DECLARATION OF COMPLIANCE SAR EVALUATION

```
Test Lab
CELLTECH LABS INC.
Testing and Engineering Lab
1955 Moss Court
Kelowna, B.C.
Canada V1Y 9L3
Phone: 250-448-7047
Fax: 250-448-7046
e-mail: info@celltechlabs.com
web site: www.celltechlabs.com
```


Applicant Information

ITRONIX CORPORATION
801 South Stevens Street
Spokane, WA 99204

```
Rule Part(s):
Test Procedure(s):
FCC Device Classification:
IC Device Classification:
FCC ID:
Model(s):
Device Type:
Tx Frequency Range:
RF Output Power Tested:
Antenna Type:
Battery Type:
Max. SAR Measured:
```

FCC 47 CFR §2.1093; IC RSS-102 Issue 1 (Provisional)
FCC OET Bulletin 65, Supplement C (01-01)
Licensed Base Station for Part 24 (PCB)
2GHz Personal Communication Services (RSS-133 Issue 2)
800MHz CDMA Cellular Transmitter (RSS-129 Issue 2)
KBCIX260AC555
IX260
Rugged Laptop PC with Sierra Wireless AirCard 555/550
Dual-Band PCS/Cellular CDMA PCMCIA Modem Card
1851.25-1908.75 MHz (PCS CDMA)
824.70-848.31 MHz (Cellular CDMA)
23.0 dBm Conducted (PCS CDMA)
23.0 dBm Conducted (Cellular CDMA)

External Dipole
11.1V Lithium-Ion, 6.0Ah (Model: A2121-2)
0.628 W/kg (PCS CDMA) / 0.391 W/kg (Cellular CDMA)

Celltech Labs Inc. declares under its sole responsibility that this device was found to be in compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada's Safety Code 6. The device was tested in accordance with the measurement standards and procedures specified in FCC OET Bulletin 65, Supplement C, Edition 01-01 and Industry Canada RSS-102 Issue 1-Provisional (General Population / Uncontrolled Exposure).

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc. The results and statements contained in this report pertain only to the device(s) evaluated.

Russell Pipe

Senior Compliance Technologist Celltech Labs Inc.

TABLE OF CONTENTS		
1.0	INTRODUCTION..........	3
2.0	DESCRIPTION OF EUT.	3
3.0	SAR MEASUREMENT SYSTEM	4
4.0	MEASUREMENT SUMMARY...	5-6
5.0	DETAILS OF SAR EVALUATION...	7
6.0	EVALUATION PROCEDURES..	7-8
7.0	SYSTEM PERFORMANCE CHECK..	9
8.0	EQUIVALENT TISSUES..	10
9.0	SAR LIMITS..	10
10.0	SYSTEM SPECIFICATIONS...	11
11.0	PROBE SPECIFICATION..	12
12.0	SAM PHANTOM..	12
13.0	DEVICE HOLDER..	12
14.0	TEST EQUIPMENT LIST...	13
15.0	MEASUREMENT UNCERTAINTIES...	14
16.0	REFERENCES...	15
APPENDIX A - SAR MEASUREMENT DATA..		16
APPENDIX B - SYSTEM CHECK DATA..		17
APPENDIX C - SYSTEM VALIDATION...		18
APPENDIX D - PROBE CALIBRATION...		19
APPENDIX E - MEASURED FLUID DIELECTRIC PARAMETERS...............		20
APPENDIX F - SAM PHANTOM CERTIFICATE OF CONFORMITY..............		21
APPENDIX G - SAR TEST SETUP PHOTOGRAPHS.................................		22

1.0 INTRODUCTION

This measurement report demonstrates that the ITRONIX CORPORATION Model: IX260 Rugged Laptop PC with Sierra Wireless AirCard 555/550 Dual-Band PCS/Cellular CDMA PCMCIA Modem Card FCC ID: KBCIX260AC555 complies with the RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]) and Health Canada Safety Code 6 (see reference [2]) for the General Population environment. The test procedures described in FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]) and IC RSS-102 Issue 1 (Provisional) (see reference [4]), were employed. A description of the product, operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the various provisions of the rules are included within this test report.

2.0 DESCRIPTION of Equipment Under Test (EUT)

FCC Rule Part(s)	47 CFR §2.1093
IC Rule Part(s)	IC RSS-102 Issue 1 (Provisional)
Test Procedure	FCC OET Bulletin 65, Supplement C (01-01)
FCC Device Classification	Licensed Base Station for Part 24 (PCB)
IC Device Classification	2GHz Personal Communication Services (RSS-133 Issue 2) 800MHz CDMA Cellular Transmitter (RSS-129 Issue 2)
Device Type	Rugged Laptop PC with Sierra Wireless AirCard 555/550 Dual-Band PCS/Cellular CDMA PCMCIA Modem Card
FCC ID	KBCIX260AC555
Model(s)	IX260
Serial No.	Pre-production
Operating Mode(s)	PCS CDMA / Cellular CDMA
Tx Frequency Range	1851.25-1908.75 MHz (PCS CDMA) $824.70-848.31 \mathrm{MHz}$ (Cellular CDMA)
RF Output Power Tested	23.0 dBm Conducted (PCS CDMA) 23.0 dBm Conducted (Cellular CDMA)
Antenna Type	External Dipole (Length: 4.3 inches)
Battery Type	11.1V Lithium-Ion, 6.0Ah (Model: A2121-2)

