Collhada	Date(s) of Evaluation May 12 & 14, 2008	<u>Test Report Serial No.</u> 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
Testrg and Engineering Services Lat	<u>Test Report Issue Date</u> July 08, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Test Lab Certificate No. 2470.01

SAR	SAR TEST REPORT (FCC/IC)								
RF EXPOSURE EVALU	IATION			SPECIFIC	ABSO	RPTION RATE			
APPLICANT	(GENE	RAL DYNAMICS ITRONIX CORPORATION						
DEVICE UNDER TEST (DUT)	DUAL-	BAND) GPRS/EDGE/WCDMA MINI-PCI EXPRESS CARD						
DEVICE MODEL(S)	IX-MC8775								
DEVICE IDENTIFIER(S)	FCC ID:	K	BCIX-N	AC8775	IC:	1943A-MC8775			
HOST PC	GD ITF	RONIX		RUGGED H	ANDHE	D PC MODEL: IX750			
APPLICATION TYPE	Clas	s II P	ermiss	ive Change	(LMA) - A	Add IX750 Host PC			
				FCC 47 CF	R §2.109	3			
			Hea	Ith Canada	Safety Co	ode 6			
		FCC	C OET E	Bulletin 65, S	Suppleme	ent C (01-01)			
PROCEDURE(S) APPLIED	FCC OET	SAR	Measu	ement Proc	edures fo	or 3G Devices (Rev. 2.0)			
			Indus	try Canada	RSS-102	Issue 2			
				IEEE 152	28-2003				
FCC DEVICE CLASSIFICATION(S)	PCS Licensed Transmitter (PCB) 47 CFR §24 Subpar					47 CFR §24 Subpart E			
	2 GHz Personal Communication Services RSS-133 Issue 4								
IC DEVICE CLASSIFICATION(S)	800 MHz Cellular Telephones Employing New Technologies				RSS-132 Issue 2				
RF EXPOSURE CATEGORY			Gener	al Populatio	on / Unco	ntrolled			
RF EXPOSURE EVALUATION(S)				Body (La	p-held)				
DATE(S) OF EVALUATION(S)				May 12 &	14, 2008				
TEST REPORT SERIAL NO.			()50708KBC-	T903-S24	IG			
TEST REPORT REVISION NO.	Revis	ion 1.	.0	Initial F	Release	July 08, 2008			
	Test	ing Pe	erforme	ed By	Test	Report Prepared By			
TEST REPORT SIGNATORIES	S Ce	ean Jo Iltech	ohnsto Labs I	n nc.	Jonathan Hughes Celltech Labs Inc.				
	C	elltec	h Com	oliance Test	ing and E	Engineering Lab			
	21-3	64 Lo	ugheed	l Road, Kelo	wna, B.C	C. V1X 7R8 Canada			
TEST LAB CONTACT INFO	Те	I.: 250)-765-70	650	F	ax: 250-765-7645			
	info@) Cellto	echlabs	s.com	ww	w.celltechlabs.com			
TEST LAB ACCREDITATION(S)	Test Lab Certificate No. 2470.01				0.01				

Applicant:	GD I	Itronix Corporation		FCC ID:	KBCIX-MC8775	IC:	1943A-MC8775	GENERAL DYNAMICS		
Model(s):	IX-MC	8775	DUT Type:	Dual-Band	PRS/EDGE/WCDMA Card in IX750 Handheld PC			Itronix		
2008 Celltech La	abs Inc.	This	document is not to	e reproduced in whole or in part without the prior written permission of Celltech Labs					Page 1 of 52	

Callback	Date(s) of Evaluation May 12 & 14, 2008	Test Report Serial No. 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
Testrg and Engineering Services Lat	Test Report Issue Date July 08, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Test Lab Certificate No. 2470.01

