

Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006		
Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0		
Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS-132, RSS-133			
Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada Lab File #3874			

ELECTROMAGNETIC COMPATIBILITY

EMC TEST REPORT

FCC 47 CFR PART 22 SUBPART H FCC 47 CFR PART 24 SUBPART E

FOR

ITRONIX CORPORATION

MODEL: IX260PROAC860

IX260+ SERIES RUGGED LAPTOP PC WITH INTERNAL DUAL-BAND GSM/GPRS/EDGE/UMTS PCMCIA MODEM UTILIZING AN EXTERNAL SWIVEL DIPOLE ANTENNA AND VEHICLE-MOUNT ANTENNA WITH CRADLE

FCC ID: KBCIX260PROAC860

Test Report Serial No. 061506KBC-T757-E24G

Test Report Revision No. Revision 1.0 (Initial Release)

Test Location

Celltech Compliance Testing & Engineering Lab (Celltech Labs Inc.) 1955 Moss Court Kelowna, BC Canada V1Y 9L3

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITI	SONIX
DUT Type:	Lapto	p PC with Sierr	a Wireless A	AC860 Dual-Band GSM/GP	RS/EDGE/UM			L DYNAMICS COMPANY
2006 Celltech L	abs Inc.	This document is	s not to be repr	oduced in whole or in part witho	ut the prior writte	en permission of Celltech La	ibs Inc.	Page 1 of 51

	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
h	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133
rices Lab	Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada L	ab File #3874

	DECLARATION OF COMPLIANCE														
Test Location	Testing 1955 M Kelowna	oss Cour	ineering S t	SINC. eering Services						Company nformation	1282 Spo	25 E. Mir	PRPORATION abeau Parkw lley, WA 9921 s	ay	
Phone:	250-448	3-7047		Fax: 250-448-7048											
E-mail:	info@co	elltechlab	s.com	Web	site:	WWW.Ce	elltechla	os.com							
Lab Registration	<u>No.(s):</u>	FCC:	714830					IC:	10	C 3874					
Rule Part(s):		FCC:	§2; §22	H; §24	ŀΕ			IC:	F	RSS-132 Issue	2, RS	S-133 Iss	sue 3		
Device Classifica	tion:	FCC:	PCSLic	renser	Trans	mitter (F	CB)	IC:	8	800 MHz Cellul	ar Tele	phones E	Employing Nev	v Tech	nologies
Device of assince		100.	1 00 ER	School	i mans		00)	10.	2	2 GHz Persona	l Comn	nunication	n Services		
Device Identifica	tion:	FCC:	KBCIX2	260PR	OAC86	60									
Device Des	scription:			Rug	ged La	otop PC		De	vic	e Model(s):		E	X260PROAC	860	_
Internal Trans	mitter Ty	vpe:		Sierra	a Wirele	ess Mod	el: AirCa	rd 860 I	Dua	al-Band GSM/0	GPRS/E		MTS PCMCIA	Mode	m
Transmit Froque	nov Pan	ao(c):	GSM/G	PRS/E	DGE	Cellul	ar Band	824	1.2 -	- 848.8 MHz	PCS	CS Band 1850.2 - 1909.8 Mł		MHz	
riansinit Freque	Transmit Frequency Range(s):		UMTS Cellula		ar Band	d 826.4 - 846.6 MHz I		PCS	Band 1852.4 - 1907.5 MHz						
Receive Freque	Receive Frequency Range(s):		GSM/G	SSM/GPRS/EDGE Cellula		ar Band	869.2 - 893.8 MHz		PCS	Band	1930.2 - 1989.8 MHz		MHz		
needive meque	noy run	30(0).	UMTS Cellul		ar Band	871			PCS	Band	1932.4 - 1987.5 MHz		MHz		
Maximum RF	Conduct	bot	GPRS	; (Cellular Band		32.28	32.28 dBm		1.69 Watts	PCS	Band	28.63 dBm	0.72	29 Watts
Output Powe			EDGE	-	Cellular	Cellular Band		dBm	0	.489 Watts	PCS		25.73 dBm	0.3	74 Watts
			UMTS		Cellular		24.00	-	-).251 Watts	PCS		23.00 dBm		00 Watts
		Dipole			GPRS	Cellu		26.16 dE		0.413 Wat		PCS	32.24 dBm		68 Watts
			Antenn	a E	EDGE	Cellu	-	23.87 dE		0.244 Wat		PCS	32.72 dBm		37 Watts
Max. ERP/EIR	P Measu	red:			JMTS	Cellu	-	21.62 dE		0.145 Wat		PCS	28.32 dBm		79 Watts
			Vehicle	e –	GPRS	Cellu		6.44 dB		0.004 Wat		PCS	15.07 dBm		32 Watts
			Antenn		EDGE	Cellu	-	4.24 dB		0.003 Wat		PCS	13.36 dBm		22 Watts
					JMTS	Cellu		·6.18 dB		0.0002 Wa		PCS	15.96 dBm		39 Watts
GSM Multis			Class 1			Jplink SI		_		Source-Base		U.S.			25%
GSM Pow			GPRS		1		RS 1900:			EDGE 8		E2	EDGE 190		E2
WCDMA Power Class:		-	UMTS	850:	3		S 1900:	3		Transmit	Duty C			100%	
WCDMA Uplink Channels:							annei	FD		: 8-PSK		TUPL	DCH Channel		
Modulatio	Type(s)	•		-					-				UMTS: W		
Antenna Typ	e(s) Test	ed:			vivel Di hicle-N	<u>.</u>				orporation		D	Model: IX		1000
Internal Batte	ony Ontio	ne:	Exten	Lithiu		lount	11 1 \	₩a /, 6.6 A	-	Model: P16	D-M				A2121-2
			۸۵			tor	11.1	,				11.1 V			
Power Source(s) Tested:			AC Power Adapter				90 Watt			Model: ADP-90AB					

This wireless device has demonstrated compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in FCC 47 CFR Rule Parts 2, 22H, 24E; Industry Canada RSS-132 Issue 2, RSS 133 Issue 3; and ANSI TIA/EIA-603-C-2004.

I attest to the accuracy of the data. All measurements reported herein were performed by me or were under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc. The results and statements contained in this report pertain only to the device(s) evaluated.

Test Report Approved By: Spencer Watson EMC Manager Celltech Labs Inc.

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITE	RONIX®
DUT Type:	Lapto	p PC with Sierr	a Wireless A	C860 Dual-Band GSM/GP	RS/EDGE/UM			L DYNAMICS COMPANY
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Lab							ibs Inc.	Page 2 of 51

	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
1	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133
Lab	Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada L	ab File #3874

TABLE OF CONTENTS

1.0 SCOPE
2.0 REFERENCES
2.1 Normative References
3.0 TERMS AND DEFINITIONS
4.0 FACILITIES AND ACCREDITATIONS
5.0 GENERAL INFORMATION
5.1 Applicant Information
5.1 Applicant Information 7 5.2 DUT Description 7
5.3 Mode(s) of Operation Tested
5.4 Configuration Description
6.0 PASS/FAIL CRITERIA
APPENDICES
Appendix A - Conducted RF Output Power Measurement11
Appendix B - Effective Radiated Power / Effective Isotropic Radiated Power Measurement
Appendix C - Radiated Spurious Emissions Measurement
Appendix D - Maximum Permissible Exposure Calculation
END OF DOCUMENT

FIGURES

Figure A.6-1 - Setup Drawing	13
Figure B.6-1 - Setup Drawing	
Figure C.6-1 - Setup Drawing	

PHOTOGRAPHS

Photograph B.7-1 - Bilog Receive Antenna with DUT Swivel Dipole Antenna Configuration	. 17
Photograph B.7-2 - Horn Receive Antenna with DUT Swivel Dipole Antenna Configuration	. 17
Photograph B.7-3 - Dipole Substitution Setup	. 17
Photograph B.7-4 - Horn Substitution Setup.	. 17
Photograph B.7-5 - Bilog Receive Antenna with DUT Vehicle-Mount Antenna Configuration	. 18
Photograph B.7-6 - Horn Receive Antenna with DUT Vehicle-Mount Antenna Configuration	. 18
Photograph B.7-7 - Dipole Substitution Setup	. 18
Photograph B.7-8 - Horn Substitution Setup.	. 18

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITI	RONIX ®
DUT Type:							L DYNAMICS COMPANY	
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs							bs Inc.	Page 3 of 51

Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006		
Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0		
Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS-132, RSS-133			
Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada Lab File #3874			

	TEST SUMMARY													
	Referenced Standard(s): FCC CFR Title 47 Parts 2, 22 & 24													
<u>Appendix</u>	Test Description	Procedure Reference	Limit Reference	Test Start Date	Test End Date	<u>Result</u>								
А	Conducted RF Output Power	FCC 97-114, §2.1046	N/A	25Apr06	25Apr06	N/A								
В	Effective Radiated Power Effective Isotropic Radiated Power	ANSI/TIA/EIA-603-C	§22.913 §24.232(b)	21Jun06	11Jul06	Pass								
С	Radiated Spurious Emissions	ANSI/TIA/EIA-603-C	§22.917 (a), §24.238 (a)	12Jul06	27Jul06	Pass								
D	Maximum Permissible Exposure	FCC CFR 47 § 2.1091 IEEE Std C95.1-1999	§1.1310 Table 1 (b)	27Jun06	27Jun06	Pass								
	Referenced Stand	ard(s): IC RSS-132 Issue	e 2 & RSS-133 Issu	ie 3										
А	Conducted RF Output Power	ANSI/TIA/EIA-603-C	N/A	25Apr06	25Apr06	N/A								
В	Effective Radiated Power Effective Isotropic Radiated Power	ANSI/TIA/EIA-603-C	RSS-132 §4.4 RSS-133 §6.4	21Jun06	11Jul06	Pass								
С	Radiated Spurious Emissions	ANSI/TIA/EIA-603-C	RSS-132 §4.5 RSS-133 §6.5	12Jul06	27Jul06	Pass								
D	Maximum Permissible Exposure	RSS-102 Issue 2	Safety Code 6 2.2.1(a) Table 5	27Jun06	27Jun06	Pass								

REVISION LOG

Revision	Description	Implemented By	Implementation Date	
1.0	Initial Release	Jonathan Hughes	August 24, 2006	

SIGNATORIES

Prepared By:	Spencer Watton	August 09, 2006
Name/Title:	Spencer Watson / EMC Manager	Date
Reviewed By:	GR	August 24, 2006
Name/Title:	Jonathan Hughes / General Manager	Date

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITI	RONIX °
DUT Type:								
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Lab						bs Inc.	Page 4 of 51	

	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
1	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS-132, RSS-13	
Lab	Test Lab Registration(s):	FCC Lab Registration #714830 Industry Canada Lab File		ab File #3874

1.0 <u>SCOPE</u>

This report outlines the measurements made and results collected during electromagnetic emissions testing of the Itronix Corporation Model: IX260PROAC860 Rugged Laptop PC utilizing the Sierra Wireless AirCard 860 Dual-Band GSM/GPRS/EDGE/UMTS PCMCIA Modem. The PCMCIA Modem was connected to an external swivel dipole antenna located on the upper right side edge of the LCD display. The DUT also has provision for an optional vehicle cradle utilizing a MaxRad vehicle-mount antenna. Measurement results were obtained for both antenna configurations and are presented in this report. The measurement results were applied against the applicable EMC requirements and limits outlined in the technical rules and regulations set forth in the Federal Communication Commission Code of Federal Regulations Title 47 Parts 2, 22 Subpart H, and 24 Subpart E; and Industry Canada Radio Standards Specification RSS-132 Issue 2, and RSS-133 Issue 3.

2.0 <u>REFERENCES</u>

2.1 Normative References

ANSI/ISO 17025:1999	General Requirements for competence of testing and calibration laboratories
IEEE/ANSI C63.4:2003	Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
IEEE/ANSI Std C95.1:1999	American National Standard Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields
ANSI/TIA/EIA-603-C:2004	Land Mobile FM or PM Communication Equipment Measurement and Performance Standards
CFR Title 47 Part 2:2005	Code of Federal Regulations Title 47: Telecommunication Part 2: Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
CFR Title 47 Part 22:2005	Code of Federal Regulations Title 47: Telecommunication Part 22: Public Mobile Services
CFR Title 47 Part 24:2005	Code of Federal Regulations Title 47: Telecommunication Part 24: Personal Communication Services
IC Spectrum Management & Telecommunications Policy	Radio Standards Specification RSS-102 Issue 2 - Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) RSS-132 Issue 2 - 800 MHz Cellular Telephones Employing New Technologies RSS-133 Issue 3 - 2 GHz Personal Communication Services RSS-212 Issue 1 (Provisional) - Test Facilities & Test Methods for Radio Equipment RSS-Gen Issue 1 - General Requirements and Information for the Certification of Radiocommunication Equipment SRSP-503 Issue 6 - Technical Requirements for Cellular Radiotelephone Systems Operating in the Bands 824 - 849 MHz and 869 - 894 MHz

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860		RONIX [®]
								AL DYNAMICS COMPANY
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Lab					bs Inc.	Page 5 of 51		

	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006	
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0	
ch	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS-132, RSS		
ervices Lab	Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada Lab File #3874		

3.0 TERMS AND DEFINITIONS

Company: Itronix Corporation		Corporation	FCC ID:	KBCIX260PROAC860 Model(s): IX260PROAC86		IX260PROAC860	ITRONIX		
DUT Type:									
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech La						bs Inc.	Page 6 of 51		

	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
Celltech	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133
Testing and Engineering Services Lab	Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada L	ab File #3874

4.0 FACILITIES AND ACCREDITATIONS

The facilities used in collecting the test results outlined in this report are located at 1955 Moss Court, Kelowna, British Columbia, Canada, V1Y 9L3. The radiated and conducted emissions sites conform with the requirements set forth in ANSI C63.4 and are filed and listed with the FCC under Registration Number 714830 and Industry Canada under File Number IC 3874.

5.0 GENERAL INFORMATION

5.1 Applicant Information

Company Name:	Itronix Corporation
Address:	12825 E. Mirabeau Parkway
	Spokane Valley, WA 99216
	United States

5.2 DUT Description

The DUT consisted of the IX260+ Rugged Laptop PC utilizing the internal Sierra Wireless AirCard 860 Dual-Band GSM/GPRS/EDGE/UMTS PCMCIA Modem connected to an external swivel dipole antenna located on the upper right side edge of the LCD display. The DUT also utilizes an optional vehicle cradle for operation with a vehicle-mounted MaxRad dipole antenna and a 17-foot attached cable.

Device:	IX260+ R	IX260+ Rugged Laptop PC						
Model:	IX260PROAC860				Serial Number:	ZZGEG4196ZZ6467		
Identifier(s):	FCC ID:	KBCIX260	PROAC86	0				
Battery Options:	Lithiu	im-ion	11.1 V, 6.6 Ah Model: P16D-M		Model: P16D-M	11.1 V, 6.0 Ah Model: A2121-2		
Power Source Tested:	Delta Electronics 90 Watt AC-DC Pc				Supply (Model ADP-	90AB Rev B)		
Accessories Tested:	IX260	adle	P/	N: 60-0134-003	Serial No.: ZZCWA5024ZM0212			

Internal Transmitter:	Dual-Ba	Dual-Band GSM/GPRS/EDGE/UMTS PCMCIA Modem			
Manufacturer/Model:	Sierra V	Vireless AirCard 860	Serial Number:	357806000465210	
Rule Part(s) Tested:	FCC:	§2.1091; §22.913, §22.917; §24	4.232(b), §24.238		
Rule Fart(5) Tested.	IC:	RSS-132 Issue 2, RSS-133 Issue 3			
	FCC:	PCS Licensed Transmitter (PCB)			
Device Classification(s):	IC:	logies (RSS-132)			
	10.	2 GHz Personal Communication Services (RSS-133)			

Antenna Type 1: External Swivel Dipole Antenna		Antenna Type 2:	MaxRad Vehicle-Mount
Model:	IX260+	Part No.:	WMLPVDB800/1900
Gain:	+2.6 dBi	Gain:	+ 3 dBi

Company:	Itronix	tronix Corporation FCC ID: KBCIX260PROAC860 Model(s): IX260PI		IX260PROAC860	ITI	RONIX®
DUT Type:						
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 7 of 51				Page 7 of 51		

	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
Celltech	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133
Testing and Engineering Services Lab	Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada Lab File #3874	

5.3 Mode(s) of Operation Tested

Of the three modes, GPRS, EDGE and UMTS, GPRS and EDGE were considered similar in modulation type, channel frequency and relative power level. G-TEM measurements were made in all three modes of operation and the worst case for GPRS and EDGE was chosen for prescan measurements.

5.3.1 Dual-Band GPRS

Customer supplied software was used to set the GPRS mode to the appropriate channel and power level for the specific measurement. Between GPRS and EDGE modes, GPRS was found to have higher radiated emissions when tested in a G-TEM and therefore prescan measurements were made with the GPRS modem set to each of the low, mid and high channels in each band. Final measurements were made of all significant emissions. The following settings where used for each channel.

	5.3.1.1	Cellular	GPRS
--	---------	----------	------

Transmit Frequency Range:	824.2 - 848.8 MHz Ch. 128 (824.200 MHz), Ch. 190 (836.600 MHz) & Ch. 251 (848.800 MHz)
Power Gain Settings:	The proprietary Sierra Wireless Procomm Plus test script was utilized to set the RF output power to maximum
Modulation Type:	GMSK

5.3.1.2 PCS GPRS

Transmit Frequency Range:	1850.2 - 1909.8 MHz Ch. 512 (1850.2 MHz), Ch. 661 (1880.0) & Ch. 810 (1909.8 MHz)		
Power Gain Settings:	The proprietary Sierra Wireless Procomm Plus test script was utilized to set the RF output power to maximum		
Modulation Type:	GMSK		

5.3.2 Dual-Band EDGE

Customer supplied software was used to set the EDGE mode to the appropriate channel and power level for the specific measurement. Of GPRS and EDGE, GPRS was found to have higher radiated emissions when tested in a G-TEM and therefore prescan measurements were not made in EDGE mode. The following settings where used for each channel during G-TEM testing and all other tests performed.