3.0 SAR MEASUREMENT SYSTEM

Celltech Labs SAR measurement facility utilizes the Dosimetric Assessment System (DASY ${ }^{\mathrm{TM}}$) manufactured by Schmid \& Partner Engineering AG (SPEAG ${ }^{\top M}$) of Zurich, Switzerland. The DASY system is comprised of the robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. The DAE3 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 -bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

DASY3 SAR Measurement System with SAM phantom

Figure 1. DASY3 Compact Version - Side View

4.0 MEASUREMENT SUMMARY

The measurement results were obtained with the EUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the EUT are reported in Appendix A.

BODY SAR MEASUREMENT RESULTS - PCS CDMA										
Freq. (MHz)	Channel	Mode	Conducted Power (dBm)			Phantom Section	Antenna Position to Planar Phantom	Laptop PC Position to Planar Phantom	Separation Distance (cm)	Measured SAR 1g (W/kg)
			Before	After						
1880.00	600	$\begin{aligned} & \hline \text { PCS } \\ & \text { CDMA } \end{aligned}$	23.0	22.9		Planar	Parallel (Stowed)	Back of LCD (LCD Closed)	0.0	0.628
1880.00	600	$\begin{gathered} \hline \text { PCS } \\ \text { CDMA } \end{gathered}$	23.0	22.9		Planar	Perpendicular (180 ${ }^{\circ}$)	Back of LCD (LCD Closed)	0.0	0.0720
1880.00	600	$\begin{aligned} & \hline \text { PCS } \\ & \text { CDMA } \end{aligned}$	23.0	22.9		Planar	Parallel (Stowed)	Bottom Side of PC (LCD Closed)	0.0	0.0336
1880.00	600	$\begin{gathered} \hline \text { PCS } \\ \text { CDMA } \end{gathered}$	23.0	22.9		Planar	Perpendicular (Extended)	Bottom Side of PC (LCD Closed)	0.0	0.0378
1880.00	600	$\begin{aligned} & \hline \text { PCS } \\ & \text { CDMA } \end{aligned}$	23.0	22.8		Planar	Parallel (Stowed)	Right Side of LCD (LCD Closed)	1.5	0.496
1880.00	600	$\begin{gathered} \hline \text { PCS } \\ \text { CDMA } \end{gathered}$	23.0	22.9		Planar	Parallel (Extended)	Right side of LCD (LCD Closed)	1.5	0.146
ANSI / IEEE C95.1 1992 - SAFETY LIMIT BODY: 1.6 W/kg (averaged over 1 gram) Spatial Peak - Uncontrolled Exposure / General Population										
Test Date(s)			10/31/02				Relative Humidity		68 \%	
Measured Mixture Type			1900MHz Muscle				Atmospheric Pressure		103.4 kPa	
Dielectric Constant ε_{r}			IEEE Target		Measured		Ambient Temperature		$22.2{ }^{\circ} \mathrm{C}$	
			$53.3 \pm 5 \%$		53.3		Fluid Temperature		$21.4{ }^{\circ} \mathrm{C}$	
Conductivity σ (mho/m)			IEEE Target		Measured		Fluid Depth		$\geq 15 \mathrm{~cm}$	
			$1.52 \pm 5 \%$		1.51		$\rho\left(\mathrm{Kg} / \mathrm{m}^{3}\right)$		1000	

Note(s):

1. If the SAR measurements performed at the middle channel were $\geq 3 \mathrm{~dB}$ below the SAR limit, SAR evaluation for the low and high channels was optional for each test configuration (per FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3])).
2. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures listed in the table above were consistent for all measurement periods.

MEASUREMENT SUMMARY (Cont.)

BODY SAR MEASUREMENT RESULTS - Cellular CDMA										
Freq. (MHz)	Channel	Mode	Conducted Power (dBm)			Phantom Section	Antenna Position to Planar Phantom	Laptop PC Position to Planar Phantom	Separation Distance (cm)	Measured SAR 1g (W/kg)
			Before	After						
835.89	363	CDMA	23.0	23.0		Planar	Parallel (Stowed)	Back of LCD (LCD Closed)	0.0	0.391
835.89	363	CDMA	23.0	22.9		Planar	Perpendicular (180°)	Back of LCD (LCD Closed)	0.0	0.0391
835.89	363	CDMA	23.0	23.0		Planar	Parallel (Stowed)	Bottom Side of PC (LCD Closed)	0.0	0.0069
835.89	363	CDMA	23.0	22.9		Planar	Perpendicular (Extended)	Bottom Side of PC (LCD Closed)	0.0	0.0157
835.89	363	CDMA	23.0	23.0		Planar	Parallel (Stowed)	Right Side of LCD (LCD Closed)	1.5	0.119
835.89	363	CDMA	23.0	22.8		Planar	$\begin{gathered} \text { Parallel } \\ \text { (Extended) } \end{gathered}$	Right side of LCD (LCD Closed)	1.5	0.275
ANSI / IEEE C95.1 1992 - SAFETY LIMIT BODY: 1.6 W/kg (averaged over 1 gram) Spatial Peak - Uncontrolled Exposure / General Population										
Test Date(s)			11/01/02				Relative Humidity		66 \%	
Measured Mixture Type			835MHz Muscle				Atmospheric Pressure		103.3 kPa	
Dielectric Constant ε_{r}			IEEE Target		Measured		Ambient Temperature		$22.2{ }^{\circ} \mathrm{C}$	
			$55.2 \pm 5 \%$		53.3		Fluid Temperature		$22.0{ }^{\circ} \mathrm{C}$	
Conductivity σ (mho/m)			IEEE Target		Measured		Fluid Depth		$\geq 15 \mathrm{~cm}$	
			$0.97 \pm 5 \%$		0.96		$\rho\left(\mathrm{Kg} / \mathrm{m}^{3}\right)$		1000	

