

Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

DECLARATION OF COMPLIANCE FCC PART 24(E) & 22(H) EMC MEASUREMENTS				
<u>Test Lab</u>	Applicant Information			
CELLTECH LABS INC. Testing and Engineering Services 1955 Moss Court Kelowna, B.C. Canada V1Y 9L3 Tel.: 250-448-7047 Fax: 250-448-7046 e-mail: info@celltechlabs.cc web site: www.celltechlabs.cc				
FCC IDENTIFIER: Model(s):	KBCIX260PLUSAC555 IX260PLUSAC555			
FCC Rule Part(s): IC Rule Part(s): Test Procedure(s):	FCC 47 CFR §24(E), §22(H), §2 RSS-133 Issue 2, RSS-132 Issue 1 (Provisional) FCC 47 CFR §24(E), §22(H), §2 IC RSS-133 Issue 2, IC RSS-132 Issue 1 (Provisional) ANSI TIA/EIA-603-A-2001			
FCC Device Classification: IC Device Classification:	PCS Licensed Transmitter (PCB) 2 GHz Personal Communication Services (RSS-133) 800 MHz Cellular Telephones Employing New Technologies (RSS-132)			
Device Type:	Rugged Laptop PC with Sierra Wireless AirCard 555/550 Dual-Band CDMA PCMCIA Modem with External Swivel Dipole Antenna, Mobile Vehicle-Mount Antenna, & Vehicle Cradle			
Tx Frequency Range(s):	1851.25 - 1908.75 MHz (PCS CDMA) 824.70 - 848.31 MHz (Cellular CDMA)			
Rx Frequency Range(s):	1931.25 - 1988.75 MHz (PCS CDMA)			
Max. ERP/EIRP Measured:	869.70 - 893.31 MHz (Cellular CDMA) 0.302 Watts (24.80 dBm) EIRP - PCS CDMA (Itronix Swivel Dipole Antenna) 0.306 Watts (24.86 dBm) ERP - Cellular CDMA (Itronix Swivel Dipole Antenna) 0.040 Watts (16.03 dBm) EIRP - PCS CDMA (MaxRad Vehicle-Mount Antenna) 0.146 Watts (21.65 dBm) ERP - Cellular CDMA (MaxRad Vehicle-Mount Antenna)			
Max. Conducted Power Measured:	23.0 dBm (PCS CDMA) 23.0 dBm (Cellular CDMA)			
Modulation Type:	QPSK			
Emission Designator(s):	1M25F9W			
Frequency Tolerance(s):	150 Hz (PCS CDMA)			
	300 Hz (Cellular CDMA)			
Antenna Type(s) Tested:	Itronix IX260+ External Swivel Dipole MaxRad 3 dBi Gain Vehicle-Mount P/N: WMLPVDB800/1900			
Power Source(s) Tested:	11.1 V Lithium-ion Battery, 6.0 Ah (Model: A2121-2) 12 V Vehicle Battery (for Vehicle Cradle)			

This mobile device has demonstrated compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in FCC 47 CFR §24(E), §22(H), §2; Industry Canada RSS-133 Issue 2, RSS-132 Issue 1 (Provisional); and ANSI TIA/EIA-603-A-2001.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc. The results and statements contained in this report pertain only to the device(s) evaluated.

D. Pupe

Russell Pipe Senior Compliance Technologist Celltech Labs Inc.

Duane M. Friesen EMC Manager Celltech Labs Inc.

Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

TABLE OF CONTENTS					
Section	DESCR	IPTION		Page #	
1.1	SCOPE			3	
2.1	GENERAL INFORMATION / DEVICE DESCRIPT	ION		3	
3.1	TEST EQUIPMENT LIST			4	
Appendix	MEASUREMENT PROCEDURES & DATA	FCC Rule Part(s)	IC Rule Part(s)	Page #	
Α	RF Output Power	§2.1046	RSS-133 §6.2 RSS-132 §4.4	5	
В	Spurious Emissions at Antenna Terminal	§2.1051	RSS-133 §6.3 RSS-132 §4.5	6-16	
С	Occupied Bandwidth & Emission Bandwidth	§2.1049 §22.917 §24.238	RSS-133 §6.3 RSS-132 §4.2 RSS-132 §4.5	17-25	
D	Effective Isotropic Radiated Power Output	§24.232(b)	RSS-133 §6.2	26-27	
E	Effective Radiated Power Output	§22.913	RSS-132 §4.4	28-29	
F	Field Strength of Spurious Radiation	§24.238 §22.917	RSS-133 §6.3 RSS-132 §4.5	30-42	
G	Frequency Stability / Temperature Variation	§2.1055 §24.235	RSS-133 §6.3 RSS-132 §4.5	43-45	
н	Radiated Test Setup Photographs			46-50	

FCC PART 24(E) & 22(H) EMC MEASUREMENT REPORT

1.1 SCOPE

This report describes the measurements made and results collected during the Electromagnetic emissions testing of the Itronix Corporation IX260PLUSAC555 Rugged Laptop PC incorporating the internal Sierra Wireless AirCard 555/550 Dual-Band PCS/Cellular CDMA PCMCIA Modem with external swivel dipole antenna, vehicle-mount antenna, and vehicle cradle. The measurement results were applied against the EMC requirements and limits outlined in the technical rules and regulations set forth in the Federal Communication Commission Code of Federal Regulations Title 47 Parts 24(E), 22(H), and 2.

2.1 GENERAL INFORMATION / DEVICE DESCRIPTION

APPLICANT	ITRONIX CORPORATION			1	801 5	South Ste	vens St	reet Spol	kane, WA S	99210
FCC IDENTIFIER	KBCIX260PLUSAC555									
Model(s)				IX2	260PLL	ISAC555				
Serial No.	2	ZZGEG4	112ZZ97	77			Pr	oduction	Unit	
Device Type		Rugged Laptop PC with Sierra Wireless AirCard 555/550 Dual-Band CDMA PCMCIA Modem with External Swivel Dipole Antenna, Vehicle-Mount Antenna, & Vehicle Cradle								
FCC Rule Part(s)	Şź	24(E)			§22	(H)			§2	
IC Rule Part(s)		RSS-13	3 Issue 2	2		F	RSS-132	lssue 1 (Provisional)
FCC Classification				PCS Licer	sed Tr	ansmitter	(PCB)			
IC Classification			2 GHz Pe	ersonal Co	mmunio	cation Ser	vices (R	SS-133)		
ic classification	8	800 MHz	Cellular 7	Felephone	s Emplo	oying New	/ Techno	logies (R	SS-132)	
Tx Frequency Range(s)	18	51.25 - 1	908.75 N	1Hz				PCS CDN	ΛA	
TX Trequency Range(s)	8	324.70 - 8	348.31MF	łz			C	ellular CE	DMA	
Rx Frequency Range(s)	19	31.25 - 1	988.75 N	1Hz		PCS CDMA				
txt requercy runge(3)	8	69.70 - 8	93.31 MI	Ηz			C	ellular CE	DMA	
	Туре	Descr	ription	ſ	Max. RF Output Power (EIRP/ERP))	Length	
	Dual-Band		ernal ivel	0.302	W	24.80	dBm	EIRP	PCS	4.7 "
Antenna Type(s) Tested	CDMA		pole	0.306	W	24.86	dBm	ERP	Cellular	7.7
	Dual-Band		-Gain	0.040	W	16.03	dBm	EIRP	PCS	2.7 "
	CDMA	CDMA Vehicle-Mour		0.146	W	21.65	dBm	ERP	Cellular	2.1
Max. RF Conducted	23.0 dB	m	ŀ	Average		PCS CDMA				
Output Power Tested	23.0 dBm		ŀ	Average		Cellular CDMA				
Emission Designator(s)	1M25F9W									
Modulation Type(s)	QPSK									
Frequency Tolerance	150 Hz (PCS CDM			A)		300 Hz (Cellular CDMA)				
Power Source(s) Tested	Lithium-ion Battery 11.1 V			1.1 V,	/, 6.0 Ah Model: A2121-2			-2		
	Vehicle Battery			12 V				(For	Vehicle Cra	adle)

Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

FCC PART 24(E) & 22(H) EMC MEASUREMENT REPORT (Continued)

3.1 TEST EQUIPMENT LIST

Equipment Type	Model	Serial No.	Calibration Due Date
HP Signal Generator	8648D (9kHz-4.0GHz)	3847A00611	April 2005
Rohde & Schwarz Signal Generator	SMR 20 (10MHz-40GHz)	100104	April 2005
Gigatronics Power Meter	8651A	8650137	April 2005
Gigatronics Power Meter	8652A	1835267	April 2005
Gigatronics Power Sensor	80701A (0.05-18GHz)	1833535	April 2005
Gigatronics Power Sensor	80701A (0.05-18GHz)	1833542	April 2005
Gigatronics Power Sensor	80701A (0.05-18GHz)	1834350	April 2005
Amplifier Research Power Amp.	5S1G4 (5W, 800MHz-4.2GHz)	26235	N/A
Amplifier Research Power Amp.	10W1000C (0.5 – 1 GHz)	27887	N/A
Microwave System Amplifier	HP 83017A (0.5-26.5GHz)	3123A00587	N/A
Network Analyzer	HP 8753E (30kHz-3GHz)	US38433013	April 2005
Frequency Counter	HP 53181A (3GHz)	3736A05175	April 2005
DC Power Supply	HP E3611A	KR83015294	N/A
Multi-Device Controller	EMCO 2090	9912-1484	N/A
Mini Mast	EMCO 2075	0001-2277	N/A
Turntable	EMCO 2080-1.2/1.5	0002-1002	N/A
Double Ridged Horn Antenna	ETS 3115 (1-18GHz) TX Substitution Antenna (Horn SN6267)	6267	Oct 2004
Double Ridged Horn Antenna	ETS 3115 (1-18GHz)	6276	Oct 2004
Standard Gain Horn Antenna	ETS 3160-09 TX Substitution Antenna (3160-09)	9810-1123	N/A
Standard Gain Horn Antenna	ETS 3160-09	1263	N/A
Bilog Antenna	Schaffner CBL6111A	1607	Jan 2005
Roberts Dipole Antenna	3121C-DB4 TX Substitution Antenna (B_3121C)	0003-1494	Dec 2004
Roberts Dipole Antenna	3121C-DB4	0003-1498	Dec 2004
Spectrum Analyzer	HP 8594E	3543A02721	April 2005
Spectrum Analyzer	HP E4408B	US39240170	Dec 2004
Shielded Screen Room	Lindgren R.F. 18W-2/2-0	16297	N/A
Environmental Chamber	ESPEC ECT-2 (Temperature/Humidity)	0510154-B	Feb 2005
Directional Coupler	Amplifier Research DC7154 (0.8-4.2 GHz)	26197	N/A
Directional Coupler	Pasternack PE2214-20	00078	N/A
High Pass Filter	Microwave Circuits HIG318G1	0001DC0020	N/A
High Pass Filter	Microwave Circuits H02G18G1	0001DC0020	N/A
30 dB Attenuator	Pasternack PE7019-30	00065	N/A

Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

APPENDIX A - RF OUTPUT POWER MEASUREMENT - §2.1046

A.1. MEASUREMENT PROCEDURE

The RF conducted power levels for both PCS and cellular bands were measured at the AirCard 555 PCMCIA modem antenna connector port using a Gigatronics 8652A Universal Power Meter in mean average power mode. An offset was entered into the power meter to correct for the losses of the attenuator and cable installed between the transmitter output port and the power sensor input. The Sierra Wireless AirCard 555 test software was used to set the DUT to transmit in the CDMA "always up" power control mode. All subsequent tests were performed using the same power measurement procedures.

