CERTIFICATE OF COMPLIANCE FCC PART 90 CERTIFICATION

Test Lab:

CELLTECH RESEARCH INC.

Testing and Engineering Services

1955 Moss Court Kelowna, B.C. Canada V1Y 9L3

Phone: 250 - 860-3130 Fax: 250 - 860-3110 Toll Free: 1-877-545-6287

e-mail: info@celltechlabs.com web site: www.celltechlabs.com

Applicant Information:

ITRONIX CORPORATION

801 South Stevens Street Spokane, WA 99024 Contact: Fred Phillips

FCC Classification: Licensed Non-Broadcast Station Transmitter (TNB)

FCC Rule Part(s): §90, §2

FCC ID: KBCIX550RIM802

Model(s): IX550

Equipment Type: Rugged Laptop PC with RIM 802 DataTAC Radio Modem

Tx Frequency Range: 806 - 821 MHz Rx Frequency Range: 851 - 870 MHz Max. RF Output Power: 1.13 Watts (ERP)

Frequency Tolerance: 2.5 PPM Emission Designator: 20K0F1D Antenna Type: Dipole

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Celltech Research Inc. certifies that no party to this application has been denied FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a).

Shawn McMillen General Manager

Celltech Research Inc.

TABLE OF CONTENTS

1.1	GENERAL INFORMATION	1
2.1	MEASUREMENT PROCEDURES	2
	Occupied Bandwidth (2.1049)	2
	Spurious/Harmonic Emissions at Antenna Terminal (2.1051)	3
	Radiated Spurious & Harmonic Emissions (2.1053)	3
	Frequency Stability/Temperature Variation (2.1055)	3
3.1	TEST DATA	4
	Effective Radiated Power Output	4
	Field Strength of Spurious Radiation	5-6
	Frequency Stability	7-8
4.1	LIST OF TEST EQUIPMENT	9
5.1	CONCLUSION	10

ATTACHMENT A: COVER LETTER(S)

ATTACHMENT B: ATTESTATION STATEMENT(S)

ATTACHMENT C: TEST REPORT ATTACHMENT D: TEST PLOTS

ATTACHMENT E: FCC ID LABEL & LOCATION
ATTACHMENT F: TEST SETUP PHOTOGRAPHS
ATTACHMENT G: EXTERNAL EUT PHOTOGRAPHS
INTERNAL EUT PHOTOGRAPHS

ATTACHMENT I: BLOCK DIAGRAM(S)
ATTACHMENT J: CIRCUIT DIAGRAMS
ATTACHMENT K: CIRCUIT DESCRIPTION

ATTACHMENT L: PARTS LIST

ATTACHMENT M: TUNE UP PROCEDURE

ATTACHMENT N: ANTENNA SPECIFICATIONS ATTACHMENT O: OPERATIONAL DESCRIPTION

ATTACHMENT P: USER'S MANUAL

ATTACHMENT Q: SAR MEASUREMENT REPORT ATTACHMENT R: MPE MEASUREMENT REPORT

1

FCC PART 90 MEASUREMENT REPORT

1.1 SCOPE

Measurement and determination of electromagnetic emissions (EME) from radio frequency devices for compliance with the technical rules and regulations of the Federal Communications Commission.

§2.1033(a) General Information

APPLICANT:

ITRONIX CORPORATION 801 South Stevens Street Spokane, WA 99024

Attn: Fred Phillips, Certification Engineer

Phone: 509-742-1506 Fax: 509-626-4204

FCC ID	KBCIX550RIM802
Model(s)	IX550
EUT Type	Rugged Laptop PC with RIM 802 DataTAC Radio Modem
Classification	Licensed Non-Broadcast Station Transmitter (TNB)
Rule Part(s)	§90, §2
Application Type	Part 90 Certification
Max. RF Output Power	1.13 Watts (ERP)
Tx Freq. Range	806 - 821 MHz
Rx Freq. Range	851 - 870 MHz
Emission Designator	20K0F1D
Signal Modulation	FSK
Modes Tested	Unmodulated Carrier, RD-LAP, MDC

2.1 MEASUREMENT PROCEDURES

2.2 *OCCUPIED BANDWIDTH - §2.1049(c)*

The antenna output terminal of the EUT was connected to the input of a 50Ω spectrum analyzer through a matched 30dB attenuator. The radio transmitter was operating at maximum output power with and without internal data modulation.

