

RF EXPOSURE EVALUATION

SPECIFIC ABSORPTION RATE

2.4 GHz

SAR TEST REPORT

FOR

ITRONIX CORPORATION

IX325 SERIES RUGGED TABLET PC WITH CISCO AIR-CB21AG-A-K9 802.11abg WLAN

MODEL: IX325-CWL

FCC ID: KBCIX325-CWL

IC: 1943A-IX325ab

Test Report Serial Number 040505KBC-F632-S15Wbg

<u>Test Report Issue No.</u>

S632Wbg-032806-R0

Test Lab

Celltech Compliance Testing & Engineering Lab (Celltech Labs Inc.) 1955 Moss Court Kelowna, BC Canada V1Y 9L3

Test Report Prepared By:

Cheri Frangiadakia

Cheri Frangiadakis Test Report Writer Celltech Labs Inc. Test Report Approved By:

- HE

Jonathan Hughes General Manager Celltech Labs Inc.

Applicant:	Itronia	ix Corporation		FCC ID:	KBCIX325-CWL	IC ID:	1943A-IX325ab		ITRONIX [®]	
Model(s):	s): IX325-CWL DUT:			Rugged Ta	Rugged Tablet PC with Cisco AIR-CB21AG-A-K9 802.11abg WLAN				RAL DYNAMICS COMPANY	
2006 Celltech L	2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 1 of 30		

Celltech Testing and Engineering Services Let	Test Report Serial No.:	040505KBC-F632	-S15Wbg	Report Issue No.:	S632Wbg-032806-R0	
	Date(s) of Evaluation:	April 25-26, 2	2005	Report Issue Date:	March 28, 2006	
	Evaluation Type:	RF Exposure	SAR	FCC 47 CFR 2.1093	IC RSS-102 Issue 2	

	DECLARATION OF SAR RF EXPOSUR					
Test LabCELLTECH LABS INC.Testing and Engineering Services1955 Moss CourtKelowna, B.C.Canada V1Y 9L3Phone:250-448-7047Fax:250-448-7046e-mail:info@celltechlabs.comweb site:www.celltechlabs.com		Applicant Information ITRONIX CORPORATION 12825 E. Mirabeau Parkway Spokane Valley, WA 99216 United States				
FCC IDENTIFIER: IC IDENTIFER: Model(s):	KBCIX325-CWL 1943A-IX325ab IX325-CWL					
Rule Part(s): Test Procedure(s): FCC Device Classification(s): IC Device Classification:	FCC 47 CFR §2.1093; Health Canada Safety Code 6 FCC OET Bulletin 65, Supplement C (Edition 01-01) Industry Canada RSS-102 Issue 2 Digital Transmission System (DTS) - §15C Unlicensed National Information Infrastructure TX (NII) - §15E Low Power License-Exempt Radiocommunication Device (RSS-210 Issue 6)					
Device Description: LCD Display Orientation(s): Internal Transmitter Type: Mode(s) of Operation: Transmit Frequency Range(s):	Rugged Tablet PC 0 Degrees Landscape, -90 E Cisco AIR-CB21AG-A-K9 80 DSSS (Direct Sequence Spr OFDM (Orthogonal Frequen 2412 - 2462 MHz 802.11b/g (5180 - 5250 MHz 802.11a (U 5250 - 5320 MHz 802.11a (U 5745 - 5825 MHz 802.11a (U)2.11abg WLAN (PCMCIA) read Spectrum) icy Division Multiplexing) (ISM Band) NII-1 Band) NII-2 Band)				
Max. RF Output Power Tested: Date Rate(s): Power Source(s) Tested: Antenna Type(s) Tested:	5745 - 5825 MHz 802.11a (UNII-3 Band) 20.1 dBm (0.102 Watts) - Peak Conducted (802.11b Mode - 1 Mbps - 2442 MHz) 802.11b: 1 / 2 / 5.5 / 11 Mbps 802.11g: 6 / 9 / 12 / 18 / 24 / 36 / 48 / 54 Mbps 802.11a: 6 / 9 / 12 / 18 / 24 / 36 / 48 / 54 Mbps Internal Lithium-ion Battery - 11.1 V, 3600 mAh (Model: T8M-E) External Second Lithium-ion Battery - 11.1 V, 3600 mAh (Model: T8S-E) Internal Embedded Dual-Band Monopole (integrated on PCMCIA Card)					
Max. SAR Level(s) Measured:	Body: 0.166 W/kg (1g) - 802	.11b (Bottom Side of Tablet PC)				

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device was compliant with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada's Safety Code 6. The device was tested in accordance with the measurement standards and procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01) and Industry Canada RSS-102 Issue 2 for the General Population / Uncontrolled Exposure environment. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc. The results and statements contained in this report pertain only to the device(s) evaluated.

Tested By: in

Sean Johnston Compliance Technologist Celltech Labs Inc.

Reviewed By: Spencer Watow

Spencer Watson Senior Compliance Technologist Celltech Labs Inc.

Applicant:	Itronix	c Corp	oration	FCC ID:	KBCIX325-CWL	IC ID:	1943A-IX325ab		RONIX®
Model(s):	IX325-0	CWL	DUT:	Rugged Ta	Rugged Tablet PC with Cisco AIR-CB21AG-A-K9 802.11abg WLAN				
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission						permission of Celltech Labs	Inc.	Page 2 of 30	

	Test Report Serial No.:	040505KBC-F632	-S15Wbg	Report Issue No.:	S632Wbg-032806-R0		
1	Date(s) of Evaluation:	April 25-26, 2	005	Report Issue Date:	March 28, 2006		
Lab	Evaluation Type:	RF Exposure	SAR	FCC 47 CFR 2.1093	IC RSS-102 Issue 2		

TABLE OF CONTENTS								
1.0 INTRODUCTION	4							
2.0 DESCRIPTION of DEVICE UNDER TEST (DUT)	4							
3.0 SAR MEASUREMENT SYSTEM	5							
4.0 MEASUREMENT SUMMARY	6							
5.0 DETAILS OF SAR EVALUATION	7							
6.0 EVALUATION PROCEDURES	7							
7.0 SYSTEM PERFORMANCE CHECK	8							
8.0 SIMULATED EQUIVALENT TISSUES	9							
9.0 SAR SAFETY LIMITS	9							
10.0 ROBOT SYSTEM SPECIFICATIONS								
11.0 PROBE SPECIFICATION (ET3DV6)	11							
12.0 PLANAR PHANTOM	11							
13.0 DEVICE HOLDER	11							
14.0 TEST EQUIPMENT LIST	12							
15.0 MEASUREMENT UNCERTAINTIES	13							
MEASUREMENT UNCERTAINTIES (Cont.)	14							
16.0 REFERENCES	15							
APPENDIX A - SAR MEASUREMENT DATA	16							
APPENDIX B - SYSTEM PERFORMANCE CHECK DATA	20							
APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS	23							
APPENDIX D - SAR TEST SETUP PHOTOGRAPHS	25							
APPENDIX E - SYSTEM VALIDATION	28							
APPENDIX F - PROBE CALIBRATION	29							
APPENDIX G - PLANAR PHANTOM CERTIFICATE OF CONFORMITY	30							

Applicant:	Itronia	c Corporation		Corporation FCC ID: KBCIX325-CWL IC ID:					RONIX®
Model(s):	IX325-	CWL	DUT:	Rugged Ta	Rugged Tablet PC with Cisco AIR-CB21AG-A-K9 802.11abg WLAN				
2006 Celltech La	2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Inc.	Page 3 of 30

Celltech
Testing and Engineering Services Lat

Test Report Serial No .:	040505KBC-F632	-S15Wbg	Report Issue No.:	S632Wbg-032806-R0		
Date(s) of Evaluation:	April 25-26, 2	005	Report Issue Date:	March 28, 2006		
Evaluation Type:	RF Exposure	SAR	FCC 47 CFR 2.1093	IC RSS-102 Issue 2		

1.0 INTRODUCTION

This measurement report demonstrates that ITRONIX CORPORATION Model: IX325-CWL Rugged Tablet PC FCC ID: KBCIX325-CWL incorporating the Cisco AIR-CB21AG-A-K9 802.11abg WLAN PCMCIA Card complies with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]) and Health Canada's Safety Code 6 (see reference [2]) for the General Population / Uncontrolled Exposure environment. The test procedures described in FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]) and IC RSS-102 Issue 2 (see reference [4]) were employed. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the various provisions of the rules are included within this test report.

2.0 DESCRIPTION of DEVICE UNDER TEST (DUT)

	Rule I	Part(s)				FCC 4	17 CFR §2.1	093			Health Ca	inada Sa	afety	Code 6		
	Test Pro	cedure(s)		F	CC OE	T Bulletir	n 65, Supple	ment C (01	-01)	Ir	ndustry Car	nada RS	SS-1	02 Issue 2		
F	CC Device C	assificatio	n(s)		Digital	Transmi	ssion Systen	n (DTS)		§15C	2412 - 24	62 MHz	z	5745 - 5	825 MHz	
		assincatio	(3)	Unlic	ensed	National	Information	Infrastructu	re (NII)	§15E		5180	- 532	20 MHz		
	IC Device C	lassificatio	on	Low F	Low Power License-Exempt Radiocommunication Device: Category I Equipment RSS-210 Issue 6									ssue 6		
	RF Exposu	re Categor	у	Uncontrolled Environme						nent / General Population						
	Device D	escription				Rug	ged Tablet F	с		Model(s)		IX	(325-	-CWL		
	Internal Trar	smitter Ty	ре		Cisco AIR-CB21AG-A-K9 802.11abg WLAN Card (PCMCIA)											
L	.CD Display	Orientatior	ı(s)		0 Degrees Landscape, -90 Degrees Portrait											
	IDENTI	FIER(s)				FCC ID	: KBCIX325-	CWL			IC: 1	943A-I)	X325	ab		
	Test Davies	Coriol No.		ZZGEG5073ZZ9781				IX325 R	ugged Tab	let PC		ld	entical Pro	ototype		
	Test Device	Serial NO.((5)		F0	C0853N	07U	С	isco AIR-C	B21AG-A-	K9 WLAN			Productior	n Unit	
				8	02.11b		DSSS			Direct Seq	uence Spre	ead Spe	ectru	m		
	Mode(s) of	Operation	1	8	02.11g		OFDM		Orthogonal Frequency Division Multiplexing							
				8	02.11a		OFDM		Orth	Orthogonal Frequency Division Multiplexing						
	Data	Rates		802.11b 1 / 2 / 5.5 / 11 Mbp						Mbps						
	Data	Nates				802.11a/	g			6/9/12/1	18 / 24 / 36	/ 48 / 54	4 Mb	ps		
					241	2 - 2462	MHz		802.1	1b/g			IS	M Band		
Tre	Transmit Frequency Range(s)			5180 - 5250 MHz					802.	11a			UN	II-1 Band		
	unonnerroqu		90(0)	5250 - 5320 MHz					802.11a				UN	II-2 Band		
					574	5 - 5825	MHz	802.11a					UNII-3 Band			
			Ма	ximum	Peak	Conduct	ed RF Outp	ut Power L	evels Me	asured (IS	M Band)					
Free			lt Test					802	2.11b					802	.11g	
(MH	· Chan		nels*		1	lbps		lbps	-	5 Mbps		11 Mbps			bps	
		802.11b	802.11	-	lBm	Watts		Watts	dBm	Watts	dBm	Watt		dBm	Watts	
241		✓			19.8	0.0955		0.0933	19.8	0.0955	19.7	0.093		18.0	0.0631	
244		√			20.1	0.102	20.1	0.102	20.2	0.105	20.2	0.10		17.7	0.0589	
246		✓ Z ahannal is			20.0	0.100		0.102	20.1	0.102	20.1	0.10		17.6	0.0575	
	GHz: when															
INC	ote: Turbo Mo		UISCO All							edded on P		-		ual-Band		
	Antenha	Type(s)			Internal		Monop					u				
	Power Sour	ce(s) Teste	ed				um-ion Batte	-		11.1 V, 360				Model: T8		
D	UT Confirm		ata d	E)	xternal	Second	Lithium-ion E	,		11.1 V, 360				Model: T	55-E	
DU	UT Configura	ation(s) le	stea					Bottom Side	e of I ablet	PC (Touch	POSITION)					
	Applicant:	Itronix	Corpora	ation	FCC	DID:	KBCIX32	5-CWL	IC ID:	194	13A-IX325a	ab			V ®	
F	Model(s):	IX325-C	<u> </u>	DUT:			let PC with						GENERA		MPANY	