5.3.2.1 Cellular EDGE

Transmit Frequency Range:	824.2 - 848.8 MHz Ch. 128 (824.200 MHz), Ch. 190 (836.600 MHz) & Ch. 251 (848.800 MHz)	
Power Gain Settings:	The proprietary Sierra Wireless Procomm Plus test script was utilized to set the RF output power to maximum	
Modulation Type:	8-PSK	

Company:	Itronix	Itronix Corporation FCC ID: KBCIX260PROAC860 Model(s): IX260PROAC860				ITI	RONIX®
DUT Type:	Laptop PC with Sierra Wireless AC860 Dual-Band GSM/GPRS/EDGE/UMTS PCMCIA Modem						
2006 Celltech L	Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 8 of 51				Page 8 of 51		

	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
1	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133
Lab	Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada L	ab File #3874

5.3.2.2 PCS EDGE

Transmit Frequency Range:	1850.2 - 1909.8 MHz Ch. 512 (1850.2 MHz), Ch. 661 (1880.0 MHz) & Ch. 810 (1909.8 MHz)
Power Gain Settings:	The proprietary Sierra Wireless Procomm Plus test script was utilized to set the RF output power to maximum
Modulation Type:	8-PSK

5.3.3 Dual-Band UMTS

The Anritsu MT8820A Radio Communications Test Set was used to set the UMTS mode to the appropriate channel and power level for the specific measurement via air-link. Prescan measurements were made with the UMTS mode set to the low, mid and high channels for each band. Final measurements were made of all significant emissions. The following settings where used for each channel.

5.3.3.1 Cellular UMTS

Transmit Frequency Range:	826.4 - 846.6 MHz Ch. 4132 (826.4 MHz), Ch. 4182 (836.4 MHz) & Ch. 4233 (846.6 MHz)
Power Gain Settings:	The maximum output power setting was established using the Anritsu 8820A Radio Communications Test Set in "All Up Bits" power control mode
Modulation Type:	WCDMA

5.3.3.2 PCS UMTS

Transmit Frequency Range:	1852.4 - 1907.5 MHz Ch. 9262 (1852.4 MHz), Ch. 9400 (1880.0 MHz) & Ch. 9538 (1907.5 MHz)
Power Gain Settings:	The maximum output power setting was established using the Anritsu 8820A Radio Communications Test Set in "All Up Bits" power control mode
Modulation Type:	WCDMA

5.4 Configuration Description

The DUT was configured, as described by the client as being representative of what would be delivered to a final customer. Because the swivel dipole antenna orientation could be user configured, prescan evaluations were made to determine the configuration that resulted in the highest emissions. A "horizontal, pointing forward" orientation (facing user) was used for both cellular and PCS bands. More specific details may be included in each appendix.

5.4.1 Configuration Justification

The DUT was tested in a configuration described by the client as being typical of normal use. The system could be utilized as a standalone Laptop PC as well as installed in a vehicle cradle utilizing the vehicle-mount antenna. Both configurations were investigated and the results reported herein.

6.0 PASS/FAIL CRITERIA

Unless otherwise noted in the Appendices, the pass/fail criteria is the limit set forth in the reference standards. A DUT is considered to have passed the requirements, if the data collected during the described measurement procedure is no greater than the specified limits as defined. The pass/fail statements made in this report only apply to the unit tested.

Company:	Itronix Corporation		FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITI	RONIX®
DUT Type:					L DYNAMICS COMPANY			
2006 Celltech L	006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 9 of 51					Page 9 of 51		

Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133
Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada L	ab File #3874

APPENDICES

Company:	Itronix	ronix Corporation FCC ID: KBCIX260PROAC860 Model(s): IX260PROAC860		ITI	RONIX®
DUT Type:					
2006 Celltech L	Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 10 of 51				

	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133
alta	Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada L	ab File #3874

Appendix A - Conducted RF Output Power Measurement

A.1 REFERENCES	
Normative Reference Standard	FCC CFR 47 §2.1046 (a)
Procedure Reference	FCC 97-114

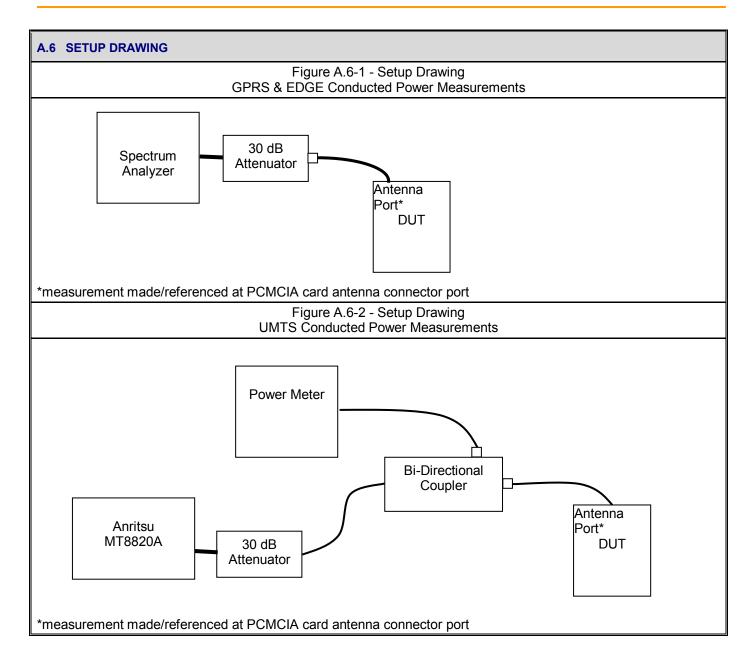
A.2 LIMITS				
A.2.1 FCC CFR	47			
FCC CFR 47 §2.1046 (a)	For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedures to give the values of current and voltage on the circuit elements specified in §2.1033(c) (8).			
*ERP and EIRP limits are specified in Appendix B.				

A.3 ENVIRONMENTAL CONDITIONS			
Temperature	25 +/- 5 °C		
Humidity	40 +/- 10 %		
Barometric Pressure 101 +/- 3 kPa			

A.4 EQUIPMENT LIST							
ASSET NUMBER	MANUFACTURER	MODEL	DESCRIPTION	LAST CAL	CAL DUE		
00110	Gigatronics	8652A	Power Meter	12Apr06	12Apr07		
00011	Gigatronics	80701A	Power Sensor	03Feb06	03Feb07		
00012	Gigatronics	80701A	Power Sensor	12Sept05	12Sept06		
00102	Pasternack	PE7015-3010	30 dB Attenuator	n/a*	n/a*		
00208	Anritsu	MT8820A	Radio Communications Test Set	06Jun06	06Jun07		
00078	Pasternack	PE2214-20	Directional Coupler 1-18 GHz	n/a*	n/a*		

*Verified with power meter prior to use

Company:	Itronix	nix Corporation FCC ID: KBCIX260PROAC860 Model(s): IX260PROAC860				ITI	RONIX [®]
DUT Type:							
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 11 of 51							



Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133
Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada L	ab File #3874

A.5 MEASUREMENT EC	UIPMENT SETUP			
Measurement Equipment Connections	The equipment was connected as shown in the setup drawing in A.6.			
Measurement Equipment Settings - GPRS and EDGE	Power Meter Settings: Mode - BAP Frequency compensation set for carrier frequency Offset set appropriately for attenuator characteristics			
Measurement Procedure - GPRS and EDGE	The RF conducted output power levels for both PCS and cellular bands in both GPRS and EDGE modes were measured at the DUT antenna connector port using a Gigatronics 8652A Universal Power Meter in burst average power mode. An offset was entered into the power meter to correct for the losses of the attenuator and cable installed between the transmitter output port and the power sensor input. The proprietary Sierra Wireless Procomm Plus test script was used to set the DUT to transmit at maximum output power level as described in section 5.3 of this report. All subsequent tests were performed using the same device setup procedures.			
Measurement Equipment Settings - UMTS	Power Meter Settings: Mode - MAP Frequency compensation set for carrier frequency Offset set appropriately for attenuator characteristics			
Measurement Procedure - UMTS	The RF conducted output power levels for both PCS and cellular bands were measured at the DUT antenna connector port using a Gigatronics 8652A Universal Power Meter in modulated average power mode. An offset was entered into the power meter to correct for the losses of the directional coupler and cable installed between the transmitter output port and the power sensor input. The Anritsu Radio Communications Test Set was utilized to set the DUT to transmit at maximum output power level as described in section 5.3 of this report. All subsequent tests were performed using the device setup procedures.			
PROCEDURES USED TO ESTABLISH TEST SIGNAL (UMTS)	The following settings were used to configure the Anritsu MT8820A Communications Test Set: Instrument Information Application: WCDMA Standard: MX88200B 4.41 #003 Scenario: MX882050A Serial Number: 6200241241 Call Parameters Preset: Preset: 3GPP Test Loop Mode: Mode 1 Channel Coding: Reference Measurement Channel 12.2 kbps DTCH Data Pattern: PN9 Power Control Algorithm: Algorithm 1 TPC Step size: 1dB Power Control Bit Pattern: All-Up Bits UL Channel: 9262 / 9400 / 9538 4132 / 4182 / 4233 DL Channel: 9662 / 9800 / 9938 4357 / 4407 / 4458			

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITRONI		
DUT Type:									
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of C				en permission of Celltech La	bs Inc.	Page 12 of 51			

	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
Celltech	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133
Testing and Engineering Services Lab	Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada L	ab File #3874

С	ompany:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITI	RONIX®
D	UT Type:								
2006 Celltech Labs Inc. This docur			This document is	not to be repr	oduced in whole or in part witho	ut the prior writte	en permission of Celltech La	bs Inc.	Page 13 of 51

	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS-132, RSS-1	
ab	Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada Lab File #3874	

A.7 DUT OPERATING DESCRIPTION

Power measurements were made in the cellular and PCS bands, with the DUT set appropriately as described in section 5.3.

A.8 TEST RESULTS					
Mode	Channel	Frequency	Conducted Power		
	128	824.2 MHz	+31.75 dBm	1.50 Watts	
Cellular GPRS	190	836.6 MHz	+31.84 dBm	1.53 Watts	
	251	848.8 MHz	+32.28 dBm	1.69 Watts	
	128	824.2 MHz	+26.68 dBm	0.466 Watts	
Cellular EDGE	190	836.6 MHz	+26.89 dBm	0.489 Watts	
	251	848.8 MHz	+26.72 dBm	0.470 Watts	
	4132	826.4 MHz	+23.80 dBm	0.240 Watts	
Cellular UMTS	4182	836.4 MHz	+23.90 dBm	0.245 Watts	
	4233	846.6 MHz	+24.00 dBm	0.251 Watts	
	512	1850.2 MHz	+28.42 dBm	0.695 Watts	
PCS GPRS	661	1880.0 MHz	+28.63 dBm	0.729 Watts	
	810	1909.8 MHz	+28.54 dBm	0.714 Watts	
	512	1850.2 MHz	+25.53 dBm	0.357 Watts	
PCS EDGE	661	1880.0 MHz	+25.73 dBm	0.374 Watts	
	810	1909.8 MHz	+25.55 dBm	0.359 Watts	
	9262	1852.4 MHz	+22.33 dBm	0.171 Watts	
PCS UMTS	9400	1880.0 MHz	+23.00 dBm	0.200 Watts	
	9538	1907.5 MHz	+22.70 dBm	0.186 Watts	

A.9 PASS/FAIL

There is no pass/fail criterion for this measurement.

A.10 SIGN-OFF

I attest to the accuracy of the data. All measurements reported herein were performed by me and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements.

Spencer Watton

Spencer Watson EMC Manager Celltech Labs Inc.

April 25, 2006 Date

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITRONIX	
DUT Type:								
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written				en permission of Celltech La	bs Inc.	Page 14 of 51		

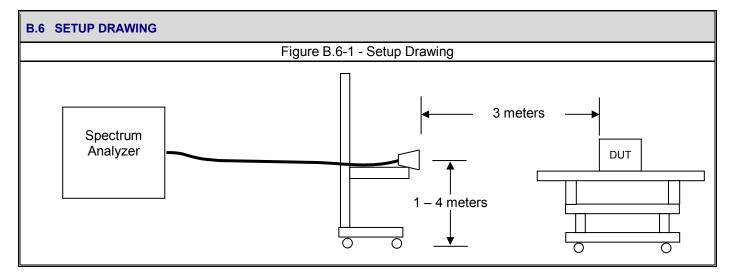
	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.: Revision	
	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133
Test Lab Registration(s): FCC Lab Registration #714830		Industry Canada Lab File #3874		

Appendix B - Effective Radiated Power / Effective Isotropic Radiated Power Measurement

B.1 REFERENCES	
Normative Reference Standard	FCC CFR 47 §22.913 (a), FCC CFR 47 §24.232 (b)
Procedure Reference	ANSI/TIA/EIA-603-C

B.2 LIMITS	
B.2.1 FCC CFR 4	7
FCC CFR 47 §22.913 (a)	(a) Maximum ERP
FCC CFR 47 §24.232 (b)	(b) Mobile/portable stations are limited to 2 watts e.i.r.p. peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

B.3 ENVIRONMENTAL CONDITIO	B.3 ENVIRONMENTAL CONDITIONS						
Temperature	25 +/- 5 °C						
Humidity	40 +/- 10 %						
Barometric Pressure	101 +/- 3 kPa						


ASSET NUMBER	MANUFACTURER	MODEL	DESCRIPTION	LAST CAL	CAL DUE
00072	EMCO	2075	Mini-mast	n/a	n/a
00073	EMCO	2080	Turn Table	n/a	n/a
00071	EMCO	2090	Multi-Device Controller	n/a	n/a
00050	Chase	CBL-6111A	Bilog Antenna	04Apr06	04Apr07
00055	EMCO	3121C	Dipole Antenna	04Apr06	04Apr07
00034	ETS	3115	Double Ridged Guide Horn	11Aug05	11Aug07
00035	ETS	3115	Double Ridged Guide Horn	03Apr06	03Apr08
00161	Waveline	899	Standard Gain Horn Antenna	n/a	n/a
00051	HP	8566B	Spectrum Analyzer RF Section	04Apr06	04Apr07
00049	HP	85650A	Quasi-peak Adapter	04Apr06	04Apr07
00047	HP	85685A	RF Preselector	05Apr06	05Apr07
00048	Gore	65474	Microwave Cable	16Aug05	16Aug06
00006	R & S	SMR 20	Signal Generator (10MHz-40GHz)	06Apr06	06Apr07
00114	Amplifier Research	DC7154	Directional Coupler (0.8-4.2 GHz)	n/a	n/a
00078	Pasternack	PE2214-20	Directional Coupler (1-18 GHz)	n/a	n/a
00106	Amplifier Research	5S1G4	Power Amplifier (5W, 800MHz-4.2GHz)	n/a	n/a
00041	Amplifier Research	10W1000C	Power Amplifier (0.5 – 1 GHz)	n/a	n/a
00110	Gigatronics	8652A	Power Meter	12Apr06	12Apr07
00011	Gigatronics	80701A	Power Sensor	03Feb06	03Feb07
00208	Anritsu	MT8820A	Radio Communication Test Set	06Jun06	06Jun07

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITI	RONIX®
DUT Type:								
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Lab					ibs Inc.	Page 15 of 51		

	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006	
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0	
	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS-132, RSS-133		
b	Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada Lab File #3874		

B.5 MEASUREME	NT EQUIPMENT SETUP			
MEASUREMENT EQUIPMENT	For the field strength measure number of antennas were used antenna was used are as follow antenna and fed from a CW sig being investigated.	to cover the applicable fr vs. For the final substitu	requency range tested. The tions, the DUT was replaced	ne ranges in which each ced with the appropriate
CONNECTIONS	Frequency F	Range	RX Antenna	TX Antenna
	30 MHz - 1	GHz	Bilog	Dipole
	1 GHz - 18	GHz	ETS 3115 Horn	ETS 3115 Horn
	For the spurious out-of-band e	missions, the spectrum a	nalyzer was set to the follo	owing settings:
MEASUREMENT	Mode	RBW	VBW	Detector
EQUIPMENT SETTINGS		kHz	kHz	
SET TINGS	Cellular	100	300	Peak
	PCS	1000	1000	Peak

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITC	RONIX °
DUT Type:	Lapto	p PC with Sierr	a Wireless A	AC860 Dual-Band GSM/GP	RS/EDGE/UM			
2006 Celltech L	abs Inc.	This document is	not to be repr	oduced in whole or in part witho	ut the prior writte	en permission of Celltech La	bs Inc.	Page 16 of 51

	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133
ab	Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada L	ab File #3874

B.7 SETUP PHOTOGRAPHS

Photograph B.7-1 - Bilog Receive Antenna with DUT Swivel Dipole Antenna Configuration	Photograph B.7-2 - Horn Receive Antenna with DUT Swivel Dipole Antenna Configuration
Photograph B.7-3 - Dipole Substitution Setup	Photograph B.7-4 - Horn Substitution Setup
<image/>	

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860		RONIX °
DUT Type:	Lapto	p PC with Sierr	a Wireless /	AC860 Dual-Band GSM/GP	RS/EDGE/UM			L DYNAMICS COMPANY
2006 Celltech L	abs Inc.	This document is	s not to be repr	oduced in whole or in part witho	ut the prior writte	en permission of Celltech La	abs Inc.	Page 17 of 51

Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133
Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada L	ab File #3874

SETUP PHOTOGRAPHS (CONTINUED)

Photograph B.7-5 - Bilog Receive Antenna with DUT Vehicle-Mount Antenna Configuration

Photograph B.7-7 - Dipole Substitution Setup

Photograph B.7-6 - Horn Receive Antenna with DUT Vehicle-Mount Antenna Configuration

Photograph B.7-8 - Horn Substitution Setup

B.8 DUT OPERATING DESCRIPTION

Measurements were made for the low, mid and high channels transmitting in each of the modulation types for both the cellular and PCS bands at maximum power level as described in Appendix A. Each antenna configuration (External Swivel Dipole and Vehicle-Mount) was evaluated.