Test Results

A. UNMODULATED CARRIER - High power

30.0dBm conducted power with a 30dB matched attenuator and coaxial cable with a total loss of 1.0dB.

B. INTERNAL MODULATION

Please see attached test plots. 100% of the in-band modulation is below the specified mask per 90.210(j).

Emission Mask: 806 - 821 MHz (DataTAC)

FREQUENCY (MHz)	FORMULA	LIMIT (dBc)
-26500	43+10 log (P)	- 46
-0.050	43+10 log (P)	- 46
-0.050	50+10 log (P)	- 53
-0.0175	116 log (f _d / 6.1)	- 53
-0.010	116 log (f _d / 6.1) or 83 log ((f _d / 5)	- 25
-0.005	83 log ((f _d / 5)	0.0
0.005	83 log ((f _d / 5)	0.0
0.010	116 log (f _d / 6.1) or 83 log ((f _d / 5)	- 25
0.0175	116 log (f _d / 6.1)	- 53
0.050	50+10 log (P)	- 53
0.050	43+10 log (P)	- 46
26500	43+10 log (P)	- 46

2.3 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL - §2.1051

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from 10MHz to 20GHz. The antenna output terminal of the EUT was connected to the input of a 50Ω spectrum analyzer through a matched 30dB attenuator and coaxial cable. The transmitter was operating at maximum power with and without internal data modulation.

2.4 RADIATED SPURIOUS AND HARMONIC EMISSIONS - §2.1053

Radiated and harmonic emissions above 1 GHz were measured at our 3-meter outdoor site. The EUT is placed on the turntable with the transmitter transmitting into a non-radiating load. A receiving antenna located 3 meters from the turntable receives any signal radiated from the transmitter and its operating accessories. The receiving antenna is varied from 1 to 4 meters and the polarization is varied (horizontal and vertical) to determine the worst-case emission level.

2.5 FREQUENCY STABILITY / TEMPERATURE VARIATION - §2.1055

The frequency stability of the transmitter is measured by:

- a) Temperature: The temperature is varied from -30°C to +60°C using an environmental chamber.
- b) Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied. The EUT is tested down to the battery endpoint.

 $Specification-The\ minimum\ frequency\ stability\ shall\ be\ +/-\ 0.00025\%\ at\ any\ time\ during\ normal\ operation.$

Time Period and Procedure:

- 1. The carrier frequency of the transmitter and the individual oscillators is measured at room temperature (25°C to 27°C to provide a reference).
- 2. The equipment is subjected to an overnight "soak" at -30°C without any power applied.
- 3. After the overnight "soak" at -30°C (usually 14-16 hours), the equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter and the individual oscillators is made within a three-minute interval after applying power to the transmitter.
- 4. Frequency measurements were made at 10°C intervals up to +60°C then back to room temperature. A minimum period of one and one half-hour is provided to allow stabilization of the equipment at each temperature level.

3.1 TEST DATA

3.2 EFFECTIVE RADIATED POWER OUTPUT - §2.1046

Freq. Tuned	EUT Conducted Power	Max. Field Strength of EUT (dBm)	Dipole Gain	Dipole Forward Conducted Power	ERP of EUT Dipole Gain + Dipole Forward Conducted Power	
(MHz)	(dBm)	(V)	(dBd)	(dBm)	dBm	Watts
806	33.0	-10.08	-1.74	32.27	30.53	1.13
821	33.0	-11.48	-1.54	31.82	30.28	1.07

Notes:

ERP Measurements by Substitution Method:

The EUT was placed on a turntable 3-meters from the receive antenna. The field of maximum intensity was found by rotating the EUT approximately 360 degrees and changing the height of the receive antenna from 1 to 4 meters. The field strength was recorded from a calibrated spectrum analyzer for each channel being tested. A half-wave dipole was substituted in place of the EUT. The dipole was fed through a directional coupler and the power at the coupler port was monitored. A signal generator and power amplifier controlled the dipole, and the input level of the dipole was adjusted to the same field strength level as the EUT. The feed point for the dipole was then connected to a calibrated power meter and the power adjusted to read the same as the coupler port previously recorded, this is to account for any mismatch in impedance, which may occur at the dipole antenna. The conducted power at the antenna feed point was recorded. The forward power for the dipole was then determined and the ERP level was determined by adding the forward dipole power and the dipole gain in dB. For readings above 1GHz the above method is repeated using standard gain horn antennas.

3.3 FIELD STRENGTH OF SPURIOUS RADIATION - §2.1053

Operating Frequency: 806 MHz

Channel: Low

Measured Conducted Power: 33.0 dBm

Modulation: unmodulated carrier

Distance: 3 meters

Limit: $43 + 10 \log_{10} (W) = 39.47 \text{ dBc}$

Frequency (MHz)	Level (dBm)	Horn Forward Cond. Pwr. (dBm)	Standard-Gain Horn Antenna Gain (dBi)	POL (H/V)	EIRP (dBm)	ERP (dBm)	dBc
1612	≤ - 81.03	- 54.25	6.6	V	- 47.65	- 49.79	80.32
2418	≤ - 90.07	- 56.19	7.8	V	- 48.39	- 50.53	81.06
3224	≤ - 101.45	- 74.13	7.75	V	- 66.38	- 68.52	99.05
4030	≤ - 102.53	- 77.65	7.6	V	- 70.05	- 72.19	102.72
4836	≤ - 103.57	- 80.74	8.5	V	- 72.24	- 74.38	104.91
5642	<u>≤</u> - 104.76	- 75.95	8.8	V	- 67.15	- 69.29	99.82
6448	≤ - 103.31	- 66.66	9.6	V	- 57.06	- 59.20	89.73
7254	≤ - 102.88	- 65.72	9.0	V	- 56.72	- 58.86	89.39
8060	≤ - 103.41	- 69.60	9.3	V	- 60.30	- 62.52	93.05

Notes:

Radiated Measurements by Substitution Method:

The EUT was placed on a turntable 3-meters from the receive antenna. The field of maximum intensity was found by rotating the EUT approximately 360 degrees and changing the height of the receive antenna from 1 to 4 meters. The field strength was recorded from a calibrated spectrum analyzer for each channel being tested. A standard gain horn antenna was substituted in place of the EUT. The antenna was fed through a directional coupler and the power at the coupler port was monitored. A signal generator and power amplifier controlled the antenna, and the input level of the antenna was adjusted to the same field strength level as the EUT. The feed point for the antenna was then connected to a calibrated power meter and the power adjusted to read the same as the coupler port previously recorded, this is to account for any mismatch in impedance, which may occur at the horn antenna. The conducted power at the antenna feed point was recorded. The forward power for the antenna was then determined and the EIRP level was determined by adding the forward power and the antenna gain in dB.

Operating Frequency: 821 MHz

Channel: High

Measured Conducted Power: 33.0 dBm

Modulation: unmodulated carrier

Distance: 3 meters

Limit: $43 + 10 \log_{10} (W) = 39.47 \text{ dBc}$

Frequency (MHz)	Level (dBm)	Horn Forward Cond. Pwr. (dBm)	Standard-Gain Horn Antenna Gain (dBi)	POL (H/V)	EIRP (dBm)	ERP (dBm)	dBc
1642	≤ - 70.42	- 53.05	6.6	V	- 46.45	- 48.59	78.87
2463	≤ - 88.91	- 55.83	7.8	V	- 48.03	- 50.17	80.45
3284	≤ -105.01	- 78.52	7.75	V	- 70.77	- 72.91	103.19
4105	≤ -103.34	- 76.88	7.6	V	- 64.28	- 66.42	96.70
4926	≤ - 104.47	- 74.14	8.5	V	- 65.64	- 67.78	98.06
5747	≤ - 102.15	- 71.84	8.8	V	- 60.04	- 62.18	92.46
6568	≤ - 103.04	- 69.56	9.6	V	- 49.96	- 52.10	82.38
7389	≤ - 104.38	- 68.72	9.0	V	- 53.40	- 55.54	85.82
8210	≤ - 105.34	- 70.29	9.3	V	- 58.99	- 61.13	85.09

