

| Test Report Serial No.:   | 061506KBC-T756-E24G          | Report Issue Date:               | August 22, 2006 |  |
|---------------------------|------------------------------|----------------------------------|-----------------|--|
| Date(s) of Evaluation:    | June 21 - July 27, 2006      | Report Revision No.:             | Revision 1.0    |  |
| Test Standard(s):         | FCC 47 CFR §2, §22H, §24E    | Industry Canada RSS-132, RSS-133 |                 |  |
| Test Lab Registration(s): | FCC Lab Registration #714830 | Industry Canada Lab File #3874   |                 |  |

# Appendix D - Maximum Permissible Exposure Calculation

| D.1 REFERENCES                  |                                          |
|---------------------------------|------------------------------------------|
| Normative<br>Reference Standard | FCC CFR 47§1.1310<br>IEEE Std C95.1-1999 |
| Procedure Reference             | FCC CFR 47§2.1091                        |

| D.2 LIMITS                   |                    |                           |  |  |  |  |  |
|------------------------------|--------------------|---------------------------|--|--|--|--|--|
|                              | Frequency          | Power Density             |  |  |  |  |  |
| FCC CFR 47§1.1310 Table 1(b) | 300 - 1500 MHz     | f/1500 mW/cm <sup>2</sup> |  |  |  |  |  |
|                              | 1500 - 100,000 MHz | 1.0 mW/cm <sup>2</sup>    |  |  |  |  |  |

| D.3 ENVIRONMENTAL CONDITIONS |    |  |  |  |  |
|------------------------------|----|--|--|--|--|
| Temperature                  | na |  |  |  |  |
| Humidity                     | na |  |  |  |  |
| Barometric Pressure          | na |  |  |  |  |

| D.4 MEASUREMENT EQUIPMENT SETUP |                                                                                                                                                                                                                           |  |  |  |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| MEASUREMENT EQUIPMENT           | The results described herein were determined by calculations, so no measurement equipment was used. The power measurements for each radio used in these calculations were made as described in Appendix A of this report. |  |  |  |
| MEASUREMENT EQUIPMENT SETTINGS  | n/a                                                                                                                                                                                                                       |  |  |  |

| D.5 DUT OPERA     | D.5 DUT OPERATING DESCRIPTION                                                                                                                           |  |  |  |  |  |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Dual-Band<br>GPRS | The maximum GPRS RF conducted output power in each band used for these calculations was measured on Channel 251 for Cellular and Channel 661 for PCS.   |  |  |  |  |  |  |  |
| Dual-Band<br>EDGE | The maximum EDGE RF conducted output power in each band used for these calculations was measured on Channel 190 for Cellular and Channel 661 for PCS.   |  |  |  |  |  |  |  |
| Dual-Band<br>UMTS | The maximum UMTS RF conducted output power in each band used for these calculations was measured on Channel 4233 for Cellular and Channel 9400 for PCS. |  |  |  |  |  |  |  |

| Company:        | Itronix                                                                                                                                     | Corporation | FCC ID: | KBCIX260PLUSAC860 | Model(s):     | IX260PLUSAC860 | ITI                | <b>RONIX</b> ° |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|-------------------|---------------|----------------|--------------------|----------------|
| DUT Type:       |                                                                                                                                             |             |         |                   |               |                | L DYNAMICS COMPANY |                |
| 2006 Celltech L | 006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |             |         |                   | Page 37 of 51 |                |                    |                |

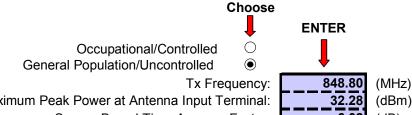


| Test Report Serial No.:   | 061506KBC-T756-E24G                                                | Report Issue Date:           | August 22, 2006 |  |
|---------------------------|--------------------------------------------------------------------|------------------------------|-----------------|--|
| Date(s) of Evaluation:    | June 21 - July 27, 2006                                            | Report Revision No.:         | Revision 1.0    |  |
| Test Standard(s):         | FCC 47 CFR §2, §22H, §24E                                          | E Industry Canada RSS-132, R |                 |  |
| Test Lab Registration(s): | ration(s): FCC Lab Registration #714830 Industry Canada Lab File # |                              | ab File #3874   |  |

