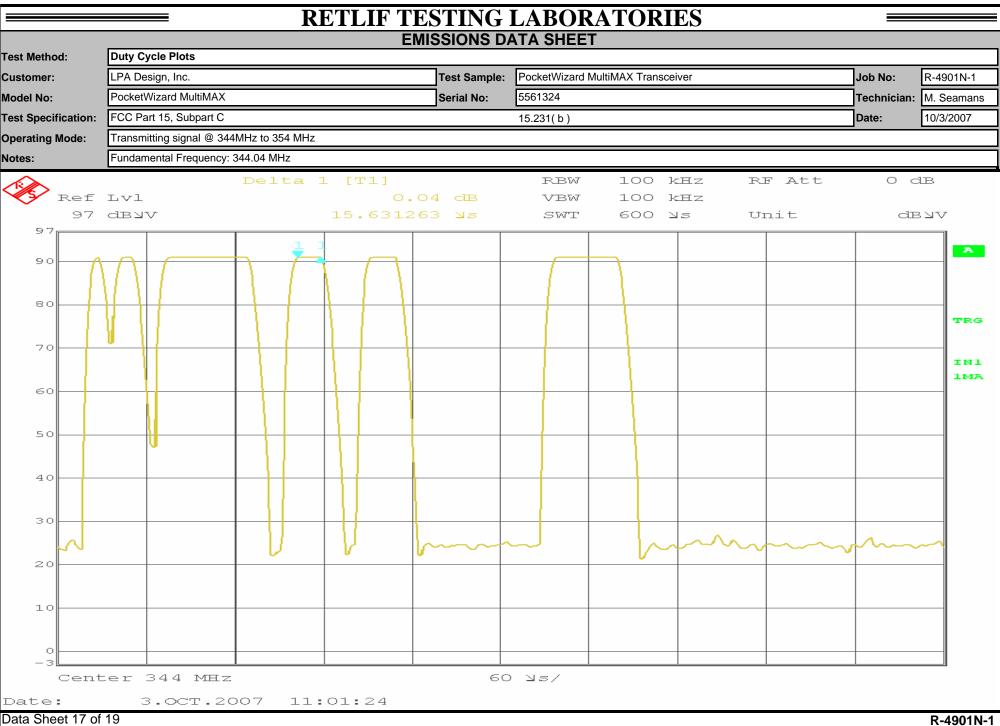

RETLIF TESTING LABORATORIES EMISSIONS DATA SHEET Duty Cycle Plots Test Method: PocketWizard MultiMAX Transceiver LPA Design, Inc. R-4901N-1 Customer: Test Sample: Job No: PocketWizard MultiMAX Model No: Serial No: 5561324 M. Seamans Technician: FCC Part 15, Subpart C Test Specification: Date: 10/3/2007 15.231(b) Transmitting signal @ 344MHz to 354 MHz Operating Mode: Notes: Fundamental Frequency: 344.04 MHz RBW 100 kHz RF Att 0 dB Ref Lvl -0.09 dB VBW 100 kHz 97 dbyv 15.631263 Ns SWT 600 Ys Unit db yv 90 80 TRG 70 IN1 1MA 2MA 60 50 40 30 20 10 Center 344 MHz 60 Ns/ 3.0CT.2007 10:21:18 Date: Data Sheet 6 of 19 R-4901N-1


RETLIF TESTING LABORATORIES EMISSIONS DATA SHEET Duty Cycle Plots Test Method: PocketWizard MultiMAX Transceiver LPA Design, Inc. Job No: R-4901N-1 Customer: Test Sample: PocketWizard MultiMAX Model No: Serial No: 5561324 M. Seamans Technician: FCC Part 15, Subpart C Test Specification: 15.231(b) Date: 10/3/2007 Transmitting signal @ 344MHz to 354 MHz Operating Mode: Fundamental Frequency: 344.04 MHz Notes: Delta 1 [T1] 100 kHz RF Att 0 dB RBW Ref Lvl 0.09 dB VBW 100 kHz 97 dbyv 40.881764 \s 600 Ys Unit dbyv SWT 97 A 90 80 TRG 70 INL 1MA 2MA 60 50 40 30 20 10 Center 344 MHz 60 Ns/ 3.OCT.2007 10:21:58 Date: Data Sheet 7 of 19 R-4901N-1