Note(s):

1. If the SAR measurements performed at the middle channel were $\geq 3 \mathrm{~dB}$ below the SAR limit, SAR evaluation for the low and high channels was optional for each test configuration (per FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]).
2. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures listed in the table above were consistent for all measurement periods.

5.0 DETAILS OF SAR EVALUATION

The ITRONIX CORPORATION Model: IX260 Rugged Laptop PC with Sierra Wireless AirCard 555/550 Dual-Band PCS/Cellular CDMA PCMCIA Modem Card FCC ID: KBCIX260AC555 was found to be compliant for localized Specific Absorption Rate based on the following test provisions and conditions described below. The detailed test setup photographs are shown in Appendix G.

1. The EUT was tested for body SAR with the LCD display closed and the back of the LCD display facing parallel to, and touching, the outer surface of the planar phantom. The EUT was tested with the antenna in both the parallel (stowed) and perpendicular $\left(180^{\circ}\right)$ positions to the outer surface of the planar phantom.
2. The EUT was tested for body SAR with the LCD display closed and the bottom of the Laptop PC facing parallel to, and touching, the outer surface of the planar phantom. The EUT was tested with the antenna in both the parallel (stowed) and perpendicular (extended) positions to the outer surface of the planar phantom.
3. The EUT was tested for body SAR with the LCD display closed and the right side of the LCD display (antenna side) facing parallel to the outer surface of the planar phantom and a 1.5 cm separation distance between the antenna and the planar phantom. The EUT was tested with the antenna parallel to the outer surface of the planar phantom in both the stowed and extended positions.
4. The EUT was operated for an appropriate period prior to the evaluation to minimize power drift.
5. The conducted power levels were measured before and after each test using a Gigatronics 8652A Universal Power Meter according to the procedures described in FCC 47 CFR §2.1046. If the conducted power levels measured after each evaluation varied more than 5% from the initial power level, then the EUT was retested. Any unusual anomalies over the course of the test also warranted a re-evaluation.
6. The EUT was controlled in test mode via internal software. SAR measurements were performed with the EUT transmitting continuously at maximum power with a modulated CDMA signal.
7. The location of the maximum spatial SAR distribution (Hot Spot) was determined relative to the device and antenna.
8. The EUT was tested with a fully charged battery.
9. Due to the dimensions of the EUT, a stack of low-density, low-loss dielectric foamed polystyrene was used in place of the device holder.
10. Due to the dimensions of the EUT the coarse scans did not cover the entire area of the Laptop PC. Subsequently, a second coarse scan was performed for the highest SAR configurations to show there were no secondary peak SAR locations within 3dB of the primary peak values. Please note that the second coarse scans were performed at a later date than the original primary scans, based on a request from Martin Perrine during the original application review to provide the secondary scans. At this time there is no phantom available that is twice the dimensions of the Laptop PC.

6.0 EVALUATION PROCEDURES

a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated in accordance with FCC OET Bulletin 65, Supplement C (Edition 01-01) using the SAM phantom.
(ii) For body-worn and face-held devices a planar phantom was used.
b. The SAR was determined by a pre-defined procedure within the DASY3 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of $20 \mathrm{~mm} x$ 20 mm .
c. Based on the area scan data, the area of maximum absorption was determined by spline interpolation. Around this point, a volume of $40 \times 40 \times 35 \mathrm{~mm}$ (fine resolution volume scan, zoom scan) was assessed by measuring $5 \times 5 \times 7$ points.
d. The 1 g and 10 g spatial peak SAR was determined as follows:

1. The first step was an extrapolation to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away form the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm (see probe calibration document in Appendix D). The extrapolation was based on a least square algorithm [W. Gander, Computermathematik, p.168-180] (see reference [6]). Through the points in the first 3 cm in all z-axis, polynomials of the fourth order were calculated. This polynomial was then used to evaluate the points between the surface and the probe tip.
2. The next step used 3D-spline interpolation to get all points within the measured volume in a 1 mm grid (35000 points). The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition [W. Gander, Computermathematik, p.141-150] (x, y and z-direction) [Numerical Recipes in C, Second Edition, p.123ff] (see reference [6]).
3. The maximal interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed using the 3D-spline interpolation algorithm. 8000 points ($20 \times 20 \times 20$) were interpolated to calculate the average.