		DECLARA SAR RF EX	TION OF	COMF	LIAI	NCE TIOI	E N				
Test Lab Information	Name	CELLTECH LA	BS INC.	Addres	s 2'	21-364	Loughe	ed Road, Ke	lowna B.C. V	1X 7R8 Canada	
Applicant Information	Name	GENERAL DYN	NAMICS ITRO	NIX CORF	PORAT	TION					
Applicant mormation	Address	12825 E. Mirabe	eau Parkway,	Spokane \	/alley, '	WA 92	2216 U	SA			
Standard(s) Applied	FCC	47 CFR §2.1093	3		IC	He	alth Ca	nada Safety	Code 6		
Brocoduro(c) Applied	FCC	OET Bulletin 65,	Supplement C	; (01-01)	OET S	ET SAR Measurement Procedures for 3G Devices (Rev. 2.0)					
Procedure(s) Applied	IC	RSS-102 Issue	2		IEEE	15	28-200	3			
	FCC	PCS Licensed T	Fransmitter (P	CB)				47 CFR	§24(E)		
Device Classification(s)	IC	2 GHz Personal 800 MHz Cellula	l Communicat ar Telephones	tion Services RSS-133 I				3 Issue 4 2 Issue 2			
Application Type	FCC/IC	Class II Permiss	Add New	Host F	PC - G	D Itroni	x Corp. Ruga	ed Handheld F	PC Model: IX750		
Device Identifier(s)	FCC ID:	KBCIX-MC8775	5	IC:	194	43A-M	IC8775	Model	IX-MC877	75	
Device Under Test (DUT)	Dual-Band GPI	RS/EDGE/WCDM	A Mini-PCI Ex	press Card	Mo	odes	GPRS	S/EDGE (Mult	islot Class 12)	WCDMA (Rel. 5)	
Host PC Description	Rugged Handh	eld PC Model: IX	750	Manuf	acture	ər	Genera	al Dynamics I	tronix Corpora	ation	
	IX-WL3945 802	.11abg WLAN Mir	ni-PCI Card	FCC ID:	KBCIX		945	Does no	t co-transmit v	vith IX-MC8775	
	IX-EYXEDC C	ass 2 Bluetooth M	/odule	FCC ID	KBCIX	(-FYXF	=DC	Capable	of co-transmi	t with IX-MC8775	
Co-located Transmitter(s)	Note: The Blue transmitting an Considerations	etooth transmitter tennas; therefore for Laptop Comp	antenna outpu simultaneous uters with Ante	ut power is transmissionnas Built-	< 60/f on SAF -in on D	/f _(GHz) m R eval Display	nW and uation i / Screet	is located > s not required ns" (FCC KDE	5 cm from all d (per FCC Ol 3 616217 D01	other simultaneous ET "SAR Evaluation v01).	
Test Sample Serial No.(s)	IX-MC8775	8775 X283656128310 Productio			IX75	50 Hos	t PC	None	Identical Pro	totype	
Transmit Fraguency Panga(a)	Cell Band	824.2 - 848.8 M	DGE)		826.4 - 846.		846.6 MHz (6.6 MHz (WCDMA - FDD V)			
Transmit Frequency Range(s)	PCS Band	1850.2 - 1909.8	1850.2 - 1909.8 MHz (GPRS/EDGE) 1852.4 - 1907					- 1907.5 MH	MHz (WCDMA - FDD II)		
	Band	Mode	Fre	quency		Chani	nel	dBm	Watts	Method	
			185	0.2 MHz		512	2	29.4	0.871	Conducted (BAP)	
		GPRS	188	0.0 MHz		661		29.3	0.851	Conducted (BAP)	
	PCS		190	9.8 MHz		810)	29.1	0.813	Conducted (BAP)	
		EDGE	185	0.2 MHz		512	2	26.7	0.468	Conducted (BAP)	
Max. RF Output Power Tested		WCDMA	188	30.0 MHz		9400	0	23.7	0.234	Conducted (MAP)	
			824	4.2 MHz	2 MHz 128		3	31.4	1.38	Conducted (BAP)	
		GPRS	830	6.6 MHz		190		31.6	1.42	Conducted (BAP)	
	Cellular		848	8.8 MHz	251			31.6	1.45	Conducted (BAP)	
		EDGE	848	8.8 MHz		251		26.0	0.398	Conducted (BAP)	
		WCDMA	830	6.4 MHz		418	0	23.6	0.229	Conducted (MAP)	
Max. Duty Cycle(s) Tested	GPRS/EDGE	12.5% : 1 Slot	25% : 2 SI	ots 37.	.5% : 3	3 Slots	50	% : 4 Slots	WCDMA	100%	
Antenna Type(s) Tested	Internal (Top R	ight Side of LCD	Display) P	ower Clas	s C	Cell GP	RS: 4	PCS GPRS	:1 EDGE:	E2 WCDMA: 3	
	Lithium-ion Re	chargeable Smart	t Battery (Star	ndard Capa	acity)	7	7.4V	4.0Ah	Model:	IX750-29WHR	
Power Source(s) Tested	Note: Extended	d Capacity Smart	Battery not te	sted due to	o thickr	ness a	ind incr	eased spacin	g (2.5 cm ante	enna spacing)	
Configuration(s) Tested	1. Bottom Side	of Handheld PC	- 0.0 cm Sepa	aration Dist	ance -	LCD I	Display	Lid Fully Ext	ended - 2.0 cr	n antenna spacing	
Max. SAR Level(s) Evaluated	Body	0.164 W/kg	1g average	PCS	Band	l k	FCC/IC	SAR Limit	1.6 W/kg	1g average	
		0.139 W/Kg	1g average	Cellul	ar Ban			SAR LIMIT	1.6 VV/Kg	1g average	
Celltech Labs Inc. declares under requirements specified in FCC 47 (device was tested in accordance with SAR Measurement Procedures for accordance with the SAR system m	r its sole respo CFR §2.1093 an ith the measuren 3G Devices (R anufacturer reco	nsibility that this Id Health Canada nent standards ar ev. 2.0), Industry Immendations.	wireless dev a's Safety Coo nd procedures Canada RSS	vice is con de 6 for the specified S-102 Issue	mpliant e Gene in FCC e 2 and	it with eral Po C OET nd IEE	the Sj opulatic Bulletir E 1528	pecific Absor on / Uncontro 1 65, Suppler -2003. All n	ption Rate (S Iled Exposure nent C (Editio neasurements	SAR) RF exposure e environment. The n 01-01), FCC OET were performed in	
I attest to the accuracy of data. All belief. I assume full responsibility for	measurements v r the completene	vere performed by ess of these meas	y me or were surements and	made unde I vouch for	er my s the qu	supervi ualifica	ision ar itions of	nd are correct all persons t	to the best of aking them.	my knowledge and	
The results and statements contained	ed in this report p	pertain only to the	e device(s) eva	aluated.							
This test report shall not be reprodu	ced partially, or	in full, without the	prior written a	approval of	Cellte	ech Lat	os Inc.				
Test Report Approved By	Sum)	Jund	Sean Jol	nnston		I	Lab Ma	nager	Cellt	Celltech Labs Inc.	