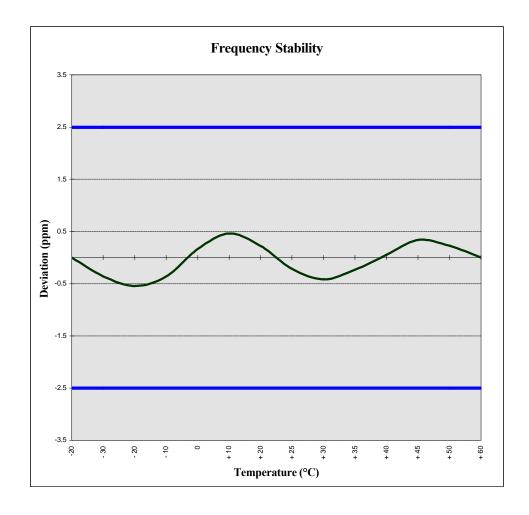
Notes:

Radiated Measurements by Substitution Method:

The EUT was placed on a turntable 3-meters from the receive antenna. The field of maximum intensity was found by rotating the EUT approximately 360 degrees and changing the height of the receive antenna from 1 to 4 meters. The field strength was recorded from a calibrated spectrum analyzer for each channel being tested. A standard gain horn antenna was substituted in place of the EUT. The antenna was fed through a directional coupler and the power at the coupler port was monitored. A signal generator and power amplifier controlled the antenna, and the input level of the antenna was adjusted to the same field strength level as the EUT. The feed point for the antenna was then connected to a calibrated power meter and the power adjusted to read the same as the coupler port previously recorded, this is to account for any mismatch in impedance, which may occur at the horn antenna. The conducted power at the antenna feed point was recorded. The forward power for the antenna was then determined and the EIRP level was determined by adding the forward power and the antenna gain in dB.

3.4 FREQUENCY STABILITY - § 2.1055

Operating Frequency: 815,000,000 Hz

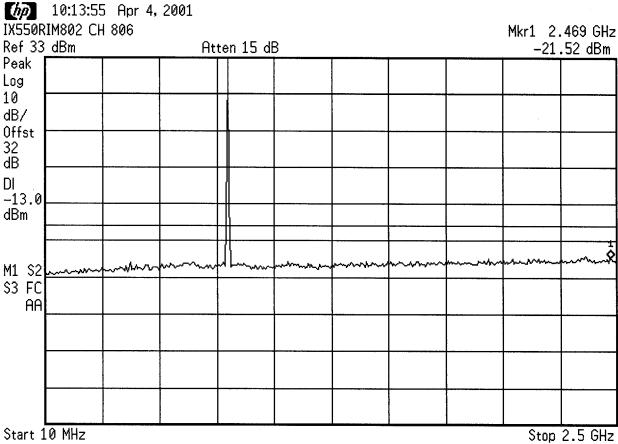

Channel: Mid

Reference Voltage: 4.75 VDC

Deviation Limit: ± 0.00025 % or 2.5 ppm

VOLTAGE	POWER	TEMP	FREQ.	Deviation
(%)	(VDC)	(°C)	(Hz)	(%)
100 %	4.75	+ 20 (Ref)	815000000	0.00000000
100 %		- 30	815000291.8	-0.00000036
100 %		- 20	815000443.4	-0.00000054
100 %		- 10	815000295.5	-0.00000036
100 %		0	814999865.9	0.0000016
100 %		+ 10	814999623.1	0.0000046
100 %		+ 20	814999819.3	0.00000022
100 %		+ 25	815000177.6	-0.00000022
100 %		+ 30	815000340.2	-0.00000042
100 %		+ 35	815000189.7	-0.00000023
100 %		+ 40	814999956.2	0.00000005
85 %	N/A	+ 45	814999725.2	0.00000034
115 %	N/A	+ 50	814999816.3	0.00000023
BATT. ENDPOINT	N/A	+ 60	815000000	0.00000000