Company:	any: Itronix Corporation FCC		FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITI	RONIX °
DUT Type:	Lapto	p PC with Sierr	a Wireless A	C860 Dual-Band GSM/GP	RS/EDGE/UM			
2006 Celltech L	abs Inc.	This document is	s not to be repr	oduced in whole or in part witho	ut the prior writte	en permission of Celltech La	bs Inc.	Page 18 of 51

Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133
Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada L	ab File #3874

1.1 Cellu	lar GPRS	Ca	rrier	Leve	ls										
Celli	ech		Proje Comp Produ		ber:	756 Itronix IX260+ with A0	C860		Standard: Test Start Test End I		FCC22.9 21-Jun-06 21-Jun-06	6			
Configuration		Polarity	Distance	Carrier Channel	Frequency	Corrected Field Strength	Substituted SA Signal Level (uncorrected)	Power Applied to Antenna	Antenna Gain	ERP	Limit	Margin	Pass/ Fail		ERP Carrier evel
Orientation	Accessory		m	Car	MHz	dBuV/m	dBuV	dBm	dBd	dBm	Watts	dB	1	dBm	milliWatts
					Portable (GPRS Cellu	lar Band Ra	diated Car	rier Pow	er Level	s				
Antenna Horiz	None	Н	3	128	824.2000	128.92	102.40	26.86	-1.45	38.45	7.00	13.04	PASS	25.41	347.82
Antenna Horiz	None	V	3	128	824.2000	126.02	99.50	27.36	-1.45	38.45	7.00	12.54	PASS	25.91	390.27
Antenna Horiz	None	Н	3	190	836.6000	129.16	102.30	27.15	-1.35	38.45	7.00	12.65	PASS	25.80	380.43
Antenna Horiz	None	V	3	190	836.6000	125.76	98.90	27.01	-1.35	38.45	7.00	12.79	PASS	25.66	368.37
Antenna Horiz	None	Н	3	251	848.8000	129.32	102.20	27.34	-1.25	38.45	7.00	12.36	PASS	26.09	406.48
			•	054										00.40	440.00
Antenna Horiz Note: Measured ERP (The DUT was mono- 1.2 PCS	easured in 3 or	ientatio	ons wit	h respe			98.80 Gain (dBd) the orientation wi	27.41	-1.25 Radiated Pc	38.45	7.00 s is shown	here.	PASS	26.16	413.09
Note: Measured ERP (The DUT was m 1.2 PCS	Carrier Level (d easured in 3 or GPRS Ca	Bm) = ientatio	Power ons wit r Lev Proje	Applied h respe Vels	I to Antenna (d	Bm) + Antenna	Gain (dBd)			wer result		here.	PASS	26.16	413.09
Note: Measured ERP (The DUT was m	Carrier Level (d easured in 3 or GPRS Ca	Bm) = ientatio	Power ons wit r Lev Proje	vels	I to Antenna (d	Bm) + Antenna e antenna, only 756	Gain (dBd) the orientation wi		Radiated Po	ower result	s is shown	here.	PASS	20.10	413.09
Note: Measured ERP (The DUT was m 1.2 PCS	Carrier Level (d easured in 3 or GPRS Ca	Bm) = ientatio	Power ons wit r Le ^r Proje Com	vels	I to Antenna (d	Bm) + Antenna e antenna, only 756 Itronix	Gain (dBd) the orientation wi C860 Substituted SA		Radiated Po Standard: Test Start	ower result	s is shown FCC24.2 21-Jun-06	here.	Pass/F ail	Measured	
Note: Weasured ERP (The DUT was m 1.2 PCS	Carrier Level (d easured in 3 or GPRS Ca	Bm) = ientatio	Power ons wit r Le ^r Proje Prode	vels	d to Antenna (d ct to the receiv	Bm) + Antenna e antenna, only 756 Itronix IX260+ with An Corrected	Gain (dBd) the orientation wi C860 Substituted SA Signal Level	th the highest Power Applied to	Radiated Po Standard: Test Start Test End I Antenna	ower result	s is shown FCC24.2: 21-Jun-06 21-Jun-06	here.	Pass/F	Measured	EIRP Carried evel
Note: Weasured ERP (The DUT was m 1.2 PCS	Carrier Level (d easured in 3 or GPRS Ca ecch ration	Bm) = ientation	Power ons with Proje Comp Prode	Applied h respe vels ct Num pany: uct:	d to Antenna (d ct to the receiv ber: Frequency MHz Portable	Bm) + Antenna e antenna, only 756 Itronix IX260+ with Ar Corrected Field Strength dBuV/m e GPRS PC	Gain (dBd) the orientation wi C860 Substituted SA Signal Level (uncorrected) dBuV S Band Radi	Power Applied to Antenna dBm ated Carri	Radiated Po Standard: Test Start Test End E Antenna Gain dBi	Date: Date: Date: dBm Levels	s is shown FCC24.2: 21-Jun-06 21-Jun-06	here.	Pass/F ail	Measured	EIRP Carrier
Note: Measured ERP (The DUT was m 1.2 PCS Configu Configu Orientation Antenna Horiz	Carrier Level (d easured in 3 or GPRS Ca ecch ration	Bm) = ientatio	Power nns wit Proje Com Prod	Applied h respe vels ct Num pany: uuct: Uuct: 512	ber: Frequency MHz 1850.2000	Bm) + Antenna e antenna, only 756 Itronix IX260+ with Al Field Strength dBuV/m e GPRS PC: 128.71	Cain (dBd) the orientation wi C860 Substituted SA Signal Level (uncorrected) dBuV S Band Radi 95.90	Power Applied to Antenna dBm ated Carri 23.23	Radiated Po Standard: Test Start Test End I Antenna Gain dBi er Power 8.72	Date: Date: Date: EIRP dBm Levels 33.01	s is shown FCC24.21 21-Jun-06 21-Jun-06 Limit Watts 2.00	here.	Pass/F ail	Measured L dBm	EIRP Carrier evel milliWatts 1566.84
Note: Measured ERP (The DUT was m 1.2 PCS Configu Configu Orientation Antenna Horiz Antenna Horiz	Carrier Level (d easured in 3 or GPRS Ca ecch ration Accessory None None	Bm) = ientation	Power ons with Proje Comp Produ	Applied h respe vels ct Num pany: uct: 0 512 512	ber: Frequency MHz 1850.2000	Bm) + Antenna e antenna, only 756 Itronix IX260+ with Ai Corrected Field Strength dBuV/m e GPRS PC: 128.71 123.11	Gain (dBd) the orientation wi C860 Substituted SA Signal Level (uncorrected) dBuV S Band Radi 95.90 90.30	Power Applied to Antenna dBm ated Carri 23.23 16.76	Radiated Po Standard: Test Start Test End I Antenna Gain dBi er Power 8.72 8.72	Date: Date: Date: EIRP dBm Levels 33.01 33.01	s is shown FCC24.2: 21-Jun-06 21-Jun-06 Limit Watts 2.00 2.00	here. 32b 33 Margin dB 1.06 7.53	Pass/F ail PASS	Measured L dBm 31.95 25.48	EIRP Carrier evel milliWatts 1566.84 353.20
Note: Weasured ERP (The DUT was m 1.2 PCS Configu Configu Orientation Antenna Horiz Antenna Horiz Antenna Horiz	Carrier Level (d easured in 3 or GPRS Ca Cecchi ration Accessory None None None	Bm) = ientation Atrepod H H V H	Power ons with Proje Comp Produ	Applied h respe vels ct Num pany: uct: 512 512 512 661	ber: Frequency MHz Portable 1850.2000 1880.0000	Bm) + Antenna e antenna, only 756 Itronix IX260+ with Ar Corrected Field Strength dBuV/m e GPRS PC: 128.71 123.11 123.67	Gain (dBd) the orientation with C860 Substituted SA Signal Level (uncorrected) dBuV S Band Radii 95.90 90.30 90.70	Power Applied to Antenna dBm ated Carri 23.23 16.76 18.05	Radiated Pc Standard: Test Start Test End I Antenna Gain dBi er Power 8.72 8.72 8.72	Date: Date: Date: EIRP dBm Levels 33.01 33.01 33.01	s is shown FCC24.23 21-Jun-06 21-Jun-06 Limit Watts 2.00 2.00 2.00	here.	Pass/F ail PASS PASS	Measured L dBm 31.95 25.48 26.81	EIRP Carrier avel milliWatts 1566.84 353.20 479.29
Note: Measured ERP (The DUT was m 1.2 PCS Configu Configu Orientation Antenna Horiz Antenna Horiz Antenna Horiz	Carrier Level (d easured in 3 or GPRS Ca Ceccho ration Accessory None None None None None	Bm) = ientation	Power ons with Proje Comp Prode	Applier h respe vels ct Num pany: uuct:	ber: Frequency MHz Portable 1850.2000 1850.2000 1880.0000	Bm) + Antenna e antenna, only 756 Itronix IX260+ with Al Field Strength dBuV/m e GPRS PC: 128.71 123.11 123.67 115.37	Cain (dBd) the orientation with the orientation wit	Power Applied to Antenna dBm ated Carri 23.23 16.76 18.05 8.98	Radiated Po Standard: Test Start Test End I Antenna Gain dBi er Power 8.72 8.72 8.72 8.76 8.76	Date: Date: Date: EIRP dBm Levels 33.01 33.01 33.01 33.01	s is shown FCC24.21 21-Jun-06 21-Jun-06 21-Jun-06 21-Jun-06 2.00 2.00 2.00 2.00 2.00	here.	Pass/F ail PASS PASS PASS	Measured L dBm 31.95 25.48 26.81 17.74	EIRP Carries evel 1566.84 353.20 479.29 59.37
Note: Measured ERP (The DUT was m 1.2 PCS Configu Configu Orientation Antenna Horiz Antenna Horiz Antenna Horiz Antenna Horiz Antenna Horiz	Carrier Level (d easured in 3 or GPRS Ca Cecch ration Accessory None None None None None None	Bm) = ientation	Power proje Comp Produ R 3 3 3 3 3 3	Applied h respe vels t Num pany: uct: 512 512 661 661 810	d to Antenna (d ct to the receiv ber: Frequency MHz Portable 1850.2000 1850.2000 1880.0000 1880.0000	Bm) + Antenna e antenna, only 756 Itronix IX260+ with Ai Corrected Field Strength dBuV/m e GPRS PC: 128.71 123.67 115.37 127.54	Gain (dBd) the orientation wi C860 Substituted SA Signal Level (uncorrected) dBuV S Band Radi 95.90 90.30 90.70 82.40 94.40	Power Applied to Antenna dBm ated Carri 23.23 16.76 18.05 8.98 23.45	Radiated Po Standard: Test Start Test Start Test End I Antenna Gain dBi er Power 8.72 8.72 8.76 8.76 8.79	Date: Date: Date: EIRF dBm Levels 33.01 33.01 33.01 33.01 33.01	s is shown FCC24.2: 21-Jun-06 21-Jun-06 Limit Watts 2.00 2.00 2.00 2.00 2.00	here.	Pass/F ail PASS PASS PASS PASS	Measured L dBm 31.95 25.48 26.81 17.74 32.24	EIRP Carried evel milliWatts 1566.84 353.20 479.29 59.37 1675.62
Note: Weasured ERP (The DUT was m 1.2 PCS Configu Configu Orientation Antenna Horiz Antenna Horiz Antenna Horiz Antenna Horiz	Carrier Level (d easured in 3 or GPRS Ca Ceccho ration Accessory None None None None None	Bm) = ientation	Power ons with Proje Comp Prode	Applier h respe vels ct Num pany: uuct:	ber: Frequency MHz Portable 1850.2000 1850.2000 1880.0000	Bm) + Antenna e antenna, only 756 Itronix IX260+ with Al Field Strength dBuV/m e GPRS PC: 128.71 123.11 123.67 115.37	Cain (dBd) the orientation with the orientation wit	Power Applied to Antenna dBm ated Carri 23.23 16.76 18.05 8.98	Radiated Po Standard: Test Start Test End I Antenna Gain dBi er Power 8.72 8.72 8.72 8.76 8.76	Date: Date: Date: EIRP dBm Levels 33.01 33.01 33.01 33.01	s is shown FCC24.21 21-Jun-06 21-Jun-06 21-Jun-06 21-Jun-06 2.00 2.00 2.00 2.00 2.00	here.	Pass/F ail PASS PASS PASS	Measured L dBm 31.95 25.48 26.81 17.74	EIRP Carrie evel 1566.84 353.20 479.29 59.37

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITI	RONIX °
DUT Type:	Lapto	p PC with Sierr	a Wireless /	AC860 Dual-Band GSM/GP	RS/EDGE/UM			L DYNAMICS COMPANY
2006 Celltech L	abs Inc.	This document is	s not to be repr	oduced in whole or in part witho	ut the prior writte	en permission of Celltech La	ibs Inc.	Page 19 of 51

Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006	
Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0	
Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133	
Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada Lab File #3874		

B.9.2 Carrier Levels (Attached Swivel Dipole Antenna)

B.9.2.1 Cellular EDGE Carrier Levels

Cellt	ech		Proje Comj Prode	-	ber:	756 Itronix IX260+ with A0	C860		Standard: Test Start Test End D		FCC22.9 ⁴ 21-Jun-06 21-Jun-06	6			
Configur	ation	Polarity	Distance	arrier Channel	Frequency	Corrected Field Strength	Substituted SA Signal Level (uncorrected)	Power Applied to Antenna	Antenna Gain	ERP	Limit	Margin	Pass/ Fail		ERP Carrier evel
Orientation	Accessory		m	Са	MHz	dBuV/m	dBuV	dBm	dBd	dBm	Watts	dB	1	dBm	milliWatts
					Portable I	EDGE Cellu	lar Band Rad	diated Car	rier Powe	er Leve	s				
Antenna Horiz	None	Н	3	128	824.2000	127.12	100.60	25.05	-1.45	38.45	7.00	14.85	PASS	23.60	229.28
Antenna Horiz	None	V	3	128	824.2000	122.12	95.60	23.42	-1.45	38.45	7.00	16.48	PASS	21.97	157.53
Antenna Horiz	None	н	3	190	836.6000	127.16	100.30	25.11	-1.35	38.45	7.00	14.69	PASS	23.76	237.84
Antenna Horiz	None	V	3	190	836.6000	123.06	96.20	24.25	-1.35	38.45	7.00	15.55	PASS	22.90	195.11
Antenna Horiz	None	н	3	251	848.8000	127.12	100.00	25.12	-1.25	38.45	7.00	14.58	PASS	23.87	243.80
Antenna Horiz	None	V	3	251	848.8000	122.62	95.50	24.13	-1.25	38.45	7.00	15.57	PASS	22.88	194.11

Note:

Measured ERP Carrier Level (dBm) = Power Applied to Antenna (dBm) + Antenna Gain (dBd)

The DUT was measured in 3 orientations with respect to the receive antenna, only the orientation with the highest Radiated Power results is shown here.

B.9.2.2 PCS EDGE Carrier Levels

Celli	ech		Proje Comp Produ		ber:	756 Itronix IX260+ with AC	2860		Standard: Test Start I Test End D	Date:	FCC24.23 21-Jun-06 21-Jun-06	3			
Configu	ration	Polarity	Distance	Carrier Channel	Frequency	Corrected Field Strength	Substituted SA Signal Level (uncorrected)	Power Applied to Antenna	Antenna Gain	EIRP	Limit	Margin	Pass/F ail		EIRP Carrier evel
Orientation	Accessory		m	ů	MHz	dBuV/m	dBuV	dBm	dBi	dBm	Watts	dB		dBm	milliW atts
					Portable	EDGE PCS	S Band Radia	ated Carrie	er Power	Levels					
Antenna Horiz	None	Н	3	512	1850.2000	129.31	96.50	23.83	8.72	33.01	2.00	0.46	PASS	32.55	1798.97
Antenna Horiz	None	V	3	512	1850.2000	120.91	88.10	14.45	8.72	33.01	2.00	9.84	PASS	23.17	207.50
Antenna Horiz	None	Н	3	661	1880.0000	128.37	95.40	23.96	8.76	33.01	2.00	0.29	PASS	32.72	1868.96
Antenna Horiz	None	V	3	661	1880.0000	120.57	87.60	14.74	8.76	33.01	2.00	9.51	PASS	23.50	223.67
Antenna Horiz	None	Н	3	810	1909.8000	122.54	89.40	18.41	8.79	33.01	2.00	5.81	PASS	27.20	525.02
		V	3	810	1909.8000	114.64	81.50	9.07	8.79	33.01	2.00	15.15	PASS	17.86	61.12

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860		RONIX®
DUT Type:	Lapto	p PC with Sierr	a Wireless A	AC860 Dual-Band GSM/GP	RS/EDGE/UM			L DYNAMICS COMPANY
2006 Celltech L	abs Inc.	This document is	not to be repr	oduced in whole or in part witho	ut the prior writte	en permission of Celltech La	abs Inc.	Page 20 of 51

Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133
Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada L	ab File #3874

B.9.3 Carrier Levels (Attached Swivel Dipole Antenna)

B.9.3.1 Cellular UMTS Carrier Levels

Cellt	ech		-	ct Num pany: uct:	ber:	756 Itronix IX260+ with A0	C860		Standard: Test Start Test End D		FCC22.9 ⁴ 26-Jun-06 26-Jun-06	6			
Configur	ration	Polarity	Distance	Carrier Channel	Frequency	Corrected Field Strength	Substituted SA Signal Level (uncorrected)	Power Applied to Antenna	Antenna Gain	ERP	Limit	Margin	Pass/ Fail		ERP Carrier evel
Orientation	Accessory		m	Са	MHz	dBuV/m	dBuV	dBm	dBd	dBm	Watts	dB		dBm	milliWatts
					Portable W	CDMA Cell	ular Band Ra	adiated Ca	rrier Pow	er Lev	els				
Antenna Horiz	None	н	3	4132	826.4000	124.26	97.70	22.10	-1.43	38.45	7.00	17.78	PASS	20.67	116.71
Antenna Horiz	None	V	3	4132	826.4000	117.16	90.60	18.32	-1.43	38.45	7.00	21.56	PASS	16.89	48.88
Antenna Horiz	None	Н	3	4182	836.4000	124.56	97.70	22.37	-1.35	38.45	7.00	17.43	PASS	21.02	126.51
Antenna Horiz	None	V	3	4182	836.4000	117.66	90.80	18.85	-1.35	38.45	7.00	20.95	PASS	17.50	56.25
Antenna Horiz	None	Н	3	4233	846.6000	124.89	97.80	22.89	-1.27	38.45	7.00	16.83	PASS	21.62	145.30
Antenna Horiz	None	v	3	4233	846.6000	117.39	90.30	18.93	-1.27	38.45	7.00	20.79	PASS	17.66	58.38

Note:

Measured ERP Carrier Level (dBm) = Power Applied to Antenna (dBm) + Antenna Gain (dBd)

The DUT was measured in 3 orientations with respect to the receive antenna, only the orientation with the highest Radiated Power results is shown here.