:hod:	Duty Cycle P						Took Commis	: PocketWizard MultiMAX Transceiver Job No:								D 400
er:	LPA Design, I						Test Sample			IUITIMAX	ranscer	ver				R-490
O:	PocketWizard FCC Part 15,						Serial No:	55613							Technician:	
ecification:	Transmitting s		/I l= to	254 MUS				15.231	15.231(b)						Date:	10/3/2
g Mode:	Transmitting 8	signal & 344h		lta	-1 г	m 1 1		7	RBW	1.0	00 k	·HZ	RE	` Att	0 0	dB
Ref	Lvl		De	ıca	т [.15 dB		VBW			HZ	I/L	ALL		<i>_</i> LD
	dbyv				102		409 <u>V</u> s		SWT		2 00		Un	iit	dī	BIJV
7		1			Τ								T			
0			7													
7	\cap \wedge	~	~		1					$\overline{}$						
1 [MMI		- 1	- [11	1 1				- 1						
	11 11		_		$\dagger \dagger$											
	$W \rightarrow V$		- }	- 1	11					1						
			_		+	+			_							
			- }	- 1		1					1					
0					+	-										
	- 117				$ \cdot \rangle$	ĺ					1					
	 						1				 					
				۱ I							1					
0				<u> </u>	\perp						1					
				U I			[]				1					
				H	1 1						1					
_ 				Ш	[J	Ilma	h			میا	~1~	$\wedge \downarrow$	rown	200	M
							V				90		-		05	
					1											
0					+										+	$-\parallel$