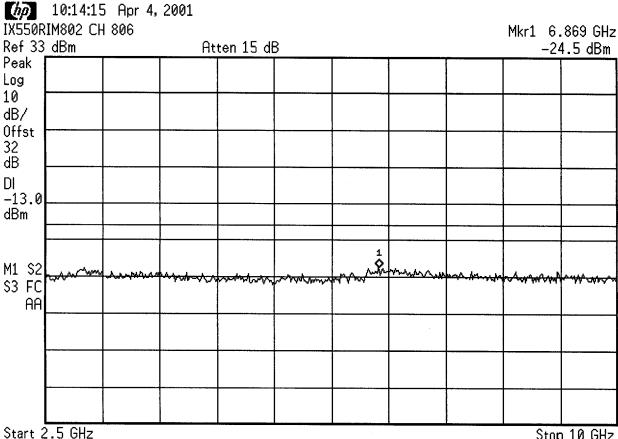
FREQUENCY STABILITY - § 2.1055


4.1 TEST EQUIPMENT

<u>Type</u>	Model	Calib. Date	Serial No.
Signal Generator	HP 8648D (9kHz-4.0GHz)	Nov 1999	3847A00611
Gigatronics Power Meter	8652A	Oct 1999	1835272
Gigatronics Power Sensor (2)	80701A (0.05-18GHz)	Oct 1999	1833535, 1833542
Amplifier Research Power Amp.	5S1G4 (5W, 800MHz-4.2GHz)	N/A	26235
Microwave System Amplifier	HP 83017A (0.5-26.5GHz)	N/A	3123A00587
Network Analyzer	HP 8753E (30kHz-3GHz)	Nov 1999	US38433013
Audio Analyzer	HP 8903B	March 1999	3729A18691
Modulation Analyzer	HP 8901A	March 1999	3749A07154
Frequency Counter	HP 53181A (3GHz)	May 1999	3736A05175
CDMA Base Station Test Set	Agilent E8285A	N/A	US40332926
DC Power Supply	HP E3611A	N/A	KR83015294
Multi-Device Controller	EMCO 2090	N/A	9912-1484
Mini Mast	EMCO 2075	N/A	0001-2277
Turntable	EMCO 2080-1.2/1.5	N/A	0002-1002
Double Ridged Horn Antenna	ETS 3115 (1-18GHz)	Oct. 2000	6267
Double Ridged Horn Antenna	ETS 3115 (1-18GHz)	Oct. 2000	6276
Horn Antenna	Chase BBHA 9120-A (0.7-4.8GHz)	Sept 1998	9120A-239
Horn Antenna	Chase BBHA 9120-A (0.7-4.8GHz)	Sept 1998	9120A-240
Roberts Dipoles	Compliance Design (2 sets) 3121C	June 2000	
Spectrum Analyzer	HP 8594E	March 2000	3543A02721
Spectrum Analyzer	HP E4408B	Nov 1999	US39240170
Shielded Screen Room	Lindgren R.F. 18W-2/2-0	N/A	16297
Environmental Chamber	ESPEC ECT-2 (Temperature/Humidity)	Feb 2000	0510154-B

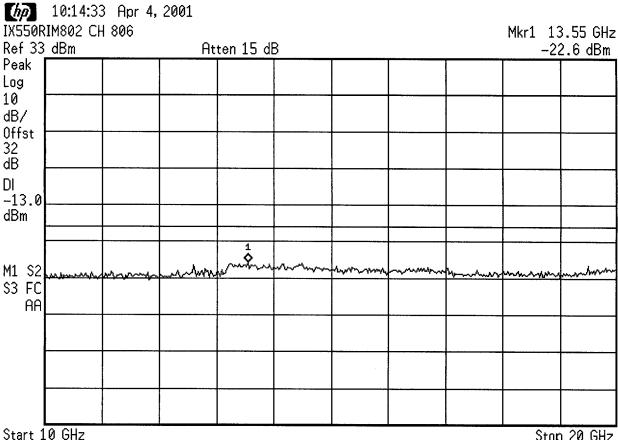
5.1 CONCLUSION

The data collected shows that the Itronix IX550 Rugged Laptop PC with RIM 802 DataTAC Radio Modem FCC ID: KBCIX550RIM802 complies with all the requirements of Parts 2 and 90 of the FCC rules.