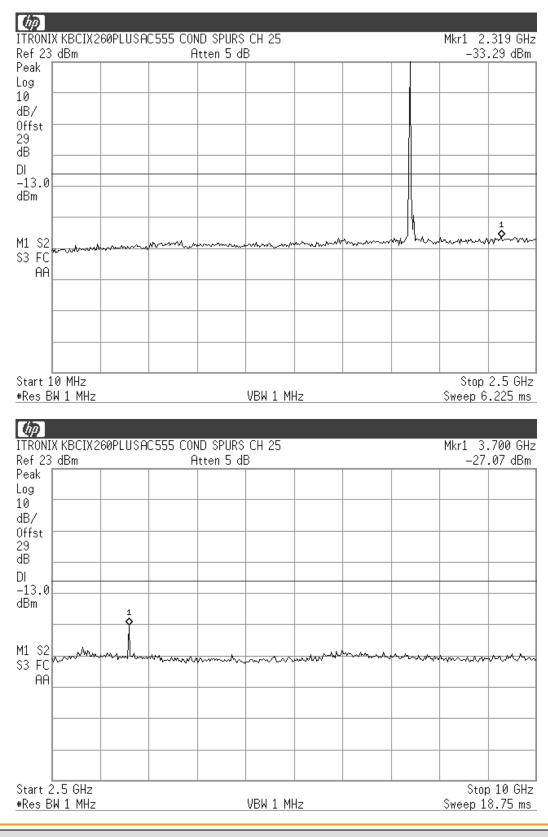
A.2. MEASUREMENT DATA

RF CONDUCTED OUTPUT POWER MEASUREMENTS (measured at the AirCard 555 PCMCIA Modem Antenna Port)				
Frequency (MHz)				
824.70	23.0	1851.25	23.0	
835.89	23.0	1880.00	23.0	
848.31	23.0	1908.75	23.0	

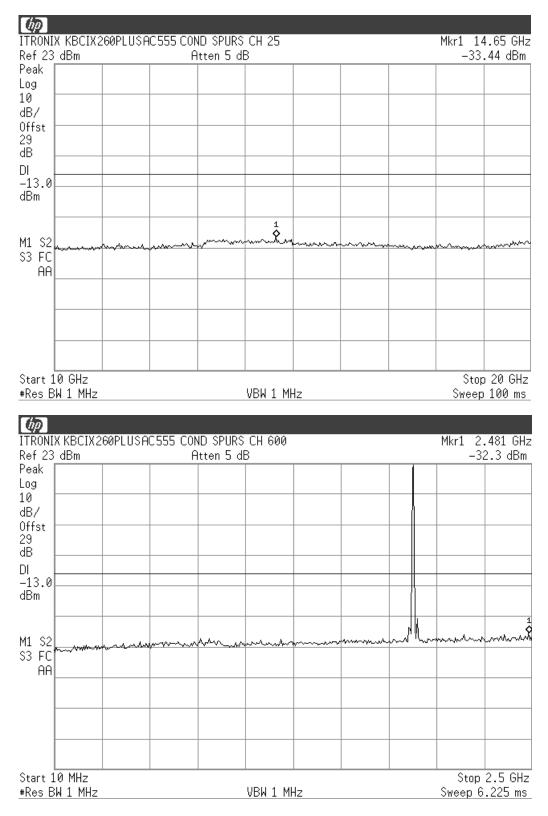
Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

APPENDIX B - SPURIOUS EMISSIONS AT ANTENNA TERMINAL - §2.1051

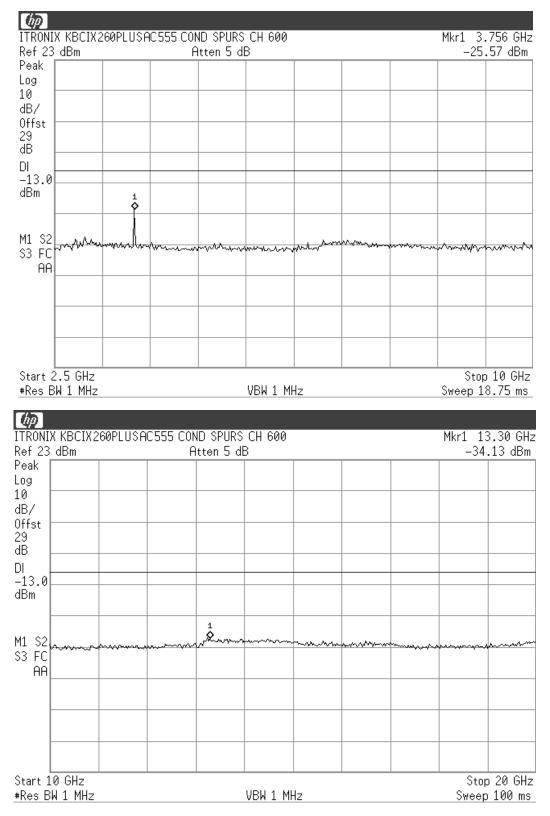
B.1. MEASUREMENT PROCEDURE


The Sierra Wireless AirCard 555 test software installed in the IX260+ Laptop PC was used to set the DUT to transmit in the CDMA "always up" power control mode. The level of the carrier and the various conducted spurious frequencies were measured by means of a calibrated spectrum analyzer. The resolution bandwidth and video bandwidth were set to 1MHz. The spectrum was scanned from 10MHz to 20GHz at the low, mid, and high channels. The radio transmitter was operating at maximum output power. The antenna output terminal of the DUT was connected to the input of a 50 Ω spectrum analyzer through a matched 30dB attenuator and coaxial cable. The reported emissions were below the specified limit of -13dBm.

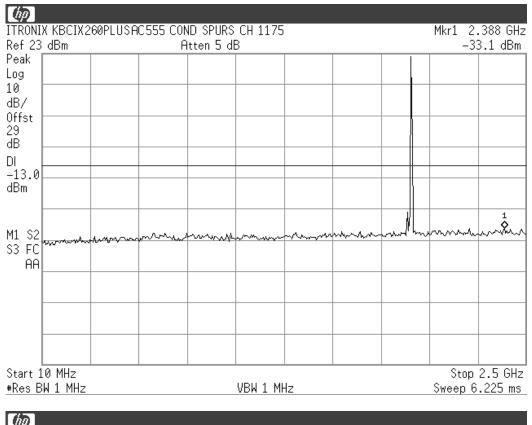
(See next pages for Spectrum Analyzer plots)

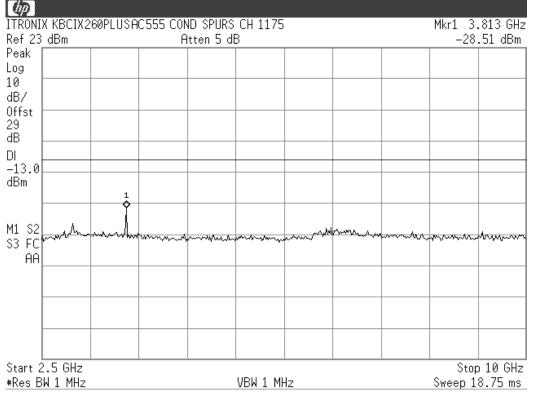

Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

B.2. MEASUREMENT DATA - PCS Band


Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

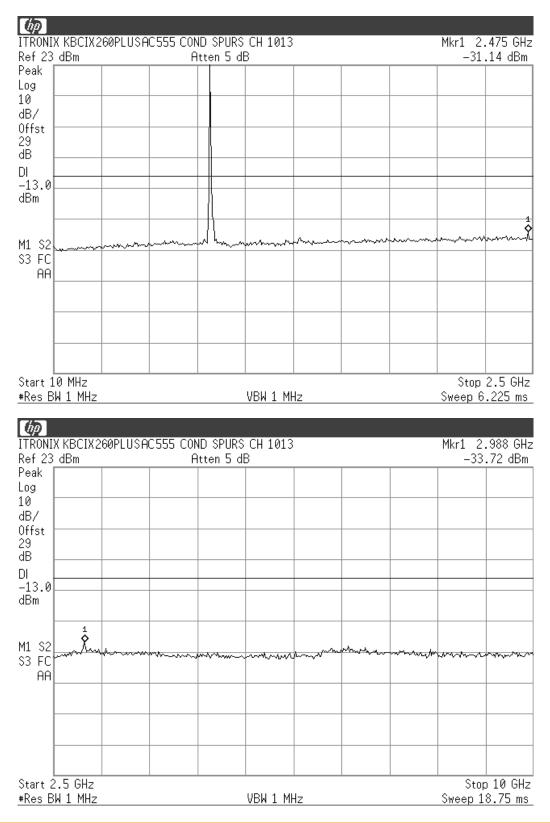
Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements


B.2. MEASUREMENT DATA - PCS Band (Cont.)

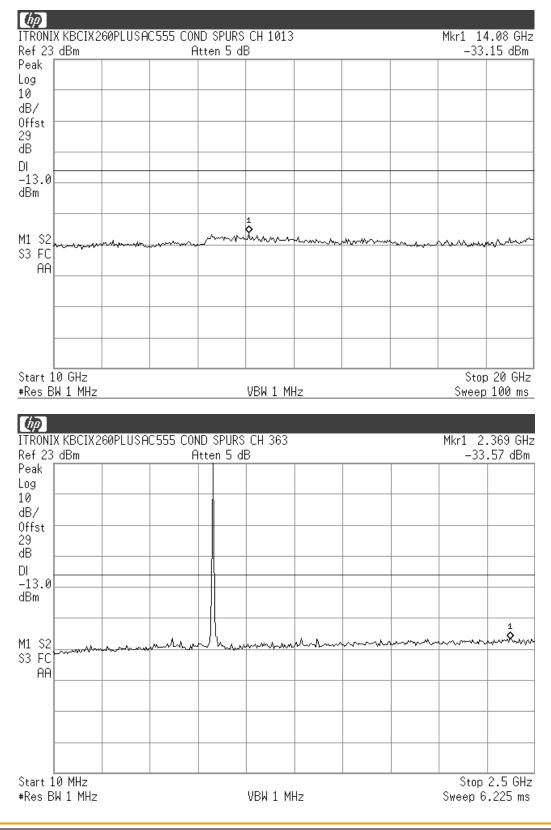


Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

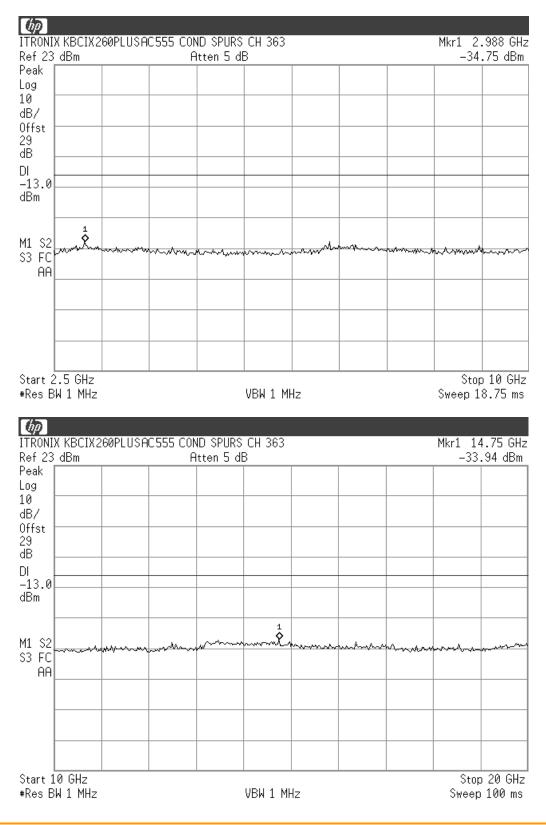
B.2. MEASUREMENT DATA - PCS Band (Cont.)