 Model(s):
 IX325-CWL
 DUT:
 Rugged Tablet PC with Cisco AIR-CB21AG-A-K9 802.11abg WLAN
 A GENERAL DYNAMICS COMMAN

 2006 Celltech Labs Inc.
 This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.
 Page 4 of 30

Celltech	Test Report Serial No.:	040505KBC-F632	-S15Wbg	Report Issue No.:	S632Wbg-032806-R0	
	Date(s) of Evaluation:	April 25-26, 2	005	Report Issue Date:	March 28, 2006	
	Evaluation Type:	RF Exposure	SAR	FCC 47 CFR 2.1093	IC RSS-102 Issue 2	

3.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE3 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

DASY4 SAR Measurement System with planar phantom

DASY4 SAR Measurement System with planar phantom

Applicant:	Itronia	ix Corporation		FCC ID:	KBCIX325-CWL	IC ID:	1943A-IX325ab	ITRONIX	
Model(s):	IX325-	CWL	DUT:	Rugged Ta	Rugged Tablet PC with Cisco AIR-CB21AG-A-K9 802.11abg WLAN				
2006 Celltech La	2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Inc.	Page 5 of 30	

Celltech
Testing and Engineering Services Lab

Test Report Serial No .:	040505KBC-F632	-S15Wbg	Report Issue No.:	S632Wbg-032806-R0		
Date(s) of Evaluation:	April 25-26, 2	2005	Report Issue Date:	March 28, 2006		
Evaluation Type:	RF Exposure SAR		FCC 47 CFR 2.1093	IC RSS-102 Issue 2		

4.0 MEASUREMENT SUMMARY

			BO	DY SA		URE	MENT	RESULTS (802.11b)			
Transmit Mode	Test Mode	Freq. (MHz)	Chan.	Data Rate		Battery Anten Type Positio		DUT Position to Planar Phantom	Separatio Distance to Plana Phantom (cm)	Power Before	SAR Drift During Test (dB)	Measured SAR 1g (W/kg)	
802.11b	DSSS	2442	7	1 Mbps	Internal L	i-ion	Internal	Bottom Side	0.0 (Touch) 20.1	-0.106	0.166	
802.11b	11b DSSS 2442 7 1 Mbps External Li-ion Inter				Internal	Bottom Side	0.0 (Touch) 20.1	0.0950	0.106			
ANSI /	IEEE C95.	1 1999 - S	AFETY L	ІМІТ		BODY: 1.6 W/kg (averaged over 1 gram) Uncontro				Spatial Peak olled Exposure / General Population			
Te	est Date(s)			Ap	ril 26, 2005	26, 2005 Relative Humin			midity 30			%	
Measu	red Fluid T	уре		245	0 MHz Body			Atmospheric Pr	essure	10)2.1	kPa	
Dieleo	ctric Const	ant	IEEE	Target	Measured	Deviat	tion	Ambient Tempe	erature		25.5	°C	
	٤r		52.7	±5%	50.2	-4.79	%	Fluid Tempera	ature	2	3.9	°C	
Co	Conductivity σ (mho/m)			Target	Measured	Deviat	tion	Measured	I	2	15	cm	
o				±5%	1.98	+1.5	5%	ρ (Kg/m³)					

Note(s):

- 1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- 2. The SAR levels measured at the highest output channel of the frequency band were ≥ 3 dB below the SAR limit, therefore SAR evaluation for the remaining selected channels was not required (per October 2005 FCC TCB Council Workshop see reference [7]).
- Higher data rates and the 802.11g mode were not evaluated based on the average output power levels were not > 0.25 dB than the output power level measured at the lowest data rate in the 802.11b mode (per October 2005 FCC TCB Council Workshop - see reference [7]).
- 4. The power drifts measured by the DASY4 system for the duration of the SAR evaluations were <5% from the start power.
- 5. The DUT battery was fully charged prior to the SAR evaluations.
- The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluations. The temperatures reported were consistent for all measurement periods.
- The dielectric parameters of the simulated tissue mixture were measured prior to the SAR evaluations using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix C).
- 8. The SAR evaluations were performed within 24 hours of the system performance check.

Applicant:	Itronia	(Corp	oration	FCC ID:	KBCIX325-CWL	IC ID:	1943A-IX325ab	ITRONIX		
Model(s):	IX325-	CWL	DUT:	Rugged Ta	ablet PC with Cisco AIR-	CB21AG-A-K	9 802.11abg WLAN		RAL DYNAMICS COMPANY	
2006 Celltech La	abs Inc.	This	s document is	s not to be reproc	luced in whole or in part withou	t the prior written	permission of Celltech Labs	Inc.	Page 6 of 30	

	Test Report Serial No.:	040505KBC-F632	-S15Wbg	Report Issue No.:	S632Wbg-032806-R0
Celltech	Date(s) of Evaluation:	April 25-26, 2	005	Report Issue Date:	March 28, 2006
Testing and Engineering Services Lat	Evaluation Type:	RF Exposure	SAR	FCC 47 CFR 2.1093	IC RSS-102 Issue 2

5.0 DETAILS OF SAR EVALUATION

The ITRONIX CORPORATION Model: IX325-CWL Rugged Tablet PC FCC ID: KBCIX325-CWL with Cisco AIR-CB21AG-A-K9 802.11(b/g) WLAN PCMCIA Card was compliant for localized Specific Absorption Rate (Uncontrolled Exposure) based on the test provisions and conditions described below. The SAR test setup photographs are shown in Appendix D.

Body SAR Configuration

1. The DUT was evaluated for body SAR with the bottom side of the Tablet PC placed parallel to, and touching, the outer surface of the planar phantom. The DUT was evaluated for body SAR with the internal lithium-ion battery and with the external second lithium-ion battery.

Test Modes & Power Settings

- 2. The peak conducted output power levels were measured prior to the SAR evaluations using a spectrum analyzer according to the procedures described in FCC 47 CFR §2.1046. A PC controller was used to record the spectrum analyzer display. Software was used to integrate the values recorded within the EBW. The resulting channel power was recorded and reported herein.
- 3. The power drifts measured by the DASY4 system for the duration of the SAR evaluations were <5% from the start power.
- 4. The DUT was controlled in test mode via internal software. SAR measurements were performed with the DUT transmitting continuously at maximum power with a modulated DSSS signal.
- 5. The DUT battery was fully charged prior to the SAR evaluations.

Test Conditions

- 6. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluations. The temperatures reported were consistent for all measurement periods.
- 7. The dielectric parameters of the simulated tissue mixture were measured prior to the SAR evaluations using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix C).
- 8. The SAR evaluations were performed within 24 hours of the system performance check.

6.0 EVALUATION PROCEDURES

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 - (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.

An area scan was determined as follows:

- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.

A 1g and 10g spatial peak SAR was determined as follows:

- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix F). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

Applicant:	Itronia	c Corp	oration	FCC ID:	KBCIX325-CWL	IC ID:	1943A-IX325ab		RONIX®
Model(s):	Model(s): IX325-CWL DUT:			Rugged Ta	ablet PC with Cisco AIR-	CB21AG-A-K	9 802.11abg WLAN		RAL DYNAMICS COMPANY
2006 Celltech La	abs Inc.	This	document is	s not to be reproc	luced in whole or in part without	t the prior written	permission of Celltech Labs	Inc.	Page 7 of 30

	Test Report Serial No.:	040505KBC-F632	-S15Wbg	Report Issue No.:	S632Wbg-032806-R0
Celltech	Date(s) of Evaluation:	April 25-26, 2	005	Report Issue Date:	March 28, 2006
Testing and Engineering Services Lat	Evaluation Type:	RF Exposure	SAR	FCC 47 CFR 2.1093	IC RSS-102 Issue 2

7.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluations a system check was performed using a planar phantom with a 2450MHz dipole (see Appendix E for system validation procedures). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix C). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of $\pm 10\%$ (see Appendix B for system performance check test plot). See Table 1 below for the SAR system manufacturer's reference body SAR values from the DASY4 Operation Manual, March 2005 (see reference [6]).

SYSTEM PERFORMANCE CHECK EVALUATION

Test	2450MHz Equiv. Tissue	(vv/kg)			Dielect	ric Cons _{8r}	tant		Conductivity σ (mho/m)		ρ	Amb. Temp.	Fluid Fluid Temp. Depth (%)		Barom. Press.	
Date		IEEE Target	Meas.	Dev.	IEEE Target	Meas.	Dev.	IEEE Target	Meas.	Dev.	(Kg/m³) (°C)	(°C)	(cm)	(70)	(kPa)	
4/25/05	Body	12.8 ±10%	12.8	0.0%	52.7 ±5%	50.6	-4.0%	1.95 ±5%	2.01	+3.1%	1000	24.8	23.9	≥ 15	30	102.0

Note(s):

1. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the system performance check. The temperatures listed in the table above were consistent for all measurement periods.

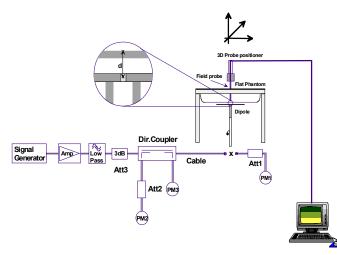


Figure 1. System Performance Check Setup Diagram

2450MHz Dipole Setup

Dipole	Distance	Frequency	SAR (1g)	SAR (10g)	SAR (peak)
Type	[mm]	[MHz]	[W/kg]	[W/kg]	[W/kg]
D300V2	15	300	3.02	2.06	4.36
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1500V2	10	1500	30.8	17.1	52.1
D1640V2	10	1640	34.4	18.7	59.4
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6
D3000V2	10	3000	61.9	24.8	136.7

Table 32.1: Numerical reference SAR values for SPEAG dipoles and flat phantom filled with body-tissue simulating liquid. Note: All SAR values normalized to 1 W forward power.

Table 1. SAR system manufacturer's reference body SAR values

Applicant:	ant: Itronix Corporation		FCC ID:	KBCIX325-CWL	IC ID:	1943A-IX325ab		RONIX®	
Model(s): IX325-CWL DUT:			DUT:	Rugged Ta		AL DYNAMICS COMPANY			
2006 Celltech La	abs Inc.	This	document is	s not to be reproc	luced in whole or in part withou	t the prior written	permission of Celltech Labs	Inc.	Page 8 of 30

Cel	ltech
Testing and	Engineering Services Lab

Test Report Serial No.:	040505KBC-F632	-S15Wbg	Report Issue No.:	S632Wbg-032806-R0
Date(s) of Evaluation:	April 25-26, 2	2005	Report Issue Date:	March 28, 2006
Evaluation Type:	RF Exposure	SAR	FCC 47 CFR 2.1093	IC RSS-102 Issue 2

8.0 SIMULATED EQUIVALENT TISSUES

The 2450MHz simulated body tissue mixture consists of Glycol-monobutyl, water, and salt. The fluids were prepared according to standardized procedures and measured for dielectric parameters (permittivity and conductivity).