## **D.6 TEST RESULTS**

## D.6.1 Calculations:

# Swivel Dipole Antenna (Max. Measured Conducted Power - Cellular GPRS Mode)


Prediction of MPE Limit
OET Bulletin 65, Edition 97-01

# Equation from page 18

$$S = \frac{PG}{4\pi R^2} \qquad \begin{array}{l} \textbf{S= power density} \\ \textbf{P= power input to the antenna} \\ \textbf{G= power gain of the antenna in the direction of interest relative to an isotropic radiator} \\ \textbf{R= distance to the center of radiation of the antenna} \\ \textbf{SL= power density limit} \end{array}$$

Ratio of Time On versus Total Transmit Time





Maximum Peak Power at Antenna Input Terminal:

Source-Based Time-Average Factor:
Antenna gain:

-6.02 (dB)

-6.02 (dB)

S (mw/cm^2) at 20cm

0.15282675

## Formulae:

 $S = \frac{PG}{4\pi R^2}$  where: S = Power Density LimitP = Power Output of the Device

Source-Based Time-Average Factor = 10 \* log (Time On / (Time On + Time Off))

Power Output of the Device (W) = 10 \* log (RF Output Power (dBm) + Source-Based Time Average Factor (dB))

| Company:        | Itronix                                                                                                                                    | Corporation | FCC ID: | KBCIX260PLUSAC860 | Model(s):     | IX260PLUSAC860      | ITI | RONIX <sup>®</sup> |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|-------------------|---------------|---------------------|-----|--------------------|
|                 |                                                                                                                                            |             |         |                   |               | AL DYNAMICS COMPANY |     |                    |
| 2006 Celltech L | 06 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |             |         |                   | Page 38 of 51 |                     |     |                    |



| Test Report Serial No.:   | 061506KBC-T756-E24G                                                | Report Issue Date:           | August 22, 2006 |  |
|---------------------------|--------------------------------------------------------------------|------------------------------|-----------------|--|
| Date(s) of Evaluation:    | June 21 - July 27, 2006                                            | Report Revision No.:         | Revision 1.0    |  |
| Test Standard(s):         | FCC 47 CFR §2, §22H, §24E                                          | E Industry Canada RSS-132, R |                 |  |
| Test Lab Registration(s): | ration(s): FCC Lab Registration #714830 Industry Canada Lab File # |                              | ab File #3874   |  |

## D.6.2 Calculations:

# Swivel Dipole Antenna (Max. Measured Conducted Power - PCS GPRS Mode)

# **Prediction of MPE Limit** OET Bulletin 65, Edition 97-01

# Equation from page 18

$$S = PG$$

**S=** power density

G= power gain of the antenna in the direction of

interest relative to an isotropic radiator R= distance to the center of radiation of the antenna

**SL=** power density limit

Ratio of Time On versus Total Transmit Time

0.25

(dBi)

# Choose

 $\bigcirc$ 

(

Occupational/Controlled General Population/Uncontrolled

**ENTER** 

1880.00

Tx Frequency:

(MHz) Maximum Peak Power at Antenna Input Terminal: 28.63 (dBm) Source-Based Time-Average Factor: 6.02 (dB)

Antenna gain: SL= 1.00 (mW/cm<sup>2</sup>)

P= 182.3644 (mW) 1.82 (numeric)

R =5.14 (cm)

> S (mw/cm^2) at 20cm

> > 0.065947658

# Formulae:

S = PG

where: S = Power Density Limit

P = Power Output of the Device

G = Numeric Antenna Gain R = Distance from Antenna

Source-Based Time-Average Factor = 10 \* log (Time On / (Time On + Time Off))



| Test Report Serial No.:   | 061506KBC-T756-E24G          | Report Issue Date:               | August 22, 2006 |  |
|---------------------------|------------------------------|----------------------------------|-----------------|--|
| Date(s) of Evaluation:    | June 21 - July 27, 2006      | Report Revision No.: Revision    |                 |  |
| Test Standard(s):         | FCC 47 CFR §2, §22H, §24E    | Industry Canada RSS-132, RSS-133 |                 |  |
| Test Lab Registration(s): | FCC Lab Registration #714830 | Industry Canada Lab File #3874   |                 |  |