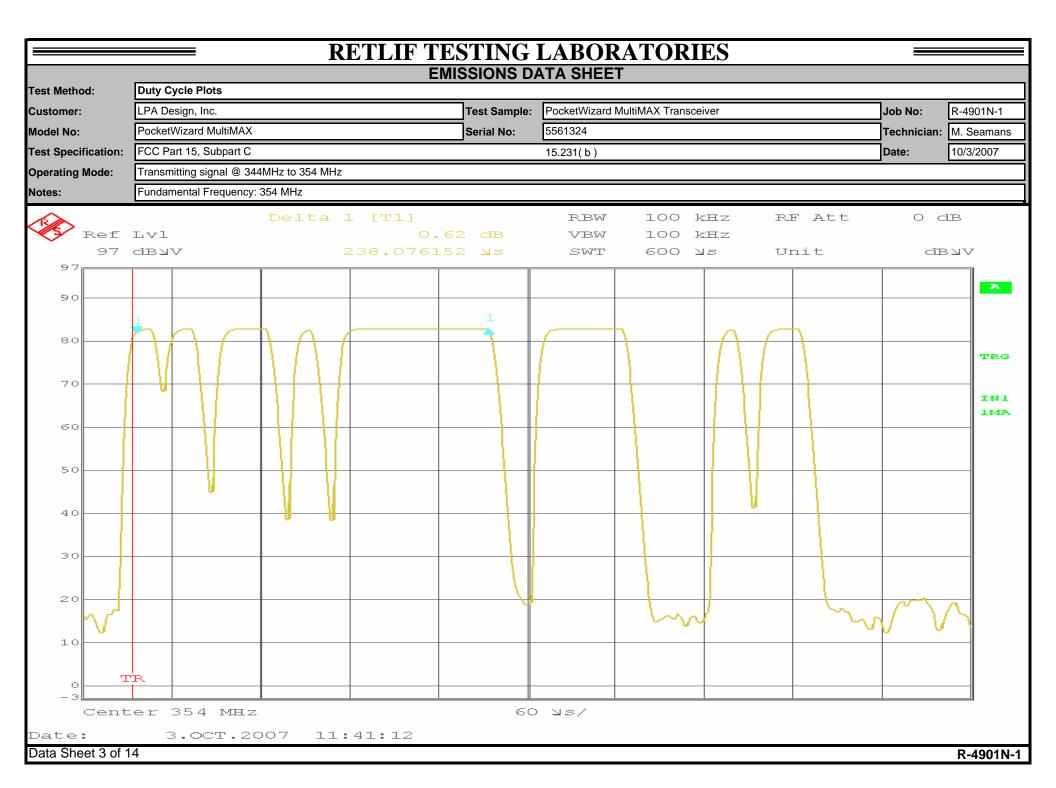

RETLIF TESTING LABORATORIES EMISSIONS DATA SHEET Duty Cycle Plots Test Method: PocketWizard MultiMAX Transceiver LPA Design, Inc. R-4901N-1 Customer: Test Sample: Job No: PocketWizard MultiMAX Model No: Serial No: 5561324 M. Seamans Technician: FCC Part 15, Subpart C Test Specification: Date: 10/3/2007 15.231(b) Transmitting signal @ 344MHz to 354 MHz Operating Mode: Fundamental Frequency: 344.04 MHz Notes: Delta 1 [T1] 100 kHz RF Att dB RBW Ref Lvl 0.01 dB VBW 100 kHz 97 dbyv 16.833667 \s 600 Ys Unit dbyv SWT 97 A 90 80 TRG 70 IN1 1MA 2MA 60 50 40 30 10 Center 344 MHz 60 Ns/ 3.OCT.2007 Date: 10:30:28 Data Sheet 9 of 19 R-4901N-1


RETLIF TESTING LABORATORIES EMISSIONS DATA SHEET Duty Cycle Plots Test Method: PocketWizard MultiMAX Transceiver LPA Design, Inc. R-4901N-1 Customer: Test Sample: Job No: PocketWizard MultiMAX Model No: Serial No: 5561324 M. Seamans Technician: FCC Part 15, Subpart C Test Specification: Date: 10/3/2007 15.231(b) Transmitting signal @ 344MHz to 354 MHz Operating Mode: Notes: Fundamental Frequency: 344.04 MHz RBW 100 kHz RF Att 0 dB Ref Lvl 0.03 dB VBW 100 kHz 97 dbyv 15.631263 Ns SWT 600 Ys Unit db yv 90 TRG 70 IN1 1MA 2MA 60 50 40 30 20 10 Center 344 MHz 60 Ns/ 3.OCT.2007 10:31:01 Date: Data Sheet 10 of 19 R-4901N-1



RETLIF TESTING LABORATORIES EMISSIONS DATA SHEET Duty Cycle Plots Test Method: PocketWizard MultiMAX Transceiver LPA Design, Inc. R-4901N-1 Customer: Test Sample: Job No: PocketWizard MultiMAX Model No: Serial No: 5561324 M. Seamans Technician: FCC Part 15, Subpart C Test Specification: Date: 10/3/2007 15.231(b) Transmitting signal @ 344MHz to 354 MHz Operating Mode: Notes: Fundamental Frequency: 344.04 MHz RBW 100 kHz RF Att 0 dB Ref Lvl 0.01 dB VBW 100 kHz 97 dbyv 15.631263 \s SWT 600 Ys Unit db yv A 90 80 TRG 70 IN1 1MA 60 50 40 30 20 10 TR Center 344 MHz 60 Ns/ 3.OCT.2007 Date: 10:53:31 Data Sheet 13 of 19 R-4901N-1

				EMISSIONS D		ATORIES			
thod:	Duty Cycle Plots								
er:	LPA Design, Inc.			Test Sample:	PocketWizard Mu	Job No:	R-4901N-1 M. Seamans 10/3/2007		
o:	PocketWizard Multi	MAX		Serial No:	5561324	Technician:			
ecification:	FCC Part 15, Subpa	art C			15.231(b)				
ng Mode:	Transmitting signal	@ 344MHz to 354 MHz							
	Fundamental Frequ	ency: 344.04 MHz							
		Delta	1 [T1]		RBW	100 kHz	RF Att	0 d	B
Ref				.10 dB	VBW	100 kHz			
97	db7a		102.204	409 <u>V</u> s	SWT	600 <u>4</u> s	Unit	dB	77
1		1							
0 A	Λ		1			\neg			_
{ }	$I \setminus I \setminus I$	-11 I							
0	 		1 1		\rightarrow				_
	u III		11 1 1						TE
0	"	-++							
	11		11 /	\	1				IN
			13-7						
	U	-		1					
			1 1 1		- 1				
			111						
M			V				~~~	\sim	~~
									$-\parallel$
0									
3L	er 344 M	H 7	1			l l	I		
	CI Daa M				3 2 /				