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC8775	IC:	1943A-MC8775	GENER	RAL DYNAMICS
Model(s):	IX-MC	8775	DUT Type:	Dual-Band	GPRS/EDGE/WCDMA	Itronix			
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						s Inc.	Page 2 of 52		

	Date(s) of Evaluation May 12 & 14, 2008	<u>Test Report Serial No.</u> 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
at	<u>Test Report Issue Date</u> July 08, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Test Lab Certificate No. 2470.01

TABLE OF CONTENTS

1.0 INTRODUCTION	4
2.0 SAR MEASUREMENT SYSTEM	_ 4
3.0 OUTPUT POWER MEASUREMENTS	_ 5
OUTPUT POWER MEASUREMENTS (Cont.)	_ 6
OUTPUT POWER MEASUREMENTS (Cont.)	_ 7
OUTPUT POWER MEASUREMENTS (Cont.)	_ 8
4.0 MEASUREMENT SUMMARY	9
5.0 DETAILS OF SAR EVALUATION	10
6.0 EVALUATION PROCEDURES	10
7.0 SYSTEM PERFORMANCE CHECK	11
8.0 SIMULATED EQUIVALENT TISSUES	12
9.0 SAR LIMITS	12
10.0 ROBOT SYSTEM SPECIFICATIONS	13
11.0 PROBE SPECIFICATIONS	14
12.0 PLANAR PHANTOM	14
13.0 DEVICE HOLDER	14
14.0 TEST EQUIPMENT LIST	15
15.0 MEASUREMENT UNCERTAINTIES	16
MEASUREMENT UNCERTAINTIES (Cont.)	17
MEASUREMENT UNCERTAINTIES (Cont.)	18
MEASUREMENT UNCERTAINTIES (Cont.)	19
16.0 REFERENCES	20
APPENDIX A - SAR MEASUREMENT DATA	21
APPENDIX B - SYSTEM PERFORMANCE CHECK DATA	40
APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS	45
APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS	48
APPENDIX E - SYSTEM VALIDATION	50
APPENDIX F - PROBE CALIBRATION	51
APPENDIX G - PLANAR PHANTOM CERTIFICATE OF CONFORMITY	52

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC8775	IC:	1943A-MC8775	GENER	AL DYNAMICS	
Model(s):	IX-MC	8775	DUT Type:	Dual-Band	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC					
2008 Celltech La	abs Inc.	This	document is not to	be reproduced in	reproduced in whole or in part without the prior written permission of Celltech Labs					

Celltech

Date(s) of Evaluation	<u>Test Report Serial No.</u>	<u>Test Report Revision No.</u>	
May 12 & 14, 2008	050708KBC-T903-S24G	Rev. 1.0 (Initial Release)	
Test Report Issue Date	Description of Test(s)	<u>RF Exposure Category</u>	Test Lab Certificate No. 2470.01
July 08, 2008	Specific Absorption Rate	General Population	

1.0 INTRODUCTION

This measurement report demonstrates that the General Dynamics Itronix Corporation Model: IX-MC8775 Dual-Band GPRS/EDGE/WCDMA Mini-PCI Express Card installed in the IX750 Rugged Handheld PC complies with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]) and Health Canada's Safety Code 6 (see reference [2]) for the General Population / Uncontrolled Exposure environment. The test procedures described in FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]), FCC OET SAR Measurement Procedures for 3G Devices, Rev. 2.0 (see reference [4], Industry Canada RSS-102 Issue 2 (see reference [6]) and IEEE 1528-2003 (see reference [7]) were employed. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the various provisions of the rules are included within this test report.

2.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

Applicant:	GD It	GD Itronix Corporation		FCC ID:	KBCIX-MC8775	IC:	1943A-MC8775	GENERAL DYNAMICS	
Model(s):	IX-MC	8775	DUT Type:	Dual-Band	SPRS/EDGE/WCDMA Card in IX750 Handheld PC				
2008 Celltech La	abs Inc.	This o	document is not to	be reproduced in	is Inc.	Page 4 of 52			

	Date(s) of Evaluation May 12 & 14, 2008	Test Report Serial No. 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
Centrech	<u>Test Report Issue Date</u>	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
Testrg and Engineering Services Lat	July 08, 2008	Specific Absorption Rate	General Population	

3.0 OUTPUT POWER MEASUREMENTS

Procedure used to establish test signal

GPRS/EDGE Modes

The following setting was used to configure the Agilent 8960 Series E5515C wireless communications test set.

Service Selection > Test Mode A - Auto Slot Config. > off Main Service > Packet Data Network Support > GSM+GPRS Slot Config > 33 dBm (GSM850) & 30 dBm (GSM1900) BAP: Burst Average Power Pavg: Average power over all time slots

Band	Channel	Frequency (MHz)	GPRS								
			1 Slot		2 Slots		3 Slots		4 Slots		
			BAP (dBm)	Pavg (dBm)	BAP (dBm)	Pavg (dBm)	BAP (dBm)	Pavg (dBm)	BAP (dBm)	Pavg (dBm)	
GSM 850	128	824.2	31.4		31.4		28.3		25.3		
	190	836.6	31.6	22.0	31.5	25.0	28.5	23.8	25.5	22.1	
	251	848.8	31.6		31.6		28.5		25.6		

Band	Channel	Frequency (MHz)	EDGE								
			1 Slot		2 Slots		3 Slots		4 Slots		
			BAP (dBm)	Pavg (dBm)	BAP (dBm)	Pavg (dBm)	BAP (dBm)	Pavg (dBm)	BAP (dBm)	Pavg (dBm)	
GSM 850	128	824.2	27.1		27.1		27.1		26.1		
	190	836.6	27.2	17.1	27.2	20.1	27.2	21.8	26.0	22.7	
	251	848.8	27.2		27.2		27.2		26.0		