Test Report S/N:	052604KBC-T522-E24C	
Test Date(s):	July 26 - August 23, 2004	
Test Type:	FCC Parts 22 & 24 EMC Measurements	

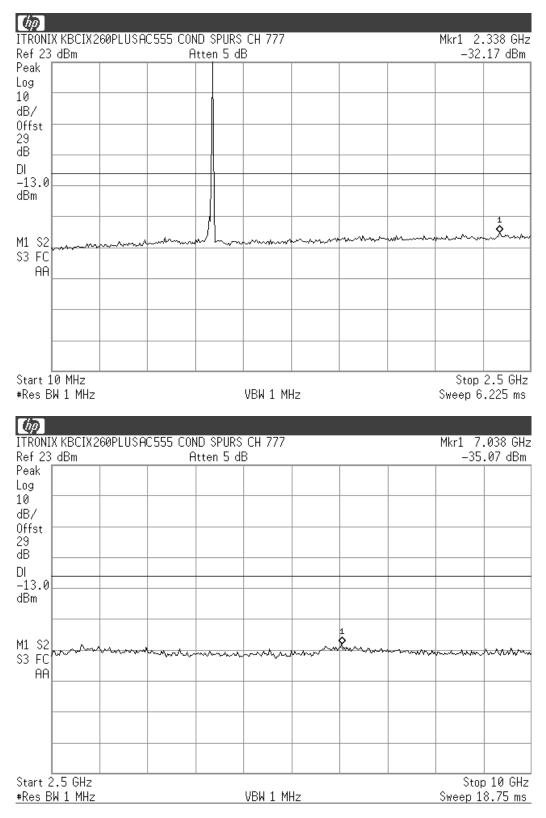
ITRONI Ref 23		60PLUSA		ND SPURS Itten 5 dl						3.30 GHz .42 dBm
Peak				itten ola	<u> </u>				-55	.42 000
Log										
10 dB/										
Offst 29										
dB										
DI										
-13.0 dBm										
M1 S2				Å.		h. An wear	man			
S3 FC		han a contraction of the second se	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ~		~ • • • • • • • •	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>~~~</u> ~~~⊢		Augury Contraction
AA										
Start 1						1_				20 GHz
<u>#Res B</u>	W 1 MHz				VBW 1 MH	lz			Sweep) 100 ms


Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

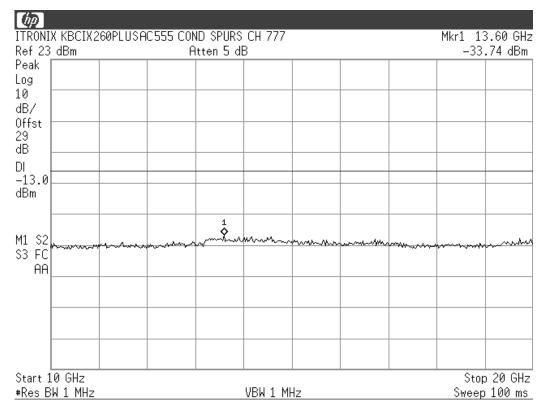
B.2. MEASUREMENT DATA - Cellular Band



Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements



Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements



Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

Test Report S/N:	052604KBC-T522-E24C	
Test Date(s):	July 26 - August 23, 2004	
Test Type:	FCC Parts 22 & 24 EMC Measurements	

APPENDIX C - OCCUPIED BANDWIDTH - §2.1049, §22.917, §24.238

C.1. MEASUREMENT PROCEDURE

The Sierra Wireless AirCard 555 test software installed in the IX260+ Laptop PC was used to set the DUT to transmit in the CDMA "always up" power control mode. The DUT was connected to the input of a 50Ω spectrum analyzer through a matched 30 dB attenuator. For both PCS CDMA and cellular CDMA modes the resolution bandwidth was set to 30 kHz and the video bandwidth was set to 300 kHz.

Specified Limits:

<u>§22.917</u>

(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

(b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

(c) Alternative out of band emission limit. Licensees in this service may establish an alternative out of band emission limit to be used at specified band edge(s) in specified geographical areas, in lieu of that set forth in this section, pursuant to a private contractual arrangement of all affected licensees and applicants. In this event, each party to such contract shall maintain a copy of the contract in their station files and disclose it to prospective assignees or transferees and, upon request, to the FCC.

(d) Interference caused by out of band emissions. If any emission from a transmitter operating in this service results in interference to users of another radio service, the FCC may require a greater attenuation of that emission than specified in this section.

<u>§24.238</u>

(a) On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log (P) dB$.

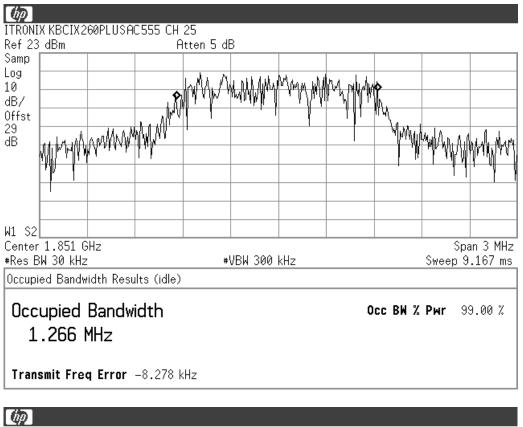
(b) Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

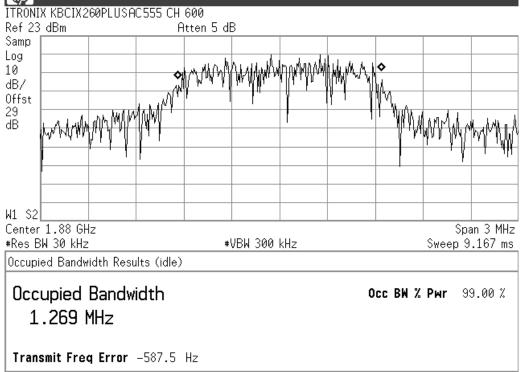
(c) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.

(d) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

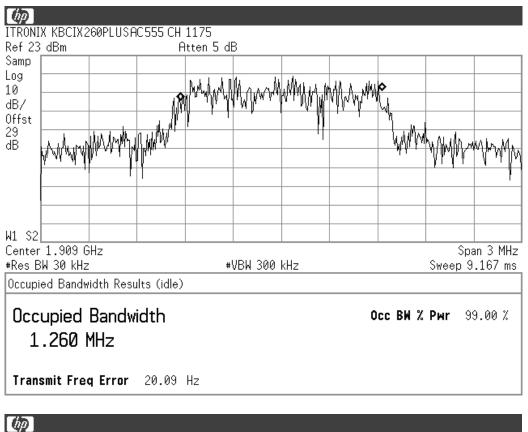
(e) When an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in this section.

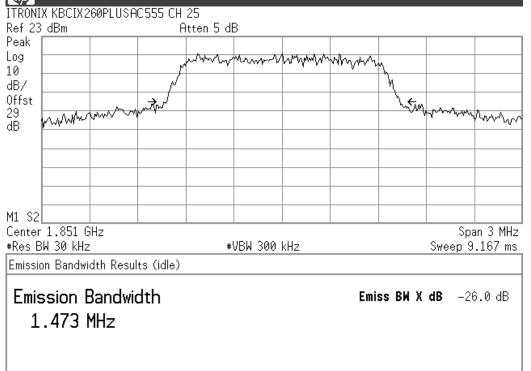
C.2. MEASUREMENT DATA

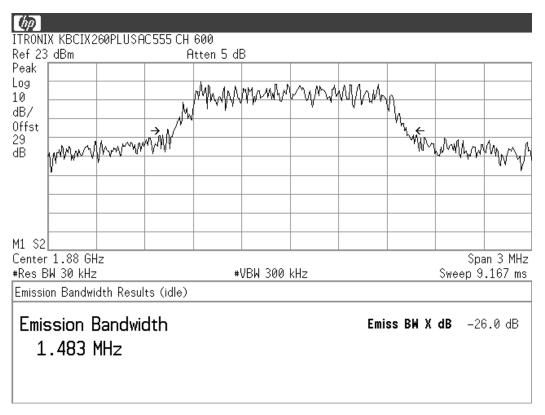

Frequency (MHz)	99% Occupied Bandwidth (MHz)	-26 dBc Emission Bandwidth (MHz)
1851.25	1.266	1.473
1880.00	1.269	1.483
1908.75	1.260	1.499
824.70	1.254	1.424
835.89	1.258	1.432
848.31	1.267	1.442


(See next pages for Spectrum Analyzer plots)

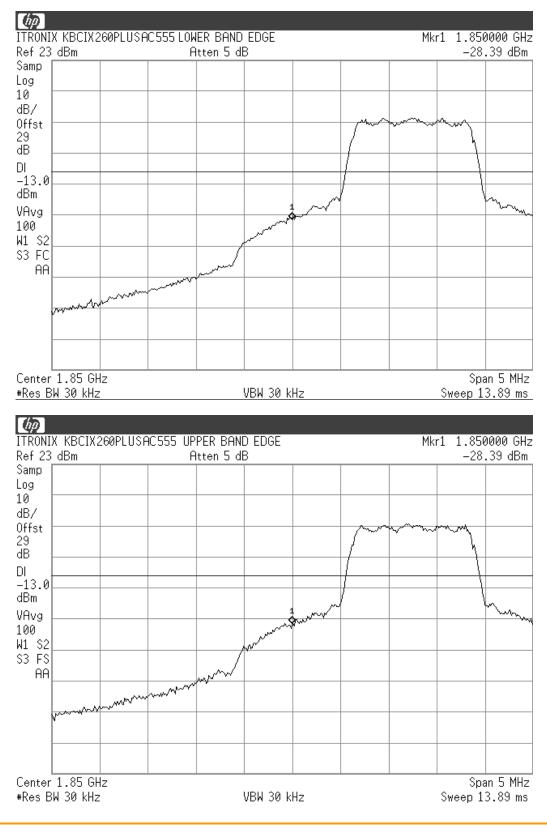
Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements


C.2. MEASUREMENT DATA - PCS Band

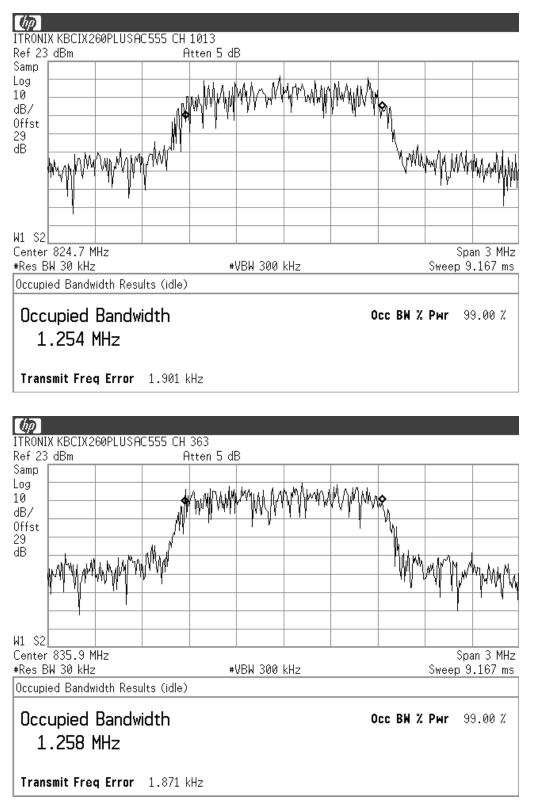


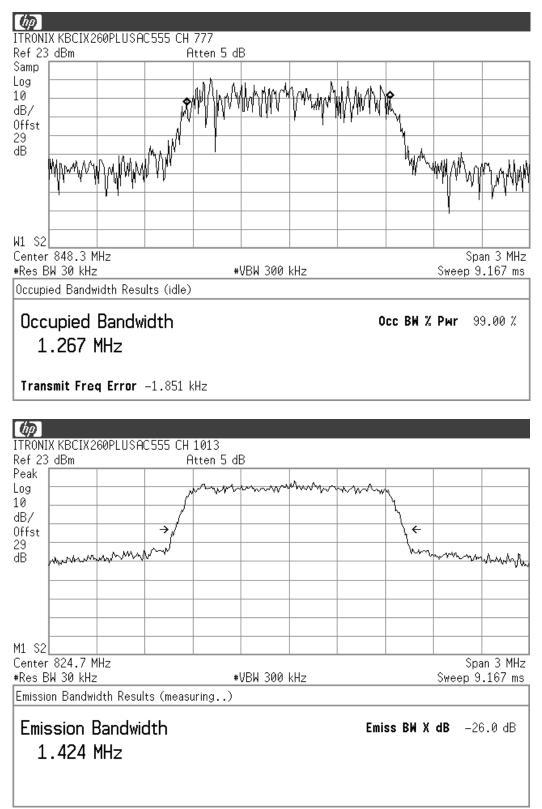

Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

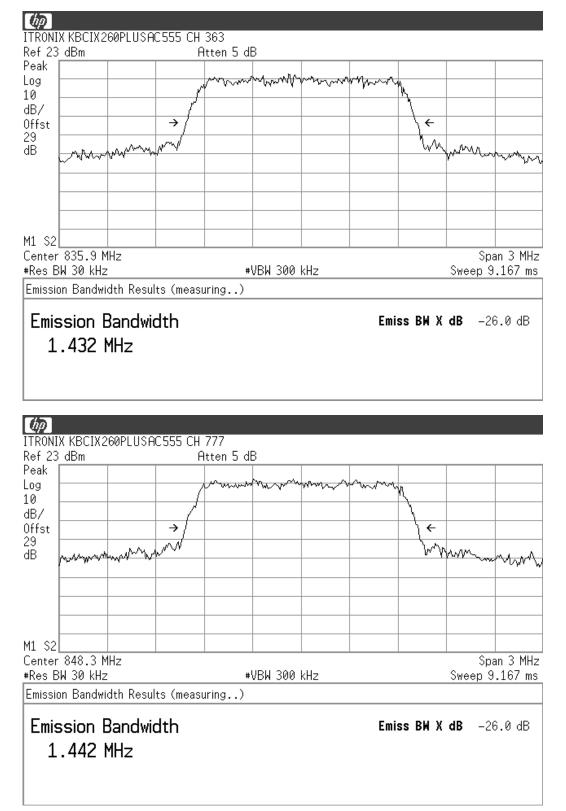


Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

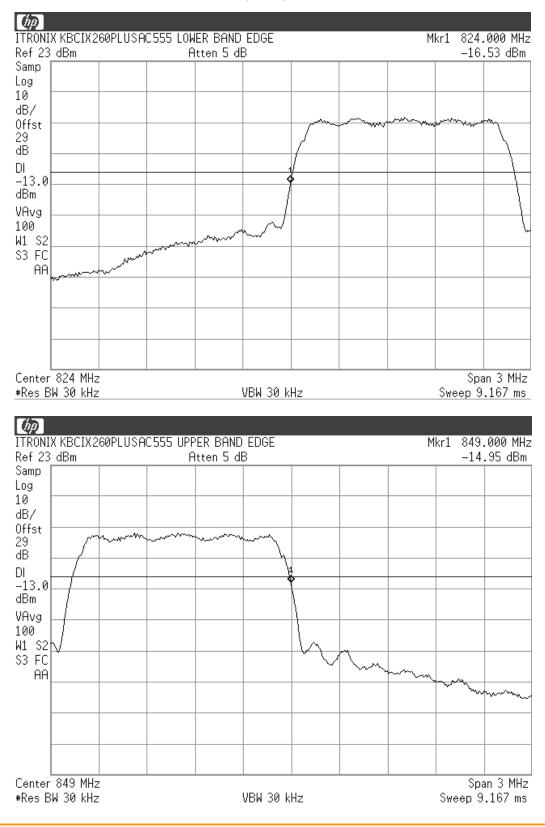

C.2. MEASUREMENT DATA - PCS Band (Cont.)


Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

C.2. MEASUREMENT DATA - Cellular Band



Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements


Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

C.2. MEASUREMENT DATA - Cellular Band (Cont.)

Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

APPENDIX D - EFFECTIVE ISOTROPIC RADIATED POWER OUTPUT - §24.232(b)

D.1. MEASUREMENT PROCEDURE

EIRP measurements were performed on a 3-meter open area test site using the Signal Substitution Method in accordance with ANSI TIA/EIA-603-A-2001. The Sierra Wireless AirCard 555 test software installed in the IX260+ Laptop PC was used to set the DUT to transmit in the CDMA "always up" power control mode. The DUT was placed on a turntable 3 meters from the receive antenna. For the swivel dipole evaluation, the DUT was placed in the center of the turntable, on a Styrofoam support, 1 meter above the ground plane. For the vehicle-mount antenna evaluation, the antenna was fixed on a 50 cm x 50 cm ground plane and installed on the Styrofoam support, and connected to the transmitter via a 17-foot LMR-195 cable representing a typical vehicle mount installation. The IX260+ Laptop PC was installed in the cradle on the turntable below the 50 cm x 50 cm ground plane. The maximum field intensity was determined by rotating the DUT approximately 360 degrees and changing the height of the receive antenna from 1 to 4 meters. Once the maximum emission was found, the spectrum analyzer was set to peak hold and the uncorrected emission value recorded for each of the low, mid and high channels tested. The DUT was then substituted with a horn antenna. A signal, simulating the DUT emission was generated, amplified, and fed through a directional coupler to the substitution antenna. The height and direction of the receive antenna as well as the direction of the substitution horn was adjusted for a maximum received signal. The power applied to the horn was then adjusted to give the same field strength reading as previously recorded for the DUT and the power at the forward coupler port recorded. The substitution antenna was then replaced with a calibrated power sensor, the forward coupler port power level confirmed and the power applied to the horn antenna recorded. The EIRP level was determined by correcting the applied feed point power with the addition of the horn gain.

(See next page for measurement data)

Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

EFFECTIVE ISOTROPIC RADIATED POWER OUTPUT - §24.232(b) (Continued)

D.2. MEASUREMENT DATA

C	Project Nui Company: Product:			any:	052604-519 Itronix IX260+ with AC555						Standard: Test Start D Test End Da		FCC24.232t 23-Aug-04 23-Aug-04														
						Swive	Dipole Anter	nna Carrier P	ower Levels																		
Polarity	Distance	Tx Antenna	Channel	Frequency	Corrected Field Strength	Substituted SA Signal Level	Power Applied to Antenna	Antenna Gain	Carrier EIRP Level		evel EIRP Limit		Margin	Pass/Fail													
	m			MHz	dBuV/m	dBuV	dBm	dBi	dBm	Watts	dBm*	Watts	dB														
Н	3	Horn SN6267	Horn SN6267	Horn SN6267	Horn SN6267	Horn SN6267	Horn SN6267	Horn SN6267	Horn SN6267	Horn SN6267	Horn SN6267	Horn SN6267	Horn SN6267	Horn SN6267	Horn SN6267	25	1851.25	123.55	91.60	18.25	6.55	24.80	0.302	33.01	2.00	8.21	PASS
Н	3	Horn SN6267	600	1880.00	121.69	89.60	17.64	6.58	24.22	0.264	33.01	2.00	8.79	PASS													
Н	3	Horn SN6267	1175	1908.75	119.14	86.90	17.08	6.61	23.69	0.234	33.01	2.00	9.32	PASS													
V	3	Horn SN6267	25	1851.25	118.35	86.40	13.42	6.55	19.98	0.099	33.01	2.00	13.03	PASS													
V	3	Horn SN6267	600	1880.00	117.59	85.50	13.70	6.58	20.28	0.107	33.01	2.00	12.73	PASS													
V	3	Horn SN6267	1175	1908.75	115.74	83.50	13.81	6.61	20.42	0.110	33.01	2.00	12.59	PASS													
	Note:																										
		Antenna used for																									
	Anten	na factors are st	ated in (dBi																							
	Formu	ilae:																									
		(dBm) = Power a			· ·	a Gain (dBi)																					
		r (watts) = (10^(F			0																						
	Margi	n (dB) = Limit (d	3m) - Le	evel (dBm)																							

C	Celltech			t Number: any: at:	052604-519 Itronix IX260+ with AC555					Standard: Test Start Date: Test End Date:		FCC24.232b 23-Aug-04 23-Aug-04		
151	ng ano engineering	Services Lab	Produ		D-200+ With 7	40000					Toot End Be		23-Aug-04	
						Vehicle	e Mount Ante	nna Carrier P	ower Levels					
Polarity	Distance	Tx Antenna	Channel	Frequency	Corrected Field Strength	Substituted SA Signal Level	Power Applied to Antenna	Antenna Gain	Carrier EIRP Level		el EIRP Limit		Margin	Pass/Fail
	m		-	MHz	dBuV/m	dBuV	dBm	dBi	dBm	Watts	dBm*	Watts	dB	
Н	3	Horn SN6267	25	1851.25	102.95	71.00	-1.63	6.55	4.92	0.003	33.01	2.00	28.09	PASS
Н	3	Horn SN6267	600	1880.00	103.89	71.80	0.44	6.58	7.02	0.005	33.01	2.00	25.99	PASS
Н	3	Horn SN6267	1175	1908.75	98.04	65.80	-3.41	6.61	3.20	0.002	33.01	2.00	29.81	PASS
V	3	Horn SN6267	25	1851.25	114.35	82.40	9.47	6.55	16.03	0.040	33.01	2.00	16.98	PASS
V	3	Horn SN6267	600	1880.00	112.79	80.70	9.07	6.58	15.65	0.037	33.01	2.00	17.36	PASS
V	3	Horn SN6267	1175	1908.75	109.54	77.30	7.80	6.61	14.40	0.028	33.01	2.00	18.61	PASS
	Note:													
		Antenna used fo												
	Anten	na factors are st	ated in (dBi										
	Formu	ulae:												
	EIRP (dBm) = Power applied to Antenna (dBm) + Antenna Gain (dBi)													
		r (watts) = (10^(F			00									
	Margi	n (dB) = Limit (d	Bm) - Le	evel (dBm)										

© 2004 Celltech Labs Inc.

Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

APPENDIX E - EFFECTIVE RADIATED POWER OUTPUT - §22.913

E.1. MEASUREMENT PROCEDURE

ERP measurements were performed on a 3-meter open area test site using the Signal Substitution Method in accordance with ANSI TIA/EIA-603-A-2001. The Sierra Wireless AirCard 555 test software installed in the IX260+ Laptop PC was used to set the DUT to transmit in the CDMA "always up" power control mode. The DUT was placed on a turntable, 3 meters from the receive antenna. For the swivel dipole testing, the DUT was placed in the center of the turntable, on a Styrofoam support, 1 meter above the ground plane. For the vehicle-mount antenna evaluation, the antenna was fixed on a 50 cm x 50 cm ground plane and installed on the Styrofoam support and connected to the transmitter via a 17-foot LMR-195 cable representing a typical vehicle mount installation. The IX260+ Laptop PC was installed in the cradle on the turntable below the 50 cm x 50 cm ground plane. The maximum field intensity was determined by rotating the DUT approximately 360 degrees and changing the height of the receive antenna from 1 to 4 meters. Once the maximum emission was found, the spectrum analyzer was set to peak hold and the uncorrected emission value recorded for each of the low, mid and high channels tested. The DUT was then substituted with a dipole antenna. A signal, simulating the DUT emission was generated, amplified, and fed through a directional coupler to the substitution antenna. The height and direction of the receive antenna as well as the direction of the substitution dipole was adjusted for a maximum received signal. The power applied to the dipole was then adjusted to give the same field strength reading as previously recorded for the DUT and the power at the forward coupler port recorded. The substitution antenna was then replaced with a calibrated power sensor, the forward coupler port power level confirmed and the power applied to the dipole antenna recorded. The ERP level was determined by correcting the applied feed point power with the addition of the dipole gain.

(See next page for measurement data)

Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

EFFECTIVE RADIATED POWER OUTPUT - §22.913 (Continued)

E.2. MEASUREMENT DATA

C	Celltech		Projec Comp Produ	-	052604-519 ttronix IX260+ with AC555					Standard: Test Start I Test End Da		FCC22.913 23-Aug-04 23-Aug-04		
						Swivel	Dipole Anter	nna Carrier I	ower Leve	s				
Polarity	Distance	Tx Antenna	Channel	Frequency	Corrected Field Strength	Substituted SA Signal Level	Power Applied to Antenna	Antenna Gain	Carrier ERP Level		ERP Limit		Margin	Pass/Fail
	m			MHz	dBuV/m	dBu∀	dBm	dBd	dBm	Watts	dBm*	Watts	dB	
н	3	B_3121C	1013	824.70	116.17	91.00	23.79	-0.84	22.95	0.197	38.45	7.00	15.50	PASS
н	3	B_3121C	363	835.89	116.36	90.90	23.45	-0.71	22.74	0.188	38.45	7.00	15.71	PASS
н	3	B_3121C	777	848.31	115.38	89.80	23.20	-0.56	22.64	0.183	38.45	7.00	15.81	PASS
V	3	B_3121C	1013	824.70	113.17	88.00	25.70	-0.84	24.86	0.306	38.45	7.00	13.59	PASS
V	3	B_3121C	363	835.89	113.46	88.00	24.66	-0.71	23.95	0.248	38.45	7.00	14.50	PASS
V	3	B_3121C	777	848.31	113.48	87.90	23.09	-0.56	22.53	0.179	38.45	7.00	15.92	PASS
	Note:													
		Antenna use Ina factors are												
	Formu	ilae:												
		evel (dBm) = P			enna (dBm) +	Antenna Gai	n (dBi) - 2.14							
	-	n (dB) = Limit (r (watts) = (10		1 /	/1000									

C	elltech		Comp	any:	052604-519 ttronix IX260+ with AC555						Standard: Test Start Date: Test End Date:		FCC22.913 23-Aug-04 23-Aug-04	
14	ng and Engineering S	rikas Lab	Produ	ct:	IX260+ with	AC555					Test End Da	πe:	23-Aug-04	
						Vehicle	Mount Ante	nna Carrier	Power Leve	els				
Polarity	Distance			Corrected Field Strength	Substituted SA Signal Level	Power Applied to Antenna Gain		Carrier ERP Level		ERP Limit		Margin	Pass/Fail	
	m			MHz	dBuV/m	dBu∀	dBm	dBd	dBm	Watts	dBm*	Watts	dB	
н	3	B_3121C	1013	824.70	102.97	77.80	11.09	-0.84	10.25	0.011	38.45	7.00	28.20	PASS
н	3	B_3121C	363	835.89	104.36	78.90	11.93	-0.71	11.22	0.013	38.45	7.00	27.23	PASS
н	3	B_3121C	777	848.31	102.98	77.40	11.32	-0.56	10.76	0.012	38.45	7.00	27.69	PASS
V	3	B_3121C	1013	824.70	109.27	84.10	21.97	-0.84	21.12	0.129	38.45	7.00	17.33	PASS
V	3	B_3121C	363	835.89	111.06	85.60	22.36	-0.71	21.65	0.146	38.45	7.00	16.80	PASS
V	3	B_3121C	777	848.31	110.68	85.10	20.40	-0.56	19.84	0.096	38.45	7.00	18.61	PASS
	Note:													
		Antenna useo na factors are												
	Formu	lae:												
		evel (dBm) = F	ower a	pplied to Ant	enna (dBm) +	Antenna Gai	n (dBi) - 2.14							
	-	n (dB) = Limit (r (watts) = (10		1 1	/1000									

© 2004 Celltech Labs Inc.

Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

APPENDIX F - FIELD STRENGTH OF SPURIOUS RADIATION - §24.238, 22.917

F.1. MEASUREMENT PROCEDURE

EIRP measurements were performed on a 3-meter open area test site using the Signal Substitution Method in accordance with ANSI TIA/EIA-603-A-2001. The Sierra Wireless AirCard 555 test software installed in the IX260+ Laptop PC was used to set the DUT to transmit in the CDMA "always up" power control mode. For the swivel dipole testing, the DUT was placed in the center of the turntable, on a Styrofoam support, 1 meter above the ground plane. For the vehicle-mount antenna evaluation, the antenna was fixed on a 50 cm x 50 cm ground plane and installed on the Styrofoam support and connected to the transmitter via a 17-foot LMR-195 cable representing a typical vehicle mount installation. The IX260+ Laptop PC was installed in the cradle on the turntable below the 50 cm x 50 cm ground plane. A frequency band from just above the highest transmitted frequency to just above the 10th harmonic of the highest transmitted frequency was divided into smaller bands corresponding to measurement equipment setups and capabilities. The measurement equipment including carrier blocking filters, was optimized for maximum sensitivity for each band while ensuring no saturation occurred in any gain stages that may be present. It was also necessary to measure the bands above 10 GHz at a distance of 1 meter versus the 3-meter measurement distance used for the lower bands. The applicable bands were chosen from: 800 MHz to 1 GHz, 1 GHz to 5 GHz, 5 GHz to 10 GHz, 10 GHz to 18 GHz and 18 GHz to 20 GHz. The maximum field intensity in each of these bands were determined by rotating the DUT approximately 360 degrees and changing the height of the receive antenna from 1 to 4 meters while maintaining the spectrum analyzer trace in max hold. The stored trace was then evaluated to determine any significant emissions that should be evaluated by substitution. The frequency and uncorrected field strength level for each significant emission was recorded. To describe the noise floor, the maximum level associated with a number of frequencies within the band were also recorded. The DUT was then substituted with a transmit antenna. A signal simulating the DUT emission was generated for each of the signals recorded; it was amplified and fed through a directional coupler to the substitution antenna. The height and direction of the receive antenna as well as the direction of the substitution horn was adjusted for a maximum received signal. The power applied to the transmit antenna was then adjusted to give the same field strength reading as previously recorded for the DUT and the power at the forward coupler port recorded. The substitution antenna was then replaced with a calibrated power sensor, the forward coupler port power level confirmed and the power applied to the horn antenna recorded. The radiated power level was determined by correcting the applied feed point power with the addition of the antenna gain.

F.2. MEASUREMENT SETUP

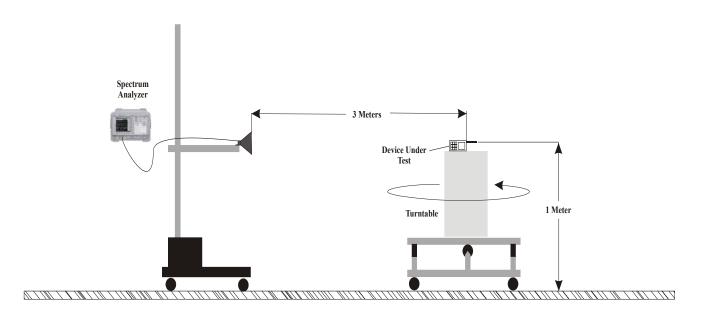


Figure 1. Radiated Measurement Test Setup Diagram (3 Meters for Frequencies < 10 GHz - 1 Meter for Frequencies > 10 GHz)

Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

F.3. MEASUREMENT DATA - PCS Band

0		ch	Projec Comp	ct Number: any:	052604-519 Itronix				Standard: Test Start D		FCC24.238 26-Jul-04	3
	ang and Engineerin	y Senitos Lab	Produ	ict:	IX260+ w/ AC555	5			Test End Da	ite:	13-Aug-04	
				Curius	l Dipole Antenna	Leve Champel /C	Channel OF)	Causiana Emi				
				SWIVE	i Dipole Antenna	Low channel (c	snannei 25),	Spurious Emi:	ssions			
Polarity	Distance	Tx Antenna	Channel	Frequency	Corrected Field Strength	Substituted SA Signal Level	Power Applied to Antenna	Antenna Gain	Emission EIRP Level	EIRP Limit	Margin	Pass/Fa
	m			MHz	dBuV/m	dBuV	dBm	dBi	dBm	dBm*	dB	
Н	3	Horn SN6267	25	5553.75	48.90	42.50	-54.39	8.66	-45.73	-13.00	32.73	PASS
н	3	Horn SN6267	25	7405.00	51.81	42.50	-55.54	8.98	-46.56	-13.00	33.56	PASS
н	3	Horn SN6267	25	9256.25	53.27	41.50	-54.59	9.06	-45.53	-13.00	32.53	PASS
н	3	Horn SN6267	25	9340.00	64.23	52.40	-38.88	9.14	-29.74	-13.00	16.74	PASS
Н	1	Horn SN6267	25	11107.50	49.41	37.30	-64.39	10.45	-53.94	-13.00	40.94	PASS
н	1	Horn SN6267	25	12958.75	58.55	44.50	-64.20	10.64	-53.56	-13.00	40.56	PASS
Н	1	Horn SN6267	25	14810.00	59.54	44.10	-64.00	11.06	-52.94	-13.00	39.94	PASS
Н	1	Horn SN6267	25	16661.25	62.26	45.90	-64.48	12.58	-51.90	-13.00	38.90	PASS
Н	1	Horn SN6267	25	17960.00	66.42	46.30	-57.96	8.08	-49.88	-13.00	36.88	PASS
Н	1	3160-09	25	18512.50	58.56	43.70	-64.23	15.31	-48.93	-13.00	35.93	PASS
Н	1	3160-09	25	19978.00	60.65	44.30	-58.57	15.99	-42.58	-13.00	29.58	PASS
۷	3	Horn SN6267	25	5794.38	56.99	50.40	-41.89	8.95	-32.94	-13.00	19.94	PASS
V	1	Horn SN6267	25	11107.50	50.61	38.50	-64.63	10.45	-54.18	-13.00	41.18	PASS
V	1	Horn SN6267	25	12920.00	60.38	46.30	-63.67	10.68	-52.99	-13.00	39.99	PASS
V	1	Horn SN6267	25	12958.75	59.75	45.70	-63.66	10.64	-53.02	-13.00	40.02	PASS
V	1	Horn SN6267	25	14810.00	59.14	43.70	-63.72	11.06	-52.66	-13.00	39.66	PASS
V	1	Horn SN6267	25	14816.00	61.63	46.20	-61.60	11.06	-50.54	-13.00	37.54	PASS
V	1	Horn SN6267	25	16661.25	62.46	46.10	-64.84	12.58	-52.26	-13.00	39.26	PASS
V	1	3160-09	25	18512.50	57.96	43.10	-64.11	15.31	-48.81	-13.00	35.81	PASS
V	1	3160-09	25	19984.00	60.44	44.10	-60.63	15.99	-44.64	-13.00	31.64	PASS
	b - 4											
	Note: All ba		aated a	and the significant	worsecase emiss	ions or noise floor	reported.					
		Antenna used fo										
	Anter	ina factors are st	tated in	dBi								
	F											
	Form Limit		i Indeme	ental Power Level	in watts) below the	i e Fundemental pe	 ak.power => -	13 dBm				
) + Antenna Gain (
		in (dB) = Limit (d										

Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

Image: Constraint of the sector of	Compa Product Product 600 600 600 600 600 600 600 600 600 600 600 600 600 600	ct:	Itronix IX260+ w/ AC555 Dipole Antenna Corrected Field Strength dBuV/m 53.81 60.80 48.90 58.11 59.95	Mid Channel (Cl	harnnel 600), i Power Applied to Antenna dBm -44.22 -39.61 -63.94	Antenna Gain dBi 8.05 8.60	Test Start D: Test End Da ssions Emission EIRP Level dBm -36.17 -31.01		26-Jul-04 13-Aug-04 Margin dB 23.17	Pass/Fa
Horn SN6267 3 Horn SN6267 3 Horn SN6267 1 Horn SN6267	Cyanal e 0003 0003 0003 0003 0003 0003 0003 00	Swive Frequency MHz 3760.00 5273.13 11280.00 13160.00 135040.00	Corrected Field Strength dBuV/m 53.81 60.80 48.90 58.11	Mid Channel (Cl Substituted SA Signal Level dBuV 51.20 54.90 36.90	Power Applied to Antenna dBm -44.22 -39.61	Antenna Gain dBi 8.05 8.60	Emission EIRP Level dBm -36.17	EIRP Limit	Margin	
Horn SN6267 3 Horn SN6267 3 Horn SN6267 1 Horn SN6267	5 600 600 600 600 600 600	Frequency MHz 3760.00 5273.13 11280.00 13160.00 15040.00	Corrected Field Strength dBuV/m 53.81 60.80 48.90 58.11	Substituted SA Signal Level dBuV 51.20 54.90 36.90	Power Applied to Antenna dBm -44.22 -39.61	Antenna Gain dBi 8.05 8.60	Emission EIRP Level dBm -36.17	dBm*	dB	
Horn SN6267 3 Horn SN6267 3 Horn SN6267 1 Horn SN6267	5 600 600 600 600 600 600	MHz 3760.00 5273.13 11280.00 13160.00 15040.00	Strength dBuV/m 53.81 60.80 48.90 58.11	Signal Level dBuV 51.20 54.90 36.90	Applied to Antenna dBm -44.22 -39.61	dBi 8.05 8.60	dBm -36.17	dBm*	dB	
 Horn SN6267 	600 600 600 600 600	3760.00 5273.13 11280.00 13160.00 15040.00	53.81 60.80 48.90 58.11	51.20 54.90 36.90	-44.22 -39.61	8.05 8.60	-36.17			DACC
 Horn SN6267 	600 600 600 600 600	5273.13 11280.00 13160.00 15040.00	60.80 48.90 58.11	54.90 36.90	-39.61	8.60		-13.00	23.17	PACC
 Horn SN6267 	600 600 600 600	11280.00 13160.00 15040.00	48.90 58.11	36.90			-31.01			1 1700
 Horn SN6267 Horn SN6267 Horn SN6267 Horn SN6267 Horn SN6267 	600 600 600	13160.00 15040.00	58.11		-63.94			-13.00	18.01	PASS
I Horn SN6267 I Horn SN6267 I Horn SN6267 I Horn SN6267	600 600	15040.00		43.50		10.69	-53.25	-13.00	40.25	PASS
Horn SN6267	600		59.95		-63.89	10.70	-53.19	-13.00	40.19	PASS
Horn SN6267		16920.00	1	44.70	-64.11	11.29	-52.82	-13.00	39.82	PASS
	600		61.13	44.10	-65.21	11.91	-53.30	-13.00	40.30	PASS
3160-09		17944.00	66.53	46.50	-59.09	8.15	-50.94	-13.00	37.94	PASS
	600	18800.00	59.87	44.30	-61.15	15.42	-45.73	-13.00	32.73	PASS
1 3160-09	600	19930.00	60.43	44.10	-57.86	15.97	-41.89	-13.00	28.89	PASS
B Horn SN6267	600	9400.00	52.95	41.10	-55.96	9.20	-46.76	-13.00	33.76	PASS
Horn SN6267	600	11280.00	48.10	36.10	-64.74	10.69	-54.05	-13.00	41.05	PASS
1 Horn SN6267	600	13160.00	58.31	43.70	-64.27	10.70	-53.57	-13.00	40.57	PASS
1 Horn SN6267	600	15040.00	59.55	44.30	-63.61	11.29	-52.32	-13.00	39.32	PASS
1 Horn SN6267	600	16920.00	61.93	44.90	-63.27	11.91	-51.36	-13.00	38.36	PASS
1 Horn SN6267	600	17744.00	66.17	46.70	-59.08	9.03	-50.05	-13.00	37.05	PASS
1 3160-09	600	18800.00	58.67	43.10	-61.71	15.42	-46.29	-13.00	33.29	PASS
1 3160-09	600	19934.00	61.23	44.90	-57.81	15.97	-41.84	-13.00	28.84	PASS
te:										
	-		worsecase emiss	ions or noise floor	reported.					
enna factors are st	ated in (dBi								
rmulae:										
nit = 43 + 10*log(Fi	Indemer	ntal Power Level,	in watts) below the	e Fundemental pe	ak power => -	13 dBm				
RP (dBm) = Power	applied	to Antenna (dBm	i) + Antenna Gain (dBi)						
and a fairs of the second	Bm) - Le	evel (dBm)								
1 1 te n n R	3160-09 3160-09 3: ands were investi n Antenna used foi nuna factors are st mulae: it = 43 + 10*log(Fu P (dBm) = Power	3160-09 600 3160-09 600 3160-09 600 ands were investigated a n Antenna used for substitienna factors are stated in mulae: tit = 43 + 10*log(Fundement P (dBm) = Power applied	3160-09 600 18800.00 3160-09 600 19934.00 ands were investigated and the significant in Antenna used for substitution 1 ana factors are stated in dBi 1 mulae: 1 t = 43 + 10*log(Fundemental Power Level,	3160-09 600 18800.00 58.67 3160-09 600 19934.00 61.23 and swere investigated and the significant worsecase emiss in Antenna used for substitution in Antenna used for substitution and swere investigated and the significant worsecase emiss in Antenna used for substitution in Antenna used for substitution in a factors are stated in dBi in anten used for substitution it = 43 + 10*log(Fundemental Power Level, in watts) below the P (dBm) = Power applied to Antenna (dBm) + Antenna Gain (dBm) + A	3160-09 600 18800.00 58.67 43.10 3160-09 600 19934.00 61.23 44.90 a.a.ds were investigated and the significant worsecase emissions or noise floor n Antenna used for substitution noise 1 mulae: 1 1 1 1 tt = 43 + 10*log(Fundemental Power Level, in watts) below the Fundemental pe P (dBm) = Power applied to Antenna (dBm) + Antenna Gain (dBi) 1	3160-09 600 18800.00 58.67 43.10 -61.71 3160-09 600 19934.00 61.23 44.90 -57.81 and swere investigated and the significant worsecase emissions or noise floor reported. - - - ands were investigated and the significant worsecase emissions or noise floor reported. - - - and swere investigated in dBi - - - - - mulae: - - - - - - - cit = 43 + 10*log(Fundemental Power Level, in watts) below the Fundemental peak power => - -	3160-09 600 18800.00 58.67 43.10 -61.71 15.42 3160-09 600 19934.00 61.23 44.90 -57.81 15.97 a.a. a.a. a.a. a.a. a.a. a.a. a.a. a.a. a.a. a.a. a.a. a.a. a.a. a.a. a.a. a.a. a.a. a.a. a.a. a.a. a.a	3160-09 600 18800.00 58.67 43.10 -61.71 15.42 -46.29 3160-09 600 19934.00 61.23 44.90 -57.81 15.97 -41.84 a.a	3160-09 600 18800.00 58.67 43.10 -61.71 15.42 -46.29 -13.00 3160-09 600 19934.00 61.23 44.90 -57.81 15.97 -41.84 -13.00 a.a a.a	3160-09 600 18800.00 58.67 43.10 -61.71 15.42 -46.29 -13.00 33.29 3160-09 600 19934.00 61.23 44.90 -57.81 15.97 -41.84 -13.00 28.84 a.a

Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

			Drais	t Number:	052604-519				Standard:		FCC24.238	>
	14	.l.	Comp		ltronix				Test Start D	ate:	PCC24.238 26-Jul-04	>
U	ellte	cn i i i i i i i i i i i i i i i i i i i	Produ	-	IX260+ w/ AC555				Test End Da		13-Aug-04	
Ter	sting and Engineering	Senices Lab	Frodu	GL.	1/200+ W AC55				TOST ENG DO		15-Aug-04	
				Swivel	Dipole Antenna I	-ligh Channel (C	hannel 1175)),Spurious Err	issions			
Polarity	Distance	Tx Antenna	Channel	Frequency	Corrected Field Strength	Substituted SA Signal Level	Power Applied to Antenna	Antenna Gain	Emission EIRP Level	EIRP Limit	Margin	Pass/Fail
	m			MHz	dBuV/m	dBuV	dBm	dBi	dBm	dBm*	dB	
Н	3	Horn SN6267	1175	3818.13	66.41	63.60	-30.46	8.04	-22.42	-13.00	9.42	PASS
н	1	Horn SN6267	1175	11452.50	50.98	38.90	-63.52	10.93	-52.59	-13.00	39.59	PASS
н	1	Horn SN6267	1175	13361.25	59.20	44.30	-63.83	10.82	-53.01	-13.00	40.01	PASS
н	1	Horn SN6267	1175	15270.00	60.29	45.70	-63.45	12.40	-51.05	-13.00	38.05	PASS
Н	1	Horn SN6267	1175	17178.75	63.42	45.50	-64.99	11.13	-53.86	-13.00	40.86	PASS
Н	1	Horn SN6267	1175	17968.00	66.68	46.50	-60.12	8.04	-52.08	-13.00	39.08	PASS
Н	1	3160-09	1175	19087.50	58.59	43.30	-60.45	15.55	-44.90	-13.00	31.90	PASS
Н	1	3160-09	1175	19984.00	60.84	44.50	-59.93	15.99	-43.94	-13.00	30.94	PASS
V	3	Horn SN6267	1175	7937.50	55.00	44.90	-55.79	9.25	-46.54	-13.00	33.54	PASS
V	1	Horn SN6267	1175	11452.50	49.78	37.70	-64.35	10.93	-53.42	-13.00	40.42	PASS
V	1	Horn SN6267	1175	13361.25	58.80	43.90	-64.11	10.82	-53.29	-13.00	40.29	PASS
V	1	Horn SN6267	1175	15270.00	59.69	45.10	-63.64	12.40	-51.24	-13.00	38.24	PASS
V	1	Horn SN6267	1175	17178.75	63.62	45.70	-55.42	11.13	-44.29	-13.00	31.29	PASS
V	1	Horn SN6267	1175	17904.00	66.00	46.10	-47.04	8.32	-38.72	-13.00	25.72	PASS
V	1	3160-09	1175	19087.50	58.59	43.30	-59.27	15.55	-43.72	-13.00	30.72	PASS
V	1	3160-09	1175	19948.00	60.85	44.50	-59.03	15.98	-43.05	-13.00	30.05	PASS
	Note:											
			-		worsecase emiss	ions or noise floor	reported.					
		Antenna used fo										
	Anter	na factors are st	ated in	aBI								
	Form	ulae:										
	Limit	= 43 + 10*log(Fi	underne	ntal Power Level	in watts) below the	e Fundemental pe	ak power => -	13 dBm				
					i) + Antenna Gain (dBi)						
	Margi	n (dB) = Limit (d	Bm) - L	evel (dBm)								

Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

Celltech		Project i Compar Product	-	052604-519 Itronix IX260+ with AC5	55		Standard: Test Start Date: Test End Date:		FCC24.238 26-Jul-04 13-Aug-04			
				Vehicle	Mount Antenna	Low Channel (C	hannel 25), \$	Spurious Emis	sions			
Polarity	Distance	Tx Antenna	Channel	Frequency	Corrected Field Strength	Substituted SA Signal Level	Power Applied to Antenna	Antenna Gain	Emission EIRP Level	EIRP Limit	Margin	Pass/Fa
	m			MHz	dBuV/m	dBuV	dBm	dBi	dBm	dBm*	dB	
Н	1	Horn SN6267	25	11107.50	49.61	37.50	-62.22	10.45	-51.77	-13.00	38.77	PASS
Н	1	Horn SN6267	25	12958.75	58.15	44.10	-62.70	10.64	-52.06	-13.00	39.06	PASS
Н	1	Horn SN6267	25	14810.00	58.14	42.70	-61.71	11.06	-50.65	-13.00	37.65	PASS
Н	1	Horn SN6267	25	16661.25	57.86	41.50	-62.06	12.58	-49.48	-13.00	36.48	PASS
Н	1	Horn SN6267	25	17998.00	65.10	44.70	-60.81	7.91	-52.90	-13.00	39.90	PASS
Н	1	3160-09	25	18512.50	57.36	42.50	-63.51	15.31	-48.21	-13.00	35.21	PASS
Н	1	3160-09	25	19994.00	60.24	43.90	-56.60	16.00	-40.60	-13.00	27.60	PASS
V	3	Horn SN6267	25	3702.50	51.25	48.80	-48.99	8.06	-40.93	-13.00	27.93	PASS
V	1	Horn SN6267	25	11107.50	50.41	38.30	-62.27	10.45	-51.82	-13.00	38.82	PASS
V	1	Horn SN6267	25	12958.75	57.15	43.10	-62.68	10.64	-52.04	-13.00	39.04	PASS
V	1	Horn SN6267	25	14810.00	57.74	42.30	-62.44	11.06	-51.38	-13.00	38.38	PASS
V	1	Horn SN6267	25	16661.25	58.06	41.70	-62.09	12.58	-49.51	-13.00	36.51	PASS
V	1	Horn SN6267	25	17994.00	64.07	43.70	-58.14	7.93	-50.21	-13.00	37.21	PASS
V	1	3160-09	25	18512.50	57.76	42.90	-61.77	15.31	-46.47	-13.00	33.47	PASS
V	1	3160-09	25	19996.00	59.64	43.30	-57.56	16.00	-41.56	-13.00	28.56	PASS
												<u> </u>
	Note:	nde woro invocti	dated on	d the wereacces	ignificant omissis	ns or noise floor re	ported					
		Antenna used to	-		agrinicani emissic		sponeu.					
	Anten	na factors are st	tated in d	Зі								
	Form	ilao:										
			undernent	alPowerlevelir	watts) below the	Fundemental peak	(power => -1)	3 dBm				
					JBrri) + Antenna G							
	Margi	n (dB) = Limit (d	IBm) - Le [,]	vel (dBm)								

Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

Ç	Company: Product:			052604-519 Itronix IX260+ with AC5			Test Start Date: Test End Date:			FCC24.238 26-Jul-04 13-Aug-04	5	
				Vehicle	Mount Antenna	Mid Channel (Ch	annel 600), s	Spurious Emis	sions			
Polarity	Distance	Tx Antenna	Channel	Frequency	Corrected Field Strength	Substituted SA Signal Level	Power Applied to Antenna	Antenna Gain	Emission EIRP Level	EIRP Limit	Margin	Pass/Fai
	m			MHz	dBuV/m	dBuV	dBm	dBi	dBm	dBm*	dB	
Н	3	Horn SN6267	600	5981.88	51.85	45.10	-52.02	9.18	-42.84	-13.00	29.84	PASS
Н	1	Horn SN6267	600	11280.00	50.90	38.90	-62.45	10.69	-51.76	-13.00	38.76	PASS
Н	1	Horn SN6267	600	13160.00	56.71	42.10	-62.52	10.70	-51.82	-13.00	38.82	PASS
Н	1	Horn SN6267	600	13558.00	60.71	45.90	-62.55	10.92	-51.63	-13.00	38.63	PASS
Н	1	Horn SN6267	600	15040.00	57.95	42.70	-62.38	11.29	-51.09	-13.00	38.09	PASS
Н	1	Horn SN6267	600	16920.00	60.33	43.30	-61.90	11.91	-49.99	-13.00	36.99	PASS
Н	1	3160-09	600	18800.00	58.27	42.70	-57.84	15.42	-42.42	-13.00	29.42	PASS
П	1	3160-09	600	19974.00	61.05	44.70	-55.77	15.99	-39.78	-13.00	26.78	PASS
V	3	Horn SN6267	600	5640.00	44.14	37.70	-42.99	8.77	-34.22	-13.00	21.22	PASS
V	1	Horn SN6267	600	11280.00	50.10	38.10	-62.24	10.69	-51.55	-13.00	38.55	PASS
V	1	3160-09	600	19942.00	61.44	45.10	-56.65	15.98	-40.67	-13.00	27.67	PASS
	Note:											
			-		significant emissic	ns or noise floor re	eported.					
		Antenna used fo ina factors are s										
	Form											
					i watts) below the dBm) + Antenna G	Fundemental peak ain (dRi)	(power => -1:	3 dBm				
		in (dB) = Limit (c			uom) + Antenna G	am (ubi)						
	3	· · · · · ·	,									

Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

C		ch Senices Lab	Project I Compar Product	-	052604-519 Itronix IX260+ with AC5	55			Standard: Test Start Date: Test End Date:		FCC24.238 26-Jul-04 13-Aug-04	:
				Vehicle I	/ount Antenna H	ligh Channel (Ch	nannel 1175),	Spurious Emissions				
Polarity	Distance	Tx Antenna	Channel	Frequency	Corrected Field Strength		Power Applied to Antenna	Antenna Gain	Emission EIRP Level	EIRP Limit	Margin	Pass/Fai
	m			MHz	dBuV/m	dBuV	dBm	dBi	dBm	dBm*	dB	
Н	1	Horn SN6267	1175	11452.50	50.78	38.70	-62.41	10.93	-51.48	-13.00	38.48	PASS
Н	1	Horn SN6267	1175	13361.25	59.00	44.10	-62.92	10.82	-52.10	-13.00	39.10	PASS
Н	1	Horn SN6267	1175	15270.00	58.49	43.90	-61.91	12.40	-49.51	-13.00	36.51	PASS
н	1	Horn SN6267	1175	17178.75	60.62	42.70	-61.72	11.13	-50.59	-13.00	37.59	PASS
н	1	Horn SN6267	1175	17996.00	65.08	44.70	-60.12	7.92	-52.20	-13.00	39.20	PASS
Н	1	3160-09	1175	19087.50	58.59	43.30	-57.25	15.55	-41.70	-13.00	28.70	PASS
Н	1	3160-09	1175	19928.00	60.62	44.30	-54.73	15.97	-38.76	-13.00	25.76	PASS
V	3	Horn SN6267	1175	3818.13	55.71	52.90	-39.02	8.04	-30.98	-13.00	17.98	PASS
V	1	Horn SN6267	1175	11452.50	50.18	38.10	-62.46	10.93	-51.53	-13.00	38.53	PASS
V	1	Horn SN6267	1175	13361.25	57.80	42.90	-62.81	10.82	-51.99	-13.00	38.99	PASS
V	1	Horn SN6267	1175	15270.00	58.09	43.50	-61.73	12.40	-49.33	-13.00	36.33	PASS
V	1	Horn SN6267	1175	17178.75	61.22	43.30	-62.13	11.13	-51.00	-13.00	38.00	PASS
V	1	3160-09	1175	19087.50	58.19	42.90	-58.51	15.55	-42.96	-13.00	29.96	PASS
۷	1	3160-09	1175	19908.00	60.99	44.70	-56.65	15.96	-40.69	-13.00	27.69	PASS
	Horn . Anten	Antenna used fo na factors are s	r substitul	ion	ignificant emissio	ns or noise floor n	eported.					
	EIRP	– 43 + 10*log(Fi Level (dBm) = F	ower app	blied to Antenna (d	watts) below the I IBm) + Antenna G	Fundemental peal ain (dBi)	< power -> -1:	3 dBm				
	wargi	n (dB) = Limit (c	1000) - L6,	vei (dBM)								

Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

			Projec	t Number:	052604-519				Standard:		FCC22.917	1
C	allte	ch	Comp	any:	ltronix				Test Start D	ate:	26-Jul-04	
Tes	Eng and Engineering	Senices Lab	Produ	ct:	IX260+ w/ AC55	5			Test End Da	te:	13-Aug-04	
				Swiv	el Dipole Antenn	ia Low Channel	13), Spurious	Emissions				
Polarity	Distance	Tx Antenna	Channel	Frequency	Corrected Field Strength	Substituted SA Signal Level	Power Applied to Antenna	Antenna Gain	Emission ERP Level	ERP Limit	Margin	Pass/Fai
	m		0	MHz	dBuV/m	dBuV	dBm	dBd or dBi	dBm	dBm*	dB	
Н	3	Horn SIN6267	1013	2474.10	53.58	56.40	-52.86	7.74	-45.12	-13.00	34.26	PASS
Н	3	Horn SN6267	1013	5772.90	49.87	43.30	-55.28	8.93	-46.35	-13.00	35.49	PASS
Н	3	Horn SN6267	1013	7422.30	53.08	43.70	-55.16	8.96	-46.20	-13.00	35.34	PASS
Н	3	Horn SN6267	1013	8247.00	52.67	42.30	-55.02	9.30	-45.72	-13.00	34.86	PASS
Н	3	Horn SN6267	1013	9353.13	61.94	50.10	-44.96	9.15	-35.81	-13.00	24.95	PASS
V	3	Horn SN6267	1013	1649.40	57.07	53.60	-54.91	6.35	-48.56	-13.00	37.70	PASS
V	3	Horn SN6267	1013	6597.60	50.49	43.10	-55.44	9.54	-45.90	-13.00	35.04	PASS
	Note:											
	All ba	inds were inve	stigated	d and the wors	ecase significant	emissions or noi:	se floor report	ted.				
	Dipol	e Antenna use	d for su	Ibstitution								
	Anter	ina factors are	stated	in dBi								
	Form	ulae:										
	Limit	= 43 + 10*log(Funder	nental Power I	Level, in watts) be	low the Fundeme	ental peak pov	ver => -13 dBm				
	ERP	(dBm) = Powe	r applie	ed to Antenna	(dBm) + Antenna	Gain (dBi) -2.14						
	Marg	in (dB) = Limit	(dBm)	- Level (dBm)								

Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

	7		Projec	t Number:	052604-519				Standard:		FCC22.917	7
	ellte	ch	Comp	anv:	Itronix				Test Start D	ate:	26-Jul-04	
	lesting and Engineerin	ng Senices Lab	Produ	ict:	IX260+ w/ AC55	5			Test End Da	te:	13-Aug-04	
				Swiv	vel Dipole Anten	na Mid Channel	(Channel 36	3), Spurious E	missions			
Polarity	Distance	Tx Antenna	Channel	Frequency	Corrected Field Strength	Substituted SA Signal Level	Power Applied to Antenna	Antenna Gain	Emission ERP Level	ERP Limit	Margin	Pass/Fa
	m		-	MHz	dBuV/m	dBuV	dBm	dBi	dBm	dBm*	dB	
Н	3	Horn SN6267	363	1671.80	54.15	51.20	-44.22	6.37	-37.85	-13.00	26.99	PASS
Н	3	Horn SN6267	363	5015.40	42.25	36.90	-63.94	8.60	-55.34	-13.00	44.48	PASS
Н	3	Horn SN6267	363	5273.13	60.80	54.90	-39.61	8.60	-31.01	-13.00	20.15	PASS
Н	3	Horn SN6267	363	5851.30	50.12	43.50	-63.89	9.02	-54.87	-13.00	44.01	PASS
Н	3	Horn SN6267	363	6687.20	52.33	44.70	-64.11	9.49	-54.62	-13.00	43.76	PASS
Н	3	Horn SN6267	363	7523.10	53.67	44.10	-65.21	8.92	-56.29	-13.00	45.43	PASS
Н	3	Horn SN6267	363	8359.00	54.79	44.30	-61.15	9.30	-51.85	-13.00	40.99	PASS
Н	1	Horn SN6267	363	17944.00	66.53	46.50	-59.09	8.15	-50.94	-13.00	40.08	PASS
Н	1	3160-09	363	19930.00	60.43	44.10	-57.86	15.97	-41.89	-13.00	31.03	PASS
V	3	Horn SN6267	363	4179.50	44.82	41.10	-55.96	8.25	-47.71	-13.00	36.85	PASS
V	3	Horn SN6267	363	5015.40	41.45	36.10	-64.74	8.60	-56.14	-13.00	45.28	PASS
V	3	Horn SN6267	363	5851.30	50.32	43.70	-64.27	9.02	-55.25	-13.00	44.39	PASS
V	3	Horn SN6267	363	6687.20	51.93	44.30	-63.61	9.49	-54.12	-13.00	43.26	PASS
V	- 3	Horn SN6267	363	7523.10	54.47	44.90	-63.27	8.92	-54.35	-13.00	43.49	PASS
V	3	Horn SN6267	363	8359.00	53.59	43.10	-61.71	9.30	-52.41	-13.00	41.55	PASS
V	1	Horn SN6267	363	17744.00	66.17	46.70	-59.08	9.03	-50.05	-13.00	39.19	PASS
V	1	3160-09	363	19934.00	61.23	44.90	-57.81	15.97	-41.84	-13.00	30.98	PASS
	Note:											
	All ba	inds were inve	stigate	d and the signi	ficant emissions of	or noise floor repo	orted.					
	Dipol	e Antenna use	d for su	ubstitution								
	Anten	na factors are	stated	in dBd								
	Form	ulae:										
	Limit	= 43 + 10*log(Funder	mental Power I	_evel, in watts) be	low the Fundeme	ntal peak pov	ver => -13 dBm				
	ERP	(dBm) = Powe	r applie	ed to Antenna	(dBm) + Antenna	Gain (dBi) -2.14						
	Margi	in (dB) = Limit	(dBm)	- Level (dBm)								

			Projec	t Number:	052604-519				Standard:		FCC22.917	7
()	allte	ch 🛛	Comp	any:	ltronix				Test Start D	ate:	26-Jul-04	
Tel	ing and Engineering	g Senices Lab	Produ	ct:	IX260+ w/ AC55	5			Test End Da	ite:	13-Aug-04	
				Swiv	el Dipole Antenr	na High Channe	l (Channel 7	77), Spurious I	Emissions			
Polarity	Distance	Tx Antenna	Channel	Frequency	Corrected Field Strength	Substituted SA Signal Level	Power Applied to Antenna	Antenna Gain	Emission ERP Level	ERP Limit	Margin	Pass/Fa
	m		Ŭ	MHz	dBuV/m	dBuV	dBm	dBd or dBi *	dBm	dBm*	dB	
Н	3	Horn SN6267	777	3818.13	66.41	63.60	-30.46	8.04	-22.42	-13.00	11.56	PASS
Н	3	Horn SN6267	777	5089.86	44.42	38.90	-63.52	8.60	-54.92	-13.00	44.06	PASS
Н	3	Horn SN6267	777	5938.17	51.02	44.30	-63.83	9.13	-54.70	-13.00	43.84	PASS
Н	3	Horn SN6267	777	6786.48	53.57	45.70	-63.45	9.43	-54.02	-13.00	43.16	PASS
Н	3	Horn SN6267	777	7634.79	55.24	45.50	-64.99	9.01	-55.98	-13.00	45.12	PASS
н	3	Horn SN6267	777	8483.10	53.89	43.30	-60.45	9.30	-51.15	-13.00	40.29	PASS
Н	1	Horn SN6267	777	17968.00	66.68	46.50	-60.12	8.04	-52.08	-13.00	41.22	PASS
Н	1	3160-09	777	19984.00	60.84	44.50	-59.93	15.99	-43.94	-13.00	33.08	PASS
٧	3	Horn SN6267	777	5089.86	43.22	37.70	-64.35	8.60	-55.75	-13.00	44.89	PASS
V	3	Horn SN6267	777	5938.17	50.62	43.90	-64.11	9.13	-54.98	-13.00	44.12	PASS
V	3	Horn SN6267	777	6786.48	52.97	45.10	-63.64	9.43	-54.21	-13.00	43.35	PASS
V	3	Horn SN6267	777	7634.79	55.44	45.70	-55.42	9.01	-46.41	-13.00	35.55	PASS
V	3	Horn SN6267	777	8483.10	53.89	43.30	-59.27	9.30	-49.97	-13.00	39.11	PASS
V	3	Horn SN6267	777	7937.50	55.00	44.90	-55.79	9.25	-46.54	-13.00	35.68	PASS
V	1	Horn SN6267	777	17904.00	66.00	46.10	-47.04	8.32	-38.72	-13.00	27.86	PASS
V	1	3160-09	777	19948.00	60.85	44.50	-59.03	15.98	-43.05	-13.00	32.19	PASS
	Note:											
			~		ecase significant	emissions or noi	se floor report	ed.				
	Dipol	e Antenna use	d for su	Ibstitution								
	Anten	ina factors are	stated	in dBi								
	Form	ulao:										
			Eundor	nontal Dowor I	⊥ _evel, in watts) be	low the Eurodome	ntal noak nov	vor -> 12 dPm				
					(dBm) + Antenna ·		пагреак рои	vei is udill				
		(ubiii) - Powe in (dB) = Limit			(ubin) + Antenna -	Jani (UDI) - 2.14						
	mary	n (ab) – cittic	(abiii)	- Lever (ubili)								