thod:	Duty Cyc						7_	•	Deal are		L'AAV T			1		D 125	
er:	LPA Design, Inc. PocketWizard MultiMAX							Sample:	PocketWizard MultiMAX Transceiver 5561324							R-4901N	
o:															Technician:		
ecification:		15, Subpart C							15.231(b)					Date:	10/3/20	
ng Mode:		ng signal @ 344															
	Fundame	ntal Frequency: 3															
>			De.	lta	1 [:	r1] _			RB 		100	kHz	RF A	.tt	0 0	dB.	
Ref	GBAA Tat				1 =		.05 d 263 Y		VB SW		100 600	kHz	Unit		~ ∃ ⊤	SUV	
<i></i> 7	<u>ава</u> v				10	. 631						<u> </u>					
						1 1											
° /	\cap		\neg		1	1					7					'	
1 / 1	IM			- [N.	(-)			- 1		- }						
0	 		\vdash	-	₩	/ \			-+		\rightarrow						
	V III		{			1 1					- }					7	
	<u> </u>				Ц		\										
	l II		}		-		\				1					=	
	- !!		\		\prod		1				- }					-	
9																	
	M										- 1						
	U			_			 										
				-1	$ \cdot $						- 1						
							I										
0					+H		-										
				H II	IJ		1		لــا		1	1	~~~		Mm.		
۰				<u> </u>	V		V				V`			~ ~ ~			
0					+												

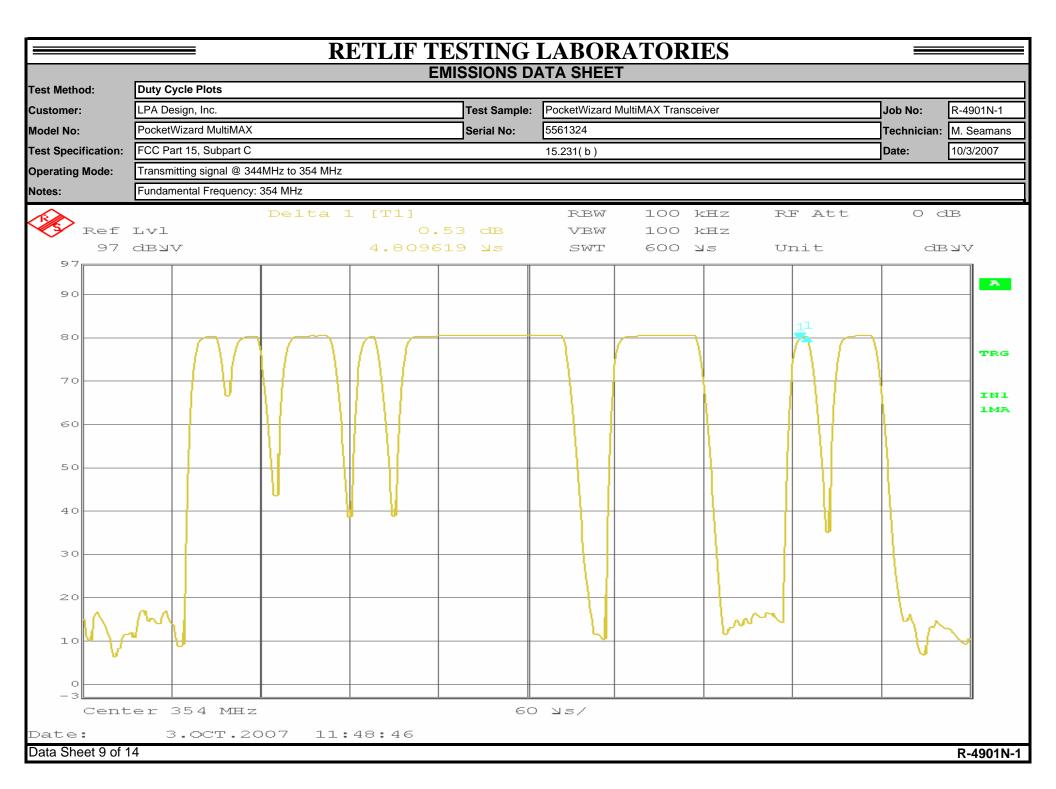
RETLIF TESTING LABORATORIES EMISSIONS DATA SHEET Duty Cycle Plots Test Method: PocketWizard MultiMAX Transceiver LPA Design, Inc. Job No: R-4901N-1 Customer: Test Sample: PocketWizard MultiMAX Model No: Serial No: 5561324 Technician: M. Seamans FCC Part 15, Subpart C Test Specification: 15.231(b) Date: 10/3/2007 Transmitting signal @ 344MHz to 354 MHz Operating Mode: Notes: Fundamental Frequency: 344.04 MHz Delta 1 [T1] RBW 100 kHz RF Att 0 dB Ref Lvl -0.14 dB 100 kHz VBW 97 dbyv 40.881764 \s SWT 600 Ys Unit db yv A 90 80 TRG 70 IN1 1MA 60 50 40 30 20 10 Center 344 MHz 60 Ns/ 3.0CT.2007 11:02:20 Date:

RETLIF TESTING LABORATORIES EMISSIONS DATA SHEET Duty Cycle Plots Test Method: LPA Design, Inc. PocketWizard MultiMAX Transceiver R-4901N-1 Customer: Test Sample: Job No: PocketWizard MultiMAX Model No: 5561324 M. Seamans Serial No: Technician: FCC Part 15. Subpart C Test Specification: Date: 10/3/2007 15.231(b) Transmitting signal @ 344MHz to 354 MHz Operating Mode: Fundamental Frequency: 354 MHz Notes: Delta 1 [T1] RBW 100 kHz RF Att 0 dB Ref Lvl 0.02 dB VBW 100 kHz 97 dbyv 35.270541 ms SWT 100 ms Unit db yv 97 A 90 80 TRG 70 IN1 1MA 60 50 40 30 10 TR Center 354 MHz 10 ms/ 3.0CT.2007 11:28:35 Date: Data Sheet 1 of 14 R-4901N-1

RETLIF TESTING LABORATORIES EMISSIONS DATA SHEET Duty Cycle Plots Test Method: LPA Design, Inc. PocketWizard MultiMAX Transceiver R-4901N-1 Customer: Test Sample: Job No: PocketWizard MultiMAX Model No: 5561324 M. Seamans Serial No: Technician: FCC Part 15. Subpart C Test Specification: Date: 10/3/2007 15.231(b) Transmitting signal @ 344MHz to 354 MHz Operating Mode: Notes: Fundamental Frequency: 354 MHz RBW 100 kHz RF Att 0 dB Ref Lvl 80.62 dByv VBW 100 kHz 97 dbyv 34.446858 ms SWT 100 ms Unit db yv A 90 80 TRG 70 INL 1MA 60 50 40 30 and the state of t 10 TR Center 354 MHz 10 ms/ 3.OCT.2007 11:29:07 Date: Data Sheet 2 of 14 R-4901N-1