B.9.3.2 PCS UMTS Carrier Levels

Configu	ration	Polarity	Distance	Carrier Channel	Frequency	Corrected Field Strength	Substituted SA Signal Level (uncorrected)	Power Applied to Antenna	Antenna Gain	EIRP	Limit	Margin	Pass/F ail		EIRP Carrier evel
Orientation	Accessory		m	Cal	MHz	dBuV/m	dBuV	dBm	dBi	dBm	Watts	dB		dBm	milliWatts
					Portable	WCDMA PC	S Band Rad	iated Carı	ier Powe	r Levels	3				
Antenna Horiz	None	Н	3	9262	1852.4000	124.42	91.60	18.96	8.72	33.01	2.00	3.82	PASS	27.68	586.53
Antenna Horiz	None	V	3	9262	1852.4000	115.92	83.10	9.18	8.72	33.01	2.00	12.32	PASS	17.90	61.70
Antenna Horiz	None	Н	3	9400	1880.0000	122.77	89.80	17.40	8.76	33.01	2.00	5.47	PASS	26.16	412.67
Antenna Horiz	None	V	3	9400	1880.0000	113.97	81.00	7.58	8.76	33.01	2.00	14.27	PASS	16.34	43.01
Antenna Horiz	None	н	3	9538	1907.5000	123.62	90.50	19.53	8.79	33.01	2.00	4.62	PASS	28.32	679.05
Antenna Horiz	None	v	3	9538	1907.5000	115.02	81.90	9.47	8.79	33.01	2.00	13.22	PASS	18.26	66.97

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITI	RONIX [®]			
DUT Type:											
2006 Celltech	Labs Inc.	This document is	s not to be repr	oduced in whole or in part witho	ut the prior writte	en permission of Celltech La	ibs Inc.	Page 21 of 51			

Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133
Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada L	ab File #3874

B.9.4 Carrier Levels (MaxRad Vehicle-Mount Antenna)

B.9.4.1 Cellular GPRS Carrier Levels

Cell	tech		Proje Comp Produ	-	ber:	756 Itronix IX260+ with AG	C860		Standard: Test Start Test End D		FCC22.91 11-Jul-06 11-Jul-06	13			
Conf	iguration	Polarity	Distance	Carrier Channel	Frequency	Corrected Field Strength	Substituted SA Signal Level (uncorrected)	Power Applied to Antenna	Antenna Gain	ERP	Limit	Margin	Pass/ Fail		ERP Carrier evel
Orientation	Accessory		m	Cai	MHz	dBuV/m	dBuV	dBm	dBd	dBm	Watts	dB		dBm	milliWatts
					Mobile G	PRS Cellula	ar Band Radi	ated Carri	ier Power	· Levels					
N/A	Vehicle Cradle	Η	3	128	824.2000	100.12	73.60	1.03	-1.45	38.45	7.00	38.87	PASS	-0.42	0.91
N/A	Vehicle Cradle	V	3	128	824.2000	104.62	78.10	4.61	-1.45	38.45	7.00	35.29	PASS	3.16	2.07
N/A	Vehicle Cradle	н	3	190	836.6000	98.76	71.90	-0.64	-1.35	38.45	7.00	40.44	PASS	-1.99	0.63
N/A	Vehicle Cradle	v	3	190	836.6000	105.66	78.80	6.11	-1.35	38.45	7.00	33.69	PASS	4.76	2.99
N/A	Vehicle Cradle	н	3	251	848.8000	100.82	73.70	2.55	-1.25	38.45	7.00	37.15	PASS	1.30	1.35
N/A	Vehicle Cradle	V	3	251	848.8000	107.02	79.90	7.69	-1.25	38.45	7.00	32.01	PASS	6.44	4.41

Note:

Measured ERP Carrier Level (dBm) = Power Applied to Antenna (dBm) + Antenna Gain (dBd)

The DUT was measured in 3 orientations with respect to the receive antenna, only the orientation with the highest Radiated Power results is shown here.

B.9.4.2 PCS GPRS Carrier Levels

Cell Today and En	tech		Proje Comj Prode		ber:	756 Itronix IX260+ with AG	C860		Standard: Test Start Test End D		FCC24.23 11-Jul-06 11-Jul-06	32b			
Confi	guration	Polarity	Distance	Carrier Channel	Frequency	Corrected Field Strength	Substituted SA Signal Level (uncorrected)	Power Applied to Antenna	Antenna Gain	EIRP	Limit	Margin	Pass/F ail		EIRP Carrier evel
Orientation	Accessory		m	Ca	MHz	dBuV/m	dBuV	dBm	dBi	dBm	Watts	dB		dBm	milliWatts
					Mobile (GPRS PCS	Band Radiate	ed Carrier	Power L	evels					
N/A	Vehicle Cradle	н	3	512	1850.2000	96.11	63.30	-7.67	8.72	33.01	2.00	31.96	PASS	1.05	1.27
N/A	Vehicle Cradle	V	3	512	1850.2000	102.21	69.40	-3.03	8.72	33.01	2.00	27.32	PASS	5.69	3.71
N/A	Vehicle Cradle	Н	3	661	1880.0000	97.97	65.00	-7.45	8.76	33.01	2.00	31.70	PASS	1.31	1.35
N/A	Vehicle Cradle	V	3	661	1880.0000	108.57	75.60	2.18	8.76	33.01	2.00	22.07	PASS	10.94	12.41
N/A	Vehicle Cradle	н	3	810	1909.8000	103.24	70.10	-2.52	8.79	33.01	2.00	26.74	PASS	6.27	4.24
N/A	Vehicle Cradle	v	3	810	1909.8000	113.34	80.20	6.28	8.79	33.01	2.00	17.94	PASS	15.07	32.15

The DUT was measured in 3 orientations with respect to the receive antenna, only the orientation with the highest Radiated Power results is shown here.

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITI	RONIX			
DUT Type:											
2006 Celltech L	abs Inc.	This document is	not to be repr	oduced in whole or in part witho	ut the prior writte	en permission of Celltech La	ibs Inc.	Page 22 of 51			

Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133
Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada L	ab File #3874

B.9.5 Carrier Levels (MaxRad Vehicle-Mount Antenna)

B.9.5.1 Cellular EDGE Carrier Levels

Cell	tech		Proje Comp Produ	-	ber:	756 Itronix IX260+ with A0	C860		Standard: Test Start Test End D		FCC22.9 ⁻ 11-Jul-06 11-Jul-06	13			
Configuration		Polarity	Distance	Carrier Channel	Frequency	Corrected Field Strength	Substituted SA Signal Level (uncorrected)	Power Applied to Antenna	Antenna Gain	ERP	Limit	Margin	Pass/ Fail		ERP Carrier evel
Orientation	Accessory		m	Carr	MHz	dBuV/m	dBuV	dBm	dBd	dBm	Watts	dB		dBm	milliWatts
					Mobile E	DGE Cellula	ar Band Radi	ated Carr	ier Powei	r Levels					
N/A	Vehicle Cradle	н	3	128	824.2000	96.72	70.20	-2.33	-1.45	38.45	7.00	42.23	PASS	-3.78	0.42
N/A	Vehicle Cradle	V	3	128	824.2000	101.72	75.20	1.74	-1.45	38.45	7.00	38.16	PASS	0.29	1.07
N/A	Vehicle Cradle	н	3	190	836.6000	95.86	69.00	-2.48	-1.35	38.45	7.00	42.28	PASS	-3.83	0.41
N/A	Vehicle Cradle	V	3	190	836.6000	103.96	77.10	4.41	-1.35	38.45	7.00	35.39	PASS	3.06	2.02
N/A	Vehicle Cradle	н	3	251	848.8000	97.02	69.90	-1.25	-1.25	38.45	7.00	40.95	PASS	-2.50	0.56
N/A	Vehicle Cradle	V	3	251	848.8000	104.82	77.70	5.49	-1.25	38.45	7.00	34.21	PASS	4.24	2.65

Note:

Measured ERP Carrier Level (dBm) = Power Applied to Antenna (dBm) + Antenna Gain (dBd)

The DUT was measured in 3 orientations with respect to the receive antenna, only the orientation with the highest Radiated Power results is shown here.

B.9.5.2 PCS EDGE Carrier Levels

Cell Testing and En	rech		Comp Produ			Itronix IX260+ with AC	C860		Test Start Test End D		11-Jul-06 11-Jul-06				
Configuration		Polarity	Distance	Carrier Channel	Frequency	Corrected Field Strength	Substituted SA Signal Level (uncorrected)	Power Applied to Antenna	Antenna Gain	EIRP	? Limit	Margin	Pass/F ail		EIRP Carrier evel
Orientation	Accessory		m	Са	MHz	dBuV/m	dBuV	dBm	dBi	dBm	n Watts	dB		dBm	milliWatts
					Mobile E	DGE PCS I	Band Radiate	d Carrier	Power Lo	evels					
N/A	Vehicle Cradle	Н	3	512	1850.2000	93.21	60.40	-12.62	8.72	33.01	2.00	36.91	PASS	-3.90	0.41
N/A	Vehicle Cradle	v	3	512	1850.2000	101.91	69.10	-4.82	8.72	33.01	2.00	29.11	PASS	3.90	2.45
N/A	Vehicle Cradle	н	3	661	1880.0000	97.27	64.30	-7.15	8.76	33.01	2.00	31.40	PASS	1.61	1.45
N/A	Vehicle Cradle	v	3	661	1880.0000	107.07	74.10	0.68	8.76	33.01	2.00	23.57	PASS	9.44	8.78
	Vehicle Cradle	н	3	810	1909.8000	102.44	69.30	-1.93	8.79	33.01	2.00	26.15	PASS	6.86	4.85
N/A	venicie craule						,	4.57	8.79	33.01	2.00	19.65	PASS	13.36	21.69

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITI	RONIX®
DUT Type:								
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs							ibs Inc.	Page 23 of 51

Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133
Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada L	ab File #3874

B.9.6 Carrier Levels (MaxRad Vehicle-Mount Antenna)

B.9.6.1 Cellular UMTS Carrier Levels

Celli	ech		-	ect Num pany: uct:	ber:	756 Itronix IX260+ with A0	C860		Standard: Test Start Test End D		FCC22.91 11-Jul-06 11-Jul-06				
Config	guration	Polarity	Distance	Carrier Channel	Frequency	Corrected Field Strength	Substituted SA Signal Level (uncorrected)	Power Applied to Antenna	Antenna Gain	ERP	Limit	Margin	Pass/ Fail		ERP Carrier evel
Orientation	Accessory		m	Ca	MHz	dBuV/m	dBuV	dBm	dBd	dBm	Watts	dB		dBm	milliWatts
					Nobile WC	DMA Cellul	ar Band Rad	iated Carr	ier Powe	r Levels	;				
N/A	Vehicle Cradle	Η	3	4132	826.4000	89.06	62.50	-10.04	-1.43	38.45	7.00	49.92	PASS	-11.47	0.07
N/A	Vehicle Cradle	V	3	4132	826.4000	92.46	65.90	-7.56	-1.43	38.45	7.00	47.44	PASS	-8.99	0.13
N/A	Vehicle Cradle	Н	3	4182	836.4000	88.56	61.70	-9.81	-1.35	38.45	7.00	49.61	PASS	-11.16	0.08
N/A	Vehicle Cradle	V	3	4182	836.4000	93.16	66.30	-6.37	-1.35	38.45	7.00	46.17	PASS	-7.72	0.17
N/A	Vehicle Cradle	н	3	4233	846.6000	89.39	62.30	-8.84	-1.27	38.45	7.00	48.56	PASS	-10.11	0.10
N/A	Vehicle Cradle	v	3	4233	846.6000	94.39	67.30	-4.91	-1.27	38.45	7.00	44.63	PASS	-6.18	0.24

Note:

Measured ERP Carrier Level (dBm) = Power Applied to Antenna (dBm) + Antenna Gain (dBd)

The DUT was measured in 3 orientations with respect to the receive antenna, only the orientation with the highest Radiated Power results is shown here.

B.9.6.2 PCS UMTS Carrier Levels

Testing and Engineers	ech Ing Services Lat		•	ect Numl pany: uct:		756 Itronix IX260+ with AC	C860		Standard: Test Start Test End D		FCC24.23 11-Jul-06 11-Jul-06	32b			
Configuration		Polarity	Distance	Carrier Channel	Frequency	Corrected Field Strength	Substituted SA Signal Level (uncorrected)	Power Applied to Antenna	Antenna Gain	EIRP	Limit	Margin	Pass/F ail		EIRP Carrier evel
Orientation	Accessory		m	Ca	MHz	dBuV/m	dBuV	dBm	dBi	dBm	Watts	dB		dBm	milliWatts
Mobile WCDMA PCS Band Radiated Carrier Power Levels															
N/A	Vehicle Cradle	Н	3	9262	1852.4000	92.52	59.70	-12.92	8.72	33.01	2.00	35.72	PASS	-4.20	0.38
N/A	Vehicle Cradle	V	3	9262	1852.4000	101.22	68.40	-5.52	8.72	33.01	2.00	27.02	PASS	3.20	2.09
N/A	Vehicle Cradle	н	3	9400	1880.0000	95.97	63.00	-8.45	8.76	33.01	2.00	32.27	PASS	0.31	1.07
N/A	Vehicle Cradle	V	3	9400	1880.0000	106.97	74.00	0.58	8.76	33.01	2.00	21.27	PASS	9.34	8.58
N/A	Vehicle Cradle	н	3	9538	1907.5000	100.82	67.70	-3.23	8.79	33.01	2.00	27.42	PASS	5.56	3.60
N/A	Vehicle Cradle	V	3	9538	1907.5000	112.72	79.60	7.17	8.79	33.01	2.00	15.52	PASS	15.96	39.44

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITI	RONIX®	
DUT Type:									
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs							ibs Inc.	Page 24 of 51	

	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133
ab	Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada L	ab File #3874

B.10 PASS/FAIL

In reference to the results outlined in B.9, the DUT passes the requirements as stated in the reference standards.

B.11 SIGN-OFF

I attest to the accuracy of the data. All measurements reported herein were performed by me and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements.

Spencer Watton

Spencer Watson EMC Manager Celltech Labs Inc.

> July 12, 2006 Date

Company:	ny: Itronix Corporation FCC ID: KBCIX260PROAC860 Model(s): IX260PROAC860						ITI	RONIX®
								L DYNAMICS COMPANY
2006 Celltech L	abs Inc.	This document is	s not to be repr	oduced in whole or in part witho	ut the prior writte	en permission of Celltech La	bs Inc.	Page 25 of 51

Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133
Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada L	ab File #3874

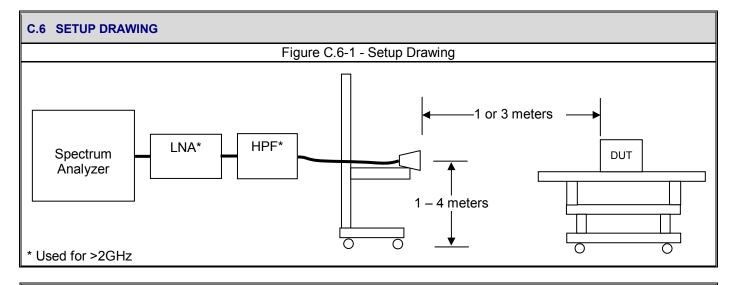
Appendix C - Radiated Spurious Emissions Measurement

C.1 REFERENCES	
Normative Reference Standard	FCC CFR 47 §22.917(a), FCC CFR 47 §24.238(a)
Procedure Reference	ANSI/TIA/EIA-603-C

C.2 LIMITS	
C.2.1 FCC CFR 47	
FCC CFR 47 §22.917 & §24.238	(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

C.3 ENVIRONMENTAL CONDITIO	C.3 ENVIRONMENTAL CONDITIONS						
Temperature	25 +/- 5 °C						
Humidity	40 +/- 10 %						
Barometric Pressure	101 +/- 3 kPa						

C.4 EQUIPMENT LIST


ASSET NUMBER	MANUFACTURER	MODEL	DESCRIPTION	LAST CAL	CAL DUE
00072	EMCO	2075	Mini-mast	n/a	n/a
00073	EMCO	2080	Turn Table	n/a	n/a
00071	EMCO	2090	Multi-Device Controller	n/a	n/a
00050	Chase	CBL-6111A Bilog Antenna		04Apr06	04Apr07
00055	EMCO	3121C	Dipole Antenna	04Apr06	04Apr07
00034	ETS	3115	Double Ridged Guide Horn	11Aug05	11Aug07
00035	ETS	3115	Double Ridged Guide Horn	03Apr06	03Apr08
00161	Waveline	899	Standard Gain Horn Antenna	n/a	n/a
00051	HP	8566B	Spectrum Analyzer RF Section	04Apr06	04Apr07
00049 HP		85650A	Quasi-peak Adapter	04Apr06	04Apr07
00047	HP	85685A	RF Preselector	05Apr06	05Apr07
00048	Gore	65474	Microwave Cable	16Aug05	16Aug06
00115	Miteq	J54-00102600-35-5A	LNA	18Apr06	18Apr07
00006	R & S	SMR 20	Signal Generator (10MHz-40GHz)	06Apr06	06Apr07
00114	Amplifier Research	DC7154	Directional Coupler (0.8-4.2 GHz)	n/a	n/a
00078	Pasternack	PE2214-20	Directional Coupler (1-18 GHz)	n/a	n/a
00106	Amplifier Research	5S1G4	Power Amplifier (5W, 800MHz-4.2GHz)	n/a	n/a
00041	Amplifier Research	10W1000C	Power Amplifier (0.5 – 1 GHz)	n/a	n/a
00110	Gigatronics	8652A	Power Meter	12Apr06	12Apr07
00011	Gigatronics	80701A	Power Sensor	03Feb06	03Feb07
00208	Anritsu	MT8820A	Radio Communication Analyzer	06Jun06	06Jun07

Company:	Itronix	Corporation	rporation FCC ID: KBCIX260PROAC860 Model(s): IX260PROAC860						
DUT Type:	Company: Itronix Corporation FCC ID: KBCIX260PROAC860 Model(s): IX260PROAC860 IX260PROAC860 OUT Type: Laptop PC with Sierra Wireless AC860 Dual-Band GSM/GPRS/EDGE/UMTS PCMCIA Modem Ageneral Dynamics Company Ageneral Dynamics Company								
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							ibs Inc.	Page 26 of 51	

	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006	
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.: Revision		
	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS-132, RSS-13		
ab	Test Lab Registration(s):	FCC Lab Registration #714830	Lab Registration #714830 Industry Canada Lab File #		

C.5 MEASUREME	NT EQUIPMENT SETUP								
MEASUREMENT	number of antennas were used to antenna was used are shown	For the field strength measurements, the measurement equipment was connected as shown in C.6. A number of antennas were used to cover the applicable frequency range tested. The ranges in which each antenna was used are shown below. For the final substitutions, the DUT was replaced with the appropriate antenna and fed from a CW signal source sufficient to replicate the received field strength of the emission being investigated.							
EQUIPMENT CONNECTIONS	Frequency Ra	ange	RX Antenna	TX Antenna					
	30 MHz - 1G	iHz	Bilog	Dipole					
	1 GHz - 18 G	Hz	ETS 3115 Horn	ETS 3115 Horn					
	18 GHz - 20 (GHz	Waveline 899 Horn	Waveline 899 Horn					
	For the spurious out-of-band emissions, the spectrum analyzer was set to the following settings:								
	Mode	RBW	VBW	Detector					
MEASUREMENT		kHz	kHz	Dotootoi					
EQUIPMENT	Cellular < 1 GHz	100	300	Peak*					
SETTINGS	Cellular > 1 GHz	1000	1000	Peak*					
	PCS	1000	1000	Peak*					
	*Where the peak emission exce averaging	eded the average limit,	an average measurement	was made using video					

C.7 DUT OPERATING DESCRIPTION

Measurements were made for the low, mid and high channels transmitting in each of the modulation types for both the cellular and PCS bands at maximum power level as described in Appendix A. Each antenna configuration (External Swivel Dipole and Vehicle-Mount) was evaluated.