EVALUATION PROCEDURES (Cont.)

Figure 2. Phantom Reference Point \& EUT Positioning Back Side of LCD Display (Closed)

Bottom Side of Laptop PC X-axis Antenna Parallel to Planar Phantom (Stowed)
Figure 3. Phantom Reference Point \& EUT Positioning Bottom Side of Laptop PC (LCD Display Closed)

Right Side of LCD Display
X-axis
Antenna Parallel to Planar Phantom (Stowed)
Figure 4. Phantom Reference Point \& EUT Positioning Right Side of LCD Display (Closed)

Figure 5. Phantom Reference Point \& EUT Positioning Right Side of LCD Display (Closed)

7.0 SYSTEM PERFORMANCE CHECK

Prior to the assessment a system check was performed in the planar section of the SAM phantom with an 1800 MHz dipole and a 900 MHz dipole (see Appendix C for system validation procedures). The fluid dielectric parameters were measured prior to the system check using an 85070C Dielectric Probe Kit and an 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of $\pm 10 \%$ (see Appendix B for system check test plots).

SYSTEM PERFORMANCE CHECK											
Test Date	Equiv. Tissue	SAR 1g (W/kg)		Dielectric Constant ε_{r}		Conductivity σ (mho/m)		$\underset{\left(\mathrm{Kg} / \mathrm{m}^{3}\right)}{\rho}$	Ambient Temp.	Fluid Temp.	Fluid Depth
		IEEE Target	Measured	IEEE Target	Measured	IEEE Target	Measured				
10/31/02	$\begin{gathered} \hline 1800 \mathrm{MHz} \\ \text { (Brain) } \end{gathered}$	$9.53 \pm 10 \%$	9.61	$40.0 \pm 5 \%$	40.9	$1.40 \pm 5 \%$	1.35	1000	$22.2{ }^{\circ} \mathrm{C}$	$21.4{ }^{\circ} \mathrm{C}$	$\geq 15 \mathrm{~cm}$
11/01/02	$900 \mathrm{MHz}$ (Brain)	$2.70 \pm 10 \%$	2.64	$41.5 \pm 5 \%$	40.1	$0.97 \pm 5 \%$	0.96	1000	$22.2{ }^{\circ} \mathrm{C}$	$22.0{ }^{\circ} \mathrm{C}$	$\geq 15 \mathrm{~cm}$

Note(s):

1. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the system performance check. The temperatures listed in the table above were consistent for all measurement periods.

Figure 6. System Check Setup Diagram

900MHz System Check Setup

8.0 EQUIVALENT TISSUES

The $1800-2000 \mathrm{MHz}$ simulated tissues consist of Glycol-monobutyl, water, and salt. The 835 MHz and 900 MHz simulated tissues consist of a viscous gel using hydroxethylcellulose (HEC) gelling agent and saline solution. Preservation with a bactericide was added and visual inspection was made to ensure air bubbles were not trapped during the mixing process. The fluids were prepared according to standardized procedures and measured for dielectric parameters (permittivity and conductivity).

1800-2000MHz TISSUE MIXTURES (1 Liter Yields)		
INGREDIENT	1800MHz Brain (System Check)	1900MHz Body (EUT Evaluation)
Water	548.0 g	716.60 g
Glycol Monobutyl	448.5 g	300.70 g
Salt	3.20 g	3.10 g

835MHz \& 900MHz TISSUE MIXTURES		
INGREDIENT	900MHz Brain (System Check)	835MHz Body (EUT Evaluation)
Water	40.71%	53.70%
Sugar	56.63%	45.10%
Salt	1.48%	0.97%
HEC	1.00%	0.13%
Bactericide	0.18%	0.10%

9.0 SAR SAFETY LIMITS

	SAR (W/kg)	
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average (averaged over the whole body)	0.08	0.4
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0

Notes:

1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
2. Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

10.0 ROBOT SYSTEM SPECIFICATIONS

Specifications

POSITIONER:
Repeatability:
No. of axis:

Stäubli Unimation Corp. Robot Model: RX60L
0.02 mm

6

Data Acquisition Electronic (DAE) System

Cell Controller
Processor: Pentium III

Clock Speed: $\quad 450 \mathrm{MHz}$
Operating System: Windows NT
Data Card: DASY3 PC-Board
Data Converter
Features:
Signal Amplifier, multiplexer, A/D converter, and control logic
Software:
Connecting Lines: Optical downlink for data and status info.
Optical uplink for commands and clock

PC Interface Card

Function:
24 bit (64 MHz) DSP for real time processing Link to DAE3
16-bit A/D converter for surface detection system serial link to robot direct emergency stop output for robot

E-Field Probe

Model:
ET3DV6
Serial No.(s): 1387, 1590
Construction:
Triangular core fiber optic detection system
Frequency:
10 MHz to 6 GHz
Linearity:
$\pm 0.2 \mathrm{~dB}$ (30 MHz to 3 GHz)

Phantom

Type:	SAM V4.0C
Shell Material:	Fiberglass
Thickness:	$2.0 \pm 0.1 \mathrm{~mm}$
Volume:	Approx. 20 liters