## D.6.3 Calculations:

## Swivel Dipole Antenna (Max. Measured Conducted Power - Cellular EDGE Mode)

# **Prediction of MPE Limit OET Bulletin 65, Edition 97-01**

# Equation from page 18

$$S = PG$$
 S= powe

 $S = \frac{PG}{4\pi R^2}$  S= power density P= power input to the antenna G= power gain of the antenna in the direction of interest relative to an isotropic radiator R= distance to the center of radiation of the antenna

**SL=** power density limit

Ratio of Time On versus Total Transmit Time

0.25

# Choose

Occupational/Controlled General Population/Uncontrolled

**ENTER** 

Tx Frequency: Maximum Peak Power at Antenna Input Terminal:

Source-Based Time-Average Factor: Antenna gain: 836.60 (MHz) 26.89 (dBm) (dB) (dBi)

SL= 0.56 (mW/cm<sup>2</sup>) P= **122.1631** (mW) 1.82 (numeric)

5.63 (cm)

> S (mw/cm^2) at 20cm

> > 0.044177321

#### Formulae:

where: S = Power Density Limit P = Power Output of the Device

G = Numeric Antenna Gain R = Distance from Antenna

Source-Based Time-Average Factor = 10 \* log (Time On / (Time On + Time Off))

| Company:                                                                                                                                     | Itronix | Corporation | FCC ID: | KBCIX260PLUSAC860 | Model(s):     | IX260PLUSAC860 | ITI                 | RONIX® |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|---------|-------------------|---------------|----------------|---------------------|--------|
| DUT Type:                                                                                                                                    |         |             |         |                   |               |                | AL DYNAMICS COMPANY |        |
| 2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |         |             |         |                   | Page 40 of 51 |                |                     |        |



| Test Report Serial No.:   | 061506KBC-T756-E24G          | Report Issue Date:               | August 22, 2006 |  |
|---------------------------|------------------------------|----------------------------------|-----------------|--|
| Date(s) of Evaluation:    | June 21 - July 27, 2006      | Report Revision No.:             | Revision 1.0    |  |
| Test Standard(s):         | FCC 47 CFR §2, §22H, §24E    | Industry Canada RSS-132, RSS-133 |                 |  |
| Test Lab Registration(s): | FCC Lab Registration #714830 | Industry Canada Lab File #3874   |                 |  |

## D.6.4 Calculations:

# Swivel Dipole Antenna (Max. Measured Conducted Power - PCS EDGE Mode)

# **Prediction of MPE Limit OET Bulletin 65, Edition 97-01**

# Equation from page 18

$$S = PG$$
 S= power density

 $S = \frac{PG}{4\pi R^2} \qquad \begin{array}{l} \text{S= power density} \\ \text{P= power input to the antenna} \\ \text{G= power gain of the antenna in the direction of} \\ \text{interest relative to an isotropic radiator} \end{array}$ 

R= distance to the center of radiation of the antenna **SL=** power density limit

Ratio of Time On versus Total Transmit Time

0.25

**ENTER** 

# Choose

(cm)

 $\bigcirc$ Occupational/Controlled General Population/Uncontrolled

Tx Frequency:

Maximum Peak Power at Antenna Input Terminal:

Source-Based Time-Average Factor: Antenna gain:

1880.00 (MHz) (dBm) -6.02 (dB) (dBi)

3.68

S (mw/cm^2) at 20cm

0.033822007

# Formulae:

where: S = Power Density Limit

P = Power Output of the Device G = Numeric Antenna Gain R = Distance from Antenna