Company:	Itronix	x Corporation FCC ID: KBCIX260PROAC860 Model(s): IX260PROAC860						RONIX®		
DUT Type:										
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							ibs Inc.	Page 27 of 51		

	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006	
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0	
1	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS-132, RSS-133		
Lab	Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada L	ab File #3874	

C.8 TEST RESULTS

The spurious measurements detailed in this section are referenced to the carrier levels set forth in Appendix B of this report:

C.8.1 Spurious Emissions (Attached Swivel Dipole Antenna)

C.8.1.1 Cellular GPRS Spurious Emissions

Celltech Terry and Expressing Services Lat		Project Number: 756 Company: Itronix Product: IX260+ with AC860					Standard: Test Start Da Test End Da		FCC22.917 24-Jul-06 27-Jul-06				
Polarity	Distance	Substitution Antenna Type	Carrier Channel	Frequency	Corrected Field Strength	Maximized SA Signal Level (uncorrected)	Power Applied to Antenna	Antenna Gain	ERP Emission Level	Limit	Margin	Margin Pass/Fai	
	m			MHz	dBuV/m	dBuV	dBm	dBi	dBm	dBm or dBuV/m*	dB		
Н	3	none	128	1648.61	65.11	33.50	n/a	n/a	n/a	84.4*	19.3*	PASS*	
Н	3	none	128	1648.26	42.81	11.20	n/a	n/a	n/a	84.4*	41.6*	PASS*	
Н	3	none	128	2472.43	67.37	55.30	n/a	n/a	n/a	84.4*	17.0*	PASS*	
Н	3	none	128	2472.60	41.07	29.00	n/a	n/a	n/a	84.4*	43.3*	PASS*	
Н	3	none	128	3296.53	36.99	30.10	n/a	n/a	n/a	84.4*	47.4*	PASS*	
Н	3	none	190	1674.06	69.85	38.10	n/a	n/a	n/a	84.4*	14.5*	PASS*	
Н	3	none	190	1673.91	44.55	12.80	n/a	n/a	n/a	84.4*	39.8*	PASS*	
Н	3	none	190	2510.84	69.31	57.10	n/a	n/a	n/a	84.4*	15.1*	PASS*	
Н	3	none	190	2511.00	40.71	28.50	n/a	n/a	n/a	84.4*	43.7*	PASS*	
Н	3	none	190	3348.29	38.87	31.80	n/a	n/a	n/a	84.4*	45.5*	PASS*	
Н	3	none	251	1697.68	71.92	40.00	n/a	n/a	n/a	84.4*	12.4*	PASS*	
Н	3	none	251	1697.50	45.32	13.40	n/a	n/a	n/a	84.4*	39.0*	PASS*	
Н	3	none	251	2546.58	63.71	51.30	n/a	n/a	n/a	84.4*	20.7*	PASS*	
Н	3	none	251	2546.52	39.41	27.00	n/a	n/a	n/a	84.4*	45.0*	PASS*	
Н	3	none	251	3395.51	38.32	31.10	n/a	n/a	n/a	84.4*	46.0*	PASS*	
V	3	none	128	1649.27	53.72	22.10	n/a	n/a	n/a	84.4*	30.7*	PASS*	
V	3	none	128	2472.34	65.77	53.70	n/a	n/a	n/a	84.4*	18.6*	PASS*	
V	3	none	128	2472.55	41.17	29.10	n/a	n/a	n/a	84.4*	43.2*	PASS*	
V	3	none	128	3296.80	39.40	32.50	n/a	n/a	n/a	84.4*	45.0*	PASS*	
V	3	none	190	1674.15	62.25	30.50	n/a	n/a	n/a	84.4*	22.1*	PASS*	
V	3	none	190	1673.94	42.25	10.50	n/a	n/a	n/a	84.4*	42.1*	PASS*	
V	3	none	190	2510.88	67.61	55.40	n/a	n/a	n/a	84.4*	16.8*	PASS*	
V	3	none	190	2510.88	40.21	28.00	n/a	n/a	n/a	84.4*	44.2*	PASS*	
V	3	none	190	3347.89	43.07	36.00	n/a	n/a	n/a	84.4*	41.3*	PASS*	
V	3	none	251	1697.50	61.92	30.00	n/a	n/a	n/a	84.4*	22.4*	PASS*	
V	3	none	251	1697.50	42.42	10.50	n/a	n/a	n/a	84.4*	41.9*	PASS*	
V	3	none	251	2546.55	67.21	54.80	n/a	n/a	n/a	84.4*	17.2*	PASS*	
V	3	none	251	2546.32	40.51	28.10	n/a	n/a	n/a	84.4*	43.9*	PASS*	
V	3	none	251	3395.42	38.72	31.50	n/a	n/a	n/a	84.4*	45.6*	PASS*	

*The emissions reported above represent the highest emissions or noise floor measured within the frequency band of 30MHz and the 10th harmonic of the carrier with field strengths within 20 dB of the theoretical limit. All other emissions attributed to the EUT had field strengths greater than 20 dB below the theoretical limit and substitutions were not made.

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITI	RONIX®		
DUT Type:										
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs In							bs Inc.	Page 28 of 51		

	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006	
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0	
	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS-132, RSS-13		
ıb	Test Lab Registration(s): FCC Lab Registration #714830 Industry Canada Lab File #				

Celltech			Project Number: 756 Company: Itronix Product: IX260+ with AC860						ate: te:	FCC24.238 24-Jul-06 27-Jul-06			
Polarity	Distance	Substitution Antenna Type	Carrier Channel	Frequency	Corrected Field Strength	Maximized SA Signal Level (uncorrected)	Power Applied to Antenna	Antenna Gain	EIRP Emission Level	Limit	Margin	Pass/Fai	
	m			MHz	dBuV/m	dBuV	dBm	dBi	dBm	dBm or dBuV/m*	dB	1	
Н	3	none	512	3700.16	43.11	34.60	n/a	n/a	n/a	82.2*	39.1*	PASS*	
Н	3	none	512	5550.31	45.69	31.60	n/a	n/a	n/a	82.2*	36.5*	PASS*	
Н	1	none	512	7400.80	50.50	39.98	n/a	n/a	n/a	91.8*	41.3*	PASS*	
Н	3	none	661	3759.73	43.09	34.50	n/a	n/a	n/a	82.2*	39.1*	PASS*	
Н	3	none	661	5639.73	43.75	29.60	n/a	n/a	n/a	82.2*	38.5*	PASS*	
Н	1	none	661	7520.00	50.71	39.81	n/a	n/a	n/a	91.8*	41.1*	PASS*	
Н	3	none	810	3819.80	44.83	35.90	n/a	n/a	n/a	82.2*	37.4*	PASS*	
Н	3	none	810	5729.44	49.51	35.50	n/a	n/a	n/a	82.2*	32.7*	PASS*	
Н	1	none	810	7639.20	50.24	39.23	n/a	n/a	n/a	91.8*	41.5*	PASS*	
V	3	none	512	3700.19	43.51	35.00	n/a	n/a	n/a	82.2*	38.7*	PASS*	
V	3	none	512	5550.60	45.09	31.00	n/a	n/a	n/a	82.2*	37.1*	PASS*	
V	1	none	512	7401.00	50.23	39.71	n/a	n/a	n/a	91.8*	41.5*	PASS*	
V	3	none	661	3759.99	44.49	35.90	n/a	n/a	n/a	82.2*	37.7*	PASS*	
V	3	none	661	5640.00	44.35	30.20	n/a	n/a	n/a	82.2*	37.9*	PASS*	
V	1	none	661	7510.90	51.48	40.60	n/a	n/a	n/a	91.8* 82.2*	40.3*	PASS*	
V	3	none	810	3819.59	42.93	34.00	n/a	n/a	n/a	-	39.3*	PASS* PASS*	
V	3	none	810	5729.58	51.71	37.70	n/a	n/a	n/a	82.2*	30.5*	PASS* PASS*	
۷	1	none	810	7639.60	54.31	43.30	n/a	n/a	n/a	91.8*	37.5*	PASS*	

Company:	Itronix	nix Corporation FCC ID: KBCIX260PROAC860 Model(s): IX260PROAC860						RONIX®		
DUT Type:										
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							ibs Inc.	Page 29 of 51		

	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006	
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0	
1	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS-132, RSS-133		
ab	Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada L	ab File #3874	

No No Substitution Antenna Type Tequency of the transform Corrected Field Signal Level (uncorrected) Power Applied to Antenna Antenna Gain ERP Emission Limit Margin m m m MHz dBuV/m dBuV dBm dBi dBm	4	C	elltech Tetrg and Engenering Services Lat	Project No Company Product:		Itronix			Standard: Test Start Date: Test End Date:		FCC22.917 24-Jul-06 27-Jul-06	24-Jul-06		
H 3 none 4132 1651.81 65.43 33.80 n/a n/a n/a 84.4* 18.9* H 3 none 4132 1651.81 45.83 14.20 n/a n/a n/a 84.4* 38.5* H 3 none 4132 2478.63 64.69 52.60 n/a n/a n/a 84.4* 19.7* H 3 none 4132 2478.63 44.19 32.10 n/a n/a n/a 84.4* 40.2* H 3 none 4132 3296.53 37.99 31.10 n/a n/a n/a 84.4* 46.4* H 3 none 4182 1672.91 47.35 15.60 n/a n/a n/a 84.4* 19.1* H 3 none 4182 2510.84 65.31 53.10 n/a n/a n/a 84.4* 41.9* H 3 none	Polarity	Distance		Carrier Channel	Frequency		Signal Level			Emission	Limit	Margin	Pass/Fa	
H 3 none 4132 1651.81 45.83 14.20 n/a n/a n/a 84.4* 38.5* H 3 none 4132 2478.63 64.69 52.60 n/a n/a n/a n/a n/a 84.4* 19.7* H 3 none 4132 2478.63 44.19 32.10 n/a n/a n/a n/a 84.4* 40.2* H 3 none 4132 3296.53 37.99 31.10 n/a n/a n/a 84.4* 46.4* H 3 none 4182 1673.06 67.95 36.20 n/a n/a n/a 84.4* 16.4* H 3 none 4182 2510.00 42.51 30.30 n/a n/a n/a 84.4* 41.9* H 3 none 4182 3345.60 37.56 30.50 n/a n/a n/a 84.4* 18.0*								dBm	dBi	dBm		-		
H 3 none 4132 2478.63 64.69 52.60 n/a n/a n/a n/a n/a n/a N/a 84.4* 19.7* H 3 none 4132 2478.63 44.19 32.10 n/a n/a n/a n/a n/a 84.4* 40.2* H 3 none 4132 3296.53 37.99 31.10 n/a n/a n/a n/a 84.4* 46.4* H 3 none 4182 1672.91 47.35 15.60 n/a n/a n/a n/a 84.4* 19.1* H 3 none 4182 2510.84 65.31 53.10 n/a n/a n/a n/a 84.4* 41.9* H 3 none 4182 231.60 37.56 30.50 n/a n/a n/a 84.4* 48.8* 48.6* H 3 none 4233 1694.68 61.51	_	-		-				-	-	-	-		PASS*	
H 3 none 4132 2478.63 44.19 32.10 n/a n/a n/a n/a n/a 84.4* 40.2* H 3 none 4132 3296.53 37.99 31.10 n/a n/a n/a n/a n/a n/a 84.4* 46.4* H 3 none 4182 1673.06 67.95 36.20 n/a n/a n/a n/a n/a 84.4* 164.4* H 3 none 4182 1672.91 47.35 15.60 n/a n/a n/a n/a 84.4* 19.1* H 3 none 4182 2511.00 42.51 30.30 n/a n/a n/a 84.4* 41.9* H 3 none 4182 3345.60 37.56 30.50 n/a n/a n/a 84.4* 48.6* H 3 none 4233 1694.60 64.40 34.50 n/a n/a n/a n/a 84.4* 33.1* H 3 none							-	-		-	-		PASS*	
H 3 none 4132 3296.53 37.99 31.10 n/a n/a n/a 84.4* 46.4* H 3 none 4182 1673.06 67.95 36.20 n/a n/a n/a 84.4* 16.4* H 3 none 4182 1672.91 47.35 15.60 n/a n/a n/a 84.4* 37.0* H 3 none 4182 251.04 65.31 53.10 n/a n/a n/a 84.4* 19.1* H 3 none 4182 251.00 42.51 30.30 n/a n/a n/a 84.4* 46.8* H 3 none 4182 334.60 37.56 30.50 n/a n/a n/a 84.4* 48.8* 48.8* H 3 none 4233 1694.50 51.30 19.40 n/a n/a n/a 84.4* 22.9* H 3 <t< td=""><td>_</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>PASS* PASS*</td></t<>	_	-									-		PASS* PASS*	
H 3 none 4182 1673.06 67.95 36.20 n/a n/a n/a n/a 84.4* 16.4* H 3 none 4182 1672.91 47.35 15.60 n/a n/a n/a 84.4* 37.0* H 3 none 4182 2510.84 65.31 53.10 n/a n/a n/a 84.4* 19.1* H 3 none 4182 2511.00 42.51 30.30 n/a n/a n/a 84.4* 41.9* H 3 none 4182 3345.60 37.56 30.50 n/a n/a n/a 84.4* 48.8* H 3 none 4233 1694.68 66.40 34.50 n/a n/a n/a 84.4* 18.0* H 3 none 4233 2546.58 61.51 49.10 n/a n/a n/a 84.4* 42.8* H 3 none 4233 2546.52 41.61 29.20 n/a n/a n/a n	_								1				PASS*	
H 3 none 4182 1672.91 47.35 15.60 n/a n/a n/a 84.4* 37.0* H 3 none 4182 2510.84 65.31 53.10 n/a n/a n/a 84.4* 19.1* H 3 none 4182 2511.00 42.51 30.30 n/a n/a n/a 84.4* 41.9* H 3 none 4182 2511.00 42.51 30.30 n/a n/a n/a 84.4* 41.9* H 3 none 4182 3345.60 37.56 30.50 n/a n/a n/a 84.4* 48.4* 48.4* H 3 none 4233 1694.68 66.40 34.50 n/a n/a n/a 84.4* 33.1* H 3 none 4233 2546.52 41.61 29.20 n/a n/a n/a 84.4* 42.8* H 3	_	_											PASS*	
H 3 none 4182 2511.00 42.51 30.30 n/a n/a n/a 84.4* 41.9* H 3 none 4182 3345.60 37.56 30.50 n/a n/a n/a n/a 84.4* 46.8* H 3 none 4233 1694.68 66.40 34.50 n/a n/a n/a 84.4* 48.4* 46.8* H 3 none 4233 1694.50 51.30 19.40 n/a n/a n/a 84.4* 33.1* H 3 none 4233 2546.52 41.61 29.20 n/a n/a n/a 84.4* 42.8* H 3 none 4233 3386.40 36.82 29.60 n/a n/a n/a 84.4* 42.8* H 3 none 4132 1649.27 52.62 21.00 n/a n/a n/a 84.4* 42.6* V 3 none 4132 2480.23 47.89 35.80 n/a n/a <td< td=""><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>PASS*</td></td<>	_												PASS*	
H 3 none 4182 3345.60 37.56 30.50 n/a n/a n/a 84.4* 46.8* H 3 none 4233 1694.68 66.40 34.50 n/a n/a n/a 84.4* 18.0* H 3 none 4233 1694.50 51.30 19.40 n/a n/a n/a 84.4* 33.1* H 3 none 4233 2546.58 61.51 49.10 n/a n/a n/a 84.4* 22.9* H 3 none 4233 2546.52 41.61 29.20 n/a n/a n/a 84.4* 42.8* H 3 none 4132 1649.27 52.62 21.00 n/a n/a n/a 84.4* 47.6* V 3 none 4132 2480.23 62.39 50.30 n/a n/a n/a 84.4* 31.8* V 3 none	Н	3	none	4182		65.31	53.10	n/a		n/a	84.4*	19.1*	PASS*	
H 3 none 4233 1694.68 66.40 34.50 n/a n/a n/a 84.4* 18.0* H 3 none 4233 1694.50 51.30 19.40 n/a n/a n/a 84.4* 33.1* H 3 none 4233 2546.58 61.51 49.10 n/a n/a n/a 84.4* 22.9* H 3 none 4233 2546.52 41.61 29.20 n/a n/a n/a 84.4* 42.8* H 3 none 4233 338.640 36.82 29.60 n/a n/a n/a 84.4* 42.8* V 3 none 4132 1649.27 52.62 21.00 n/a n/a n/a 84.4* 31.8* V 3 none 4132 2480.23 47.89 35.80 n/a n/a n/a 84.4* 36.5* V 3 none	Н	3	none	4182	2511.00	42.51	30.30	n/a	n/a	n/a	84.4*	41.9*	PASS*	
H 3 none 4233 1694.50 51.30 19.40 n/a n/a n/a 84.4* 33.1* H 3 none 4233 2546.58 61.51 49.10 n/a n/a n/a 84.4* 22.9* H 3 none 4233 2546.52 41.61 29.20 n/a n/a n/a 84.4* 42.8* H 3 none 4233 3386.40 36.82 29.60 n/a n/a n/a 84.4* 42.8* V 3 none 4132 1649.27 52.62 21.00 n/a n/a n/a 84.4* 31.8* V 3 none 4132 2480.23 62.39 50.30 n/a n/a n/a 84.4* 36.5* V 3 none 4132 2480.23 47.89 35.80 n/a n/a n/a 84.4* 36.5* V 3 none 4132 1673.15 61.65 29.90 n/a n/a n/a 84.4* <td< td=""><td>Н</td><td>3</td><td>none</td><td>4182</td><td>3345.60</td><td>37.56</td><td>30.50</td><td>n/a</td><td>n/a</td><td>n/a</td><td>84.4*</td><td>46.8*</td><td>PASS*</td></td<>	Н	3	none	4182	3345.60	37.56	30.50	n/a	n/a	n/a	84.4*	46.8*	PASS*	
H 3 none 4233 2546.58 61.51 49.10 n/a n/a n/a 84.4* 22.9* H 3 none 4233 2546.52 41.61 29.20 n/a n/a n/a 84.4* 42.8* H 3 none 4233 3386.40 36.82 29.60 n/a n/a n/a 84.4* 42.8* V 3 none 4132 1649.27 52.62 21.00 n/a n/a n/a 84.4* 31.8* V 3 none 4132 2480.23 62.39 50.30 n/a n/a n/a 84.4* 22.0* V 3 none 4132 2480.23 47.89 35.80 n/a n/a n/a 84.4* 36.5* V 3 none 4132 3305.60 37.21 30.30 n/a n/a n/a 84.4* 22.7* V 3 none	_		none										PASS*	
H 3 none 4233 2546.52 41.61 29.20 n/a n/a n/a 84.4* 42.8* H 3 none 4233 3386.40 36.82 29.60 n/a n/a n/a n/a 84.4* 42.8* V 3 none 4132 1649.27 52.62 21.00 n/a n/a n/a 84.4* 31.8* V 3 none 4132 2480.23 62.39 50.30 n/a n/a n/a 84.4* 22.0* V 3 none 4132 2480.23 47.89 35.80 n/a n/a n/a 84.4* 36.5* V 3 none 4132 2480.23 47.89 35.80 n/a n/a n/a 84.4* 36.5* V 3 none 4132 3305.60 37.21 30.30 n/a n/a n/a 84.4* 42.7* V 3 none 4182 1673.15 61.65 29.90 n/a n/a n/a 8	_												PASS*	
H 3 none 4233 3386.40 36.82 29.60 n/a n/a n/a 84.4* 47.6* V 3 none 4132 1649.27 52.62 21.00 n/a n/a n/a 84.4* 31.8* V 3 none 4132 2480.23 62.39 50.30 n/a n/a n/a 84.4* 22.0* V 3 none 4132 2480.23 47.89 35.80 n/a n/a n/a 84.4* 22.0* V 3 none 4132 2480.23 47.89 35.80 n/a n/a n/a 84.4* 36.5* V 3 none 4132 3305.60 37.21 30.30 n/a n/a n/a 84.4* 47.2* V 3 none 4182 1673.15 61.65 29.90 n/a n/a n/a 84.4* 34.0* V 3 none 4182 1672.94 50.35 18.60 n/a n/a n/a 84.4* <td< td=""><td>_</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>PASS*</td></td<>	_	-											PASS*	
V 3 none 4132 1649.27 52.62 21.00 n/a n/a n/a 84.4* 31.8* V 3 none 4132 2480.23 62.39 50.30 n/a n/a n/a 84.4* 22.0* V 3 none 4132 2480.23 62.39 50.30 n/a n/a n/a 84.4* 22.0* V 3 none 4132 2480.23 47.89 35.80 n/a n/a n/a 84.4* 36.5* V 3 none 4132 330.60 37.21 30.30 n/a n/a n/a 84.4* 47.2* V 3 none 4182 1673.15 61.65 29.90 n/a n/a n/a 84.4* 22.7* V 3 none 4182 1672.94 50.35 18.60 n/a n/a n/a 84.4* 34.0* V 3 none <	_	_											PASS* PASS*	
V 3 none 4132 2480.23 62.39 50.30 n/a n/a n/a 84.4* 22.0* V 3 none 4132 2480.23 47.89 35.80 n/a n/a n/a 84.4* 36.5* V 3 none 4132 2480.23 47.89 35.80 n/a n/a n/a 84.4* 36.5* V 3 none 4132 3305.60 37.21 30.30 n/a n/a n/a 84.4* 47.2* V 3 none 4182 1673.15 61.65 29.90 n/a n/a n/a 84.4* 22.7* V 3 none 4182 1673.15 61.65 29.90 n/a n/a n/a 84.4* 22.7* V 3 none 4182 1672.94 50.35 18.60 n/a n/a n/a 84.4* 23.5* V 3 none	_	_											PASS*	
V 3 none 4132 2480.23 47.89 35.80 n/a n/a n/a 84.4* 36.5* V 3 none 4132 3305.60 37.21 30.30 n/a n/a n/a 84.4* 47.2* V 3 none 4182 1673.15 61.65 29.90 n/a n/a n/a 84.4* 22.7* V 3 none 4182 1673.15 61.65 29.90 n/a n/a n/a 84.4* 22.7* V 3 none 4182 1672.94 50.35 18.60 n/a n/a n/a 84.4* 34.0* V 3 none 4182 2510.88 60.91 48.70 n/a n/a n/a 84.4* 23.5* V 3 none 4182 2510.88 60.91 48.70 n/a n/a n/a 84.4* 39.9* V 3 none	_												PASS*	
V 3 none 4182 1673.15 61.65 29.90 n/a n/a n/a 84.4* 22.7* V 3 none 4182 1673.15 61.65 29.90 n/a n/a n/a 84.4* 22.7* V 3 none 4182 1672.94 50.35 18.60 n/a n/a n/a 84.4* 34.0* V 3 none 4182 2510.88 60.91 48.70 n/a n/a n/a 84.4* 23.5* V 3 none 4182 2510.88 64.51 32.30 n/a n/a n/a 84.4* 39.9* V 3 none 4182 3345.60 39.96 32.90 n/a n/a n/a 84.4* 44.4* V 3 none 4233 1694.30 63.00 31.10 n/a n/a n/a 84.4* 21.4* V 3 none	_			-									PASS*	
V 3 none 4182 1672.94 50.35 18.60 n/a n/a n/a 84.4* 34.0* V 3 none 4182 2510.88 60.91 48.70 n/a n/a n/a 84.4* 23.5* V 3 none 4182 2510.88 60.91 48.70 n/a n/a n/a 84.4* 23.5* V 3 none 4182 2510.88 44.51 32.30 n/a n/a n/a 84.4* 39.9* V 3 none 4182 3345.60 39.96 32.90 n/a n/a n/a 84.4* 44.4* V 3 none 4233 1694.30 63.00 31.10 n/a n/a n/a 84.4* 21.4* V 3 none 4233 1694.40 50.60 18.70 n/a n/a n/a 84.4* 33.8*	V	3	none	4132	3305.60	37.21	30.30	n/a	n/a	n/a	84.4*	47.2*	PASS*	
V 3 none 4182 2510.88 60.91 48.70 n/a n/a n/a 84.4* 23.5* V 3 none 4182 2510.88 44.51 32.30 n/a n/a n/a 84.4* 39.9* V 3 none 4182 2510.88 44.51 32.30 n/a n/a n/a 84.4* 39.9* V 3 none 4182 3345.60 39.96 32.90 n/a n/a n/a 84.4* 44.4* V 3 none 4233 1694.30 63.00 31.10 n/a n/a n/a 84.4* 21.4* V 3 none 4233 1694.40 50.60 18.70 n/a n/a n/a 84.4* 33.8*	_	-	none					n/a	n/a	n/a			PASS*	
V 3 none 4182 2510.88 44.51 32.30 n/a n/a n/a 84.4* 39.9* V 3 none 4182 3345.60 39.96 32.90 n/a n/a n/a 84.4* 44.4* V 3 none 4182 3345.60 39.96 32.90 n/a n/a n/a 84.4* 44.4* V 3 none 4233 1694.30 63.00 31.10 n/a n/a n/a 84.4* 21.4* V 3 none 4233 1694.40 50.60 18.70 n/a n/a 84.4* 33.8*			none						n/a				PASS*	
V 3 none 4182 3345.60 39.96 32.90 n/a n/a n/a 84.4* 44.4* V 3 none 4233 1694.30 63.00 31.10 n/a n/a n/a 84.4* 21.4* V 3 none 4233 1694.40 50.60 18.70 n/a n/a n/a 84.4* 33.8*		-		-				-			-		PASS*	
V 3 none 4233 1694.30 63.00 31.10 n/a n/a n/a 84.4* 21.4* V 3 none 4233 1694.40 50.60 18.70 n/a n/a n/a 84.4* 33.8*		-						-					PASS*	
V 3 none 4233 1694.40 50.60 18.70 n/a n/a n/a 84.4* 33.8*	÷	-											PASS*	
		-											PASS* PASS*	
		-							1				PASS*	
V 3 none 4233 2541.32 42.59 30.20 n/a n/a n/a 84.4* 41.8*	-			-									PASS*	