Band		nel Frequency (MHz)	GPRS								
	Channel		1 Slot		2 Slots		3 Slots		4 Slots		
			BAP (dBm)	Pavg (dBm)	BAP (dBm)	Pavg (dBm)	BAP (dBm)	Pavg (dBm)	BAP (dBm)	Pavg (dBm)	
GSM 1900	512	1850.2	29.5		29.5		29.5		29.4		
	661	1880.0	29.3	19.8	29.2	22.8	29.1	24.4	29	25.6	
	810	1909.8	29.1		29.1		29.1		29.1		

Band		nel Frequency (MHz)	EDGE								
	Channel		1 Slot		2 Slots		3 Slots		4 Slots		
			BAP (dBm)	Pavg (dBm)	BAP (dBm)	Pavg (dBm)	BAP (dBm)	Pavg (dBm)	BAP (dBm)	Pavg (dBm)	
GSM 1900	512	1850.2	26.7		26.7		26.7		26.7		
	661	1880.0	26.4	16.9	26.3	19.9	26.2	21.6	26.2	22.8	
	810	1909.8	26.3		26.3		26.3		26.3		

Applicant:	GD I	tronix (Corporation	FCC ID: KBCIX-MC8775 IC:			1943A-MC8775	GENER	RAL DYNAMICS	
Model(s):	IX-MO	C8775	DUT Type:	Dual-Band	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				Itronix	
2008 Celltech La	abs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs						os Inc.	Page 5 of 52	

Celltech Terry and Exponents Service Let	Date(s) of Evaluation May 12 & 14, 2008	Test Report Serial No. 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
	Test Report Issue Date July 08, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Test Lab Certificate No. 2470.01

OUTPUT POWER MEASUREMENTS (Cont.)

Procedure used to establish test signal

This procedure assumes the Agilent 8960 Series E5515C wireless communications test set has the following applications installed and with valid license.

Application: WCDMA Mobile Test

Rev, License: A.07.13, L

WCDMA

Call Setup > Shift & Preset

Cell Parameters: PS Domain Information > Present ATT (IMSI Attach) Flag State > Set

Security Parameter - System Operations > None

Channel Type: RMC - 12.2k, 64k, 144k, 384k AMC - 12.2k UL / 64 DL AM RMC, 12.2k UL / 144 DL AM RMC, 12.2k UL / 384 DL AM RMC

Paging Service: RB Test Mode

Channel Parameters (UARFCN):

DL Channel:	PCS: 9662 / 9800 / 9938
	Cell: 4357 / 4407 / 4458
UL Channel:	PCS: 9262 / 9400 / 9538
	Cell: 4132 / 4182 / 4233

DL DTCH Data:	All Ones
RLC Reestablish:	Off
Call Limit State:	Off
Call Drop Timer:	Off
SRB Config.	13.6k DCCH
UE Target Power:	25 dBm
UL CL Pwr Ctrl Mode:	All Up Bits

Applicant:	GD I	GD Itronix Corporation		FCC ID:	KBCIX-MC8775	KBCIX-MC8775 IC:		GENERAL DYNAMICS		
Model(s):	IX-MC	8775	DUT Type:	Dual-Band	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				Itronix	
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs						s Inc.	Page 6 of 52			

Celltech Tetra ad Egneering Services Lat	Date(s) of Evaluation May 12 & 14, 2008	<u>Test Report Serial No.</u> 050708KBC-T903-S24G	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> July 08, 2008	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> General Population	Test Lab Certificate No. 2470.01

OUTPUT POWER MEASUREMENTS (Cont.)

WCDMA

		RF CONDU	CTED OUTPUT POW	/ER MEASURE	EMENT RESU	JLTS	
Channel Typ	e: 12.2k RN	IC					
Band	Channel	Frequency	Channel Power	Band	Channel	Frequency	Channel Power
Banu	Channel	(MHz)	dBm	Ballu	Channel	(MHz)	dBm
	4132	826.4	23.5		9262	1852.4	23.4
850	4180	836.4	23.6		9400	1880.0	23.7
000	4233	846.6	23.4	1000	9538	1907.6	23.5
Channel Typ	e: 64k RMC	;					
Band	Channel	Frequency	Channel Power	Band	Channel	Frequency	Channel Power
Band	Chaimei	(MHz)	dBm	Banu	Channel	(MHz)	dBm
	4132	826.4	23.5		9262	1852.4	23.3
850	4180	836.4	23.6	1900	9400	1880.0	23.7
	4233	846.6	23.3	1000	9538	1907.6	23.5
Channel Typ	e: 144k RM	С					
Band	Channel	Frequency	Channel Power	Band	Channel	Frequency	Channel Power
Band	Chaimei	(MHz)	dBm	Banu	Channel	(MHz)	dBm
	4132	826.4	23.5		9262	1852.4	23.3
850	4180	836.4	23.5	1900	9400	1880.0	23.6
000	4233	846.6	23.3	1000	9538	1907.6	23.5
Channel Typ	e: 384k RM	С					
Band	Channel	Frequency	Channel Power	Band	Channel	Frequency	Channel Power
Band	onanner	(MHz)	dBm	Dana	Unanner	(MHz)	dBm
	4132	826.4	23.5		9262	1852.4	23.3
850	4180	836.4	23.6	1900	9400	1880.0	23.7
	4233	846.6	23.3		9538	1907.6	23.5
Channel Typ	e: 12.2k UL	/ 64 DL AM R	мс		1	1	
Band	Channel	Frequency	Channel Power	Band	Channel	Frequency	Channel Power
	• number	(MHz)	dBm	Duna		(MHz)	dBm
	4132	826.4	23.5		9262	1852.4	23.5
850	4180	836.4	23.6	1900	9400	1880.0	23.5
	4233	846.6	23.4		9538	1907.6	23.5
Channel Typ	e: 12.2k UL	/ 144 DL AM	RMC		1	1	
Band	Channel	Frequency	Channel Power	Band	Channel	Frequency	Channel Power
	• number	(MHz)	dBm	Duna		(MHz)	dBm
	4132	826.4	23.5		9262	1852.4	23.5
850	4180	836.4	23.6	1900	9400	1880.0	23.6
	4233	846.6	23.4		9538	1907.6	23.4
Channel Typ	e: 12.2k UL	/ 384 DL AM	RMC		T	I	
Band	Channel	Frequency	Channel Power	Band	Channel	Frequency	Channel Power
Dunia		(MHz)	dBm	Duna		(MHz)	dBm
	4132	826.4	23.5		9262	1852.4	23.5
850	4180	836.4	23.6	1900	9400	1880.0	23.6
	4233	846.6	23.4		9538	1907.6	23.4

