

Test Report Serial No .:	100305KBC-T675-S15W		Report Issue Date:	January 19, 2006
Date(s) of Evaluation:	June 09, 2005		Report Issue No.:	S675W-011906-R0
Type of Evaluation:	RF Exposure SAR		FCC 47 CFR 2.1093	IC RSS-102 Issue 2

APPENDIX F - PROBE CALIBRATION

Applicant:	Itronix	Corporation	FCC ID:	KBCIX325A580IWLBT	IC ID:	1943A-IX325f	ITRONIX"
Model:	IX325A5	25A580IWLBT Rugged Table		olet PC with Intel Pro 2200BG 802.11b/g WLAN Min		LAN Mini-PCI Card	
2006 Celltech	2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 30 of 32						

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Client Celltech		Certificate No: E	T3-1590_May05
CALIBRATION C	ERTIFICAT		
Object	ET3DV6 - SN:1	5 90	
Calibration procedure(s)	QA CAL-01.v5 Calibration proce	edure for dosimetric E-field probes	
Calibration date:	May 20, 2005		
Condition of the calibrated item	In Tolerance		
The measurements and the unce	ertainties with confidence	tional standards, which realize the physical units o probability are given on the following pages and ar ory facility: environment temperature (22 ± 3)°C ar	e part of the certificate.
	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Primary Standards Power meter E4419B	GB41293874	3-May-05 (METAS, No. 251-00466)	May-06
Power sensor E4419B	MY41495277	3-May-05 (METAS, No. 251-00466)	May-06
Power sensor E4412A	MY41498087	3-May-05 (METAS, No. 251-00466)	May-06
Reference 3 dB Attenuator	SN: S5054 (3c)	10-Aug-04 (METAS, No. 251-00403)	Aug-05
Reference 20 dB Attenuator	SN: S5086 (20b)	3-May-05 (METAS, No. 251-00467)	May-06
Reference 30 dB Attenuator	SN: S5129 (30b)	10-Aug-04 (METAS, No. 251-00404)	Aug-05
Reference Probe ES3DV2	SN: 3013	7-Jan-05 (SPEAG, No. ES3-3013_Jan05)	Jan-06
DAE4	SN: 617	19-Jan-05 (SPEAG, No. DAE4-617_Jan05)	Jan-06
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Dec-03)	In house check: Dec-05
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Nov-04)	In house check: Nov 05
	Name	Function	Signature
Calibrated by:	Nico Vetterli	Laboratory Technician	N.Velta
Approved by:	Katja Pokovic	Technical Manager	Richtyn
This calibration certificate shall n	ot be reproduced except	in full without written approval of the laboratory.	Issued: May 21, 2005

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization φ	ϕ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- *NORMx*, *y*, *z*: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: • R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMX.v.z does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z * frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, v, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or • Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ET3DV6

SN:1590

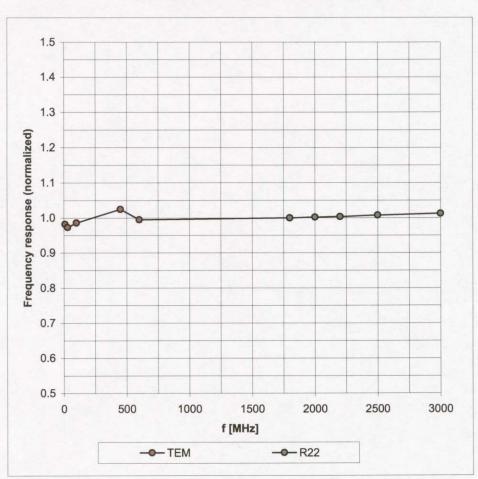
Manufactured: Last calibrated: Recalibrated: March 19, 2001 May 24, 2004 May 20, 2005

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1590

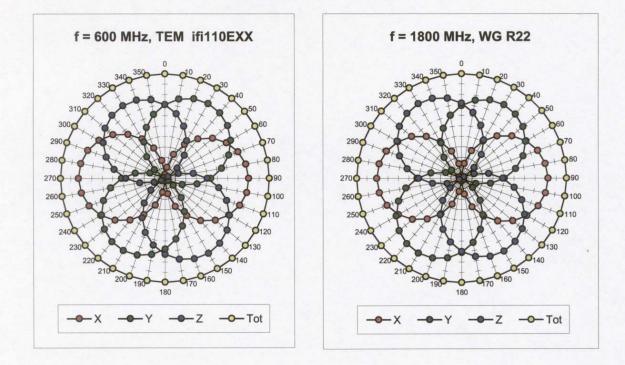
Sensitivity in Free	e Space ^A		Diode C	ompression ^B
NormX	1.82 ± 10.1%	μV/(V/m) ²	DCP X	87 mV
NormY	1.97 ± 10.1%	μV/(V/m) ²	DCP Y	87 mV
NormZ	1.70 ± 10.1%	μV/(V/m) ²	DCP Z	87 mV
Sensitivity in Tiss	ue Simulating Li	quid (Convers	ion Factors)	
Please see Page 8.				