*The emissions reported above represent the highest emissions or noise floor measured within the frequency band of 30MHz and the 10th harmonic of the carrier with field strengths within 20 dB of the theoretical limit. All other emissions attributed to the EUT had field strengths greater than 20 dB below the theoretical limit and substitutions were not made.

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITI	RONIX®
DUT Type:	Lapto	op PC with Sierr	a Wireless A	AC860 Dual-Band GSM/GP	RS/EDGE/UM			AL DYNAMICS COMPANY
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Ir							ibs Inc.	Page 30 of 51

	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006		
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0		
	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133		
b	Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada Lab File #3874			

(C	elltech	Project No Company Product:		756 Itronix IX260+ with AC86	50		Standard: Test Start Da Test End Da		FCC24.238 24-Jul-06 27-Jul-06		
Polarity	Distance	Substitution Antenna Type	Carrier Channel	Frequency	Corrected Field Strength	Maximized SA Signal Level (uncorrected)	Power Applied to Antenna	Antenna Gain	EIRP Emission Level	Limit	Margin	Pass/Fai
	m			MHz	dBuV/m	dBuV	dBm	dBi	dBm	dBm or dBuV/m*	dB	1
Н	3	none	9262	3704.56	42.09	33.60	n/a	n/a	n/a	82.2*	40.1*	PASS*
Н	3	none	9262	5556.80	46.83	32.60	n/a	n/a	n/a	82.2*	35.4*	PASS*
Н	1	none	9262	7409.60	50.52	39.97	n/a	n/a	n/a	91.8*	41.2*	PASS*
Н	3	none	9400	3759.43	44.09	35.50	n/a	n/a	n/a	82.2*	38.1*	PASS*
Н	3	none	9400	5639.33	44.75	30.60	n/a	n/a	n/a	82.2*	37.5*	PASS*
Н	1	none	9400	7520.00	51.66	40.76	n/a	n/a	n/a	91.8*	40.1*	PASS*
Н	3	none	9538	3816.80	45.80	36.90	n/a	n/a	n/a	82.2*	36.4*	PASS*
Н	3	none	9538	5724.44	50.50	36.50	n/a	n/a	n/a	82.2*	31.7*	PASS*
Н	1	none	9538	7630.00	51.13	40.13	n/a	n/a	n/a	91.8*	40.6*	PASS*
V	3	none	9262	3703.19	44.50	36.00	n/a	n/a	n/a	82.2*	37.7*	PASS*
V	3	none	9262 9262	5556.10 7409.60	46.41 50.77	32.20 40.22	n/a n/a	n/a n/a	n/a n/a	82.2* 91.8*	35.8* 41.0*	PASS* PASS*
V	3	none	9202	3759.99	43.49	34.90	n/a	n/a	n/a	91.8 82.2*	38.7*	PASS*
V	3	none	9400 9400	5640.00	45.35	34.90	n/a	n/a	n/a	82.2*	36.9*	PASS*
V	1	none	9400	7520.00	51.14	40.24	n/a	n/a	n/a	91.8*	40.6*	PASS*
v	3	none	9538	3816.59	42.90	34.00	n/a	n/a	n/a	82.2*	39.3*	PASS*
v	3	none	9538	5724.08	51.69	37.70	n/a	n/a	n/a	82.2*	30.5*	PASS*
V	1	none	9538	7630.00	51.06	40.06	n/a	n/a	n/a	91.8*	40.7*	PASS*

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITC	RONIX [®]		
DUT Type:	Lapto	p PC with Sierr	a Wireless /	AC860 Dual-Band GSM/GP	ual-Band GSM/GPRS/EDGE/UMTS PCMCIA Modem					
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 31 of 5								Page 31 of 51		

	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006	
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0	
1	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133	
ab	Test Lab Registration(s):	FCC Lab Registration #714830	830 Industry Canada Lab File #3		

2.1	I C	ellular GPR	S Spurio	us Emiss	sions (Mobile	e)						
	(elltech Tetra un Engineerig Service Lat	Project No Company Product:		756 Itronix IX260+ with AC86	60		Standard: Test Start Da Test End Da		FCC22.917 24-Jul-06 27-Jul-06		
Polarity	Distance	Substitution Antenna Type	Carrier Channel	Frequency	Corrected Field Strength	Maximized SA Signal Level (uncorrected)	Power Applied to Antenna	Antenna Gain	ERP Emission Level	Limit	Margin	Pass/Fail
	m			MHz	dBuV/m	dBuV	dBm	dBi	dBm	dBm or dBuV/m*	dB	1
Н	3	none	128	1648.40	52.31	20.70	n/a	n/a	n/a	84.4*	32.1*	PASS*
Η	3	none	128	2472.60	54.17	42.10	n/a	n/a	n/a	84.4*	30.2*	PASS*
Н	3	none	128	3296.80	37.90	31.00	n/a	n/a	n/a	84.4*	46.5*	PASS*
Н	3	none	190	1673.20	53.95	22.20	n/a	n/a	n/a	84.4*	30.4*	PASS*
Н	3	none	190	2510.85	51.51	39.30	n/a	n/a	n/a	84.4*	32.9*	PASS*
Н	3	none	190	3346.40	37.86	30.80	n/a	n/a	n/a	84.4*	46.5*	PASS*
Н	3	none	251	1697.60	53.22	21.30	n/a	n/a	n/a	84.4*	31.1*	PASS*
Н	3	none	251	2546.07	51.01	38.60	n/a	n/a	n/a	84.4*	33.4*	PASS*
Н	3	none	251	3395.20	36.92	29.70	n/a	n/a	n/a	84.4*	47.4*	PASS*
V	3	none	128	1648.40	53.51	21.90	n/a	n/a	n/a	84.4*	30.9*	PASS*
V	3	none	128	2472.88	52.47	40.40	n/a	n/a	n/a	84.4*	31.9*	PASS*
V	3	none	128	3297.03	38.90	32.00	n/a	n/a	n/a	84.4*	45.5*	PASS*
V	3	none	190	1673.20	65.15	33.40	n/a	n/a	n/a	84.4*	19.2*	PASS*
V	3	none	190	1673.20	46.15	14.40	n/a	n/a	n/a	84.4*	38.2*	PASS*
V	3	none	190	2510.88	52.91	40.70	n/a	n/a	n/a	84.4*	31.5*	PASS*
V	3	none	190	3347.79	38.07	31.00	n/a	n/a	n/a	84.4*	46.3*	PASS*
V	3	none	251	1697.65	64.52	32.60	n/a	n/a	n/a	84.4*	19.8*	PASS*
	3	none	251	1697.65	46.12	14.20	n/a	n/a	n/a	84.4*	38.2*	PASS*

*The emissions reported above represent the highest emissions or noise floor measured within the frequency band of 30MHz and the 10th harmonic of the carrier with field strengths within 20 dB of the theoretical limit. All other emissions attributed to the EUT had field strengths greater than 20 dB below the theoretical limit and substitutions were not made.

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITC	RONIX®
DUT Type:	Lapto	p PC with Sierr	a Wireless A	AC860 Dual-Band GSM/GP	RS/EDGE/UM			L DYNAMICS COMPANY
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							bs Inc.	Page 32 of 51

Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006	
Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0	
Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS-132, RSS-133		
Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada Lab File #3874		

((Testing and Engineering Services Lat	Project N Company Product:		756 Itronix IX260+ with AC86		Standard: Test Start Date: Test End Date:		FCC24.238 24-Jul-06 27-Jul-06			
Polarity	Distance	Substitution Antenna Type	Carrier Channel	Frequency	Corrected Field Strength	Maximized SA Signal Level (uncorrected)	Power Applied to Antenna	Antenna Gain	EIRP Emission Level	Limit	Margin	Pass/Fai
ľ	m			MHz	dBuV/m	dBuV	dBm	dBi	dBm	dBm or dBuV/m*	dB	1
Н	3	none	512	3700.40	48.01	39.50	n/a	n/a	n/a	82.2*	34.2*	PASS*
Н	3	none	512	5550.60	54.09	40.00	n/a	n/a	n/a	82.2*	28.1*	PASS*
Н	1	none	512	7400.55	52.92	42.40	n/a	n/a	n/a	91.8*	38.8*	PASS*
Н	3	none	661	3760.00	47.69	39.10	n/a	n/a	n/a	82.2*	34.5*	PASS*
Н	3	none	661	5640.00	52.25	38.10	n/a	n/a	n/a	82.2*	30.0*	PASS*
Н	1	none	661	7520.50	52.46	41.56	n/a	n/a	n/a	91.8*	39.3*	PASS*
Н	3	none	810	3819.60	48.33	39.40	n/a	n/a	n/a	82.2*	33.9*	PASS*
Н	3	none	810	5729.85	53.61	39.60	n/a	n/a	n/a	82.2*	28.6*	PASS*
Н	1	none	810	7639.50	54.45	43.44	n/a	n/a	n/a	91.8*	37.3*	PASS*
V	3	none	512	3700.29	47.11	38.60	n/a	n/a	n/a	82.2*	35.1*	PASS*
V	3	none	512	5550.60	54.69	40.60	n/a	n/a	n/a	82.2*	27.5*	PASS*
V	1	none	512	7401.20	55.58	45.06	n/a	n/a	n/a	91.8*	36.2*	PASS*
V	3	none	661	3760.00	47.99	39.40	n/a	n/a	n/a	82.2*	34.2*	PASS*
V	3	none	661	5640.00	53.65	39.50	n/a	n/a	n/a	82.2*	28.6*	PASS*
V	1	none	661	7520.25	53.64	42.74	n/a	n/a	n/a	91.8*	38.1*	PASS*
V	3	none	810	3819.12	47.72	38.80	n/a	n/a	n/a	82.2*	34.5*	PASS*
V	3	none	810	5729.55	56.21	42.20	n/a	n/a	n/a	82.2*	26.0*	PASS*

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITC	RONIX °
DUT Type:	Lapto	p PC with Sierr	a Wireless A		L DYNAMICS COMPANY			
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 33 of 51	

Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006 Revision 1.0		
Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:			
Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS-132, RSS-1			
Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada Lab File #3874			