C	ellte		Project NL Company		052604-519 Itronix				Standard: Test Start Da		FCC22.917 26-Jul-04	,
	sting and Engineer	ing Services Lab	Product:		IX260+ with AC555				Test End Date:		13-Aug-04	
				Vehicle N	lount Antenna L	ow Channel (Ch	annel 1013),:	Spurious Emi	ssions			
Polarty	Distance	Tx Antenna	Channel	Frequency	Corrected Field Strength	Substituted SA Signal Level	Power Applied to Antenna	Antenna Gain	Emission ERP Level	ERP Limit	Margin	Pass/Fai
	m			MHz	dBuV/m	dBuV	dBm	dBi	dBm	dBm*	dB	
н	3	Horn SN6267	1013	4948.20	47.09	41.90	-55.27	8.61	-48.80	-13.00	35.80	PASS
Τ	3	Horn SN6267	1013	7422.30	52.48	43.10	-55.25	8.96	-48.43	-13.00	35.43	PASS
Н	3	Horn SN6267	1013	8247.00	53.47	43.10	-55.34	9.30	-48.18	-13.00	35.18	PASS
$^{\vee}$	3	Horn SN6267	1013	4123.50	46.17	42.50	-56.36	8.17	-50.33	-13.00	37.33	PASS
\vee	3	Horn SN6267	1013	5772.90	47.67	41.10	-55.27	8.93	-48.48	-13.00	35.48	PASS
۷	3	Horn SN6267	1013	6597.60	49.89	42.50	-55.24	9.54	-47.84	-13.00	34.84	PASS
	Note:											
			-		phificant emission	s or noise floor re	ported.					
		Antenna used fo										
	Anter	na factors are s	tated in dBi									
	Form	ulae:										
	Limit	= 43 + 10*log(F	undemental	Power Level, in	vatts) below the Fi	undemental peak	power => -13	dBm				
	ERP	Level (dBm) = P	ower applie	ed to Antenna (dE	m) + Antenna Gai	n (dBi) - 2.14						
	Marg	in (dB) = Limit (d	dBm) - Leve	l (dBm)								

Test Report S/N:	052604KBC-T522-E24C
Test Date(s):	July 26 - August 23, 2004
Test Type:	FCC Parts 22 & 24 EMC Measurements

Q		g Sances Lab	Project Nu Company Product:		052604-519 Itronix IX260+ with AC5	55			Standard: Test Start D Test End Da		FCC22.917 26-Jul-04 13-Aug-04	·
				Vehicle	Mount Antenna N	/lid Channel (Ch	annel 363), S	purious Emis	sions			
Polarity	Distance	Tx Antenna	Channel	Frequency	Corrected Field Strength	Substituted SA Signal Level	Power Applied to Antenna	Antenna Gain	Emission ERP Level	ERP Limit	Margin	Pass/Fai
	m			MHz	dBuV/m	dBuV	dBm	dBi	dBm	dBm*	dB	
н	3	Horn SN6267	363	2507.70	41.80	44.50	-59.63	7.80	-53.97	-13.00	40.97	PASS
Н	3	Horn SN6267	363	3343.60	42.08	41.10	-58.15	8.01	-52.28	-13.00	39.28	PASS
Н	3	Horn SN6267	363	5851.30	49.12	42.50	-55.21	9.02	-48.33	-13.00	35.33	PASS
Н	3	Horn SN6267	363	6687.20	49.53	41.90	-55.10	9.49	-47.75	-13.00	34.75	PASS
Н	3	Horn SN6267	363	7523.10	52.67	43.10	-55.11	8.92	-48.33	-13.00	35.33	PASS
Н	3	Horn SN6267	363	8359.00	53.59	43.10	-55.15	9.30	-47.99	-13.00	34.99	PASS
V	3	Horn SN6267	363	4179.50	46.62	42.90	-55.28	8.25	-49.17	-13.00	36.17	PASS
V	3	Horn SN6267	363	5015.40	45.45	40.10	-57.31	8.60	-50.85	-13.00	37.85	PASS
	Note:											
			-		gnificant emission	s or noise floor re	ported.					
		Antenna used fo na factors are s										
	7 GILOI		tatoa in dDi									
	Form	ulae:										
		0.			watts) below the F		power => -13	dBm				
		. ,			3m) + Antenna Gai	n (dBi) - 2.14						
	Margi	n (dB) = Limit (d	dBm) - Leve	l (dBm)								

6	elltech		Project Number: Company: Product:		052604-519 Itronix IX260+ with AC555				Standard: Test Start Date:		FCC22.917 26-Jul-04 13-Aug-04	
U								Test End Date:		te:		
				Vehicle	Mount Antenna I	High Channel (C	hannel 777),	Spurious Emi	ssions			
Polarity	Distance	Tx Antenna	Channel	Frequency	Corrected Field Strength		Power Applied to Antenna	Antenna Gain	Emission ERP Level	ERP Limit	Margin	Pass/Fa
	m			MHz	dBuV/m	dBuV	dBm	dBi	dBm	dBm*	dB	
Н	3	Horn SN6267	777	5938.17	46.62	39.90	-55.14	9.13	-48.15	-13.00	35.15	PASS
Н	3	Horn SN6267	777	6786.48	49.97	42.10	-55.28	9.43	-47.99	-13.00	34.99	PASS
V	3	Horn SN6267	777	4241.55	46.67	42.90	-57.12	8.34	-50.92	-13.00	37.92	PASS
V	3	Horn SN6267	777	5089.86	45.62	40.10	-55.05	8.60	-48.59	-13.00	35.59	PASS
V	3	Horn SN6267	777	7634.79	52.24	42.50	-55.15	9.01	-48.28	-13.00	35.28	PASS
V	3	Horn SN6267	777	8158.75	54.64	44.30	-55.18	9.30	-48.02	-13.00	35.02	PASS
V	3	Horn SN6267	777	8483.10	52.29	41.70	-55.14	9.30	-47.98	-13.00	34.98	PASS
	Note:											
	All bands were investigated and the worsecase significant emissions or noise floor reported. Horn Antenna used for substitution											
		na factors are s										
	Form	ulae:										
	Limit = 43 + 10*log(Fundemental Power Level, in watts) below the Fundemental peak power => -13 dBm											
	ERP Level (dBm) = Power applied to Antenna (dBm) + Antenna Gain (dBi) - 2.14 Margin (dB) = Limit (dBm) - Level (dBm)											
	wargi	n (aB) = Limit (a	uom) - Le	vei (dBm)								

APPENDIX G - FREQUENCY STABILITY / TEMPERATURE VARIATION - §2.1055, §24.235

G.1. MEASUREMENT PROCEDURE

The minimum frequency stability shall be \pm 300Hz (Cellular CDMA) and \pm 150Hz (PCS CDMA) referenced to a received carrier frequency. This meets the requirement for operational accuracy of 0.00005% for digital mode. An HP 53181A Frequency Counter was used to measure the error in the fundamental frequency. The transmitter was set to maximum power at the center frequency of the band. The DUT was placed inside the temperature chamber. The test data is shown on pages 18-19.

Measurement Method:

The frequency stability of the transmitter was measured by:

1. Temperature:

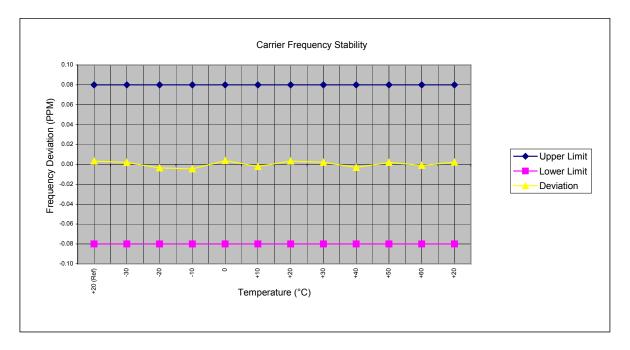
The temperature was varied from -30°C to +60°C at intervals no more than 10°C throughout the temperature range using an environmental chamber. A period of time sufficient to stabilize all of the components in the equipment was allowed prior to each frequency measurement.

2. Primary Supply Voltage:

The primary supply voltage was set at the specified nominal rating and reduced to the battery operating endpoint specified by the manufacturer. The voltage was measured at the terminals of the power supply or at the input to the cable normally provided with the equipment.

Time Period and Procedure:

- 1. The carrier frequency of the transmitter was measured at room temperature (25°C to 27°C to provide a reference).
- 2. The equipment was subjected to an overnight "soak" at -30°C without any power applied.
- 3. After the overnight "soak" at -30°C, the measurement of the carrier frequency of the transmitter was made within a three-minute interval after applying power to the transmitter.
- 4. Frequency measurements were made at 10°C intervals up to +60°C, then back to room temperature. A minimum period of one hour was provided to allow stabilization of the equipment at each temperature level.

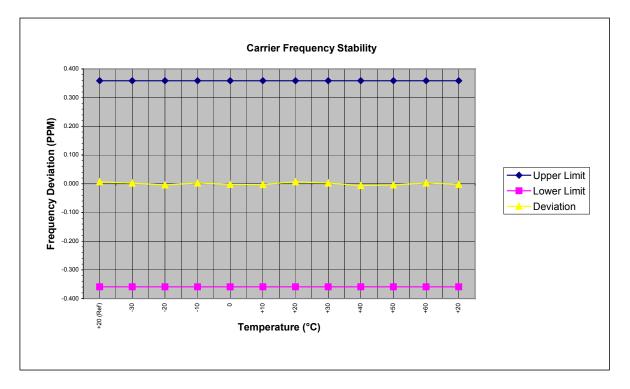

Test Report S/N:	052604KBC-T522-E24C			
Test Date(s):	July 26 - August 23, 2004			
Test Type:	FCC Parts 22 & 24 EMC Measurements			

FREQUENCY STABILITY / TEMPERATURE VARIATION - §2.1055, §24.235 (Continued)

G.2. MEASUREMENT DATA - PCS Band

Carrier Frequency (GHz): 1.88 Channel: 600 Mode: PCS CDMA Deviation Limit (PPM): 0.08

Temperature	Voltage	Power Carrier Frequency Deviation			Specification		
(°C)	(%)	(VDC)	(Hz)	(PPM)	Lower Limit (PPM)	Upper Limit (PPM)	
+20 (Ref)	100	6.0	6.47	0.003	0.08	-0.08	
-30	100	6.0	3.58	0.002	0.08	-0.08	
-20	100	6.0	-6.71	-0.004	0.08	-0.08	
-10	100	6.0	-8.36	-0.004	0.08	-0.08	
0	100	6.0	7.11	0.004	0.08	-0.08	
+10	100	6.0	-3.85	-0.002	0.08	-0.08	
+20	100	6.0	6.47	0.003	0.08	-0.08	
+30	100	6.0	4.02	0.002	0.08	-0.08	
+40	100	6.0	-5.90	-0.003	0.08	-0.08	
+50	100	6.0	3.63	0.002	0.08	-0.08	
+60	100	6.0	-1.78	-0.001	0.08	-0.08	
+20	Battery Endpoint	4.0	4.21	0.002	0.08	-0.08	


Test Report S/N:	052604KBC-T522-E24C			
Test Date(s):	July 26 - August 23, 2004			
Test Type:	FCC Parts 22 & 24 EMC Measurements			

FREQUENCY STABILITY / TEMPERATURE VARIATION - §2.1055, §24.235 (Continued)

G.2. MEASUREMENT DATA - Cellular Band

Carrier Frequency (MHz): 835.89 Channel: 363 Mode: Cellular CDMA Deviation Limit (PPM): 0.359

Temperature	Voltage	Power	Carrier Freque	ency Deviation	Specification		
(°C)	(%)	(VDC)	(Hz)	(PPM)	Lower Limit (PPM)	Upper Limit (PPM)	
+20 (Ref)	100	6.0	5.64	0.007	0.359	-0.359	
-30	100	6.0	1.44	0.002	0.359	-0.359	
-20	100	6.0	-3.17	-0.004	0.359	-0.359	
-10	100	6.0	2.02	0.002	0.359	-0.359	
0	100	6.0	-1.95	-0.002	0.359	-0.359	
+10	100	6.0	-2.32	-0.003	0.359	-0.359	
+20	100	6.0	5.64	0.007	0.359	-0.359	
+30	100	6.0	1.93	0.002	0.359	-0.359	
+40	100	6.0	-5.41	-0.006	0.359	-0.359	
+50	100	6.0	-3.37	-0.004	0.359	-0.359	
+60	100	6.0	2.11	0.003	0.359	-0.359	
+20	Battery Endpoint	4.0	-1.46	-0.002	0.359	-0.359	