Source-Based Time-Average Factor = 10 \* log (Time On / (Time On + Time Off))

| Company:        | Itronix                                                                                                                                      | Corporation | FCC ID: | KBCIX260PLUSAC860 | Model(s): | IX260PLUSAC860      | ITI | SUNIX. |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|-------------------|-----------|---------------------|-----|--------|
| DUT Type:       |                                                                                                                                              |             |         |                   |           | AL DYNAMICS COMPANY |     |        |
| 2006 Celltech L | 2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |             |         |                   | ibs Inc.  | Page 41 of 51       |     |        |



| Test Report Serial No.:   | 061506KBC-T756-E24G          | Report Issue Date:               | August 22, 2006 |  |
|---------------------------|------------------------------|----------------------------------|-----------------|--|
| Date(s) of Evaluation:    | June 21 - July 27, 2006      | Report Revision No.:             | Revision 1.0    |  |
| Test Standard(s):         | FCC 47 CFR §2, §22H, §24E    | Industry Canada RSS-132, RSS-133 |                 |  |
| Test Lab Registration(s): | FCC Lab Registration #714830 | Industry Canada Lab File #3874   |                 |  |

## D.6.5 Calculations:

# Swivel Dipole Antenna (Max. Measured Conducted Power - Cellular UMTS Mode)

# **Prediction of MPE Limit** OET Bulletin 65, Edition 97-01

# Equation from page 18

$$S = PG$$

S= power density

P= power input to the antenna

**G=** power gain of the antenna in the direction of interest relative to an isotropic radiator

R= distance to the center of radiation of the antenna **SL=** power density limit

Ratio of Time On versus Total Transmit Time

1.00

# Choose

Occupational/Controlled General Population/Uncontrolled

**ENTER** 

 $\bigcirc$ 

Tx Frequency: 846.60

(MHz) (dBm)

Maximum Peak Power at Antenna Input Terminal: Source-Based Time-Average Factor:

Antenna gain:

0.00 (dB) 2.60 (dBi)

SL= 0.56 (mW/cm<sup>2</sup>) P= 251.1886 (mW) 1.82 (numeric)

8.03 R =(cm)

> S (mw/cm^2) at 20cm

> > 0.090836286

# Formulae:

where: S = Power Density Limit

P = Power Output of the Device G = Numeric Antenna Gain

R = Distance from Antenna

Source-Based Time-Average Factor = 10 \* log (Time On / (Time On + Time Off))

| Company:        | Itronix                                                                                                                                      | Corporation | FCC ID: | KBCIX260PLUSAC860 | Model(s): | IX260PLUSAC860 | ITI                 | RONIX® |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|-------------------|-----------|----------------|---------------------|--------|
| DUT Type:       |                                                                                                                                              |             |         |                   |           |                | AL DYNAMICS COMPANY |        |
| 2006 Celltech L | 2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |             |         |                   | ibs Inc.  | Page 42 of 51  |                     |        |



| Test Report Serial No.:   | 061506KBC-T756-E24G          | Report Issue Date:               | August 22, 2006 |  |
|---------------------------|------------------------------|----------------------------------|-----------------|--|
| Date(s) of Evaluation:    | June 21 - July 27, 2006      | Report Revision No.:             | Revision 1.0    |  |
| Test Standard(s):         | FCC 47 CFR §2, §22H, §24E    | Industry Canada RSS-132, RSS-133 |                 |  |
| Test Lab Registration(s): | FCC Lab Registration #714830 | Industry Canada Lab File #3874   |                 |  |

## D.6.6 Calculations:

# Swivel Dipole Antenna (Max. Measured Conducted Power - PCS UMTS Mode)

# **Prediction of MPE Limit OET Bulletin 65, Edition 97-01**

# Equation from page 18

$$S = PG$$

 $S = \frac{PG}{4\pi R^2} \qquad \begin{array}{l} \textbf{S=} \ \, \text{power density} \\ \textbf{P=} \ \, \text{power input to the antenna} \\ \textbf{G=} \ \, \text{power gain of the antenna in the direction of} \\ \end{array}$ interest relative to an isotropic radiator