11.0 PROBE SPECIFICATION (ET3DV6)

Construction:	Symmetrical design with triangular core
	Built-in shielding against static charges
	PEEK enclosure material (resistant to organic solvents, e.g. glycol)
Calibration:	In air from 10 MHz to 2.5 GHz
	In brain simulating tissue at frequencies of 900 MHz and 1.8 GHz (accuracy $+8 \%$)
Frequency:	10 MHz to $>6 \mathrm{GHz}$; Linearity: $\pm 0.2 \mathrm{~dB}$
	(30 MHz to 3 GHz)
Directivity:	$\pm 0.2 \mathrm{~dB}$ in brain tissue (rotation around probe axis)
	$\pm 0.4 \mathrm{~dB}$ in brain tissue (rotation normal to probe axis)
Dynam. Rnge:	$5 \mu \mathrm{~W} / \mathrm{g}$ to $>100 \mathrm{~mW} / \mathrm{g}$; Linearity: $\pm 0.2 \mathrm{~dB}$
Srfce. Detect.	$\pm 0.2 \mathrm{~mm}$ repeatability in air and clear liquids over
	diffuse reflecting surfaces
Dimensions:	Overall length: 330 mm
	Tip length: 16 mm
	Body diameter: 12 mm
	Tip diameter: 6.8 mm
	Distance from probe tip to dipole centers: 2.7 mm
Application:	General dosimetry up to 3 GHz
	Compliance tests of mobile phone

SAM Phantom

14.0 TEST EQUIPMENT LIST

SAR MEASUREMENT SYSTEM		
EQUIPMENT	SERIAL NO.	CALIBRATION DATE
DASY3 System -Robot -ET3DV6 E-Field Probe -ET3DV6 E-Field Probe -300MHz Validation Dipole -450MHz Validation Dipole -900 MHz Validation Dipole -1800 MHz Validation Dipole -2450MHz Validation Dipole -SAM Phantom V4.0C -Small Planar Phantom -Medium Planar Phantom -Large Planar Phantom	599396-01 1387 1590 135 136 054 247 150 N/A N/A N/A N/A	N/A Feb 2002 Dec 2002 Oct 2002 Oct 2002 June 2001 June 2001 Oct 2002 N/A N/A N/A N/A
85070C Dielectric Probe Kit	N/A	N/A
Gigatronics 8652A Power Meter -Power Sensor 80701A -Power Sensor 80701A	$\begin{aligned} & 1835272 \\ & 1833535 \\ & 1833542 \end{aligned}$	Feb 2003 Feb 2003 Mar 2002
Pasternack Attenuator (30dB, 2W)	PE7014-30	N/A
E4408B Spectrum Analyzer	US39240170	Nov 2002
8594E Spectrum Analyzer	3543A02721	Feb 2003
8753E Network Analyzer	US38433013	Feb 2003
8648D Signal Generator	3847A00611	Feb 2003
5S1G4 Amplifier Research Power Amplifier	26235	N/A

15.0 MEASUREMENT UNCERTAINTIES

Error Description	Uncertainty Value $\pm \%$	Probability Distribution	Divisor	$\begin{gathered} c_{i} \\ 1 \mathrm{~g} \end{gathered}$	Standard Uncertainty $\pm \%$ (1g)	V_{i} or $\mathrm{V}_{\text {eff }}$
Measurement System						
Probe calibration	± 4.8	Normal	1	1	± 4.8	∞
Axial isotropy of the probe	± 4.7	Rectangular	$\sqrt{ } 3$	(1-cp)	± 1.9	∞
Spherical isotropy of the probe	± 9.6	Rectangular	$\sqrt{3}$	(c_{p})	± 3.9	∞
Spatial resolution	± 0.0	Rectangular	$\sqrt{3}$	1	± 0.0	∞
Boundary effects	± 5.5	Rectangular	$\sqrt{3}$	1	± 3.2	∞
Probe linearity	± 4.7	Rectangular	$\sqrt{3}$	1	± 2.7	∞
Detection limit	± 1.0	Rectangular	$\sqrt{ } 3$	1	± 0.6	∞
Readout electronics	± 1.0	Normal	1	1	± 1.0	∞
Response time	± 0.8	Rectangular	$\sqrt{3}$	1	± 0.5	∞
Integration time	± 1.4	Rectangular	$\sqrt{3}$	1	± 0.8	∞
RF ambient conditions	± 3.0	Rectangular	$\sqrt{ } 3$	1	± 1.7	∞
Mech. constraints of robot	± 0.4	Rectangular	$\sqrt{ } 3$	1	± 0.2	∞
Probe positioning	± 2.9	Rectangular	$\sqrt{3}$	1	± 1.7	∞
Extrapolation \& integration	± 3.9	Rectangular	$\sqrt{ } 3$	1	± 2.3	∞
Test Sample Related						
Device positioning	± 6.0	Normal	$\sqrt{ } 3$	1	± 6.7	12
Device holder uncertainty	± 5.0	Normal	$\sqrt{ } 3$	1	± 5.9	8
Power drift	± 5.0	Rectangular	$\sqrt{ } 3$		± 2.9	∞
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	$\sqrt{3}$	1	± 2.3	∞
Liquid conductivity (target)	± 5.0	Rectangular	$\sqrt{ } 3$	0.6	± 1.7	∞
Liquid conductivity (measured)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	∞
Liquid permittivity (target)	± 5.0	Rectangular	$\sqrt{ } 3$	0.6	± 1.7	∞
Liquid permittivity (measured)	± 5.0	Rectangular	$\sqrt{ } 3$	0.6	± 1.7	∞
Combined Standard Uncertainty					± 13.7	
Expanded Uncertainty (k=2)					± 27.5	

