

APPENDIX C - SYSTEM VALIDATION

2450MHz SYSTEM VALIDATION DIPOLE

Celltech Research Inc. hereby certifies that this device has been calibrated on the date indicated above.

Calibrated by:

Kussell W. Pupe

Approved by:

1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the IEEE Std "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques". The electrical properties were measured using an HP 8753E Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 2450MHz	Re{Z} = 49.838Ω
	lm{Z} = 0.2207Ω

Return Loss at 2450MHz

-49.398 dB

Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

2. Validation Phantom

The validation phantom is the SAM (Specific Anthropomorphic Mannequin) phantom manufactured by Schmid & Partner Engineering AG. The SAM phantom is a Fiberglass shell integrated in a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness:	2.0 ± 0.1 mm
Filling Volume:	Approx. 20 liters
Dimensions:	50 cm (W) x 100 cm (L)

SAM Twin-Phantom

Schmid & Partner Engineering AG

2450MHz Dipole Calibration

2450MHz Dipole Calibration

3. Measurement Conditions

The planar phantom was filled with brain simulating tissue having the following electrical parameters at 2450MHz:

Relative Permittivity:	36.8
Conductivity:	1.79 mho/m
Ambient Temperature:	23.6°C
Fluid Temperature:	23.8°C
Fluid Depth:	≥ 15cm

The 2450MHz simulating tissue consists of the following ingredients:

Ingredient	Percentage by weight	
Water	55.20%	
Glycol Monobutyl	44.80%	
Target Dielectric Parameters at 22°C	ϵ_r = 39.2 (+/-10%) σ = 1.80 S/m (+/-5%)	

4. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First, the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

Validation Measurement	SAR @ 0.25W Input averaged over 1g	5W SAR @ 1W SAR @ 0.25W Input averaged over 1g over 10g		SAR @ 1W Input averaged over 10g	Peak SAR @ 0.25W Input
Test 1	14.4	57.6	6.55	26.20	30.5
Test 2	14.2	56.8	6.44	25.76	30.0
Test 3	14.0	56.0	6.35	25.40	29.7
Test 4	13.9	55.6	6.32	25.28	29.5
Test 5	14.0	56.0	6.33	25.32	29.7
Test 6	14.0	56.0	6.33	25.32	29.7
Test 7	13.9	55.6	6.31	25.24	29.5
Test 8	13.8	55.2	6.28	25.12	29.3
Test 9	13.8	55.2	6.28	25.12	29.4
Test10	14.0	56.0	6.33	25.32	29.7
Average Value	14.0	56.0	6.35	25.41	29.7

25.41 mW/g

Validation Dipole SAR Test Results

The results have been normalized to 1W (forward power) into the dipole.

Averaged over 1cm (1g) of tissue: 56.00 mW/g

Averaged over 10cm (10g) of tissue:

Dipole 2450MHz

SAM Phantom; Flat Section Probe: ET3DV6 - SN1387; ConvF(4.70,4.70,4.70); Crest factor: 1.0; 2450 MHz Brain: $\sigma = 1.79$ mho/m $\epsilon_r = 36.8 \ \rho = 1.00$ g/cm³ Cubes (4): Peak: 29.7 mW/g ± 0.04 dB, SAR (1g): 14.0 mW/g ± 0.04 dB, SAR (10g): 6.35 mW/g ± 0.04 dB, (Worst-case extrapolation) Penetration depth: 6.4 (6.1, 7.2) [mm]; Powerdrift: -0.04 dB Ambient Temp.: 23.6°C; Fluid Temp.: 23.8°C

Forward Conducted Power: 250 mW Calibration Date: October 24, 2002

2450MHz System Validation Measured Fluid Dielectric Parameters (Brain) October 24, 2002

Frequency		e'	e
2.35000000	GHz	37.2108	12.9039
2.36000000	GHz	37.1695	12.9350
2.37000000	GHz	37.1398	12.9630
2.38000000	GHz	37.1057	12.9945
2.39000000	GHz	37.0746	13.0290
2.40000000	GHz	37.0424	13.0464
2.41000000	GHz	36.9746	13.0743
2.42000000	GHz	36.9322	13.1074
2.43000000	GHz	36.8908	13.1372
2.44000000	GHz	36.8449	13.1527
2.45000000	GHz	<mark>36.7983</mark>	<mark>13.1767</mark>
2.46000000	GHz	36.7651	13.2038
2.47000000	GHz	36.7300	13.2377
2.48000000	GHz	36.7004	13.2677
2.49000000	GHz	36.6658	13.2862
2.50000000	GHz	36.6120	13.2988
2.51000000	GHz	36.5655	13.3268
2.52000000	GHz	36.5147	13.3582
2.53000000	GHz	36.4743	13.3922
2.54000000	GHz	36.4044	13.4131
2.55000000	GHz	36.3807	13.4402