Applicant:	GD I	GD Itronix Corporation		FCC ID:	KBCIX-MC8775 IC: 1943A-M		1943A-MC8775	GENERAL DYNAMICS	
Model(s):	IX-MC	C8775	DUT Type:	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				Itronix	
2008 Celltech La	abs Inc.	This	document is not to	be reproduced in	whole or in part without the	prior writte	n permission of Celltech Lab	is Inc.	Page 7 of 52

Callbach	Date(s) of Evaluation May 12 & 14, 2008	Test Report Serial No. 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
Testrg and Engineering Services Lat	<u>Test Report Issue Date</u> July 08, 2008	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> General Population	Test Lab Certificate No. 2470.01

OUTPUT POWER MEASUREMENTS (Cont.)

Procedure used to establish test signal

This procedure assumes the Agilent 8960 Series E5515C wireless communications test set has the following applications installed and with valid license.

Application: WCDMA Mobile Test

Rev, License: A.07.13, L

WCDMA + HSDPA

Uplink Parameter:	PRACH Bc / Bd Control: Manual
	Manual PRACH Bc: 9
	Manual PRACH Bc: 15
Channel Type:	12.2k + HSDPA

HSDPA Parameters: HSDPA RB Test Mode Setup HS-DSCH Configuration Type: FRC FRC Type: <Selected H-set according to the UE category>

HS-DSCH Category	Corresponding Requirement
1	H-Set 1
2	H-Set 1
3	H-Set 2
4	H-Set 2
5	H-Set 3
6	H-Set 3
7	H-Set 6 (Rel-6)
8	H-Set 6 (Rel-6)
9	H-Set 4
10	H-Set 5

CN Domain: PS Domain Uplink 64k DTCH for HSDPA Loopback State: On HS-DSCH Data Pattern: All Ones RLC Header on HS-DSCH: Present

HSDPA Uplink Parameters:

DeltaACK: 5 DeltaNACK: 5 DeltaCQI: 2

	RF CONDUCTED OUTPUT POWER MEASUREMENT RESULTS										
Channel Type: 12.2k RMC + HSDPA											
Band	Channel	Frequency	Channel Power	Band	Channel	Frequency	Channel Power				
Dallu	Channel	(MHz)	dBm	Ballu	Chaimer	(MHz)	dBm				
0.1	4132	826.4	23.5	DOO	9262	1852.4	23.1				
Cell 850	4180	836.4	23.5	PCS 1900	9400	1880.0	23.6				
000	4233	846.6	23.4	1000	9538	1907.6	23.4				

Note: The conducted output power levels of the DUT measured with HSDPA active were < 0.25 dB than the conducted output power levels measured with HSDPA inactive and the maximum SAR for 12.2k RMC was < 75% of the SAR limit; therefore the SAR evaluations were performed with HSDPA inactive.

Applicant:	GD Itronix Corporation			FCC ID:	KBCIX-MC8775	IC:	1943A-MC8775	GENER	RAL DYNAMICS
Model(s):	IX-MO	IC8775 DUT Type: Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				Itronix	Itronix		
2008 Celltech La	abs Inc.	This	document is not to	be reproduced in	whole or in part without the	prior writte	n permission of Celltech Lab	os Inc.	Page 8 of 52

Celltech Isting and Expressions Lat	Date(s) of Evaluation May 12 & 14, 2008	<u>Test Report Serial No.</u> 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> July 08, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Test Lab Certificate No. 2470.01