	SIMULATED TISSUE MIXTUR	ES
INGREDIENT	2450 MHz Body	2450 MHz Body
INGREDIENT	System Performance Check	DUT Evaluation
Water	69.98 %	69.98 %
Glycol Monobutyl	30.00 %	30.00 %
Salt	0.02 %	0.02 %

9.0 SAR SAFETY LIMITS

	SAR	(W/kg)				
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)				
Spatial Average (averaged over the whole body)	0.08	0.4				
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0				
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0				
Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.						
Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.						

Applicant:	Itronia	c Corporation		ronix Corporation FCC ID: KBCIX325-CWL IC ID: 1943A-IX325a		1943A-IX325ab			
Model(s):	IX325-	CWL	DUT:	Rugged Ta	ablet PC with Cisco AIR-	CB21AG-A-K	9 802.11abg WLAN		RAL DYNAMICS COMPANY
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 9 of 3						Page 9 of 30			

Test Report Serial No.:	040505KBC-F632	-S15Wbg	Report Issue No.:	S632Wbg-032806-R0
Date(s) of Evaluation:	April 25-26, 2005		Report Issue Date:	March 28, 2006
Evaluation Type:	RF Exposure	SAR	FCC 47 CFR 2.1093	IC RSS-102 Issue 2

10.0 ROBOT SYSTEM SPECIFICATIONS

Specifications

POSITIONER:	Stäubli Unimation Corp. Robot Model: RX60L
Repeatability:	0.02 mm
No. of axis:	6

Data Acquisition Electronic (DAE) System

Dulu A		L'Oystem
	Cell Controller	
	Processor:	AMD Athlon XP 2400+
	Clock Speed:	2.0 GHz
	Operating System:	Windows XP Professional
	Data Converter	
	Features:	Signal Amplifier, multiplexer, A/D converter, and control logic
	Software:	DASY4 software
	Connecting Lines:	Optical downlink for data and status info.
		Optical uplink for commands and clock
DASY4	Measurement Server	
	Function:	Real-time data evaluation for field measurements and surface detection
	Hardware:	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
	Connections:	COM1, COM2, DAE, Robot, Ethernet, Service Interface
E-Field	Probe	
	Model:	ET3DV6
	Serial No.:	1590
	Construction:	Triangular core fiber optic detection system
	Frequency:	10 MHz to 6 GHz

±0.2 dB (30 MHz to 3 GHz)

Phantom(s)

Linearity:

Туре:	Planar Phantom		
Shell Material:	Fiberglass		
Thickness:	2.0 ±0.1 mm		
Volume:	Approx. 72 liters		

Applicant:	Itronix	Itronix Corporation		FCC ID:	KBCIX325-CWL	IC ID: 1943A-IX325ab			TRONIX	
Model(s):	IX325-0	CWL	DUT:	Rugged Ta	ugged Tablet PC with Cisco AIR-CB21AG-A-K9 802.11abg WLAN				RAL DYNAMICS COMPANY	
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 10 of 30						Page 10 of 30				

Test Report Serial No.:	040505KBC-F632-S15Wbg		Report Issue No.:	S632Wbg-032806-R0
Date(s) of Evaluation:	April 25-26, 2005		Report Issue Date:	March 28, 2006
Evaluation Type:	RF Exposure	SAR	FCC 47 CFR 2.1093	IC RSS-102 Issue 2

11.0 PROBE SPECIFICATION (ET3DV6)

Construction:	Symmetrical design with triangular core	-
	Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g. glycol)	
Calibration:	In air from 10 MHz to 2.5 GHz	
	In brain simulating tissue at frequencies of 900 MHz	HI
	and 1.8 GHz (accuracy \pm 8%)	
Frequency:	10 MHz to >6 GHz; Linearity: ±0.2 dB	and the second second
	(30 MHz to 3 GHz)	
Directivity:	± 0.2 dB in brain tissue (rotation around probe axis)	
	\pm 0.4 dB in brain tissue (rotation normal to probe axis)	
Dynamic Range:	5 μW/g to >100 mW/g; Linearity: ±0.2 dB	
Surface Detection:	± 0.2 mm repeatability in air and clear liquids over	
	diffuse reflecting surfaces	A REAL PROPERTY AND A REAL
Dimensions:	Overall length: 330 mm	
	Tip length: 16 mm	
	Body diameter: 12 mm	
	Tip diameter: 6.8 mm	
	Distance from probe tip to dipole centers: 2.7 mm	N Z N
Application:	General dosimetry up to 3 GHz	
	Compliance tests of portable devices	ET3DV6 E-Field Probe

12.0 PLANAR PHANTOM

The planar phantom is a fiberglass shell phantom with a 2.0 mm (+/-0.2mm) thick device measurement area at the center of the phantom for SAR evaluations of devices with a larger surface area than the planar section of the SAM phantom. The planar phantom is integrated in a wooden table (see Appendix G for dimensions and specifications of the planar phantom).

Planar Phantom

13.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. For evaluations of larger devices such as Laptop and Tablet PCs, a Plexiglas platform is attached to the device holder.

Device Holder

Applicant:	Itronia	c Corp	oration	FCC ID: KBCIX325-CWL IC ID: 1943A-IX325ab			RONIX®		
Model(s):	IX325-	CWL	DUT:	Rugged Ta	Rugged Tablet PC with Cisco AIR-CB21AG-A-K9 802.11abg WLAN				RAL DYNAMICS COMPANY
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 11 of 30						Page 11 of 30			

Test Report Serial No.:	040505KBC-F632	-S15Wbg	Report Issue No.:	S632Wbg-032806-R0
Date(s) of Evaluation:	April 25-26, 2005		Report Issue Date:	March 28, 2006
Evaluation Type:	RF Exposure	SAR	FCC 47 CFR 2.1093	IC RSS-102 Issue 2

14.0 TEST EQUIPMENT LIST

	TEST EQUIPMENT			DA	TE	CALIBRATION
USED	DESCRIPTION	ASSET NO.	SERIAL NO.	1	RATED	DUE DATE
х	Schmid & Partner DASY4 System	-	-		-	-
х	-DASY4 Measurement Server	00158	1078	N	/A	N/A
х	-Robot	00046	599396-01	N	/A	N/A
х	-DAE3	00019	353	06J	ul04	06Jul05
	-DAE3	00018	370	25J	an05	25Jan06
	-ET3DV6 E-Field Probe	00016	1387	18M	lar05	18Mar06
х	-ET3DV6 E-Field Probe	00017	1590	24M	ay04	24May05
	-EX3DV4 E-Field Probe	00125	3547	21J	an05	21Jan06
	-300MHz Validation Dipole	00023	135	260	oct04	26Oct05
	-450MHz Validation Dipole	00024	136	04N	ov04	04Nov05
	925MU - Volidation Dinala	00022	411	Brain	30Mar05	30Mar06
	-835MHz Validation Dipole	00022	411	Body	12Apr05	12Apr06
	-900MHz Validation Dipole	00020	054	10J	un04	10Jun05
	-1800MHz Validation Dipole	00021	247	08J	un04	08Jun05
	1000MUz Validation Dinolo	00033	151	Brain	18Jun04	18Jun05
	-1900MHz Validation Dipole	00032	151	Body	22Apr05	22Apr06
	2450MUE Validation Dinala	00005	450	Brain	30Sep04	30Sep05
х	-2450MHz Validation Dipole	00025	150	Body	22Apr05	22Apr06
	5000MUz Validation Dinala	00126	1021	Brain 11Jan05		11Jan06
	-5000MHz Validation Dipole	00126	1031	Body	11Jan05	11Jan06
	-SAM Phantom V4.0C	00154	1033	N	/A	N/A
х	-Barski Planar Phantom	00155	03-01	N	/A	N/A
	-Plexiglas Side Planar Phantom	00156	161	N	/A	N/A
	-Plexiglas Validation Planar Phantom	00157	137	N	/A	N/A
х	HP 85070C Dielectric Probe Kit	00033	N/A	N	/A	N/A
	ALS-PR-DIEL Dielectric Probe Kit	00160	260-00953	N	/A	N/A
	Gigatronics 8652A Power Meter	00110	1835801	16A	pr05	16Apr06
х	Gigatronics 8652A Power Meter	00008	1835267	30A	pr04	30Apr05
	Gigatronics 8652A Power Meter	00007	1835272	18C	oct04	18Oct05
х	Gigatronics 80701A Power Sensor	00013	1833713	11C	oct04	11Oct05
	Gigatronics 80701A Power Sensor	00011	1833542	08Oct04		08Oct05
х	Gigatronics 80701A Power Sensor	00109	1834366	16A	pr05	16Apr06
х	HP 8753E Network Analyzer	80006	US38433271	04J	an05	04Jan06
	HP 8648D Signal Generator	00005	3847A00611	30A	pr04	30Apr05
х	Rohde & Schwarz SMR40 Signal Generator	00006	100104	12A	pr05	12Apr06
х	Amplifier Research 5S1G4 Power Amplifier	00106	26235	N	/A	N/A

Applicant:	Itronia	c Corp	oration	FCC ID:	KBCIX325-CWL	IC ID:	1943A-IX325ab		RONIX [®]
Model(s):	IX325-CWL DUT:			Rugged Tablet PC with Cisco AIR-CB21AG-A-K9 802.11abg WLAN					RAL DYNAMICS COMPANY
2006 Celltech La	abs Inc.	This	s document i	s not to be reprod	luced in whole or in part withou	t the prior written	permission of Celltech Labs	Inc.	Page 12 of 30

Test Report Serial No.:	040505KBC-F632	-S15Wbg	Report Issue No.:	S632Wbg-032806-R0
Date(s) of Evaluation:	April 25-26, 2	2005	Report Issue Date:	March 28, 2006
Evaluation Type:	RF Exposure	SAR	FCC 47 CFR 2.1093	IC RSS-102 Issue 2

15.0 MEASUREMENT UNCERTAINTIES

IU	CERTAINT	Y BUDGET FOR	R DEVICE EVAL	UATION		
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V_i or V_{eff}
Measurement System						
Probe calibration	4.85	Normal	1	1	4.85	ø
Axial isotropy of the probe	4.7	Rectangular	1.732050808	0.7	1.9	œ
Spherical isotropy of the probe	9.6	Rectangular	1.732050808	0.7	3.9	œ
Spatial resolution	0	Rectangular	1.732050808	1	0.0	œ
Boundary effects	1	Rectangular	1.732050808	1	0.6	ø
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	ø
Detection limit	1	Rectangular	1.732050808	1	0.6	ø
Readout electronics	0.3	Normal	1	1	0.3	ø
Response time	0.8	Rectangular	1.732050808	1	0.5	x
Integration time	2.6	Rectangular	1.732050808	1	1.5	œ
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	ø
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	x
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	ø
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	œ
Test Sample Related						
Device positioning	2.9	Normal	1	1	2.9	12
Device holder uncertainty	3.6	Normal	1	1	3.6	8
Power drift	5	Rectangular	1.732050808	1	2.9	x
Phantom and Setup						
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	x
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	x
Liquid conductivity (measured)	2.5	Normal	1	0.64	1.6	œ
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	œ
Liquid permittivity (measured)	2.5	Normal	1	0.6	1.5	œ
Combined Standard Uncertaint	L				10.26	
Expanded Uncertainty (k=2)	9				20.52	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

Applicant:	Itronia	nix Corporation		FCC ID:	KBCIX325-CWL	IC ID:	1943A-IX325ab		RONIX ®
Model(s):	IX325-CWL DUT:		Rugged Tablet PC with Cisco AIR-CB21AG-A-K9 802.11abg WLAN				RAL DYNAMICS COMPANY		
2006 Celltech La	006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs						Inc.	Page 13 of 30	

Test Report Serial No.:	040505KBC-F632	-S15Wbg	Report Issue No.:	S632Wbg-032806-R0
Date(s) of Evaluation:	April 25-26, 2	2005	Report Issue Date:	March 28, 2006
Evaluation Type:	RF Exposure SAF		FCC 47 CFR 2.1093	IC RSS-102 Issue 2

MEASUREMENT UNCERTAINTIES (Cont.)