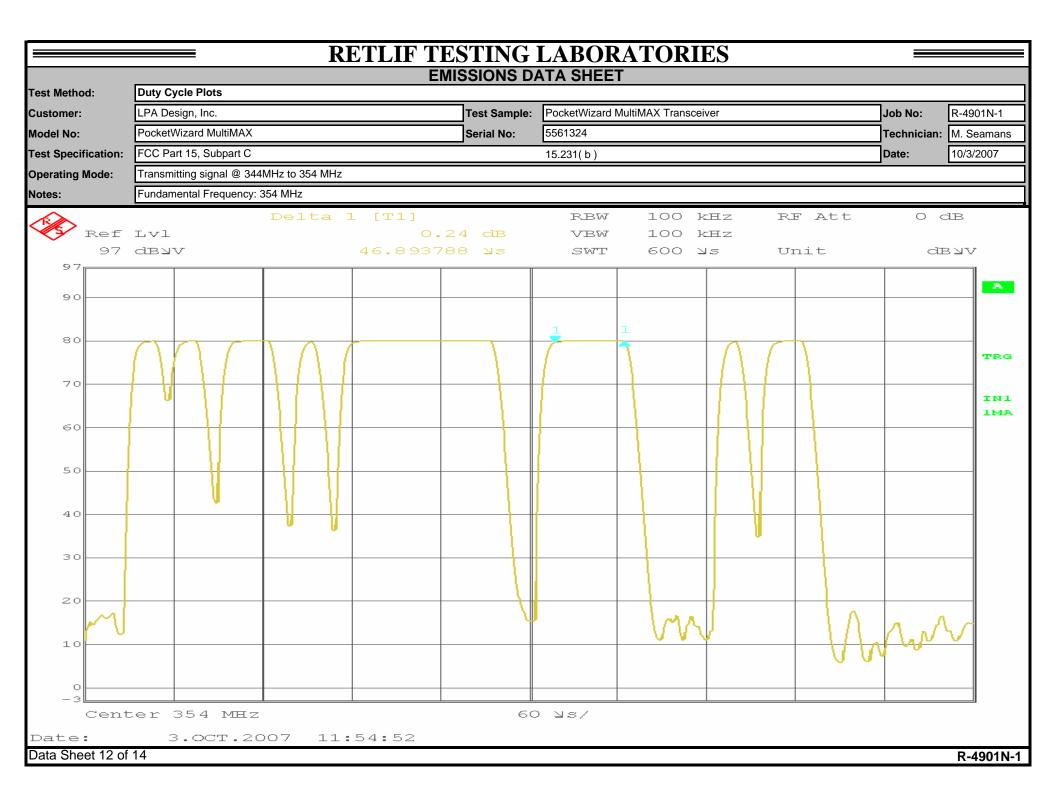
RETLIF TESTING LABORATORIES EMISSIONS DATA SHEET Duty Cycle Plots Test Method: PocketWizard MultiMAX Transceiver LPA Design, Inc. Job No: R-4901N-1 Customer: Test Sample: PocketWizard MultiMAX Model No: Serial No: 5561324 Technician: M. Seamans FCC Part 15, Subpart C Test Specification: 15.231(b) Date: 10/3/2007 Transmitting signal @ 344MHz to 354 MHz Operating Mode: Fundamental Frequency: 354 MHz Notes: Delta 1 [T1] RBW 100 kHz RF Att 0 dB Ref Lvl 0.23 dB 100 kHz VBW 97 dbyv 48.096192 \s SWT 600 Ys Unit db yv 97 A 90 80 TRG 70 IN1 1MA 60 50 40 30 20 10 Center 354 MHz 60 Ns/ 3.0CT.2007 11:41:42 Date: Data Sheet 4 of 14 R-4901N-1

RETLIF TESTING LABORATORIES EMISSIONS DATA SHEET Duty Cycle Plots Test Method: PocketWizard MultiMAX Transceiver LPA Design, Inc. Job No: R-4901N-1 Customer: Test Sample: PocketWizard MultiMAX Model No: Serial No: 5561324 Technician: M. Seamans FCC Part 15, Subpart C Test Specification: Date: 10/3/2007 15.231(b) Transmitting signal @ 344MHz to 354 MHz Operating Mode: Notes: Fundamental Frequency: 354 MHz Delta 1 [T1] RBW 100 kHz RF Att 0 dB Ref Lvl 0.29 dB 100 kHz VBW 97 dbyv 4.809619 \s SWT 600 Ys Unit db 7a 97 A 90 80 TRG 70 IN1 1MA 60 50 40 30 20 10 TR Center 354 MHz 60 Ys/ 3.OCT.2007 Date: 11:42:13 Data Sheet 5 of 14 R-4901N-1