4.0 MEASUREMENT SUMMARY

	BODY SAR EVALUATION RESULTS															
Test Date	Band	Freq.	Chan.		Test Mode			Host PC Position to Plana Phanton	r 1	Host PC LCD Display Position	Antenna Distance to Planar Phantom	Cond Po Bet	lucted wer fore est	SAR Drift During Test	Measured SAR 1g	
		MHz											dE	Bm	dB	W/kg
May 12	Cellular	836.6	190	GPF	RS	1 S	lot	Bot	tom Side 1	Touch	Extended	2.0 cm	31.6	BAP	-0.101	0.071
May 12	Cellular	836.6	190	GPF	RS	2 SI	ots	Bot	tom Side 1	Touch	Extended	2.0 cm	31.5	BAP	-0.036	0.137
May 12	Cellular	836.6	190	GPF	RS	3 SI	ots	Bot	tom Side T	Touch	Extended	2.0 cm	28.5	BAP	-0.104	0.106
May 12	Cellular	836.6	190	GPF	RS	4 SI	ots	Bot	tom Side T	Fouch	Extended	2.0 cm	25.5	BAP	0.177	0.071
May 12	Cellular	824.2	128	GPF	RS	2 SI	ots	Bot	tom Side T	Fouch	Extended	2.0 cm	31.4	BAP	-0.083	0.130
May 12	Cellular	848.8	251	GPF	RS	2 SI	ots	Bot	tom Side T	Fouch	Extended	2.0 cm	31.6	BAP	-0.055	0.139
May 12	Cellular	848.8	251	EDO	ЭΕ	4 SI	ots	Bot	tom Side 1	Touch	Extended	2.0 cm	26.0	BAP	-0.041	0.088
May 12	Cellular	836.4	4182	WCD	MA	12.2k	RMC	Bot	tom Side 1	Touch	Extended	2.0 cm	23.6	MAP	-0.146	0.100
May 14	PCS	1880.0	661	GPF	RS	1 S	lot	Bot	tom Side 1	Fouch	Extended	2.0 cm	29.3	BAP	0.020	0.046
May 14	PCS	1880.0	661	GPF	RS	2 SI	ots	Bot	tom Side T	Fouch	Extended	2.0 cm	29.2	BAP	-0.099	0.090
May 14	PCS	1880.0	661	GPF	RS	3 SI	ots	Bot	tom Side 1	Touch	Extended	2.0 cm	29.1	BAP	0.006	0.102
May 14	PCS	1880.0	661	GPF	RS	4 SI	ots	Bot	tom Side T	Fouch	Extended	2.0 cm	29.0	BAP	0.046	0.125
May 14	PCS	1850.2	512	GPF	RS	4 SI	ots	Bot	tom Side 1	Touch	Extended	2.0 cm	29.4	BAP	-0.166	0.164
May 14	PCS	1909.8	810	GPF	RS	4 Slots		Bot	tom Side 1	Fouch	Extended	2.0 cm	29.1	BAP	0.109	0.119
May 14	PCS	1850.2	512	EDO	ΞE	4 SI	ots	Bot	tom Side 1	Fouch	Extended	2.0 cm	26.7	BAP	-0.036	0.121
May 14	PCS	1880.0	9400	WCD	MA	12.2k	RMC	Bot	tom Side 1	Fouch	Extended	2.0 cm	23.7	MAP	0.135	0.063
		SAR LI	MIT(S)	•	BODY				SPATIA	PEAK	R	F EXPO	SURE CAT	EGORY		
FCC 47	CFR 2.109	3 He	alth Cana	ida Safe	ety Co	ode 6		1.6	W/kg		1g ave	erage	Gene	eral Pop	ulation / Ur	controlled
Test	Date(s)		May 12,	2008				May 1	14, 2008		Measur	ed Fluid Type	83	5 MHz	1880 MH	lz Unit
Diel	ectric		835 MHz	Body	r		1	880 M	0 MHz Body Relative Humidity			35	35	%		
Cor	istant	IEEE T	arget	Meas.	De	v. IE	EE Tai	get	Meas.	Dev.	Atmosp	heric Pressure	e	101.1	101.1	kPa
	or	55.2	± 5%	55.8	+1.1	l% 53	.3 ±	: 5%	50.8	-4.7%	Ambien	t Temperature	•	22.0	24.5	°C
Cond	uctivity	ICCC T	835 MHz	Body	De		1 55 Tor	880 M	Hz Body	Dev	Fluid	Femperature	_	20.3	23.3	°C
σ (m	nho/m)		+ 5%	0.05	-2 0	V. IE		get	1 / 8	-2.6%	FIL	(Ka/m^3)		2 10	≥ 15 1000	CIII
Notes		0.07	10/0	0.00	2.0				1.40	2.07	Ч Р	(Rg/III)			1000	
1. The	e measurem ximum SAR	ent results	were obt	ained w	ith the	e DUT te in Apper	sted in idix A.	the co	onditions d	escribe	d in this repo	ort. Detailed m	easuren	nent data	a and plots	showing the
2. The	e device mo	des tested	and repo	orted in	the a	bove tes	t data	table	were selec	ted ba	sed on the p	rocedures des	cribed ir	n FCC O	ET SAR M	easurement
3. The	e SAR evalu	ations were	e perform	ed with	the D		nunicat	ina vi:	a airlink wi	th the 4	ailent 8960 s	Series 10 F551	5C Wire	less Cor	nmunication	ns Test Set
4. The	e power drift	s of the DL	JT measu	red by th	ne DA	SY4 svs	tem du	ring th	ne SAR ev	aluatio	ns were <5%	from the start r	power.			
5. The	e Host PC b	attery was	fully charg	ged prio	r to th	e SAR e	valuati	ons.		-						
6. The	e fluid temp orted durinc	erature was	s measur tric param	ed prior leter me	to ar	nd after ments.	the SA	R eva	luations to	ensur	e the temper	ature remained	d within	+/-2°C c	of the fluid t	emperature
7. The	e dielectric p 53ET Netwo	arameters rk Analyzei	of the sin	nulated for	tissue ;).	mixture	were r	neasu	red prior to	the SA	R evaluation	is using an HP	85070C	Dielectr	ic Probe Kit	and an HP
8. The	e SAR evalu	ations were	e perform	ed withi	n 24 ł	nours of t	he sys	tem pe	erformance	e check						

Applicant:	GD Itronix Corporation		FCC ID:	KBCIX-MC8775	IC:	1943A-MC8775	GENER	RAL DYNAMICS	
Model(s):	IX-MO	8775	DUT Type:	Dual-Band	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				
2008 Celltech La	abs Inc.	This	document is not to	be reproduced in	whole or in part without the	prior writte	n permission of Celltech Lab	os Inc.	Page 9 of 52

College	Date(s) of Evaluation May 12 & 14, 2008	Test Report Serial No. 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
Celifection	Test Report Issue Date	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
Testrg and Engineering Services Lat	July 08, 2008	Specific Absorption Rate	General Population	

5.0 DETAILS OF SAR EVALUATION

The General Dynamics Itronix Corporation Model: IX-MC8775 Dual-Band GPRS/EDGE/WCDMA Mini-PCI Express Card installed in the IX750 Rugged Handheld PC was compliant for localized Specific Absorption Rate (Uncontrolled Exposure) based on the test provisions and conditions described below. The detailed test setup photographs are shown in Appendix D.