R= distance to the center of radiation of the antenna

**SL=** power density limit

Ratio of Time On versus Total Transmit Time

1.00

# Choose

 $\bigcirc$ 

Occupational/Controlled General Population/Uncontrolled

Maximum Peak Power at Antenna Input Terminal:

(

1880.00

**ENTER** 

(MHz) (dBm)

Source-Based Time-Average Factor: Antenna gain:

Tx Frequency:

23.00 0.00 (dB) (dBi)

SL= 1.00 (mW/cm<sup>2</sup>) P= 199.5262 (mW) 1.82 G= (numeric)

5.38 R = (cm)

> S (mw/cm^2) at 20cm

> > 0.072153826

# Formulae:

where: S = Power Density Limit

P = Power Output of the Device G = Numeric Antenna Gain R = Distance from Antenna

Source-Based Time-Average Factor = 10 \* log (Time On / (Time On + Time Off))

| Company:        | Itronix                                                                                                                                     | Corporation | FCC ID: | KBCIX260PLUSAC860 | Model(s):     | IX260PLUSAC860      | ITI | SOVIX. |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|-------------------|---------------|---------------------|-----|--------|
| DUT Type:       |                                                                                                                                             |             |         |                   |               | AL DYNAMICS COMPANY |     |        |
| 2006 Celltech L | 006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |             |         |                   | Page 43 of 51 |                     |     |        |



| Test Report Serial No.:   | 061506KBC-T756-E24G          | Report Issue Date:               | August 22, 2006 |  |
|---------------------------|------------------------------|----------------------------------|-----------------|--|
| Date(s) of Evaluation:    | June 21 - July 27, 2006      | Report Revision No.:             | Revision 1.0    |  |
| Test Standard(s):         | FCC 47 CFR §2, §22H, §24E    | Industry Canada RSS-132, RSS-133 |                 |  |
| Test Lab Registration(s): | FCC Lab Registration #714830 | Industry Canada Lab File #3874   |                 |  |

#### D.6.7 Calculations:

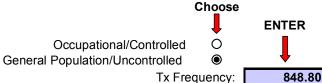
# Vehicle-Mount Antenna (Max. Measured Conducted Power - Cellular GPRS Mode)

**Prediction of MPE Limit OET Bulletin 65, Edition 97-01** 

## Equation from page 18

$$S = PG$$

S= power density


P= power input to the antenna  $4\pi R^2$  G= power gain of the antenna in the direction of interest relative to an isotropic radiator interest relative to an isotropic radiator

R= distance to the center of radiation of the antenna

**SL=** power density limit

Ratio of Time On versus Total Transmit Time

0.25



Maximum Peak Power at Antenna Input Terminal: Source-Based Time-Average Factor:

(dBm) (dB) (dBi)

(MHz)

Antenna gain and Cable Loss:

S (mw/cm^2) at 20cm

0.108442464

#### Formulae:

$$S = \frac{PG}{4\pi R^2}$$

where: S = Power Density Limit

P = Power Output of the Device

G = Numeric Antenna Gain R = Distance from Antenna

Source-Based Time-Average Factor = 10 \* log (Time On / (Time On + Time Off))



| Test Report Serial No.:   | 061506KBC-T756-E24G          | Report Issue Date:               | August 22, 2006 |  |
|---------------------------|------------------------------|----------------------------------|-----------------|--|
| Date(s) of Evaluation:    | June 21 - July 27, 2006      | Report Revision No.:             | Revision 1.0    |  |
| Test Standard(s):         | FCC 47 CFR §2, §22H, §24E    | Industry Canada RSS-132, RSS-133 |                 |  |
| Test Lab Registration(s): | FCC Lab Registration #714830 | Industry Canada Lab File #3874   |                 |  |

## D.6.8 Calculations:

## Vehicle-Mount Antenna (Max. Measured Conducted Power - PCS GPRS Mode)

**Prediction of MPE Limit** OET Bulletin 65, Edition 97-01

# Equation from page 18

$$S = PG$$

 $S = \frac{PG}{4\pi R^2} \qquad \begin{array}{l} \textbf{S=} \quad \text{power density} \\ \textbf{P=} \quad \text{power input to the antenna} \\ \textbf{G=} \quad \text{power gain of the antenna in the direction of interest relative to an isotropic radiator} \\ & \qquad \qquad \end{array}$ 