TEST PLOTS

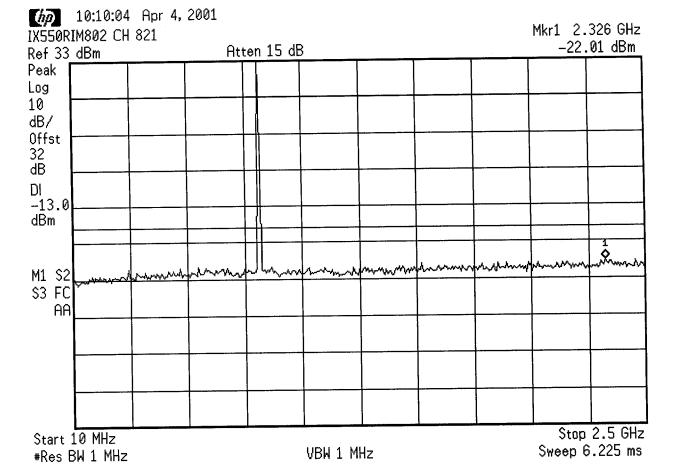
#Res BW 1 MHz

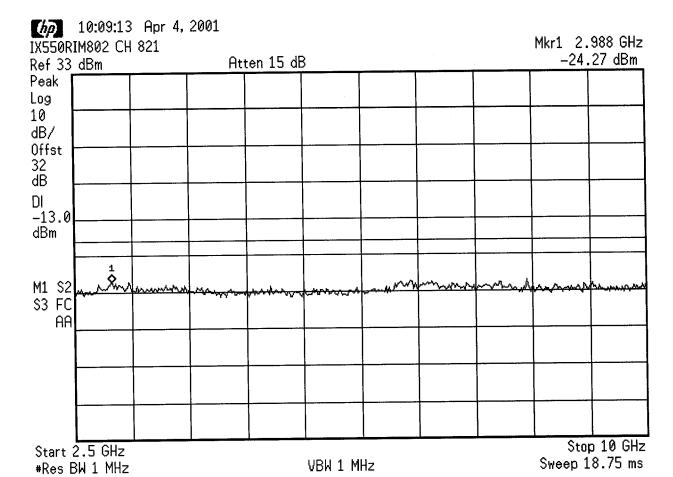
VBW 1 MHz

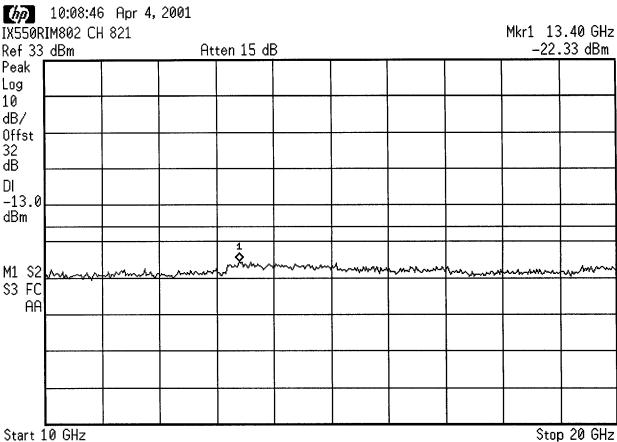

Stop 2.5 GHz Sweep 6.225 ms

*Res BW 1 MHz

VBW 1 MHz