Test Configuration(s)

1. The DUT was tested for body SAR (lap-held) with the bottom side of the IX750 Handheld PC placed parallel to, and touching, the outer surface of the planar phantom. The LCD display lid was fully extended with a 2.0 cm spacing from the antenna to the planar phantom. Note: The DUT is not intended to transmit with the LCD display lid closed.

Test Mode(s)

- 2. For the SAR evaluations in GPRS and EDGE modes an air-link communication was established using the Agilent 8960 Series 10 E5515C Wireless Communications Test Set in each of the four slot allocations for multislot class 12.
- 3. For the SAR evaluations in WCDMA mode an air-link communication was established using the Agilent 8960 Series 10 E5515C Wireless Communications Test Set with 12.2 kbps RMC channel and the TPC bits configured to all "1s".

Power Level(s)

4. The conducted power levels of the DUT were measured prior to the SAR evaluations using the Agilent 8960 Series 10 E5515C Wireless Communications Test Set and Gigatronics Universal Power Meter in Burst Average Power mode (GPRS/EGPRS) and Modulated Average Power mode (WCDMA) in accordance with the procedures described in FCC OET SAR Measurement Procedures for 3G Devices (see reference [4]).

Test Conditions

- 5. The fluid temperature was measured prior to and after the SAR evaluations to ensure the temperature remained within +/-2°C of the fluid temperature reported during the dielectric parameter measurements.
- 6. The dielectric parameters of the simulated tissue mixtures were measured prior to the SAR evaluations using an HP 85070C Dielectric Probe Kit and HP 8753ET Network Analyzer (see Appendix C).

6.0 EVALUATION PROCEDURES

a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.

(ii) For body-worn and face-held devices a planar phantom was used.

- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.
 - An area scan was determined as follows:
- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans. A 1g and 10g spatial peak SAR was determined as follows:
- e. Extrapolation is used to determine the values between the dipole center of the probe and the surface of the phantom. For E-Field Probe EX3DV4 this data cannot be measured because the center of the dipole sensors is 1.0 mm away from the probe tip and the distance between the probe and the boundary must be larger than 25% of the probe diameter. The probe diameter is 2.4 mm (see probe calibration document in Appendix F). In the DASY4 software, the distance between the sensor center and phantom surface is set to 2.0 mm. This provides a distance of 1.0 mm between the probe tip and the surface. For E-Field Probe ET3DV6 this data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix F). The extrapolation of the values between the dipole center and the surface of the phantom was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

Applicant:	GD I	GD Itronix Corporation		FCC ID:	KBCIX-MC8775 IC: 1943A-M		1943A-MC8775	GENER	GENERAL DYNAMICS	
Model(s):): IX-MC8775 DUT Type:		DUT Type:	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				Itronix		
2008 Celltech Labs Inc. This document is not to				be reproduced in	whole or in part without the	prior writter	n permission of Celltech Lab	s Inc.	Page 10 of 52	

Celltech Terry and Express Lab	Date(s) of Evaluation May 12 & 14, 2008	Test Report Serial No. 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> July 08, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Test Lab Certificate No. 2470.01

7.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluations, system checks were performed using a Fiberglas planar phantom with 835 MHz and 1900 MHz dipoles (see Appendix B for system performance check test plots). The dielectric parameters of the simulated tissue mixtures were measured prior to the system performance checks using an HP 85070C Dielectric Probe Kit and an HP 8753ET Network Analyzer (see Appendix C). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of \pm 10% from the system validation target SAR values (see Appendix E for system validation procedures).

	SYSTEM PERFORMANCE CHECK EVALUATIONS															
Test	Fluid Freq.	d SAR 1g q. (W/kg)			Dielectric Constant _{Er}		Conductivity σ (mho/m)		ρ,	Amb.	Fluid	Fluid	Humid.	Barom.		
Date	Body (MHz)	Sys. Val. Target	Meas.	Dev.	Sys. Val. Target	Meas.	Dev.	Sys. Val. Target	Meas.	Dev.	(Kg/m³)	(°C)	(°C)	(cm)	(%)	(kPa)
May 12	835	2.53 ±10%	2.53 ±10% 2.48 -2.0% 57.5 ±5% 55.8 -2.9% 0.97 ±5% 0.95 -2.0% 1000 22.0 20.3 ≥ 15 35 101.									101.1				
May 14	1900	10.3 ±10%	10.3	0.0%	51.1 ±5%	51.1	0.0%	1.51 ±5%	1.51	0.0%	1000	24.5	23.3	≥ 15	35	101.1
		1. The targe	et SAR v	alue is ref	erenced from	m the Sys	stem Vali	dation proce	dure perf	ormed by	/ Celltech	Labs Inc	. (see Ap	pendix E).	
		2. The targe	et dielect	ric param	eters are ref	erenced	from the	System Valio	lation pro	cedure p	erformed	by Cellte	ech Labs	Inc. (see	Appendix	E).
Note	(s)	3. The fluid temperatur	1 tempera e reporte	ature was d during t	measured he dielectric	prior to a paramet	ind after er measu	the SAR ev rements.	aluations	to ensur	e the ter	nperature	e remaine	ed within	+/-2°C of	the fluid
		4. The SAF	evaluati ا	ons were	performed v	within 24	hours of f	the system p	erforman	ice check						