Measurement Uncertainty Table in accordance with IEEE Std 1528 (Draft - see Reference [5])

16.0 REFERENCES

[1] Federal Communications Commission, "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093: 1999.
[2] Health Canada, "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6.
[3] Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
[4] Industry Canada, "Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields", Radio Standards Specification RSS-102 Issue 1 (Provisional): September 1999.
[5] IEEE Standards Coordinating Committee 34, Std 1528-200X, "DRAFT Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques".
[6] W. Gander, Computermathematick, Birkhaeuser, Basel: 1992.

APPENDIX A - SAR MEASUREMENT DATA

Itronix Corporation FCC ID: KBCIX260AC555
SAM Phantom; Flat Section; Position: $\left(0^{\circ}, 0^{\circ}\right)$
Probe: ET3DV6 - SN1387; ConvF(5.00,5.00,5.00); Crest f Probe: ET3DV6 - SN1387; $\operatorname{ConvF}(5.00,5.00,5.00)$; Crest factor: 1.0
1900 MHz Muscle: $\sigma=1.51 \mathrm{mho} / \mathrm{m} \varepsilon_{\mathrm{r}}=53.3 \rho=1.00 \mathrm{~g} / \mathrm{cm}^{3}$ Coarse: $\mathrm{Dx}=15.0, \mathrm{Dy}=15.0, \mathrm{Dz}=10.0$
Cube $5 \times 5 \times 7$; Powerdrift: -0.08 dB
SAR (1g): $0.628 \mathrm{~mW} / \mathrm{g}$, SAR (10g): 0.311
Body SAR - Back of LCD Display (Closed) - Antenna Parallel to Planar Phantom (Stowed Position) 0.0 cm Separation Distance from Back of LCD Display to Planar Phantom
with Sierra Wireless AirCard 555 PCS/Cellular CDMA Modem Card
PCS CDMA Mode
Channel 600 [1880.00 MHz] Conducted Power: 23.0 dBm Ambient Temp: $22.2^{\circ} \mathrm{C}$; Fluid Temp: $21.4^{\circ} \mathrm{C}$
Date Tested: October 31, 2002

Z-Axis Extrapolation at Peak SAR Location
Body SAR - Back of LCD Display (Closed) - Antenna Parallel to Planar Phantom (Stowed Position) .0 cm Separation Distance from Back of LCD Display to Planar Phantom
Itronix IX260 Rugged Laptop PC
with Sierra Wireless AirCard 555 PCS/Cellular CDMA Modem Card

$$
\text { Channel } 600 \text { [1880.00 MHz] }
$$

$$
\begin{gathered}
\text { Ambient Temp: } 22.2^{\circ} \mathrm{C} \text {; Fluid Temp: } 21.4^{\circ} \mathrm{C} \\
\text { Date Tested: October } 31.2002
\end{gathered}
$$

Itronix Corporation FCC ID: KBCIX260AC555
SAM Phantom; Flat Section; Position: $\left(270^{\circ}, 0^{\circ}\right)$
Probe: ET3DV6 - SN1387; ConvF(5.00,5.00,5.00); Crest fa
Probe: ET3DV6 - SN1387; ConvF($5.00,5.00,5.00)$; Crest factor: 1.0
1900 MHz Muscle: $\sigma=1.51 \mathrm{mho} / \mathrm{m} \varepsilon_{\mathrm{r}}=53.3 \rho=1.00 \mathrm{~g} / \mathrm{cm}^{3}$ Coarse: $\mathrm{Dx}=15.0, \mathrm{Dy}=15.0, \mathrm{Dz}=10.0$
SAR (1 g): $0.0720 \mathrm{~mW} / \mathrm{g}$, SAR (10 g): $0.0435 \mathrm{~mW} / \mathrm{g}$
Body SAR - Back of LCD Display (Closed) - Antenna Perpendicular to Planar Phantom (180°) 0.0 cm Separation Distance from Back of LCD Display to Planar Phantom
with Sierra Wireless AirCard 555 PCS/Cellular CDMA Modem Card
PCS CDMA Mode
Channel 600 [1880.00 MHz] Conducted Power: 23.0 dBm Ambient Temp: $22.2^{\circ} \mathrm{C}$; Fluid Temp: $21.4^{\circ} \mathrm{C}$ Date Tested: October 31, 2002