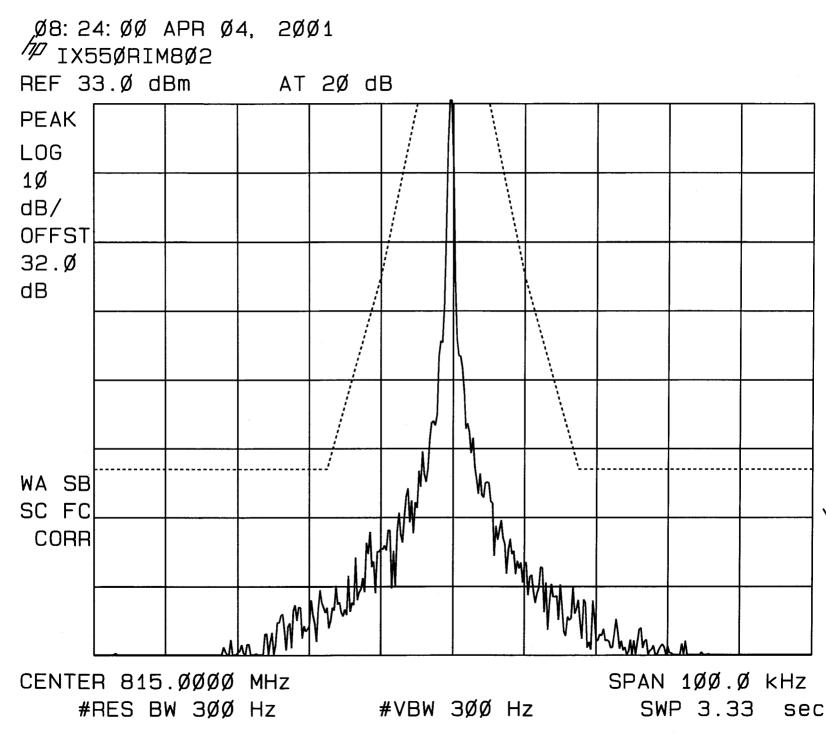

Stop 10 GHz Sweep 18.75 ms

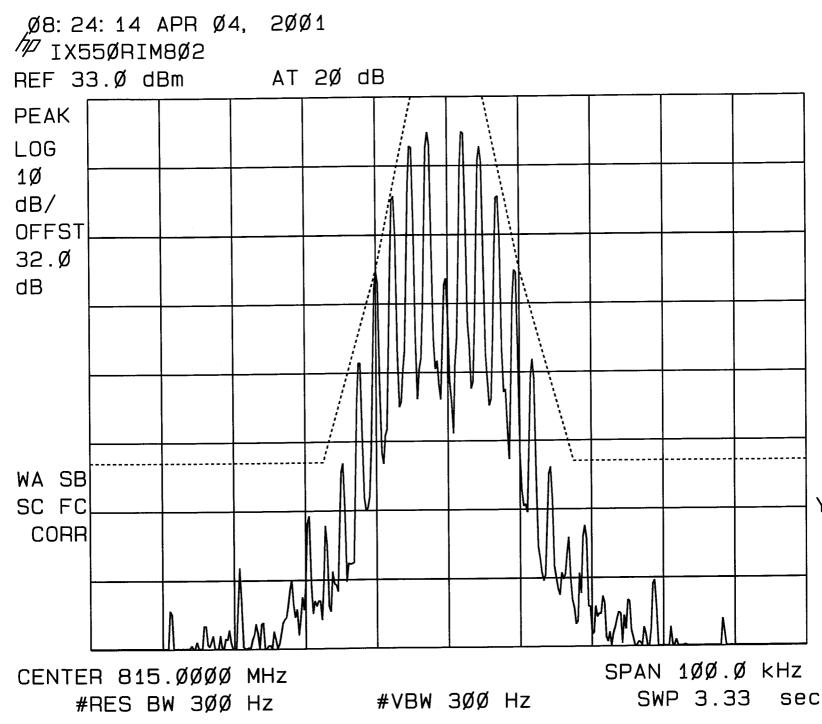



Start 10 GHz #Res BW 1 MHz

VBW 1 MHz

Stop 20 GHz Sweep 100 ms





#Res BW 1 MHz

VBW 1 MHz

Stop 20 GHz Sweep 100 ms