IU	NCERTAINT	Y BUDGET FOR	SYSTEM VALI	DATION		
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}
Measurement System						
Probe calibration	4.85	Normal	1	1	4.85	œ
Axial isotropy of the probe	4.7	Rectangular	1.732050808	1	2.7	œ
Spherical isotropy of the probe	0	Rectangular	1.732050808	1	0.0	œ
Spatial resolution	0	Rectangular	1.732050808	1	0.0	œ
Boundary effects	1	Rectangular	1.732050808	1	0.6	œ
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	œ
Detection limit	1	Rectangular	1.732050808	1	0.6	œ
Readout electronics	0.3	Normal	1	1	0.3	œ
Response time	0	Rectangular	1.732050808	1	0.0	œ
Integration time	0	Rectangular	1.732050808	1	0.0	œ
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	œ
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	œ
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	œ
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	œ
Test Sample Related						
Dipole Positioning	2	Normal	1.732050808	1	1.2	œ
Power & Power Drift	4.7	Normal	1.732050808	1	2.7	œ
Phantom and Setup						
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	œ
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	00
Liquid conductivity (measured)	2.5	Normal	1	0.64	1.6	œ
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	œ
Liquid permittivity (measured)	2.5	Normal	1	0.6	1.5	00
Combined Standard Uncertaint	v				8.39	
Expanded Uncertainty (k=2)					16.79	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

Applicant:	Itronix	c Corp	oration	FCC ID:	KBCIX325-CWL	IC ID:	1943A-IX325ab		RONIX [®]
Model(s):	IX325-CWL DUT:		Rugged Ta	Rugged Tablet PC with Cisco AIR-CB21AG-A-K9 802.11abg WLAN				RAL DYNAMICS COMPANY	
2006 Celltech La	2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs					Inc.	Page 14 of 30		

Test Report Serial No .:	040505KBC-F632	-S15Wbg	Report Issue No.:	S632Wbg-032806-R0
Date(s) of Evaluation:	April 25-26, 2	2005	Report Issue Date:	March 28, 2006
Evaluation Type:	RF Exposure	SAR	FCC 47 CFR 2.1093	IC RSS-102 Issue 2

16.0 REFERENCES

[1] Federal Communications Commission, "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093: 1999.

[2] Health Canada, "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6: 1999.

[3] Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.

[4] Industry Canada, "Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)", Radio Standards Specification RSS-102 Issue 2: November 2005.

[5] IEEE Standard 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.

[6] Schmid & Partner Engineering AG, "DASY4 Manual", V4.5: March 2005.

[7] FCC TCB Council Workshop, "RF Exposure (RFx) Mobile and Portable Device Review and Approval Procedures, 802.11abg SAR Procedures (Proposed Testing Guidance)": October 2005.

Applicant:	Itronix	Corp	oration	FCC ID:	KBCIX325-CWL	IC ID:	1943A-IX325ab		RONIX®
Model(s):	IX325-CWL DUT:			Rugged Tablet PC with Cisco AIR-CB21AG-A-K9 802.11abg WLAN				A GENERAL DYNAMICS COMPANY	
2006 Celltech La	abs Inc.	This	document is	s not to be reprod	luced in whole or in part without	the prior written	permission of Celltech Labs	Inc.	Page 15 of 30

	Test Report Serial No.:	040505KBC-F632-S15Wbg		Report Issue No.:	S632Wbg-032806-R0	
Celltech	Date(s) of Evaluation:	April 25-26, 2005		Report Issue Date:	March 28, 2006	
Testing and Engineering Services Lat	Evaluation Type:	RF Exposure	SAR	FCC 47 CFR 2.1093	IC RSS-102 Issue 2	

APPENDIX A - SAR MEASUREMENT DATA

Applicant:	Itronix Corporation			FCC ID:	KBCIX325-CWL	IC ID:	1943A-IX325ab		RONIX®
Model(s):	el(s): IX325-CWL DUT:		Rugged Ta	Rugged Tablet PC with Cisco AIR-CB21AG-A-K9 802.11abg WLAN				A GENERAL DYNAMICS COMPANY	
2006 Celltech Labs Inc. This document				s not to be reproc	duced in whole or in part withou	t the prior written	permission of Celltech Labs	Inc.	Page 16 of 30

	Test Report Serial No .:	040505KBC-F632-S15Wbg		Report Issue No.:	S632Wbg-032806-R0
Celltech Testing and Engineering Services Lab	Date(s) of Evaluation:	April 25-26, 2	005	Report Issue Date:	March 28, 2006
	Evaluation Type:	RF Exposure	SAR	FCC 47 CFR 2.1093	IC RSS-102 Issue 2

Date Tested: 04/26/2005

Body SAR - 802.11b - 1 Mbps - Bottom Side of DUT - 0.0 cm Spacing - Internal Battery Power

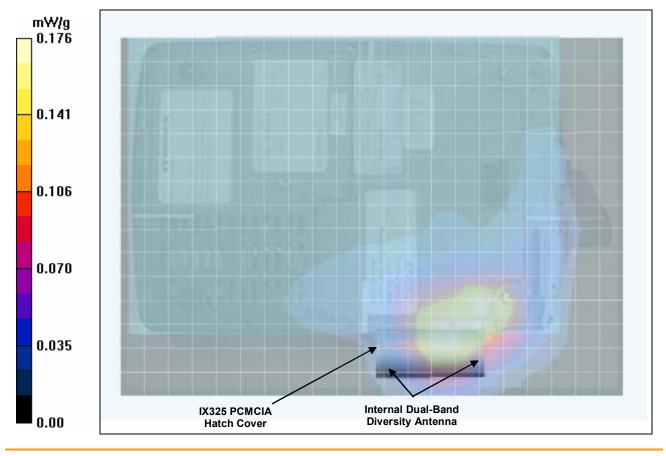
DUT: Itronix Model: IX325-CWL; Type: Tablet PC with Cisco AIR-CB21AG-1-K9 802.11a/b/g WLAN; Serial: ZZGEG5073ZZ9781

Ambient Temp: 25.5 °C; Fluid Temp: 23.9 °C; Barometric Pressure: 102.1 kPa; Humidity: 30%

11.1V, 3600mAh Internal Lithium-ion Battery (Model: T8M-E) Communication System: DSSS WLAN RF Output Power: 20.1 dBm (Conducted) Frequency: 2442 MHz; Channel 7; Duty Cycle: 1:1 Medium: M2450 (σ = 1.98 mho/m; ϵ_r = 50.2; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1590; ConvF(4.22, 4.22, 4.22); Calibrated: 24/05/2004

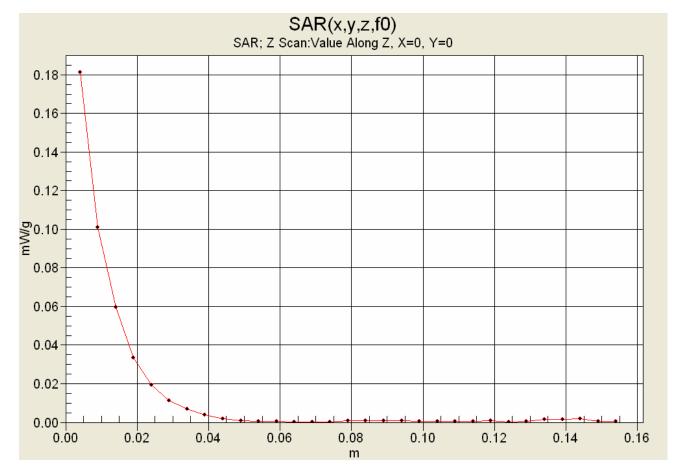
- Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn353; Calibrated: 06/07/2004

- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Body SAR - 802.11b - Bottom Side of DUT Touching Planar Phantom - Mid Channel Area Scan (16x22x1): Measurement grid: dx=15mm, dy=15mm


Body SAR - 802.11b - Bottom Side of DUT Touching Planar Phantom - Mid Channel Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.71 V/m; Power Drift = -0.106 dB Peak SAR (extrapolated) = 0.314 W/kg SAR(1 g) = 0.166 mW/g; SAR(10 g) = 0.0953 mW/g

Applicant:	Itronix Corporation		FCC ID:	KBCIX325-CWL	KBCIX325-CWL IC ID: 1943A-IX325ab				
Model(s):	Model(s): IX325-CWL DUT:		DUT:	Rugged Ta	ablet PC with Cisco AIR-	CB21AG-A-K	9 802.11abg WLAN		RONIX [®]
2006 Celltech La	2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Inc.	Page 17 of 30

	Test Report Serial No .:	040505KBC-F632-S15Wbg		Report Issue No.:	S632Wbg-032806-R0	
Celltech Testing and Engineering Services Lab	Date(s) of Evaluation:	April 25-26, 2005		Report Issue Date:	March 28, 2006	
	Evaluation Type:	RF Exposure	SAR	FCC 47 CFR 2.1093	IC RSS-102 Issue 2	

Z-Axis Scan

Applicant:	Itronix	Corp	oration	FCC ID:	KBCIX325-CWL	IC ID:	1943A-IX325ab		RONIX®
Model(s):	IX325-CWL DUT:		Rugged Tablet PC with Cisco AIR-CB21AG-A-K9 802.11abg WLAN					RAL DYNAMICS COMPANY	
2006 Celltech La	2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Inc.	Page 18 of 30

	Test Report Serial No.:	040505KBC-F632-S15Wbg		Report Issue No.:	S632Wbg-032806-R0	
Celltech Testing and Engineering Services Lat	Date(s) of Evaluation:	April 25-26, 2005		Report Issue Date:	March 28, 2006	
	Evaluation Type:	RF Exposure	SAR	FCC 47 CFR 2.1093	IC RSS-102 Issue 2	

Date Tested: 04/26/2005

Body SAR - 802.11b - 1 Mbps - Bottom Side of DUT - 0.0 cm Spacing - With External 2nd Battery

DUT: Itronix Model: IX325-CWL; Type: Tablet PC with Cisco AIR-CB21AG-1-K9 802.11a/b/g WLAN; Serial: ZZGEG5073ZZ9781

Ambient Temp: 25.5 °C; Fluid Temp: 23.9 °C; Barometric Pressure: 102.1 kPa; Humidity: 30%

11.1V, 3600mAh External Second Lithium-ion Battery (Model: T8S-E) Communication System: DSSS WLAN RF Output Power: 20.1 dBm (Conducted) Frequency: 2442 MHz; Channel 7; Duty Cycle: 1:1 Medium: M2450 (σ = 1.98 mho/m; ϵ_r = 50.2; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1590; ConvF(4.22, 4.22, 4.22); Calibrated: 24/05/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 06/07/2004

- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Body SAR - 802.11b - Bottom Side of DUT (External 2nd Battery) Touching Planar Phantom - Mid Channel (15 mm External Battery Thickness) / Area Scan (16x22x1): Measurement grid: dx=15mm, dy=15mm

Body SAR - 802.11b - Bottom Side of DUT (External 2nd Battery) Touching Planar Phantom - Mid Channel (15 mm External Battery Thickness) / Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.40 V/m; Power Drift = 0.0950 dB Peak SAR (extrapolated) = 0.202 W/kg SAR(1 g) = 0.106 mW/g; SAR(10 g) = 0.0594 mW/g External 2nd Lithium-ion Battery

Applicant:	Itronix	onix Corporation		FCC ID:	KBCIX325-CWL	KBCIX325-CWL IC ID: 1943A-IX325ab			
Model(s):	IX325-CWL DUT:		Rugged Tablet PC with Cisco AIR-CB21AG-A-K9 802.11abg			9 802.11abg WLAN		RONIX [®] RAL DYNAMICS COMPANY	
2006 Celltech La	2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 19 of 30	

	Test Report Serial No.:	040505KBC-F632-S15Wbg		Report Issue No.:	S632Wbg-032806-R0
Celltech Testing and Engineering Services Lab	Date(s) of Evaluation:	April 25-26, 2	2005	Report Issue Date:	March 28, 2006
	Evaluation Type:	RF Exposure	SAR	FCC 47 CFR 2.1093	IC RSS-102 Issue 2

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

Applicant:	Itronix	Corp	oration	FCC ID:	KBCIX325-CWL	IC ID:	1943A-IX325ab		RONIX®
Model(s):	IX325-CWL DUT:			Rugged Ta	Rugged Tablet PC with Cisco AIR-CB21AG-A-K9 802.11abg WLAN				RAL DYNAMICS COMPANY
2006 Celltech La	106 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs							Inc.	Page 20 of 30

	Test Report Serial No .:	040505KBC-F632-S15Wbg		Report Issue No.:	S632Wbg-032806-R0
Celltech Testing and Engineering Services Lab	Date(s) of Evaluation:	April 25-26, 2	005	Report Issue Date:	March 28, 2006
	Evaluation Type:	RF Exposure	SAR	FCC 47 CFR 2.1093	IC RSS-102 Issue 2

Date Tested: 04/25/2005

System Performance Check (Body) - 2450 MHz Dipole

DUT: Dipole 2450 MHz; Model: D2450V2; Type: System Performance Check; Serial: 150; Calibrated: 22/04/2005

Ambient Temp: 24.8 °C; Fluid Temp: 23.9 °C; Barometric Pressure: 102.0 kPa; Humidity: 30%

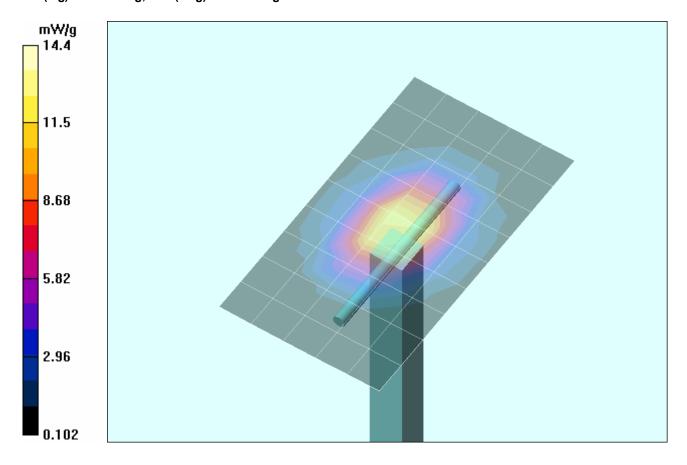
Communication System: CW Forward Conducted Power: 250 mW Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: M2450 (σ = 2.01 mho/m; ϵ_r = 50.6; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1590; ConvF(4.22, 4.22, 4.22); Calibrated: 24/05/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 06/07/2004

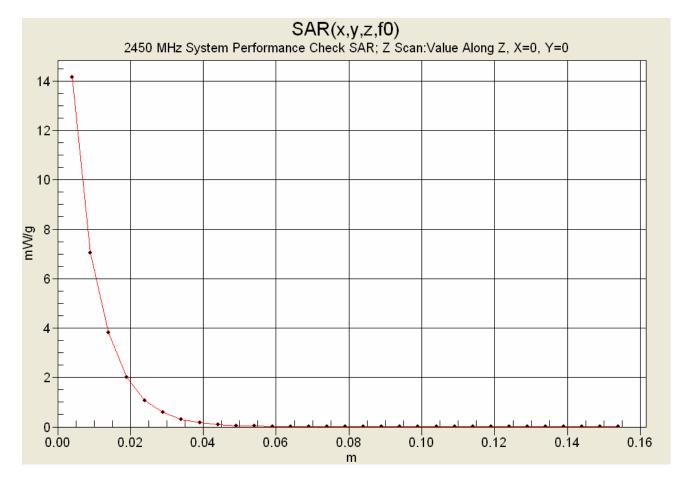
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01


- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

2450 MHz Dipole - System Performance Check/Area Scan (6x10x1):

Measurement grid: dx=10mm, dy=10mm

2450 MHz Dipole - System Performance Check/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 88.7 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 28.1 W/kg SAR(1 g) = 12.8 mW/g; SAR(10 g) = 5.92 mW/g

Applicant:	Itronia	c Corp	oration	FCC ID:	KBCIX325-CWL	IC ID:	1943A-IX325ab		RONIX®
Model(s):	IX325-CWL DUT:			Rugged Ta	Rugged Tablet PC with Cisco AIR-CB21AG-A-K9 802.11abg WLAN				RAL DYNAMICS COMPANY
2006 Celltech La	abs Inc.	This	s document is	s not to be reproc	Inc.	Page 21 of 30			

	Test Report Serial No .:	040505KBC-F632-S15Wbg		Report Issue No.:	S632Wbg-032806-R0
Celltech Testing and Engineering Services Lab	Date(s) of Evaluation:	April 25-26, 2	2005	Report Issue Date:	March 28, 2006
	Evaluation Type:	RF Exposure	SAR	FCC 47 CFR 2.1093	IC RSS-102 Issue 2

Z-Axis Scan

Applicant:	Itronix Corporation			FCC ID:	KBCIX325-CWL	IC ID:	1943A-IX325ab		RONIX®
Model(s):	IX325-CWL DUT:		Rugged Tablet PC with Cisco AIR-CB21AG-A-K9 802.11ab					AL DYNAMICS COMPANY	
2006 Celltech La	2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Inc.	Page 22 of 30

	Test Report Serial No.:	040505KBC-F632-S15Wbg		Report Issue No.:	S632Wbg-032806-R0
Celltech	Date(s) of Evaluation:	April 25-26, 2	2005	Report Issue Date:	March 28, 2006
Testing and Engineering Services Lab	Evaluation Type:	RF Exposure	SAR	FCC 47 CFR 2.1093	IC RSS-102 Issue 2

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

Applicant:	Itronix	(Corp	oration	FCC ID:	KBCIX325-CWL	IC ID:	1943A-IX325ab		RONIX [®]
Model(s):	IX325-0	CWL	DUT:	Rugged Ta	ablet PC with Cisco AIR-	CB21AG-A-K	9 802.11abg WLAN		RAL DYNAMICS COMPANY
2006 Celltech La	i Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Inc.	Page 23 of 30		

	Test Report Serial No .:	040505KBC-F632-S15Wbg Report Issue No.:		Report Issue No.:	S632Wbg-032806-R0
Celltech	Date(s) of Evaluation:	April 25-26, 2	2005	Report Issue Date:	March 28, 2006
Testing and Engineering Services Lab	Evaluation Type:	RF Exposure	SAR	FCC 47 CFR 2.1093	IC RSS-102 Issue 2

2450 DUT Evaluation (Body) Measured Fluid Dielectric Parameters (Muscle)

April 26, 2005

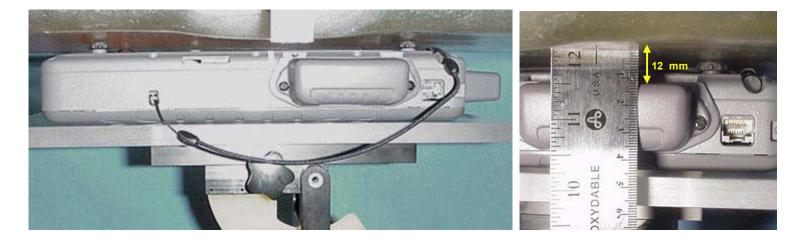
Frequency	e'	e"
2.35000000 GHz	50.5671	14.1826
2.360000000 GHz	50.5355	14.2181
2.370000000 GHz	50.4988	14.2600
2.380000000 GHz	50.4599	14.3051
2.390000000 GHz	50.4180	14.3400
2.40000000 GHz	50.3935	14.3730
2.410000000 GHz	50.3681	14.4041
2.420000000 GHz	50.3310	14.4605
2.430000000 GHz	50.3109	14.5116
2.440000000 GHz	50.2779	14.5354
2.450000000 GHz	50.2464	<mark>14.5834</mark>
2.460000000 GHz	50.2134	14.6049
2.470000000 GHz	50.1750	14.6625
2.480000000 GHz	50.1405	14.7161
2.490000000 GHz	50.0882	14.7450
2.50000000 GHz	50.0419	14.7746
2.510000000 GHz	50.0035	14.8243
2.520000000 GHz	49.9764	14.8789
2.530000000 GHz	49.9371	14.9166
2.540000000 GHz	49.9105	14.9575
2.550000000 GHz	49.8748	14.9957

2450 MHz System Performance Check Measured Fluid Dielectric Parameters (Muscle)

April 25, 2005

Frequency	e'	e"
2.350000000 GHz	50.9638	14.4079
2.360000000 GHz	50.9285	14.4390
2.370000000 GHz	50.8874	14.4700
2.380000000 GHz	50.8322	14.5185
2.390000000 GHz	50.7870	14.5558
2.40000000 GHz	50.7597	14.5945
2.410000000 GHz	50.7066	14.6317
2.420000000 GHz	50.6657	14.6808
2.430000000 GHz	50.6382	14.7216
2.440000000 GHz	50.5941	14.7503
2.450000000 GHz	50.5696	14.7669
2.460000000 GHz	50.5361	14.8170
2.470000000 GHz	50.4944	14.8412
2.480000000 GHz	50.4528	14.8880
2.490000000 GHz	50.4003	14.9160
2.500000000 GHz	50.3635	14.9437
2.510000000 GHz	50.3257	14.9990
2.520000000 GHz	50.2983	15.0348
2.530000000 GHz	50.2682	15.0820
2.540000000 GHz	50.2263	15.1041
2.550000000 GHz	50.1854	15.1258

Applicant:	Itronix	Corp	oration	FCC ID:	KBCIX325-CWL	IC ID:	1943A-IX325ab		RONIX [®]
Model(s):	IX325-0	CWL	DUT:	Rugged Ta	ablet PC with Cisco AIR-	CB21AG-A-K	9 802.11abg WLAN		AL DYNAMICS COMPANY
2006 Celltech La	abs Inc.	This	document is	s not to be reproc	duced in whole or in part withou	t the prior written	permission of Celltech Labs	Inc.	Page 24 of 30