Substitution Antenna Type none none none	Channel Carrier Channel 4132	Frequency MHz 1652.80	Corrected Field Strength dBuV/m	Maximized SA Signal Level (uncorrected)	Power Applied to Antenna	Antenna Gain	ERP Emission Level	Limit	Margin	Pass/Fai
none			dBuV/m	dBuV						
none		1652.80		abuv	dBm	dBi	dBm	dBm or dBuV/m*	dB	1
	4132		53.03	21.40	n/a	n/a	n/a	84.4*	31.3*	PASS*
none		2478.80	60.39	48.30	n/a	n/a	n/a	84.4*	24.0*	PASS*
	4132	3305.60	45.51	38.60	n/a	n/a	n/a	84.4*	38.9*	PASS*
none	4182	1672.80	51.35	19.60	n/a	n/a	n/a	84.4*	33.0*	PASS*
none	4182	2509.20	51.30	39.10	n/a	n/a	n/a	84.4*	33.1*	PASS*
none	4182	3345.60	46.56	39.50	n/a	n/a	n/a	84.4*	37.8*	PASS*
none	4233	1693.20	52.89	21.00	n/a	n/a	n/a	84.4*	31.5*	PASS*
none					n/a	n/a	n/a	84.4*		PASS*
none					n/a	n/a	n/a			PASS*
none					n/a	n/a	n/a			PASS*
none					n/a	n/a	n/a	-		PASS*
none					n/a	n/a	n/a	-		PASS*
none				24.60	n/a	n/a	n/a	-		PASS*
none		2509.20		40.40	n/a	n/a	n/a	84.4*	31.8*	PASS*
none				38.90	n/a	n/a	n/a	84.4*	38.4*	PASS*
none		1691.04		23.70	n/a	n/a	n/a	84.4*	28.8*	PASS*
none	4233	2539.80	54.08 45.92	41.70 38.70	n/a n/a	n/a n/a	n/a n/a	84.4* 84.4*	30.3* 38.5*	PASS* PASS*
	none none none none none none none	none 4233 none 4132 none 4132 none 4132 none 4132 none 4182 none 4182 none 4182 none 4182 none 4182 none 4182	none 4233 3386.40 none 4132 1652.80 none 4132 2477.14 none 4132 3305.60 none 4182 1669.73 none 4182 2509.20 none 4182 3345.60 none 4233 1691.04	none 4233 3386.40 45.92 none 4132 1652.80 53.43 none 4132 2477.14 59.08 none 4132 3305.60 45.51 none 4182 1669.73 56.33 none 4182 2509.20 52.60 none 4182 3345.60 45.96 none 4182 355.77 56.57	none 4233 3386.40 45.92 38.70 none 4132 1652.80 53.43 21.80 none 4132 2477.14 59.08 47.00 none 4132 3305.60 45.51 38.60 none 4182 1669.73 56.33 24.60 none 4182 2509.20 52.60 40.40 none 4182 3345.60 45.96 38.90 none 4233 1691.04 55.57 23.70	none 4233 3386.40 45.92 38.70 n/a none 4132 1652.80 53.43 21.80 n/a none 4132 2477.14 59.08 47.00 n/a none 4132 3305.60 45.51 38.60 n/a none 4182 1669.73 56.33 24.60 n/a none 4182 2509.20 52.60 40.40 n/a none 4182 3345.60 45.96 38.90 n/a none 4182 3345.60 45.96 38.90 n/a none 4233 1691.04 55.57 23.70 n/a	none 4233 3386.40 45.92 38.70 n/a n/a none 4132 1652.80 53.43 21.80 n/a n/a none 4132 2477.14 59.08 47.00 n/a n/a none 4132 3305.60 45.51 38.60 n/a n/a none 4182 1669.73 56.33 24.60 n/a n/a none 4182 2509.20 52.60 40.40 n/a n/a none 4182 3345.60 45.96 38.90 n/a n/a none 4182 3345.60 45.96 38.90 n/a n/a none 4233 1691.04 55.57 23.70 n/a n/a	none 4233 3386.40 45.92 38.70 n/a n/a n/a none 4132 1652.80 53.43 21.80 n/a n/a n/a none 4132 2477.14 59.08 47.00 n/a n/a n/a none 4132 3305.60 45.51 38.60 n/a n/a n/a none 4132 1669.73 56.33 24.60 n/a n/a n/a none 4182 1669.73 56.33 24.60 n/a n/a n/a none 4182 2509.20 52.60 40.40 n/a n/a n/a none 4182 3345.60 45.96 38.90 n/a n/a n/a none 4182 345.60 45.96 38.90 n/a n/a n/a	none 4233 3386.40 45.92 38.70 n/a n/a n/a 84.4* none 4132 1652.80 53.43 21.80 n/a n/a n/a 84.4* none 4132 2477.14 59.08 47.00 n/a n/a n/a 84.4* none 4132 2477.14 59.08 47.00 n/a n/a 162.4* none 4132 3305.60 45.51 38.60 n/a n/a 164.4* none 4182 1669.73 56.33 24.60 n/a n/a 164.4* none 4182 2509.20 52.60 40.40 n/a n/a 84.4* none 4182 3345.60 45.96 38.90 n/a n/a 84.4* none 4182 345.60 45.96 38.90 n/a n/a 84.4* none 4233 1691.04 55.57 23.70 n/a n/a 84.4*	none 4233 3386.40 45.92 38.70 n/a n/a n/a 84.4* 38.5* none 4132 1652.80 53.43 21.80 n/a n/a n/a 84.4* 30.9* none 4132 2477.14 59.08 47.00 n/a n/a n/a 84.4* 30.9* none 4132 3305.60 45.51 38.60 n/a n/a n/a 84.4* 38.9* none 4182 1669.73 56.33 24.60 n/a n/a n/a 84.4* 28.0* none 4182 2509.20 52.60 40.40 n/a n/a n/a 84.4* 31.8* none 4182 3345.60 45.96 38.90 n/a n/a n/a 84.4* 31.8* none 4233 1691.04 55.57 23.70 n/a n/a n/a 84.4* 28.8*

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITRONIX				
DUT Type:											
2006 Celltech L	Labs Inc.	c. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 34 of 51			

Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006		
Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0		
Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	SS-132, RSS-133		
Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada Lab File #3874			

(Project Number: Company: Product:				756 Itronix IX260+ with AC860			Standard: Test Start Date: Test End Date:		FCC24.238 24-Jul-06 27-Jul-06		
Polarity	Distance	Substitution Antenna Type	Carrier Channel	Frequency	Corrected Field Strength	Maximized SA Signal Level (uncorrected)	Power Applied to Antenna	Antenna Gain	EIRP Emission Level	Limit	Margin	Pass/Fai
	m			MHz	dBuV/m	dBuV	dBm	dBi	dBm	dBm or dBuV/m*	dB	1
Н	3	none	9262	3704.80	47.39	38.90	n/a	n/a	n/a	82.2*	34.8*	PASS*
Н	3	none	9262	5557.20	55.04	40.80	n/a	n/a	n/a	82.2*	27.2*	PASS*
Н	1	none	9262	7409.60	50.68	40.13	n/a	n/a	n/a	91.8*	41.1*	PASS*
Н	3	none	9400	3760.00	46.39	37.80	n/a	n/a	n/a	82.2*	35.8*	PASS*
Н	3	none	9400	5640.00	53.75	39.60	n/a	n/a	n/a	82.2*	28.5*	PASS*
Н	1	none	9400	7520.00	50.70	39.80	n/a	n/a	n/a	91.8*	41.1*	PASS*
Н	3	none	9538	3817.69	52.61	43.70	n/a	n/a	n/a	82.2*	29.6*	PASS*
Н	3	none	9538	5722.50	54.09	40.10	n/a	n/a	n/a	82.2*	28.1*	PASS*
Н	1	none	9538	7630.00	51.17	40.17	n/a	n/a	n/a	91.8*	40.6*	PASS*
V	3	none	9262	3704.80	47.49	39.00	n/a	n/a	n/a	82.2*	34.7*	PASS*
V	3	none	9262	5557.20	53.34	39.10	n/a	n/a	n/a	82.2*	28.9*	PASS*
V	1	none	9262	7409.60	49.98	39.43	n/a	n/a	n/a	91.8*	41.8*	PASS*
V	3	none	9400	3760.00	48.19	39.60	n/a	n/a	n/a	82.2*	34.0*	PASS*
V	3	none	9400	5640.00	54.05	39.90	n/a	n/a	n/a	82.2*	28.2*	PASS*
V	1	none	9400	7520.00	50.99	40.09	n/a	n/a	n/a	91.8*	40.8*	PASS*
V	3	none	9538	3817.68	57.31	48.40	n/a	n/a	n/a	82.2*	24.9*	PASS*
V	3	none	9538	5722.50	53.09	39.10	n/a	n/a	n/a	82.2*	29.1*	PASS*

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITC	RONIX®		
DUT Type:										
2006 Celltech L	abs Inc.	This document is	s not to be repr	oduced in whole or in part witho	ut the prior writte	en permission of Celltech La	bs Inc.	Page 35 of 51		

	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006	
a Lab	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0	
	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS-132, RSS-133		
	Test Lab Registration(s):	FCC Lab Registration #714830	ab File #3874		

C.9 PASS/FAIL

In reference to the results shown in C.8, the DUT passes the requirements as stated in the reference standards as follows:

FCC 22.917 (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

FCC 24.238 (a): Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

C.10 SIGN-OFF

I attest to the accuracy of the data. All measurements reported herein were performed by me and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements.

Spencer Watton

Spencer Watson EMC Manager Celltech Labs Inc.

> July 28, 2006 Date

Company:	Itronix	ronix Corporation FCC ID: KBCIX260PROAC860 Model(s): IX260PROAC860								
DUT Type:	Company: Itronix Corporation FCC ID: KBCIX260PROAC860 Model(s): IX260PROAC860 IX260PROAC860 DUT Type: Laptop PC with Sierra Wireless AC860 Dual-Band GSM/GPRS/EDGE/UMTS PCMCIA Modem General Dynamics company General Dynamics company									
2006 Celltech L	abs Inc.	s Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 36 of 51		

Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006	
Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0	
Test Standard(s):	FCC 47 CFR §2, §22H, §24E	CC 47 CFR §2, §22H, §24E Industry Canada RSS-		
Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada Lab File #3874		

Appendix D - Maximum Permissible Exposure Calculation

D.1 REFERENCES							
Normative Reference Standard	FCC CFR 47§1.1310 IEEE Std C95.1-1999						
Procedure Reference	FCC CFR 47§2.1091						

D.2 LIMITS							
	Frequency	Power Density					
FCC CFR 47§1.1310 Table 1(b)	300 - 1500 MHz	f/1500 mW/cm ²					
	1500 - 100,000 MHz	1.0 mW/cm ²					

D.3 ENVIRONMENTAL CONDITIONS					
Temperature	na				
Humidity	na				
Barometric Pressure	na				

D.4 MEASUREMENT EQUIPMENT SETUP					
	The results described herein were determined by calculations, so no measurement equipment was used. The power measurements for each radio used in these calculations were made as described in Appendix A of this report.				
MEASUREMENT EQUIPMENT SETTINGS	n/a				

D.5 DUT OPER/	D.5 DUT OPERATING DESCRIPTION								
Dual-Band GPRS The maximum GPRS RF conducted output power in each band used for these calculations we on Channel 251 for Cellular and Channel 661 for PCS.									
Dual-Band EDGE	The maximum EDGE RF conducted output power in each band used for these calculations was measured on Channel 190 for Cellular and Channel 661 for PCS.								
Dual-Band UMTS	The maximum UMTS RF conducted output power in each band used for these calculations was measured on Channel 4233 for Cellular and Channel 9400 for PCS.								

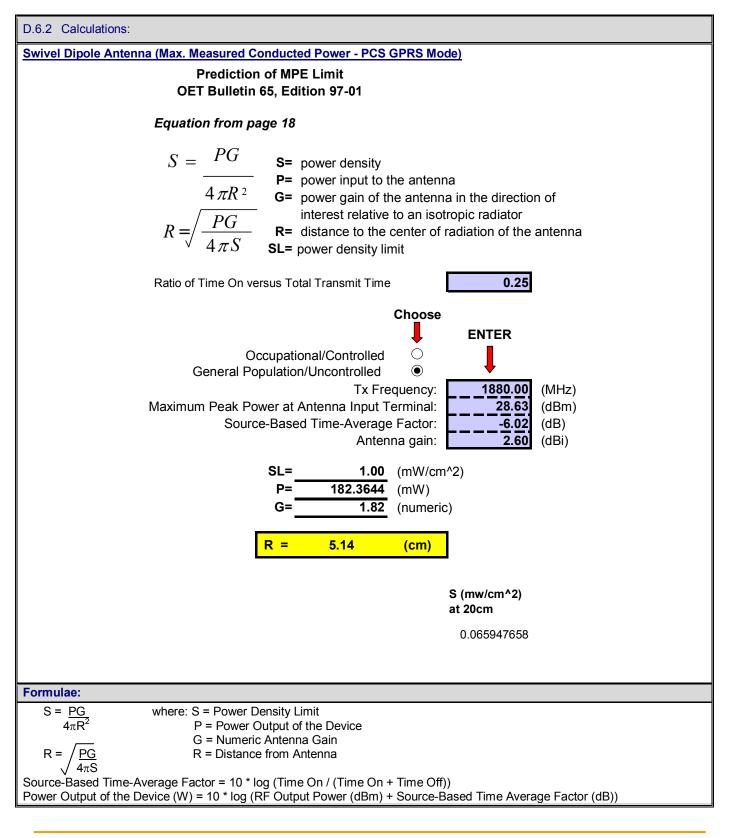
Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITI	RONIX®
DUT Type:								
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Lab						bs Inc.	Page 37 of 51	

DUT Type:

2006 Celltech Labs Inc.

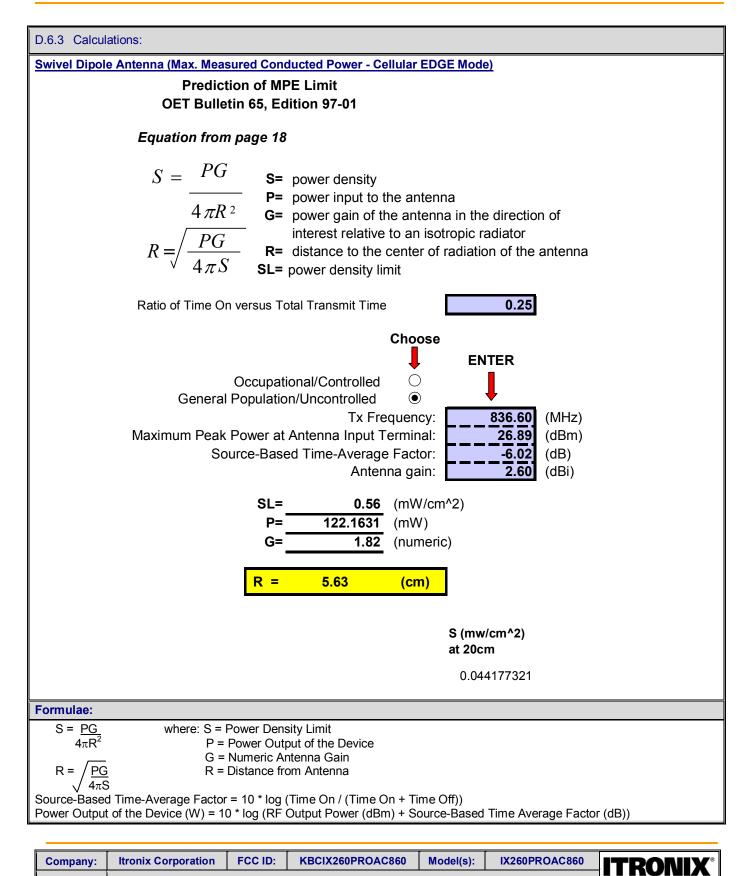
	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
h	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS-132, RSS-13	
vices Lab	Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada Lab File #3874	

D.6 TEST RES	ULTS
D.6.1 Calculation	ons:
<u>Swivel Dipole A</u>	ntenna (Max. Measured Conducted Power - Cellular GPRS Mode)
	Prediction of MPE Limit
	OET Bulletin 65, Edition 97-01
	Equation from page 18
	S = PG S= power density
	$\overline{4\pi R^2}$ P= power input to the antenna G= power gain of the antenna in the direction of
	PG interest relative to an isotropic radiator
	$R = \sqrt{\frac{TO}{4\pi S}}$ R= distance to the center of radiation of the antenna
	$\sqrt{4\pi S}$ SL= power density limit
	Ratio of Time On versus Total Transmit Time 0.25
	Choose
	ENTER
	Occupational/Controlled
	General Population/Uncontrolled 💿 🚽
	Tx Frequency:848.80 (MHz)
	Maximum Peak Power at Antenna Input Terminal: 32.28 (dBm)
	Source-Based Time-Average Factor:6.02 (dB) Antenna gain: 2.60 (dBi)
	SL= 0.57 (mW/cm^2)
	P= 422.6102 (mW)
	G= <u>1.82</u> (numeric)
	R = 10.40 (cm)
	S (mw/cm^2)
	at 20cm
	0.15282675
Formulae:	
S = <u>PG</u>	where: S = Power Density Limit
$4\pi R^2$	P = Power Output of the Device G = Numeric Antenna Gain
$R = \sqrt{\frac{P}{4\pi S}}$	R = Distance from Antenna
	me-Average Factor = 10 * log (Time On / (Time On + Time Off))
Power Output of	the Device (W) = 10 * log (RF Output Power (dBm) + Source-Based Time Average Factor (dB))
Company: It	tronix Corporation FCC ID: KBCIX260PROAC860 Model(s): IX260PROAC860

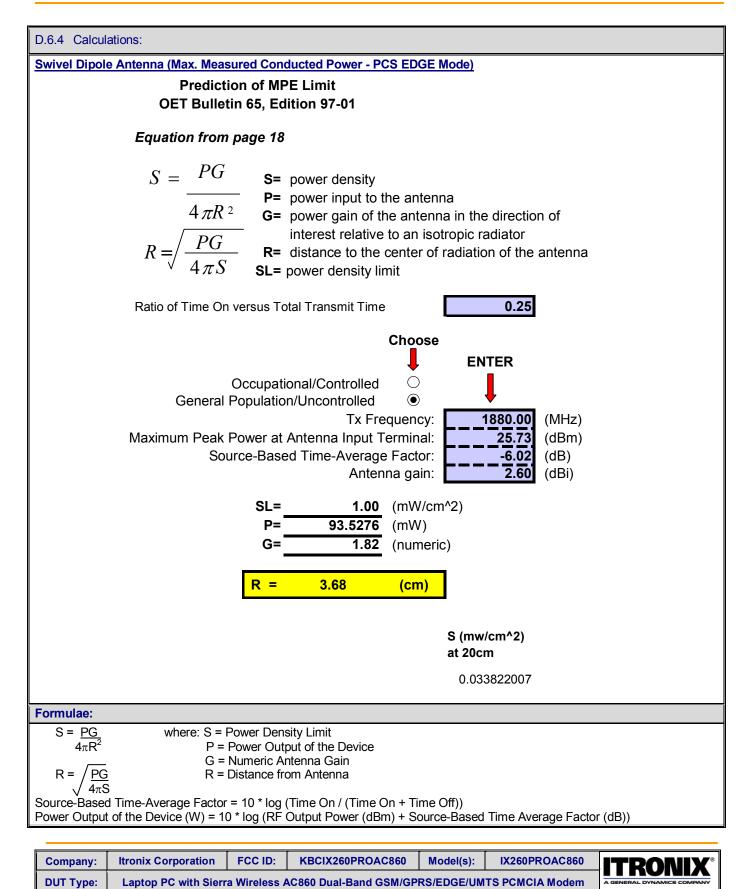

Laptop PC with Sierra Wireless AC860 Dual-Band GSM/GPRS/EDGE/UMTS PCMCIA Modem

This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.