R= distance to the center of radiation of the antenna SL= power density limit

Ratio of Time On versus Total Transmit Time

0.25



0

Occupational/Controlled General Population/Uncontrolled

**ENTER** 

• 1880.00 Tx Frequency: (MHz)

Maximum Peak Power at Antenna Input Terminal:

Source-Based Time-Average Factor: Antenna gain and Cable Loss:

28.63 (dBm) (dB) (dBi)

$$R = 3.90$$
 (cm)

S (mw/cm^2) at 20cm

0.037948916

# Formulae:

S = PG

where: S = Power Density Limit

P = Power Output of the Device G = Numeric Antenna Gain

R = Distance from Antenna

Source-Based Time-Average Factor = 10 \* log (Time On / (Time On + Time Off))

| Company:        | Itronix                                                                                                                                   | Corporation | FCC ID: | KBCIX260PLUSAC860 | Model(s):     | IX260PLUSAC860 | ITI                 | <b>RONIX</b> ° |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|-------------------|---------------|----------------|---------------------|----------------|
| DUT Type:       |                                                                                                                                           |             |         |                   |               |                | AL DYNAMICS COMPANY |                |
| 2006 Celltech L | 6 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |             |         |                   | Page 45 of 51 |                |                     |                |



| Test Report Serial No.:   | 061506KBC-T756-E24G          | Report Issue Date:               | August 22, 2006 |  |
|---------------------------|------------------------------|----------------------------------|-----------------|--|
| Date(s) of Evaluation:    | June 21 - July 27, 2006      | Report Revision No.:             | Revision 1.0    |  |
| Test Standard(s):         | FCC 47 CFR §2, §22H, §24E    | Industry Canada RSS-132, RSS-133 |                 |  |
| Test Lab Registration(s): | FCC Lab Registration #714830 | Industry Canada Lab File #3874   |                 |  |

## D.6.9 Calculations:

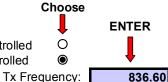
# Vehicle-Mount Antenna (Max. Measured Conducted Power - Cellular EDGE Mode)

**Prediction of MPE Limit** OET Bulletin 65, Edition 97-01

#### Equation from page 18

$$S = PG$$

S= power density


 $\frac{1}{4\pi R^2}$  **P=** power input to the antenna **G=** power gain of the antenna in the direction of interest relative to an isotropic radiator

R= distance to the center of radiation of the antenna

SL= power density limit

Ratio of Time On versus Total Transmit Time

0.25



Occupational/Controlled General Population/Uncontrolled

Maximum Peak Power at Antenna Input Terminal: Source-Based Time-Average Factor:

(MHz) 26.89 (dBm) -6.02 (dB) (dBi)

$$R = 4.74$$
 (cm)

Antenna gain and Cable Loss:

S (mw/cm^2) at 20cm

0.031347245

## Formulae:

$$S = PG \over 4\pi R^2$$

where: S = Power Density Limit

P = Power Output of the Device

G = Numeric Antenna Gain R = Distance from Antenna

$$R = \sqrt{\frac{PG}{4\pi S}}$$

Source-Based Time-Average Factor = 10 \* log (Time On / (Time On + Time Off))
Power Output of the Device (W) = 10 \* log (RF Output Power (dBm) + Source-Based Time Average Factor (dB))



| Test Report Serial No.:   | 061506KBC-T756-E24G          | Report Issue Date:               | August 22, 2006 |  |
|---------------------------|------------------------------|----------------------------------|-----------------|--|
| Date(s) of Evaluation:    | June 21 - July 27, 2006      | Report Revision No.:             | Revision 1.0    |  |
| Test Standard(s):         | FCC 47 CFR §2, §22H, §24E    | Industry Canada RSS-132, RSS-133 |                 |  |
| Test Lab Registration(s): | FCC Lab Registration #714830 | Industry Canada Lab File #3874   |                 |  |