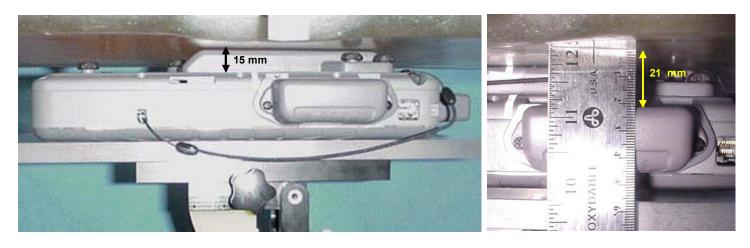

	Test Report Serial No.:	No.: 040505KBC-F632-S15Wbg		Report Issue No.:	S632Wbg-032806-R0
Celltech	Date(s) of Evaluation:	April 25-26, 2	2005	Report Issue Date:	March 28, 2006
Testing and Engineering Services Lab	Evaluation Type:	RF Exposure	SAR	FCC 47 CFR 2.1093	IC RSS-102 Issue 2

APPENDIX D - SAR TEST SETUP PHOTOGRAPHS

Applicant:	Itronia	c Corp	oration	FCC ID:	KBCIX325-CWL	IC ID:	1943A-IX325ab		RONIX®
Model(s):	IX325-	CWL	DUT:	Rugged Ta	ablet PC with Cisco AIR-	CB21AG-A-K	9 802.11abg WLAN		AL DYNAMICS COMPANY
2006 Celltech La	abs Inc.	This	s document is	s not to be reproc	duced in whole or in part withou	t the prior written	permission of Celltech Labs	Inc.	Page 25 of 30

Celltech Teting and Engineering Services Lat	Test Report Serial No .:	040505KBC-F632	505KBC-F632-S15Wbg Report Issue No.: S632		S632Wbg-032806-R0
	Date(s) of Evaluation:	April 25-26, 2	005	Report Issue Date:	March 28, 2006
	Evaluation Type:	RF Exposure	SAR	FCC 47 CFR 2.1093	IC RSS-102 Issue 2

BODY SAR TEST SETUP PHOTOGRAPHS Bottom Side of DUT Touching Planar Phantom Internal Lithium-ion Battery (Model: T8M-E)




	1

Applicant:	Itronix Cor		oration	FCC ID:	: KBCIX325-CWL IC ID: 1943A-IX325ab			RONIX®	
Model(s):	IX325-0	CWL	DUT:	Rugged Ta	ablet PC with Cisco AIR-	CB21AG-A-K	9 802.11abg WLAN		RAL DYNAMICS COMPANY
2006 Celltech La	abs Inc.	This	document is	s not to be reproc	duced in whole or in part withou	t the prior written	permission of Celltech Labs	Inc.	Page 26 of 30

	Test Report Serial No .:	No.: 040505KBC-F632-S15Wbg Repor		Report Issue No.:	S632Wbg-032806-R0
Celltech	Date(s) of Evaluation:	April 25-26, 2	2005	Report Issue Date:	March 28, 2006
Testing and Engineering Services Lab	Evaluation Type:	RF Exposure	SAR	FCC 47 CFR 2.1093	IC RSS-102 Issue 2

BODY SAR TEST SETUP PHOTOGRAPHS Bottom Side of DUT (External Second Battery) Touching Planar Phantom External Second Lithium-ion Battery (15 mm External Battery Thickness)

Applicant:	Itronix Corporation		FCC ID:	KBCIX325-CWL	IC ID: 1943A-IX325ab			ITRONIX [®]	
Model(s):	IX325-	CWL	DUT:	Rugged Ta	blet PC with Cisco AIR-	CB21AG-A-K	9 802.11abg WLAN		RAL DYNAMICS COMPANY
2006 Celltech Labs Inc. This document		s not to be reprod	luced in whole or in part without	t the prior written	permission of Celltech Labs	Inc.	Page 27 of 30		


	Test Report Serial No.:	040505KBC-F632-S15Wbg		Report Issue No.:	S632Wbg-032806-R0	
Celltech	Date(s) of Evaluation:	April 25-26, 2005		Report Issue Date:	March 28, 2006	
Testing and Engineering Services Lab	Evaluation Type:	RF Exposure	SAR	FCC 47 CFR 2.1093	IC RSS-102 Issue 2	

APPENDIX E - SYSTEM VALIDATION

Applicant:	t: Itronix Corporation		FCC ID:	KBCIX325-CWL	IC ID:	1943A-IX325ab	ITRONIX [®]	
Model(s):	IX325-0	IX325-CWL DUT: Rugged Tablet PC with Cisco AIR-CB21AG-A-K9 802.11abg WL		9 802.11abg WLAN		AL DYNAMICS COMPANY		
2006 Celltech Labs Inc. This document i		s not to be reproc	duced in whole or in part withou	t the prior written	permission of Celltech Labs	Inc.	Page 28 of 30	

2450 MHz SYSTEM VALIDATION DIPOLE

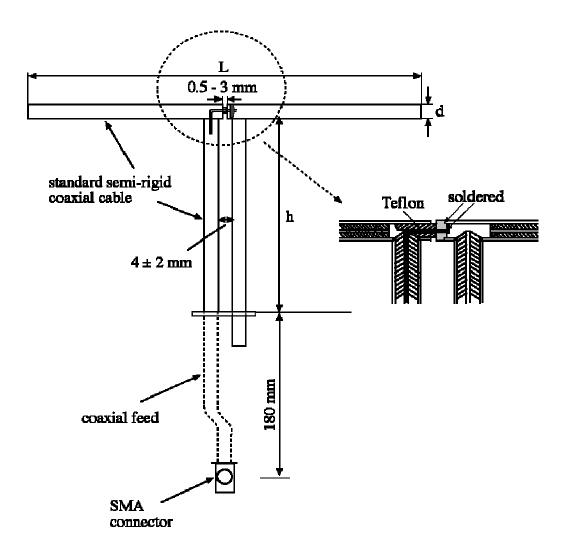
Celltech Labs Inc. hereby certifies that this device has been calibrated on the date indicated above.

Calibrated by:

Fron Johns

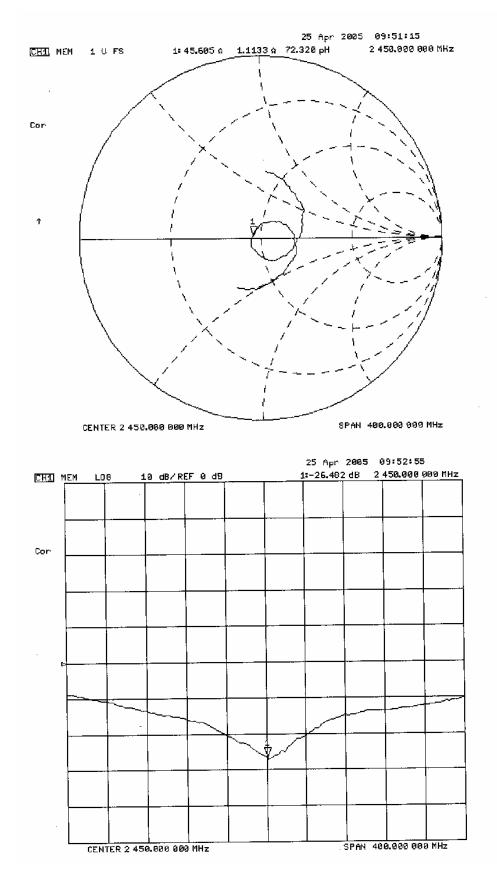
Approved by:

Spencer Watow


1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the IEEE Std "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques". The electrical properties were measured using an HP 8753E Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 2450 MHz	Re{Z} = 45.605Ω
	lm{Z} = 1.1133Ω

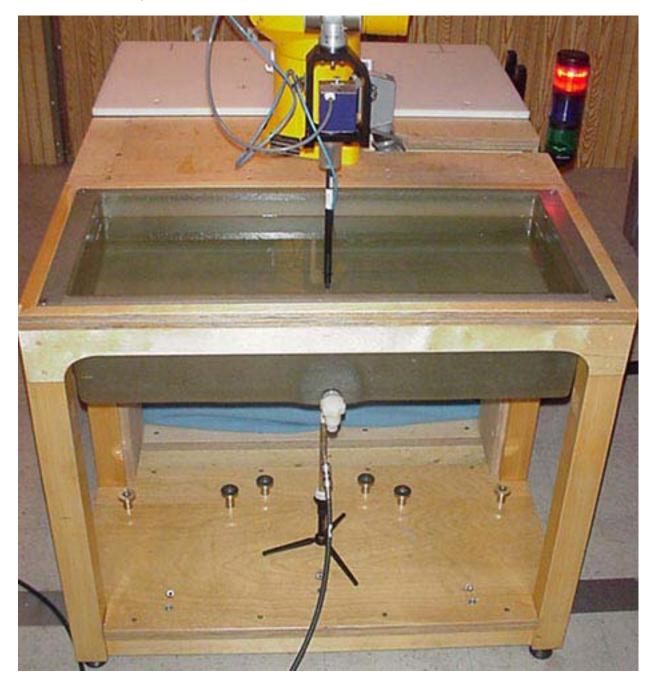

Return Loss at 2450 MHz

-26.482 dB

2. Validation Dipole VSWR Data

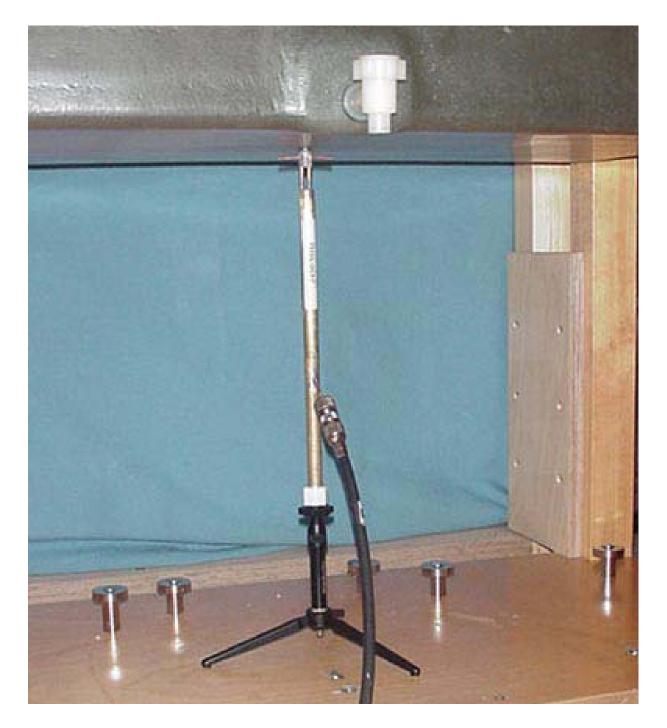
3. Validation Dipole Dimensions

Frequency (MHz)	L (mm)	H (mm)	D (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6


4. Validation Phantom

The validation phantom is a Fiberglass shell planar phantom manufactured by Barski Industries Ltd. The phantom is in conformance with the requirements defined by IEEE SCC34-SC2 for the dosimetric evaluations of body-worn and lap-held operating configurations. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids.