Itronix Corporation FCC ID: KBCIX260AC555
SAM Phantom; Flat Section; Position: $\left(270^{\circ}, 0^{\circ}\right)$
Probe: ET3DV6 - SN1387; ConvF(5.00,5.00,5.00); Crest fa
Probe: ET3DV6 - SN1387; ConvF(5.00,5.00,5.00); Crest factor: 1.0
1900 MHz Muscle: $\sigma=1.51 \mathrm{mho} / \mathrm{m} \varepsilon_{\mathrm{r}}=53.3 \rho=1.00 \mathrm{~g} / \mathrm{cm}^{3}$ Coarse: $\mathrm{Dx}=15.0, \mathrm{Dy}=15.0, \mathrm{Dz}=10.0$
SAR (1 g): $0.0378 \mathrm{~mW} / \mathrm{g}$, SAR (10 g): $0.0229 \mathrm{~mW} / \mathrm{g}$
Body SAR - Bottom of Laptop PC (LCD Display Closed) - Antenna Perpendicular to Planar Phantom (Extended Position) 0.0 cm Separation Distance from Bottom of Laptop PC to Planar Phantom
with Sierra Wireless AirCard 555 PCS/Cellular CDMA Modem Card
PCS CDMA Mode
Channel 600 [1880.00 MHz]
Conducted Power: 23.0 dBm
Ambient Temp: $22.2^{\circ} \mathrm{C}$; Fluid Temp: $21.4^{\circ} \mathrm{C}$
Date Tested: October 31, 2002

Itronix Corporation FCC ID: KBCIX260AC555 SAM Phantom; Flat Section; Position: $\left(0^{\circ}, 0^{\circ}\right)$
Probe: ET3DV6 - SN1590; ConvF(5.30,5.30,5.30); Crest $\begin{gathered}\text { Probe: ET3DV6 - SN1590; } \operatorname{ConvF}(5.30,5.30,5.30) ; \text { Crest factor: } 1.0 \\ 1900 \mathrm{MHz} \text { Muscle: } \sigma=1.53 \mathrm{mho} / \mathrm{m} \varepsilon_{\mathrm{r}}=52.1 \rho=1.00 \mathrm{~g} / \mathrm{cm}^{3} \\ \text { Coarse: } \mathrm{Dx}\end{gathered}=15.0, \mathrm{Dy}=15.0, \mathrm{Dz}=10.0 \mathrm{l}$
Body SAR - Bottom of Laptop PC (LCD Display Closed) - Antenna Perpendicular to Planar Phantom (Extended Position) cm Separation Distance from Bottom of Laptop PC to Planar Phantom
Itronix IX260 Rugged Laptop PC
with Sierra Wireless AirCard 555 PCS/Cellular CDMA Modem Card PCS CDMA Mode
Channel 600 [1880.00 M

$$
\begin{gathered}
\text { Ambient Temp: } 23.2^{\circ} \mathrm{C} \text {; Fluid Temp: } 22.2^{\circ} \mathrm{C} \\
\text { Date Tested: February } 19,2003
\end{gathered}
$$

Coarse scan to show Left Half of Bottom Side

Itronix Corporation FCC ID: KBCIX260AC555
SAM Phantom; Flat Section; Position: $\left(0^{\circ}, 0^{\circ}\right)$
Probe: ET3DV6 - SN1387; ConvF(5.00,5.00,5.00); Crest f
Probe: ET3DV6 - SN1387; ConvF(5.00,5.00,5.00); Crest factor: 1.0
1900 MHz Muscle: $\sigma=1.51 \mathrm{mho} / \mathrm{m} \varepsilon_{\mathrm{r}}=53.3 \rho=1.00 \mathrm{~g} / \mathrm{cm}^{3}$
Coarse: $\mathrm{Dx}=15.0, \mathrm{Dy}=15.0, \mathrm{Dz}=10.0$
Cube $5 \times 5 \times 7$; Powerdrift: -0.18 dB
SAR (1 g): $0.469 \mathrm{~mW} / \mathrm{g}$, SAR (10 g): $0.250 \mathrm{~mW} / \mathrm{g}$
Body SAR - Right Side of LCD Display (Closed) - Antenna Parallel to Planar Phantom (Stowed Position) 1.5 cm Separation Distance from Antenna to Planar Phantom Itronix IX260 Rugged Laptop PC
with Sierra Wireless AirCard 555 PCS/Cellular CDM Card 555 PCS/Cellular CDMA Modem Card
PCS CDMA Mode Channel 600 [1880.00 MHz] Conducted Power: 23.0 dBm
 Ambient Temp: $22.2^{\circ} \mathrm{C}$; Fluid Temp: $21.4^{\circ} \mathrm{C}$ Date Tested. October 31, 2002

Itronix Corporation FCC ID: KBCIX260AC555 SAM Phantom; Flat Section; Position: $\left(270^{\circ}, 0^{\circ}\right)$
Probe: ET3DV6 - SN1387; ConvF(6.30,6.30,6.30); Crest factor: 1.0 835 MHz Muscle: $\sigma=0.96 \mathrm{mho} / \mathrm{m} \varepsilon_{\mathrm{r}}=53.3 \rho=1.00 \mathrm{~g} / \mathrm{cm}^{3}$
Coarse: $\mathrm{Dx}=15.0, \mathrm{Dy}=15.0, \mathrm{Dz}=10.0$
Cube $5 \times 5 \times 7$; Powerdrift: 0.02 dB
SAR (1g): $0.391 \mathrm{~mW} / \mathrm{g}$, SAR (10 g): 0.233
Body SAR - Back of LCD Display (Closed) - Antenna Parallel to Planar Phantom (Stowed Position) 0.0 cm Separation Distance from Back of LCD Display to Planar Phantom
with Sierra Wireless AirCard 555 PCS/Cellular CDMA Modem Card
Cellular CDMA Mode
Channel 363 [835.89 MHz]
Ambient Temp: $22.2^{\circ} \mathrm{C}$; Fluid Temp: $22.0^{\circ} \mathrm{C}$
Date Tested: November 01, 2002