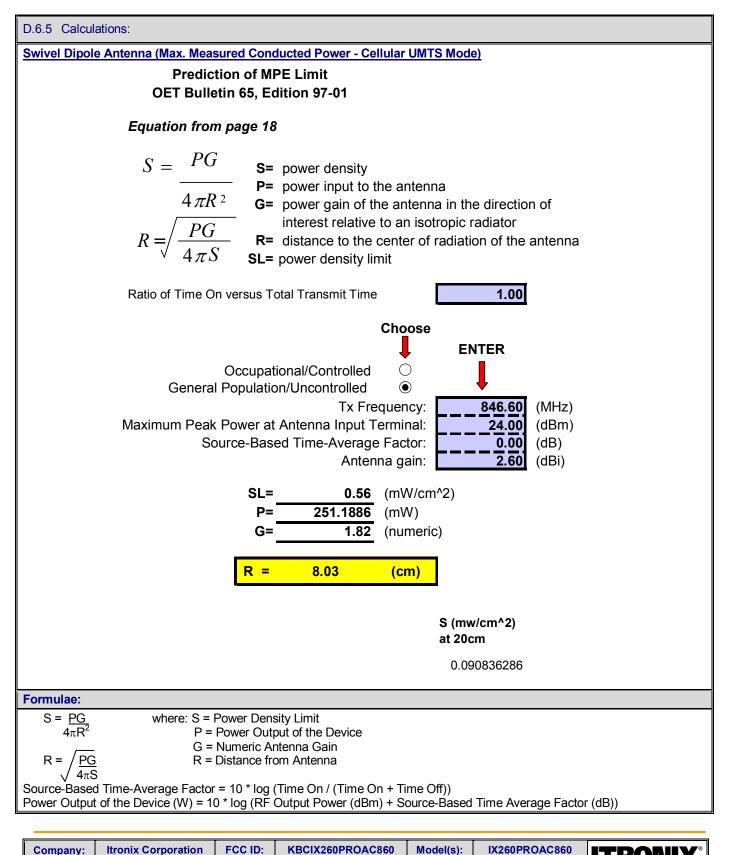
Page 38 of 51


	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133
ab	Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada Lab File #3874	

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITI	SONIX
DUT Type:								
2006 Celltech L	2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Lab						ibs Inc.	Page 39 of 51

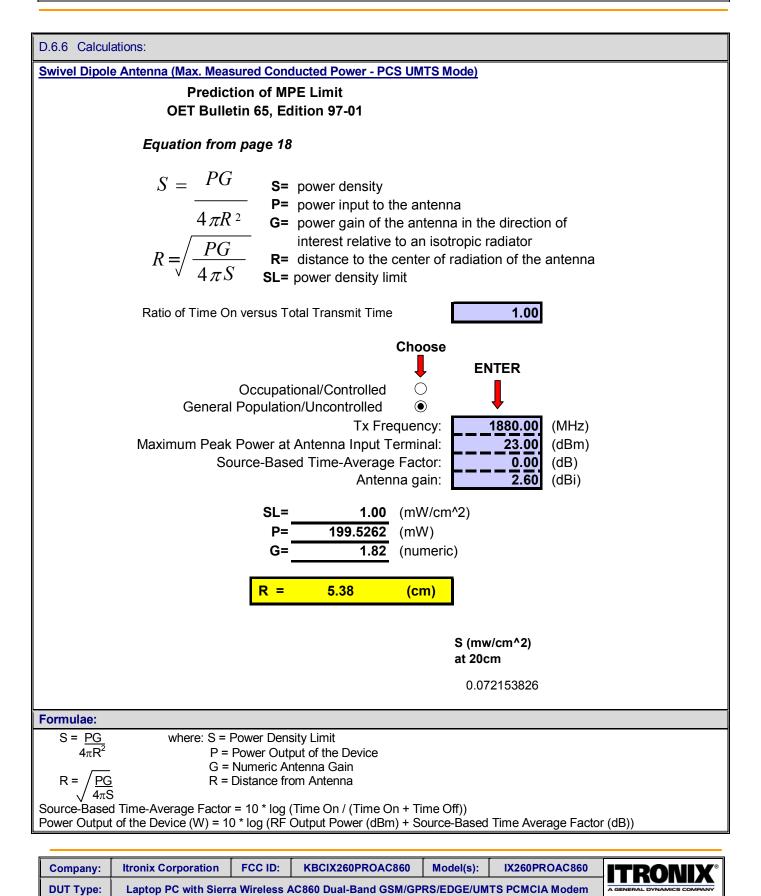

	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
1	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS-132, RSS-133	
Lab	Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada Lab File #3874	

DUT Type:	DUT Type: Laptop PC with Sierra Wireless AC860 Dual-Band GSM/GPRS/EDGE/UMTS PCMCIA Modem				
2006 Celltech L	2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs		bs Inc.	Page 40 of 51	


	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
1	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133
s Lab	Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada L	ab File #3874

2006 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.	Page 41 of 51

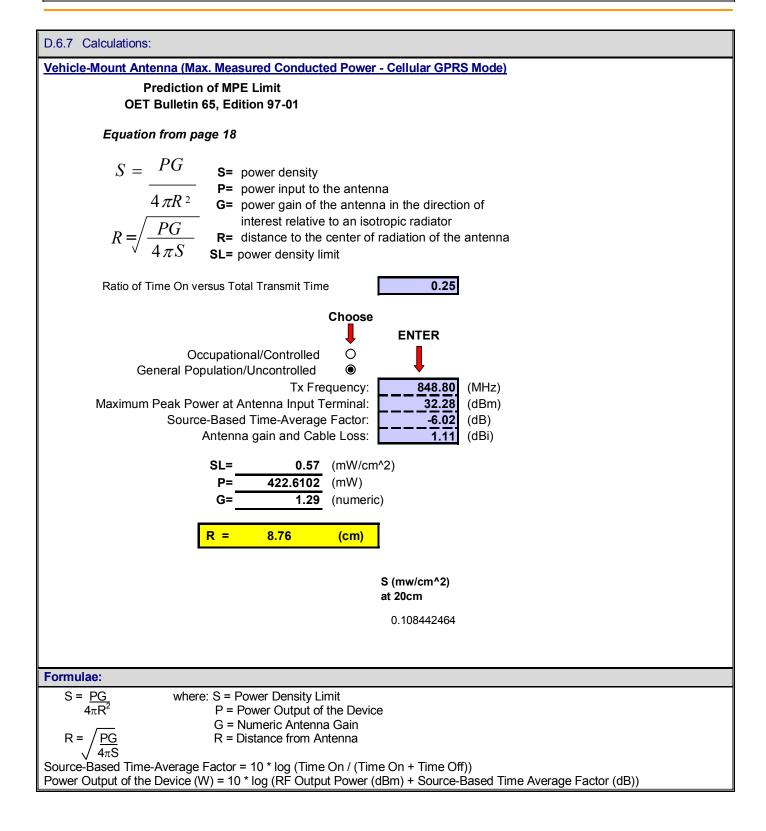
	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
1	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133
Lab	Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada L	ab File #3874



DUT Type:				A GENERAL DYNAMICS COMPANY				
2006 Celltech Labs Inc.		This document is	not to be repr	roduced in whole or in part without	ut the prior writte	en permission of Celltech La	abs Inc.	Page 42 of 51

2006 Celltech Labs Inc.

	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133
s Lab	Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada L	ab File #3874



This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.

Page 43 of 51

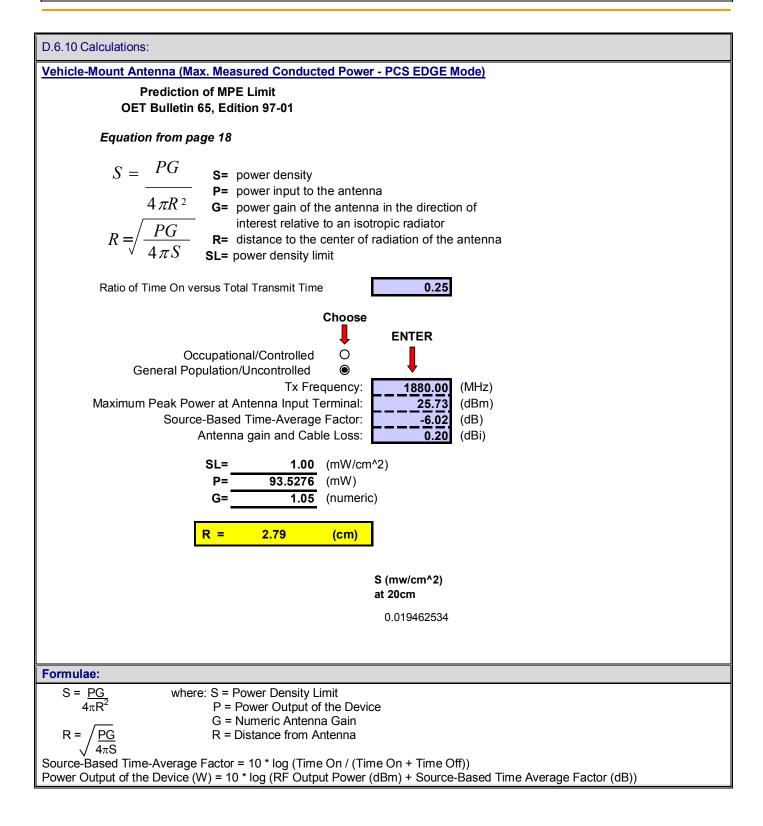
1	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS-132, RSS-133	
Lab	Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada L	ab File #3874

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITI	RONIX®
DUT Type:								
2006 Celltech L	2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Lab					ibs Inc.	Page 44 of 51	

	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133
b	Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada L	ab File #3874

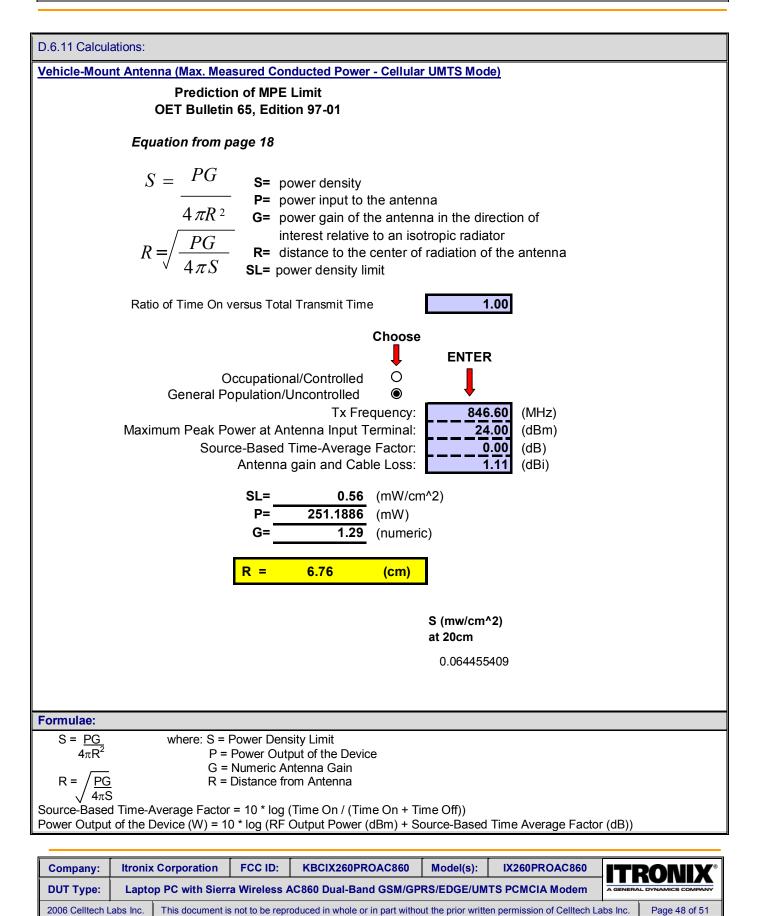
Valiale Manuel Antonno (Manuel Manuel Operatori 10	
Vehicle-Mount Antenna (Max. Measured Conducted Power	- PCS GPRS Mode)
Prediction of MPE Limit OET Bulletin 65, Edition 97-01	
Equation from page 18	
$S = \frac{PG}{4\pi R^2}$ $R = \sqrt{\frac{PG}{4\pi S}}$ $S = \text{ power density}$ $P = \text{ power input to the antend}$ $G = \text{ power gain of the antend}$ $R = \text{ distance to the center of }$ $S = \text{ power density}$	na in the direction of otropic radiator
Ratio of Time On versus Total Transmit Time	0.25
Occupational/Controlled General Population/Uncontrolled Tx Frequency: Maximum Peak Power at Antenna Input Terminal: Source-Based Time-Average Factor: Antenna gain and Cable Loss: SL= 1.00 (mW/cn P= 182.3644 (mW) G= 1.05 (numeri	
	S (mw/cm^2)
	at 20cm
	0.037948916
Formulae:	
$S = \frac{PG}{4\pi R^2}$ where: S = Power Density Limit P = Power Output of the Devic G = Numeric Antenna Gain R = $\sqrt{\frac{PG}{4\pi S}}$ Source-Based Time-Average Factor = 10 * log (Time On / (Time	
Source-pased time-average Factor = 10° for time on / time	

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITC	RONIX®
DUT Type:								L DYNAMICS COMPANY
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs						bs Inc.	Page 45 of 51	

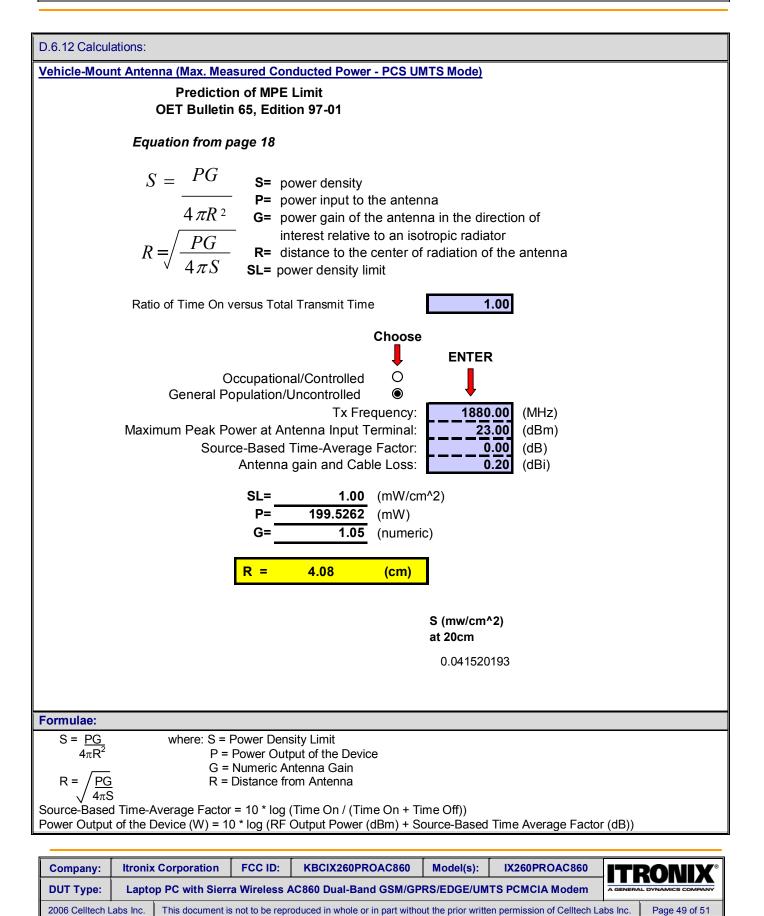

	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS-132, RSS-133	
Lab	Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada L	ab File #3874

D.6.9 Calculations:
Vehicle-Mount Antenna (Max. Measured Conducted Power - Cellular EDGE Mode)
Prediction of MPE Limit OET Bulletin 65, Edition 97-01
Equation from page 18
$S = \frac{PG}{4\pi R^2}$ $R = \sqrt{\frac{PG}{4\pi S}}$ $S = \text{ power density}$ $P = \text{ power input to the antenna}$ $G = \text{ power gain of the antenna in the direction of interest relative to an isotropic radiator}$ $R = \text{ distance to the center of radiation of the antenna}$ $SL = \text{ power density limit}$
Ratio of Time On versus Total Transmit Time 0.25
Choose P ENTER Occupational/Controlled General Population/Uncontrolled Tx Frequency: Maximum Peak Power at Antenna Input Terminal: Source-Based Time-Average Factor: Antenna gain and Cable Loss: $SL = 0.56 (mW/cm^{2})$ P = 122.1631 (mW) G = 1.29 (numeric) R = 4.74 (cm)
S (mw/cm^2)
at 20cm
0.031347245
Formulae: S = PG where: S = Power Density Limit
$4\pi R^2$ P = Power Output of the Device
$R = \sqrt{\frac{PG}{4\pi S}}$ $G = Numeric Antenna Gain R = Distance from Antenna$
Source-Based Time-Average Factor = 10 * log (Time On / (Time On + Time Off)) Power Output of the Device (W) = 10 * log (RF Output Power (dBm) + Source-Based Time Average Factor (dB))

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	IT	RONIX °
DUT Type:								
2006 Celltech L	2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					bs Inc.	Page 46 of 51	


	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006	
1	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0	
	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS-132, RSS-1		
Lab	Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada Lab File #3874		

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITC	RONIX °
DUT Type:								
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc					bs Inc.	Page 47 of 51		



	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
1	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
h	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133
s Lab	Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada L	ab File #3874

	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
h	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS-132, RSS-1	
es Lab	Test Lab Registration(s):	FCC Lab Registration #714830 Industry Canada Lab		ab File #3874

	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0
Celltech	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133
Testing and Engineering Services Lab	Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada L	ab File #3874

D.7 PASS/FAIL

In reference to the results outlined in D6 the DUT passes the requirements as stated in the reference standards as follows: 1) The DUT must comply with the minimum spacing requirement of 20 cm to ensure an exposure of not more than f/1500 mW/cm^2 for frequencies between 300 and 1500 MHz and 1 mW/cm² for frequencies between 1500 and 100,000 MHz.

D.8 SIGN-OFF

I attest to the accuracy of the data. All measurements reported herein were performed by me and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements.

Spencer Watow

Spencer Watson EMC Manager Celltech Labs Inc.

> June 27, 2006 Date

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITI	RONIX [®]
DUT Type:								
2006 Celltech L	2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs In					bs Inc.	Page 50 of 51	

	Test Report Serial No.:	061506KBC-T757-E24G	Report Issue Date:	August 24, 2006	
	Date(s) of Evaluation:	June 21 - July 27, 2006	Report Revision No.:	Revision 1.0	
	Test Standard(s):	FCC 47 CFR §2, §22H, §24E	Industry Canada RSS	S-132, RSS-133	
b	Test Lab Registration(s):	FCC Lab Registration #714830	Industry Canada Lab File #3874		

END OF DOCUMENT

Company:	Itronix	Corporation	FCC ID:	KBCIX260PROAC860	Model(s):	IX260PROAC860	ITI	RONIX®
DUT Type:								
2006 Celltech L	2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						bs Inc.	Page 51 of 51