Shell Thickness:	2.0 ± 0.2 mm
Filling Volume:	Approx. 55 liters
Dimensions:	44 cm (W) x 94 cm (L)



5. 2450 MHz System Validation Setup

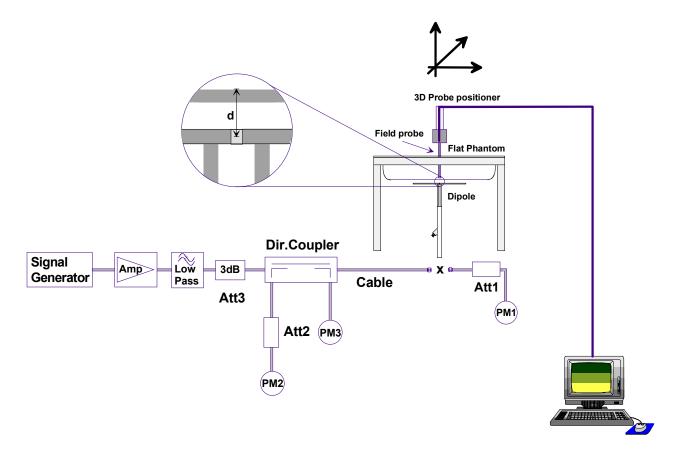
6. 2450 MHz Dipole Setup

7. Measurement Conditions

The phantom was filled with 2450 MHz Body simulating tissue:

Relative Permittivity:	50.2
Conductivity:	1.97 mho/m
Fluid Temperature:	23.9 °C
Fluid Depth:	\geq 15.0 cm
Environmental Conditions:	
Ambient Temperature:	25.7 °C
Humidity:	30 %

Barometric Pressure: 102.6 kPa


The 2450 MHz simulated Body tissue mixture consists of the following ingredients:

Ingredient	Percentage by weight		
Water	69.98%		
Glycol Monobutyl	30.00%		
Salt	0.02%		
Target Dielectric Parameters at 22°C	ε _r = 52.7 (+/-5%) σ = 1.95 S/m (+/-5%)		

8. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

9. Validation Dipole SAR Test Results

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

Validation Measurement	SAR @ 0.25W Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.25W Input averaged over 10g	SAR @ 1W Input averaged over 10g	Peak SAR @ 0.25W Input
Test 1	12.6	50.4	5.86	23.44	27.7
Test 2	12.6	50.4	5.86	23.44	27.4
Test 3	12.6	50.4	5.87	23.48	27.4
Test 4	12.6	50.4	5.86	23.44	27.3
Test 5	12.6	50.4	5.86	23.44	27.4
Test 6	12.6	50.4	5.87	23.48	27.8
Test 7	12.7	50.8	5.88	23.52	27.7
Test 8	12.7	50.8	5.88	23.52	27.8
Test 9	12.6	50.4	5.87	23.48	27.6
Test10	12.7	50.8	5.88	23.52	27.7
Average Value	12.63	50.52	5.869	23.48	27.58

The results have been normalized to 1W (forward power) into the dipole.

@ 1 W averag	et SAR att Input jed over n (W/kg)	Measured SAR @ 1 Watt Input averaged over 1 gram (W/kg)	Deviation from Target (%)	@ 1 Wa averag	et SAR att Input ed over s (W/kg)	Measured SAR @ 1 Watt Input averaged over 10 grams (W/kg)	Deviation from Target (%)
51.2	+/- 10%	50.52	- 1.3	23.7	+/- 10%	23.48	- 0.93

Dipole	Distance	Frequency	SAR (1g)	SAR $(10g)$	SAR (peak)
Type	[mm]	[MHz]	[W/kg]	[W/kg]	[W/kg]
D300V2	15	300	3.02	2.06	4.36
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1500V2	10	1500	30.8	17.1	52.1
D1640V2	10	1640	34.4	18.7	59.4
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6
D3000V2	10	3000	61.9	24.8	136.7

Table 32.1: Numerical reference SAR values for SPEAG dipoles and flat phantom filled with body-tissue simulating liquid. Note: All SAR values normalized to 1 W forward power.

2450 MHz System Validation - April 22, 2005

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 150; Calibrated: 04/22/2005 Ambient Temp: 25.7 °C; Fluid Temp: 23.9 °C; Barometric Pressure: 102.6 kPa; Humidity: 30% Communication System: CW Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: M2450 Medium parameters used: f = 2450 MHz; g = 1.97 mbo/m; s = 50.2; o = 1000 k/

Medium: M2450 Medium parameters used: f = 2450 MHz; σ = 1.97 mho/m; $ε_r$ = 50.2; ρ = 1000 kg/m³ - Probe: ET3DV6 - SN1590; ConvF(4.22, 4.22, 4.22); Calibrated: 24/05/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 06/07/2004
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

2450 MHz System Validation/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

2450 MHz System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 88.7 V/m; Power Drift = -0.010 dB Peak SAR (extrapolated) = 27.7 W/kg SAR(1 g) = 12.6 mW/g; SAR(10 g) = 5.86 mW/g

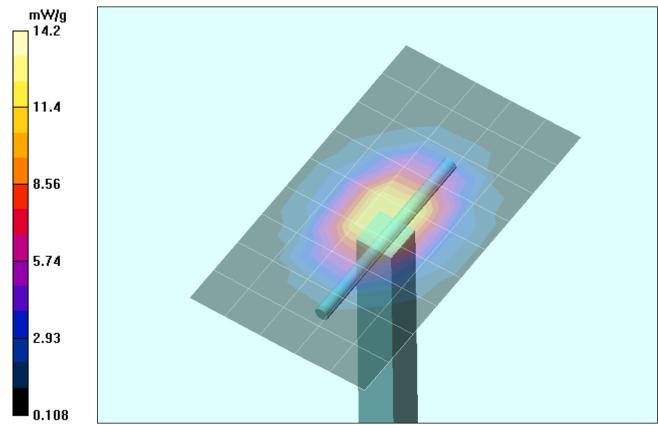
2450 MHz System Validation/Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.1 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 12.6 mW/g; SAR(10 g) = 5.86 mW/g

2450 MHz System Validation/Zoom Scan 3 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.0 V/m; Power Drift = 0.015 dB Peak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 12.6 mW/g; SAR(10 g) = 5.87 mW/g

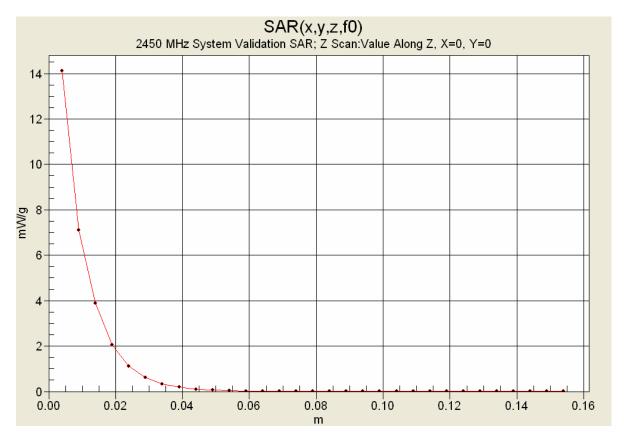
2450 MHz System Validation/Zoom Scan 4 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.9 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 27.3 W/kg SAR(1 g) = 12.6 mW/g; SAR(10 g) = 5.86 mW/g

2450 MHz System Validation/Zoom Scan 5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.5 V/m; Power Drift = 0.010 dB Peak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 12.6 mW/g; SAR(10 g) = 5.86 mW/g

2450 MHz System Validation/Zoom Scan 6 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.0 V/m; Power Drift = -0.042 dB Peak SAR (extrapolated) = 27.8 W/kg SAR(1 g) = 12.6 mW/g; SAR(10 g) = 5.87 mW/g


2450 MHz System Validation/Zoom Scan 7 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.7 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 27.7 W/kg SAR(1 g) = 12.7 mW/g; SAR(10 g) = 5.88 mW/g

2450 MHz System Validation/Zoom Scan 8 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.4 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 27.8 W/kg SAR(1 g) = 12.7 mW/g; SAR(10 g) = 5.88 mW/g


2450 MHz System Validation/Zoom Scan 9 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.3 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 27.6 W/kg SAR(1 g) = 12.6 mW/g; SAR(10 g) = 5.87 mW/g

2450 MHz System Validation/Zoom Scan 10 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.6 V/m; Power Drift = -0.025 dB Peak SAR (extrapolated) = 27.7 W/kg SAR(1 g) = 12.7 mW/g; SAR(10 g) = 5.88 mW/g

1 g average of 10 measurements: 12.63 mW/g 10 g average of 10 measurements: 5.869 mW/g

10. Measured Fluid Dielectric Parameters

System Validation - 2450 MHz Dipole

Measured Fluid Dielectric Parameters (Muscle)

Frequency	e'	e"
2.350000000 GHz	50.4884	14.1016
2.360000000 GHz	50.4542	14.1475
2.370000000 GHz	50.4295	14.1756
2.380000000 GHz	50.4094	14.2063
2.390000000 GHz	50.3750	14.2541
2.400000000 GHz	50.3395	14.2965
2.410000000 GHz	50.2961	14.3310
2.420000000 GHz	50.2408	14.3481
2.430000000 GHz	50.2047	14.3861
2.440000000 GHz	50.1822	14.4193
2.450000000 GHz	50.1500	<mark>14.4611</mark>
2.460000000 GHz	50.1035	14.5137
2.470000000 GHz	50.0825	14.5504
2.480000000 GHz	50.0515	14.6073
2.490000000 GHz	50.0191	14.6410
2.500000000 GHz	49.9867	14.6647
2.510000000 GHz	49.9442	14.7231
2.520000000 GHz	49.9042	14.7502
2.530000000 GHz	49.8769	14.7804
2.540000000 GHz	49.8259	14.8081
2.550000000 GHz	49.7900	14.8467

Celltech Teting and Engineering Services Lat	Test Report Serial No.: 040505KBC-F632-S15Wbg		Report Issue No.:	S632Wbg-032806-R0	
	Date(s) of Evaluation:	April 25-26, 2	005	Report Issue Date:	March 28, 2006
	Evaluation Type:	RF Exposure	SAR	FCC 47 CFR 2.1093	IC RSS-102 Issue 2

APPENDIX F - PROBE CALIBRATION

Applicant:	Itronia	c Corp	oration	FCC ID: KBCIX325-CWL IC		IC ID:	IC ID: 1943A-IX325ab		ITRONIX [®]	
Model(s):	IX325-	CWL	DUT:	Rugged Ta	Rugged Tablet PC with Cisco AIR-CB21AG-A-K9 802.11abg WLAN				AL DYNAMICS COMPANY	
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Inc.	Page 29 of 30					

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Celltech Labs

Dbject(s)	ET3DV6 - SN:	1590	
Calibration procedure(s)	QA CAL-01.v2 Calibration pro	ocedure for dosimetric E-field prob	es
Calibration date:	May 24, 2004		
Condition of the calibrated item	In Tolerance (according to the specific calibratio	n document)
The measurements and the uncerta	inties with confidence pr	nal standards, which realize the physical units of me obability are given on the following pages and are par y facility: environ ment temperature 22 +/- 2 degrees C	rt of the certificate.
Nodel Type	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C Network Analyzer HP 8753E	GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 US3642U01700 US37390585	5-May-04 (METAS, No 251-00388) 5-May-04 (METAS, No 251-00388) 3-May-04 (METAS, No 251-00389) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Aug-02) 18-Oct-01 (SPEAG, in house check Oct-03)	May-05 May-05 May-05 Sep-04 In house check: Oct 05 In house check: Aug-05 In house check: Oct 05
	Name	Function	Signature
Calibrated by:	Nico Vetterli	Technician	Ditetta
Approved by:	Katja Pokovic	Laboratory Director	Blovi letza
			Date issued: May 24, 2004
	as an intermediate soluti Partner Engineering AG	ion until the accreditation process (based on ISO/IEC	17025 International Standard) for

Probe ET3DV6

SN:1590

Manufactured: Last calibrated: Recalibrated: March 19, 2001 May 15, 2003 May 24, 2004

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

ET3DV6 SN:1590

May 24, 2004

DASY - Parameters of Probe: ET3DV6 SN:1590

Sensitivity in Free Space

Diode Compression^A

NormX	1.85 μV/(V/m) ²	DCP X	91	mV
NormY	2.01 μV/(V/m) ²	DCP Y	91	mV
NormZ	1.73 μV/(V/m) ²	DCP Z	91	mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Plese see Page 7.