## D.6.10 Calculations:

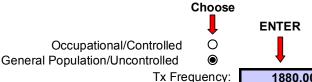
## Vehicle-Mount Antenna (Max. Measured Conducted Power - PCS EDGE Mode)

**Prediction of MPE Limit** OET Bulletin 65, Edition 97-01

# Equation from page 18

$$S = PG$$

S= power density


 $\frac{1}{4\pi R^2}$  **P=** power input to the antenna **G=** power gain of the antenna in the direction of interest relative to an isotropic radiator

R= distance to the center of radiation of the antenna

SL= power density limit

Ratio of Time On versus Total Transmit Time

0.25



Maximum Peak Power at Antenna Input Terminal:

Source-Based Time-Average Factor: Antenna gain and Cable Loss: 1880.00 (MHz) (dBm) -6.02 (dB) (dBi)

$$R = 2.79$$
 (cm)

S (mw/cm^2) at 20cm

0.019462534

# Formulae:

$$S = PG$$

$$4\pi R^2$$

where: S = Power Density Limit

P = Power Output of the Device

G = Numeric Antenna Gain R = Distance from Antenna

Source-Based Time-Average Factor = 10 \* log (Time On / (Time On + Time Off))
Power Output of the Device (W) = 10 \* log (RF Output Power (dBm) + Source-Based Time Average Factor (dB))



| Test Report Serial No.:   | 061506KBC-T756-E24G          | Report Issue Date:               | August 22, 2006 |  |
|---------------------------|------------------------------|----------------------------------|-----------------|--|
| Date(s) of Evaluation:    | June 21 - July 27, 2006      | Report Revision No.:             | Revision 1.0    |  |
| Test Standard(s):         | FCC 47 CFR §2, §22H, §24E    | Industry Canada RSS-132, RSS-133 |                 |  |
| Test Lab Registration(s): | FCC Lab Registration #714830 | Industry Canada Lab File #3874   |                 |  |

## D.6.11 Calculations:

# Vehicle-Mount Antenna (Max. Measured Conducted Power - Cellular UMTS Mode)

# **Prediction of MPE Limit** OET Bulletin 65, Edition 97-01

# Equation from page 18

$$S = PG$$

**S=** power density

 $\frac{}{4\pi R^2} \quad \begin{array}{l} \textbf{P=} \quad \text{power input to the antenna} \\ \textbf{G=} \quad \text{power gain of the antenna} \end{array}$ **G=** power gain of the antenna in the direction of

interest relative to an isotropic radiator R= distance to the center of radiation of the antenna

**SL=** power density limit

Ratio of Time On versus Total Transmit Time

1.00

Choose

Occupational/Controlled General Population/Uncontrolled

0

846.60 Tx Frequency:

**ENTER** 

(MHz) 24.00 (dBm)

Maximum Peak Power at Antenna Input Terminal:

Source-Based Time-Average Factor: Antenna gain and Cable Loss:

0.00

(dB) (dBi)

SL= **0.56** (mW/cm<sup>2</sup>) P= 251.1886 (mW) 1.29 G= (numeric)

R = 6.76 (cm)

> S (mw/cm^2) at 20cm

> > 0.064455409

## Formulae:

where: S = Power Density Limit

P = Power Output of the Device G = Numeric Antenna Gain

R = Distance from Antenna

Source-Based Time-Average Factor = 10 \* log (Time On / (Time On + Time Off))

| Company:        | Itronix                                                                        | Corporation    | FCC ID:                           | KBCIX260PLUSAC860   | Model(s):                    | IX260PLUSAC860 | <b>ITRONIX</b> ° |  |
|-----------------|--------------------------------------------------------------------------------|----------------|-----------------------------------|---------------------|------------------------------|----------------|------------------|--|
| DUT Type:       | Laptop PC with Sierra Wireless AC860 Dual-Band GSM/GPRS/EDGE/UMTS PCMCIA Modem |                |                                   |                     |                              |                |                  |  |
| 2006 Celltech L | This document is                                                               | not to be repr | oduced in whole or in part withou | ut the prior writte | en permission of Celltech La | ibs Inc.       | Page 48 of 51    |  |