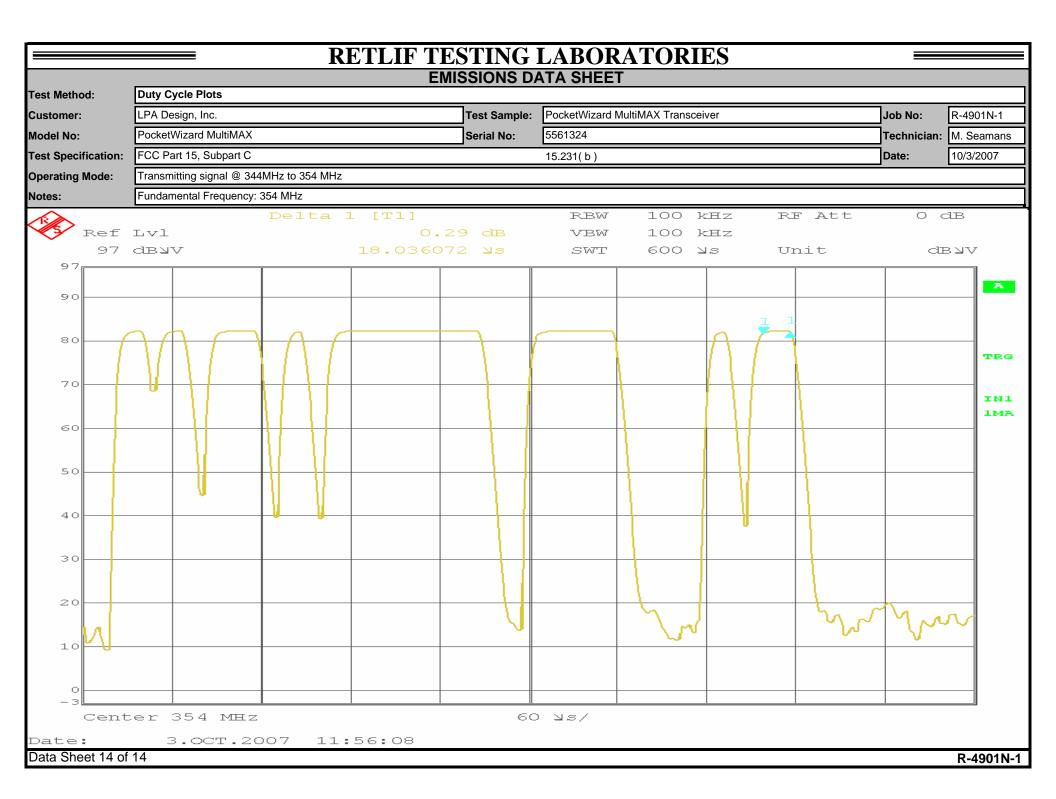

RETLIF TESTING LABORATORIES EMISSIONS DATA SHEET Duty Cycle Plots Test Method: PocketWizard MultiMAX Transceiver LPA Design, Inc. Job No: R-4901N-1 Customer: Test Sample: PocketWizard MultiMAX Model No: Serial No: 5561324 M. Seamans Technician: FCC Part 15, Subpart C Test Specification: Date: 10/3/2007 15.231(b) Transmitting signal @ 344MHz to 354 MHz Operating Mode: Notes: Fundamental Frequency: 354 MHz RBW 100 kHz RF Att 0 dB Ref Lvl 0.25 dB VBW 100 kHz 97 dbyv 19.238477 \s SWT 600 Ys Unit db yv A 90 TRG INL 1MA 60 50 40 30 10 TR Center 354 MHz 60 Ns/ 3.0CT.2007 Date: 11:42:37 Data Sheet 6 of 14 R-4901N-1

RETLIF TESTING LABORATORIES EMISSIONS DATA SHEET Duty Cycle Plots Test Method: PocketWizard MultiMAX Transceiver LPA Design, Inc. R-4901N-1 Customer: Test Sample: Job No: PocketWizard MultiMAX Model No: Serial No: 5561324 M. Seamans Technician: FCC Part 15, Subpart C Test Specification: Date: 10/3/2007 15.231(b) Transmitting signal @ 344MHz to 354 MHz Operating Mode: Fundamental Frequency: 354 MHz Notes: Delta 1 [T1] 100 kHz RF Att 0 dB RBW Ref Lvl 0.31 dBVBW 100 kHz 97 dbyv Unit 241.683367 Ns SWT 600 Ys db 7a 97 90 80 TRG 70 INL 1MA 60 40 30 20 ma Center 354 MHz 60 Ns/ 3.0CT.2007 11:47:55 Date:

R-4901N-1


Data Sheet 7 of 14

hod:	Duty Cycl												
er:	LPA Desig						Test Sample:		MultiMAX Trans	sceiver			R-4901N
o :		ard MultiMAX					Serial No:	5561324				Technician:	
		15, Subpart C						15.231(b)				Date:	10/3/200
g Mode:		ng signal @ 344		MHz									
	Fundamer	ntal Frequency:											
>			Delt	a 1	L []			RBW	100	kHz	RF Att	0 0	iB
Ref							54 dB	VBW		kHz	TT	_1	
9 / 7 	dbyv				50.	. 5010	002 \ Is	SWT	600	4 .s	Unit		37V
o													
									-1	7			
o		α	— —	$\overline{}$	7				-	-	10	\	
		$I \setminus I$	1 /		$ / \rangle$	- [\		1	/		
				\perp						1			
-		ען	N /	- }	I-I	- [\ \ \			131		1
		1	$\mathbb{N}I$	-				} }		l l	1 1		1
			111					1 1		1	7 \ (
		1	W	- 1		VI		\ \		-	- } - \ { -		
o		 	 			 		 					
			U	}	ľ	VI		1 /			- [] - []		
o						N							
											ן ו		
								\					
								1 1			- []	{	
	0 4							1			_		
M.	J~\\							\		Lw	7	1 Y ~	~
	* \							~				 \	~
"													
o													
3 🖳		54 MHz	<u> </u>) <u> </u> s/					



RETLIF TESTING LABORATORIES EMISSIONS DATA SHEET Duty Cycle Plots Test Method: PocketWizard MultiMAX Transceiver LPA Design, Inc. R-4901N-1 Customer: Test Sample: Job No: PocketWizard MultiMAX Model No: Serial No: 5561324 M. Seamans Technician: FCC Part 15, Subpart C Test Specification: 15.231(b) Date: 10/3/2007 Transmitting signal @ 344MHz to 354 MHz Operating Mode: Fundamental Frequency: 354 MHz Notes: RBW 100 kHz RF Att Ref Lvl 0.66 dB VBW 100 kHz 97 dbyv 19.238477 \s 600 Ys Unit dbyv SWT A 90 80 TRG IN1 1MA 50 40 30 Center 354 MHz 60 Ns/ 3.OCT.2007 Date: 11:49:12 Data Sheet 10 of 14 R-4901N-1

RETLIF TESTING LABORATORIES EMISSIONS DATA SHEET Duty Cycle Plots Test Method: PocketWizard MultiMAX Transceiver LPA Design, Inc. R-4901N-1 Customer: Test Sample: Job No: PocketWizard MultiMAX Model No: Serial No: 5561324 M. Seamans Technician: FCC Part 15, Subpart C Test Specification: 15.231(b) Date: 10/3/2007 Transmitting signal @ 344MHz to 354 MHz Operating Mode: Fundamental Frequency: 354 MHz Notes: Delta 1 [T1] RBW 100 kHz RF Att 0 dB Ref Lvl 0.03 dB VBW 100 kHz 97 dbyv 235.671343 Ns SWT 600 Ys Unit dbyv A 90 TRG IN1 1MA 60 50 30 20 10 Center 354 MHz 60 Ns/ 3.0CT.2007 Date: 11:54:23 Data Sheet 11 of 14 R-4901N-1

RETLIF TESTING LABORATORIES EMISSIONS DATA SHEET Duty Cycle Plots Test Method: PocketWizard MultiMAX Transceiver LPA Design, Inc. R-4901N-1 Customer: Test Sample: Job No: PocketWizard MultiMAX Model No: Serial No: 5561324 M. Seamans Technician: FCC Part 15, Subpart C Test Specification: Date: 10/3/2007 15.231(b) Transmitting signal @ 344MHz to 354 MHz Operating Mode: Notes: Fundamental Frequency: 354 MHz RBW 100 kHz RF Att 0 dB Ref Lvl -0.29 dB VBW 100 kHz 97 dbyv 3.607214 Ns SWT 600 Ys Unit db yv A 90 80 TRG 70 INL 1MA 60 50 40 30 20 10 Center 354 MHz 60 Ys/ 3.OCT.2007 11:55:44 Date: Data Sheet 13 of 14 R-4901N-1