Boundary Effect

900 MHz Typical SAR gradient: 5 % per mm

Sensor Cente	r to Phantom Surface Distance	3.7 mm 4.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	8.0 4.4	4.4	
SAR _{be} [%]	With Correction Algorithm	0.1 0.2	0.2	

Head

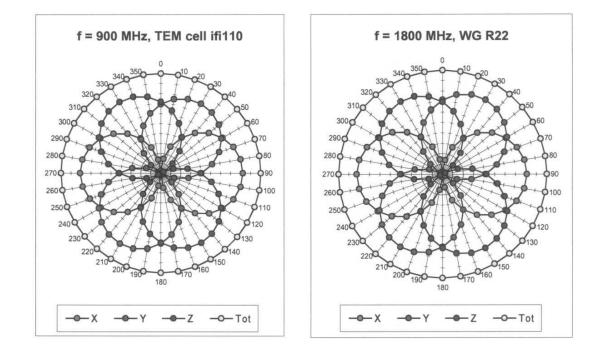
1800 MHz Typical SAR gradient: 10 % per mm

Sensor Center	to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	12.2	8.5
SAR _{be} [%]	With Correction Algorithm	0.2	0.1

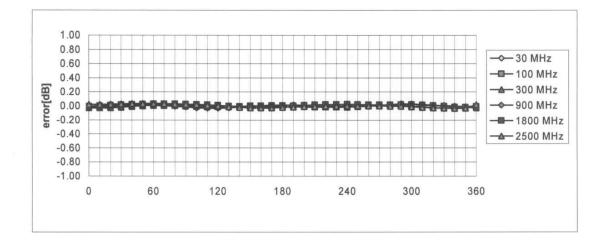
Sensor Offset

Probe Tip to Sensor Center	2.7	mm
Optical Surface Detection	in to	lerance

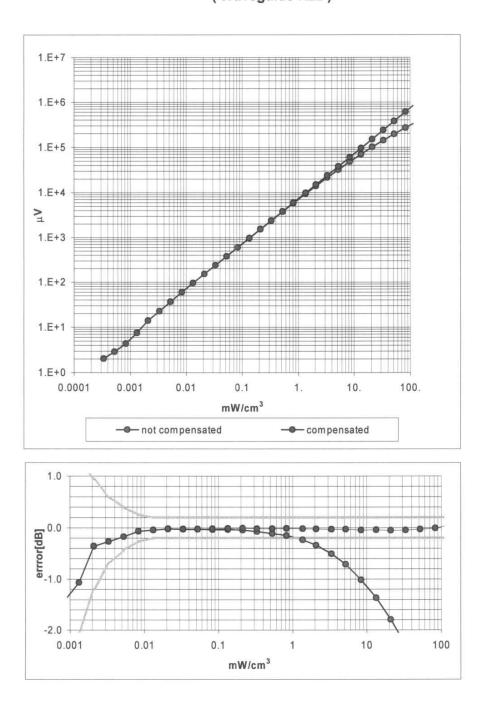
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.


A numerical linearization parameter: uncertainty not required

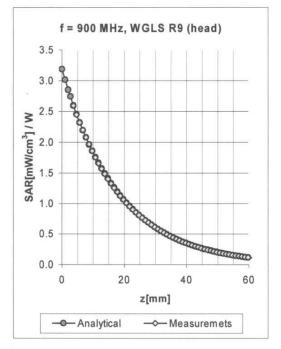
ET3DV6 SN:1590

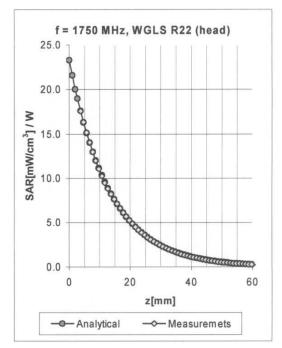


Frequency Response of E-Field


(TEM-Cell:ifi110, Waveguide R22)

Receiving Pattern (ϕ), θ = 0°


Axial Isotropy Error < ± 0.2 dB


Dynamic Range f(SAR_{head}) (Waveguide R22)

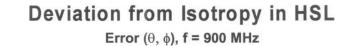
Probe Linearity Error < ± 0.2 dB

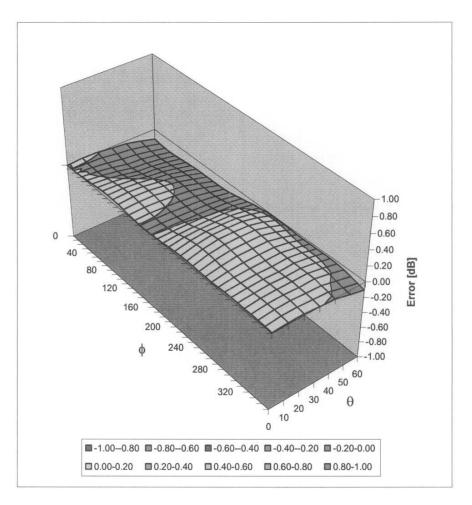
f [MHz] Validity [MHz]^B

Conversion Factor Assessment

Alpha Depth

ConvF Uncertainty


the second se								
835	750-950	Head	41.5 ± 5%	0.90 ± 5%	0.68	1.64	6.71	± 11.9% (k=2)
1750	1700-1800	Head	40.0 ± 5%	1.40 ± 5%	0.43	2.67	5.28	± 9.7% (k=2)
1900	1850-1950	Head	40.0 ± 5%	1.40 ± 5%	0.46	2.81	5.03	± 9.7% (k=2)
2450	2400-2500	Head	39.2 ± 5%	1.80 ± 5%	0.81	1.95	4.44	± 9.7% (k=2)
835	750-950	Body	55.2 ± 5%	0.97 ± 5%	0.49	1.99	6.54	± 11.9% (k=2)
1750	1700-1800	Body	53.3 ± 5%	1.52 ± 5%	0.50	2.87	4.68	± 9.7% (k=2)
1900	1850-1950	Body	53.3 ± 5%	1.52 ± 5%	0.52	2.93	4.58	± 9.7% (k=2)
2450	2400-2500	Body	52.7 ± 5%	1.95 ± 5%	0.91	1.78	4.22	± 9.7% (k=2)


Tissue Permittivity Conductivity

^B The total standard uncertainty is calculated as root-sum-square of standard uncertainty of the Conversion Factor at calibration frequency and the standard uncertainty for the indicated frequency band.

May 24, 2004

ET3DV6 SN:1590

Spherical Isotropy Error < ± 0.4 dB

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Туре:	ET3DV6
Serial Number:	1590
Place of Assessment:	Zurich
Date of Assessment:	May 25, 2004
Probe Calibration Date:	May 24, 2004

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

plan: llate

Assessed by:

ET3DV6-SN:1590

speag

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6 SN:1590

Conversion factor (± standard deviation)

150 MHz	ConvF	9.1 ± 8%	$\epsilon_r = 52.3 \pm 5\%$ $\sigma = 0.76 \pm 5\%$ mho/m (head tissue)
300 MHz	ConvF	7.9 ± 8%	$\epsilon_r = 45.3 \pm 5\%$ $\sigma = 0.87 \pm 5\%$ mho/m (head tissue)
450 MHz	ConvF	7.5 ± 8%	$\epsilon_r = 43.5 \pm 5\%$ $\sigma = 0.87 \pm 5\%$ mho/m (head tissue)
150 MHz	ConvF	8.8±8%	$\epsilon_r = 61.9 \pm 5\%$ $\sigma = 0.80 \pm 5\%$ mho/m (body tissue)
450 MHz	ConvF	7.7 ± 8%	$\epsilon_r = 56.7 \pm 5\%$ $\sigma = 0.94 \pm 5\%$ mho/m (body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also Section 4.7 of the DASY4 Manual.

	Test Report Serial No .:	040505KBC-F632	-S15Wbg	Report Issue No.:	S632Wbg-032806-R0
Celltech	Date(s) of Evaluation:	April 25-26, 2	2005	Report Issue Date:	March 28, 2006
Testing and Engineering Services Lab	Evaluation Type:	RF Exposure	SAR	FCC 47 CFR 2.1093	IC RSS-102 Issue 2

APPENDIX G - PLANAR PHANTOM CERTIFICATE OF CONFORMITY

Applicant:	Itronia	k Corp	oration	FCC ID:	KBCIX325-CWL	IC ID:	1943A-IX325ab		RONIX®
Model(s):	IX325-	CWL	DUT:	Rugged Ta	ablet PC with Cisco AIR-	CB21AG-A-K	9 802.11abg WLAN		AL DYNAMICS COMPANY
2006 Celltech	abs Inc.	This	s document is	s not to be reproc	duced in whole or in part withou	t the prior written	permission of Celltech Labs	Inc.	Page 30 of 30

2378 Westlake Road Kelowna, B.C. Canada V1Z-2V2

Ph. # 250-769-6848 Fax # 250-769-6334 E-mail: <u>barskiind@shaw.ca</u> Web: www.bcfiberglass.com

FIBERGLASS FABRICATORS

Certificate of Conformity

Item : Flat Planar Phantom Unit # 03-01 Date: June 16, 2003 Manufacturer: Barski Industries (1985 Ltd)

Test	Requirement	Details
Shape	Compliance to geometry according to drawing	Supplied CAD drawing
Material Thickness	Compliant with the requirements	2mm +/- 0.2mm in measurement area
Material Parameters	Dielectric parameters for required frequencies Based on Dow Chemical technical data	100 MHz-5 GHz Relative permittivity<5 Loss Tangent<0.05

Conformity

Based on the above information, we certify this product to be compliant to the requirements specified.

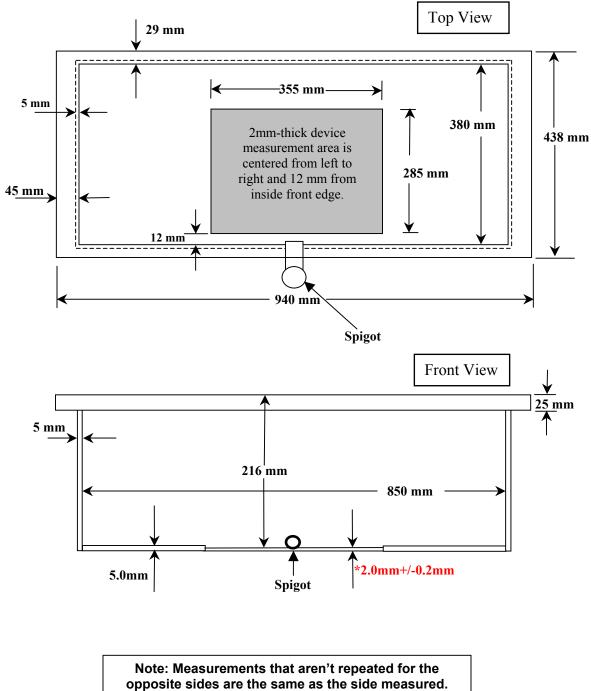
Signature:

Daniel Chailler

Fiberglass Planar Phantom - Top View

Fiberglass Planar Phantom - Front View

Fiberglass Planar Phantom - Back View



Fiberglass Planar Phantom - Bottom View

Dimensions of Fiberglass Planar Phantom

(Manufactured by Barski Industries Ltd. - Unit# 03-01)