| Test Report Serial No.:   | 061506KBC-T756-E24G          | Report Issue Date:               | August 22, 2006 |  |
|---------------------------|------------------------------|----------------------------------|-----------------|--|
| Date(s) of Evaluation:    | June 21 - July 27, 2006      | Report Revision No.:             | Revision 1.0    |  |
| Test Standard(s):         | FCC 47 CFR §2, §22H, §24E    | Industry Canada RSS-132, RSS-133 |                 |  |
| Test Lab Registration(s): | FCC Lab Registration #714830 | Industry Canada L                | ab File #3874   |  |

## D.6.12 Calculations:

## Vehicle-Mount Antenna (Max. Measured Conducted Power - PCS UMTS Mode)

# **Prediction of MPE Limit** OET Bulletin 65, Edition 97-01

# Equation from page 18

$$S = PG$$

**S=** power density

 $\frac{1}{4\pi R^2}$  **P=** power input to the antenna **G=** power gain of the antenna **G= G=** power gain of the antenna in the direction of interest relative to an isotropic radiator

R= distance to the center of radiation of the antenna

**SL=** power density limit

Ratio of Time On versus Total Transmit Time

1.00

Choose

Occupational/Controlled General Population/Uncontrolled

0

1880.00 Tx Frequency:

**ENTER** 

(MHz) (dBm)

Maximum Peak Power at Antenna Input Terminal:

Source-Based Time-Average Factor: Antenna gain and Cable Loss: 23.00 0.00 (dB) 0.20 (dBi)

SL= **1.00** (mW/cm<sup>2</sup>) P= 199.5262 (mW) 1.05 G= (numeric)

R = 4.08 (cm)

> S (mw/cm^2) at 20cm

> > 0.041520193

## Formulae:

where: S = Power Density Limit

P = Power Output of the Device G = Numeric Antenna Gain R = Distance from Antenna

Source-Based Time-Average Factor = 10 \* log (Time On / (Time On + Time Off))

| Company:                       | Itronix                                                                        | Corporation      | FCC ID:        | KBCIX260PLUSAC860                 | Model(s):           | IX260PLUSAC860               | <b>ITRONIX</b> ° |               |
|--------------------------------|--------------------------------------------------------------------------------|------------------|----------------|-----------------------------------|---------------------|------------------------------|------------------|---------------|
| DUT Type:                      | Laptop PC with Sierra Wireless AC860 Dual-Band GSM/GPRS/EDGE/UMTS PCMCIA Modem |                  |                |                                   |                     |                              |                  |               |
| 2006 Celltech Labs Inc. This d |                                                                                | This document is | not to be repr | oduced in whole or in part withou | ut the prior writte | en permission of Celltech La | bs Inc.          | Page 49 of 51 |



| Test Report Serial No.:   | 061506KBC-T756-E24G          | Report Issue Date:               | August 22, 2006 |  |
|---------------------------|------------------------------|----------------------------------|-----------------|--|
| Date(s) of Evaluation:    | June 21 - July 27, 2006      | Report Revision No.:             | Revision 1.0    |  |
| Test Standard(s):         | FCC 47 CFR §2, §22H, §24E    | Industry Canada RSS-132, RSS-133 |                 |  |
| Test Lab Registration(s): | FCC Lab Registration #714830 | Industry Canada L                | ab File #3874   |  |

## D.7 PASS/FAIL

In reference to the results outlined in D6 the DUT passes the requirements as stated in the reference standards as follows:

1) The DUT must comply with the minimum spacing requirement of 20 cm to ensure an exposure of not more than f/1500 mW/cm² for frequencies between 300 and 1500 MHz and 1 mW/cm² for frequencies between 1500 and 100,000 MHz.

## D.8 SIGN-OFF

I attest to the accuracy of the data. All measurements reported herein were performed by me and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements.

Spencer Watson EMC Manager Celltech Labs Inc.

June 27, 2006

Date

Spenser Watson