Celltech Labs Inc.
Itronix Corporation FCC ID: KBCIX260AC555
SAM Phantom; Flat Section; Position: $\left(0^{\circ}, 0^{\circ}\right)$
Probe: ET3DV6 - SN1590; ConvF(6.70,6.70,6.70); Crest f
Probe: ET3DV6 - SN1590; $\operatorname{ConvF}(6.70,6.70,6.70)$; Crest factor: 1.0
835 MHz Muscle: $\sigma=0.97 \mathrm{mho} / \mathrm{m} \varepsilon_{\mathrm{r}}=53.9 \rho=1.00 \mathrm{~g} / \mathrm{cm}^{3}$
Coarse: $\mathrm{Dx}=15.0, \mathrm{Dy}=15.0, \mathrm{Dz}=10.0$
Body SAR - Back of LCD Display (Closed) - Antenna Parallel to Planar Phantom (Stowed Position) 0.0 cm Separation Distance from Back of LCD Display to Planar Phantom
with Sierra Wireless AirCard 555 PCS/Cellular CDMA Modem Card
Cellular CDMA Mode Channel 363 [835.89 MHz]
Ambient Temp: $23.2^{\circ} \mathrm{C}$; Fluid Temp: $22.4^{\circ} \mathrm{C}$
Coarse scan to show Left Half of LCD Display (Back Side)

Body SAR - Back of LCD Display (Closed) - Antenna Parallel to Planar Phantom (Stowed Position) .0 cm Separation Distance from Back of LCD Display to Planar Phantom
Itronix IX260 Rugged Laptop PC
with Sierra Wireless AirCard 555 PCS/Cellular CDMA Modem Card Cellular CDMA Mode
Channel 363 [835.89 MHz] Ambient Temp: $22.2^{\circ} \mathrm{C}$; Fluid Temp: $22.0^{\circ} \mathrm{C}$
Date Tested: November 01,2002

Itronix Corporation FCC ID: KBCIX260AC555 SAM Phantom; Flat Section; Position: $\left(270^{\circ}, 0^{\circ}\right)$ Probe: ET3DV6 - SN1387; ConvF(6.30,6.30,6.30); Crest factor: 1.0 835 MHz Muscle: $\sigma=0.96 \mathrm{mho} / \mathrm{m} \varepsilon_{\mathrm{r}}=53.3 \rho=1.00 \mathrm{~g} / \mathrm{cm}^{3}$ Coarse: $\mathrm{Dx}=15.0, \mathrm{Dy}=15.0, \mathrm{Dz}=10.0$
Cube $5 \times 5 \times 7$; Powerdrift: -0.13 dB
SAR (1g): $0.0391 \mathrm{~mW} / \mathrm{g}$, SAR (10 g): 0.024
Body SAR - Back of LCD Display (Closed) - Antenna Perpendicular to Planar Phantom (180°) 0.0 cm Separation Distance from Back of LCD Display to Planar Phantom
with Sierra Wireless AirCard 555 PCS/Cellular CDMA Modem Card
Cellular CDMA Mode Channel 363 [835.89 MHz]
Ambient Temp: $22.2^{\circ} \mathrm{C}$; Fluid Temp: $22.0^{\circ} \mathrm{C}$
Date Tested: November 01, 2002

Itronix Corporation FCC ID: KBCIX260AC555
SAM Phantom; Flat Section; Position: $\left(270^{\circ}, 0^{\circ}\right)$
Probe: ET3DV6 - SN1387; $\operatorname{ConvF}(6.30,6.30,6.30) ;$ Crest factor: 1.0
835 MHz Muscle: $\sigma=0.96 \mathrm{mho} / \mathrm{m} \varepsilon_{\mathrm{r}}=53.3 \rho=1.00 \mathrm{~g} / \mathrm{cm}^{3}$
Coarse: $\mathrm{Dx}=15.0$, Dy $=15.0, \mathrm{Dz}=10.0$
Cube $5 \mathrm{x} 5 \mathrm{x} 7 ;$ Powerdrift: -0.03 dB
SAR $(1 \mathrm{~g}): 0.0069 \mathrm{~mW} / \mathrm{g}$, SAR $(10 \mathrm{~g}): 0.0049 \mathrm{~mW} / \mathrm{g}$
Body SAR - Bottom of Laptop PC (LCD Display Closed) - Antenna Parallel to Planar Phantom (Stowed Position) Itronix IX260 Rugged Laptop PC
with Sierra Wireless AirCard 555 PCS/Cellular CDMA Modem Card Cellular CDMA Mode Channel 363 [835.89 MHz]

Ambient Temp: $22.2^{\circ} \mathrm{C}$; Fluid Temp: $22.0^{\circ} \mathrm{C}$
Date Tested: November 01, 2002