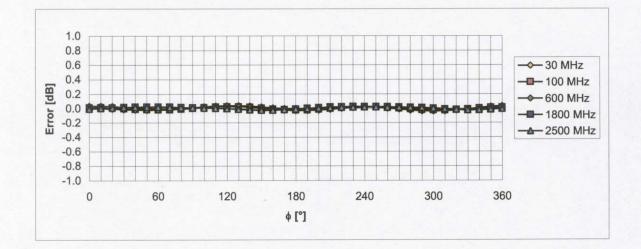

Boundary Effect

TSL	g	00 MHz	Typical SAR gradient: 5 %	o per mm	
	Sensor Cente	r to Phanto	om Surface Distance	3.7 mm	4.7 mm
	SAR _{be} [%]	Withou	t Correction Algorithm	7.6	3.9
	SAR _{be} [%]	With Co	orrection Algorithm	0.1	0.2
TSL	18	10 MHz	Typical SAR gradient: 10	% per mm	
	Sensor Cente	er to Phanto	om Surface Distance	3.7 mm	4.7 mm
	SAR _{be} [%]	Withou	t Correction Algorithm	11.8	8.3
	SAR _{be} [%]	With Co	orrection Algorithm	0.6	0.1
Sens	or Offset				
	Probe Tip to S	Sensor Cer	nter	2.7 mm	

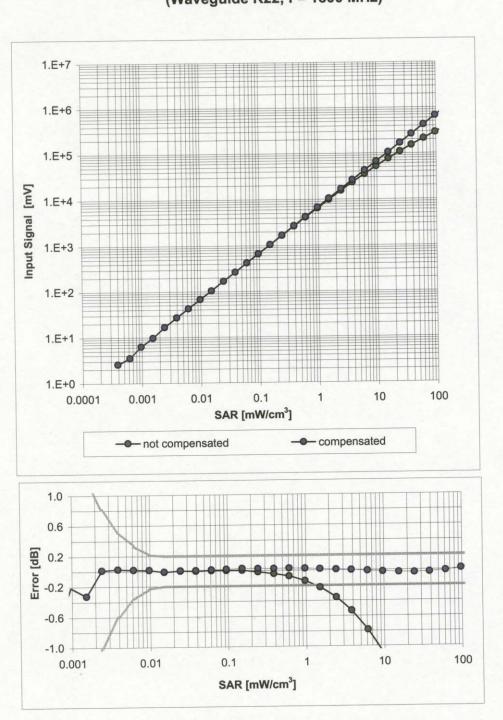
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

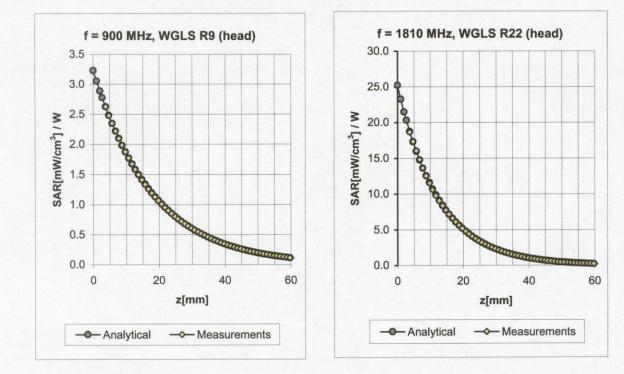

^B Numerical linearization parameter: uncertainty not required.


Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ **),** ϑ = 0°


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

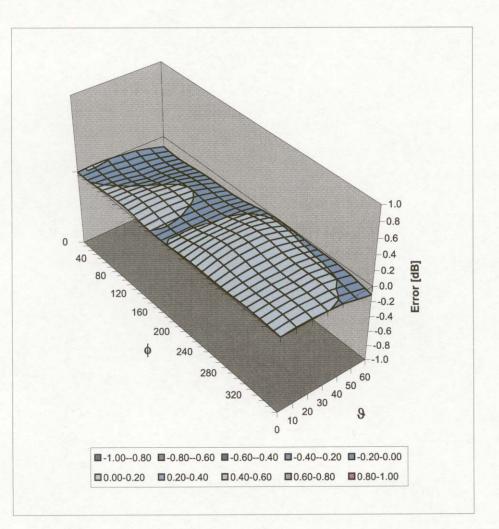
Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

ET3DV6 SN:1590

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.54	1.81	6.67 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.46	2.62	5.44 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.50	2.53	4.56 ± 11.8% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.46	2.09	6.47 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.44	3.00	4.85 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.50	2.42	4.22 ± 11.8% (k=2)


^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

May 20, 2005

ET3DV6 SN:1590

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Additional Conversion Factors

for Dosimetric E-Field Probe

Туре:	ET3DV6
Serial Number:	1590
Place of Assessment:	Zurich
Date of Assessment:	May 23, 2005
Probe Calibration Date:	May 20, 2005

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Than's May-

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6 SN:1590

Conversion factor (± standard deviation)

f = 150 MHz	ConvF	9.1 ± 10%	$\varepsilon_r = 52.3 \pm 5\%$ $\sigma = 0.76 \pm 5\% \text{ mho/m}$ (head tissue)
f = 300 MHz	ConvF	8.1 ± 9%	$\epsilon_r = 45.3 \pm 5\%$ $\sigma = 0.87 \pm 5\% \text{ mho/m}$ (head tissue)
f = 450 MHz	ConvF	7.8 ± 8%	$\epsilon_r = 43.5 \pm 5\%$ $\sigma = 0.87 \pm 5\% \text{ mho/m}$ (head tissue)
f = 150 MHz	ConvF	8.6 ± 10%	$\epsilon_r = 61.9 \pm 5\%$ $\sigma = 0.80 \pm 5\% \text{ mho/m}$ (body tissue)
f = 450 MHz	ConvF	7.7 ± 8%	$\varepsilon_r = 56.7 \pm 5\%$ $\sigma = 0.94 \pm 5\% \text{ mho/m}$ (body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also Section 4.7 of the DASY4 Manual.