Applicant:	GD Itronix Corporation		FCC ID:	KBCIX-MC8775 IC: 1943A-MC8775		GENERAL DYNAMICS			
Model(s):	IX-MO	C8775	DUT Type:	Dual-Band	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC		Itronix		
2008 Celltech La	abs Inc.	This	document is not to	be reproduced in whole or in part without the prior written permission of Celltech Labs				is Inc.	Page 11 of 52

Collhach	Date(s) of Evaluation May 12 & 14, 2008	<u>Test Report Serial No.</u> 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
Testrg and Engineering Services Lat	<u>Test Report Issue Date</u> July 08, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Test Lab Certificate No. 2470.01

8.0 SIMULATED EQUIVALENT TISSUES

The 1880/1900MHz simulated equivalent tissue mixture consisted of Glycol-monobutyl, water, and salt. The 835MHz simulated equivalent tissue mixture consisted of a viscous gel using saline solution. Preservation with a bactericide was added and visual inspection was made to ensure air bubbles were not trapped during the mixing process. The fluids were prepared according to standardized procedures and measured for dielectric parameters (permittivity and conductivity).

PCS BAND TISSUE MIXTURE							
	1900 MHz Body	1880 MHz Body					
INGREDIENT	System Performance Check	DUT Evaluation					
Water	69.85 %	69.85 %					
Glycol Monobutyl	29.89 %	29.89 %					
Salt	0.26 %	0.26 %					

CELLULAR BAND TISSUE MIXTURE							
	835 MHz Body	835 MHz Body					
INGREDIENT	System Performance Check	DUT Evaluation					
Water	53.79 %	53.79 %					
Sugar	45.13 %	45.13 %					
Salt	0.98 %	0.98 %					
Bactericide	0.10 %	0.10 %					

9.0 SAR LIMITS

SAR RF EXPOSURE LIMITS							
FCC 47 CFR 2.1093	FCCHealth Canada47 CFR 2.1093Safety Code 6		(Occupational / Controlled Exposure)				
Spatial / averaged over)	Average the whole body)	0.08 W/kg	0.4 W/kg				
Spatia (averaged over a	l Peak any 1 g of tissue)	1.6 W/kg	8.0 W/kg				
Spatia (hands/wrists/feet/ankle	l Peak es averaged over 10 g)	4.0 W/kg	20.0 W/kg				
The Spatial Average value	of the SAR averaged over t	he whole body.					
The Spatial Peak value of cube) and over the approp	the SAR averaged over any riate averaging time.	/ 1 gram of tissue (defined as a tis	sue volume in the shape of a				
The Spatial Peak value of t cube) and over the approp	The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.						
Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.							
Controlled environments an of their potential exposure	re defined as locations wher and can exercise control over	e there is potential exposure of ind er their exposure.	lividuals who have knowledge				

Applicant:	GD I	GD Itronix Corporation		FCC ID:	KBCIX-MC8775 IC: 1943A-MC8775			GENERAL DYNAMICS	
Model(s):	IX-MC	8775	DUT Type:	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC		Itronix			
2008 Celltech La	18 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech La			s Inc.	Page 12 of 52				

Collhada	Date(s) of Evaluation May 12 & 14, 2008	Test Report Serial No. 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
Testrg and Engineering Services Lat	<u>Test Report Issue Date</u>	Description of Test(s)	RF Exposure Category	ACCREDITED
	July 08, 2008	Specific Absorption Rate	General Population	Test Lab Certificate No. 2470.01

10.0 ROBOT SYSTEM SPECIFICATIONS

Specifications	
Positioner	Stäubli Unimation Corp. Robot Model: RX60L
Repeatability	0.02 mm
No. of axis	6
Data Acquisition Electronic (DAE) System
Cell Controller	
Processor	AMD Athlon XP 2400+
Clock Speed	2.0 GHz
Operating System	Windows XP Professional
Data Converter	
Features	Signal Amplifier, multiplexer, A/D converter, and control logic
Software	Measurement Software: DASY4, V4.7 Build 44
Continuit	Postprocessing Software: SEMCAD, V1.8 Build 171
Connecting Lines	Optical downlink for data and status info.; Optical uplink for commands and clock
DASY4 Measurement Server	
Function	Real-time data evaluation for field measurements and surface detection
Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface
E-Field Probe	
Probe (Cell Band)	
Model	ET3DV6
Serial No.	1387
Construction	Triangular core fiber optic detection system
Frequency	10 MHz to 6 GHz
Linearity	±0.2 dB (30 MHz to 3 GHz)
Probe (PCS Band)	
Model	EX3DV4
Serial No.	3600
Construction	Symmetrical design with triangular core
Frequency	10 MHz to 6 GHz
Linearity	±0.2 dB (30 MHz to 3 GHz)
Phantom(s)	
Туре	Planar Phantom
Shell Material	Fiberglas
Thickness	2.0 ±0.1 mm
Dimensions	94 cm (L) x 44 cm (W) x 22 cm (H)

Applicant:	GD I	Itronix Corporation		FCC ID: KBCIX-MC8775 IC: 1943A-MC8775		GENER	RAL DYNAMICS	
Model(s):	IX-MC	C8775	DUT Type:	Dual-Band	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC		Itronix	
2008 Celltech Labs Inc. This document is not to			be reproduced in	whole or in part without the	prior writte	n permission of Celltech Lab	is Inc.	Page 13 of 52

Callback	Date(s) of Evaluation May 12 & 14, 2008	Test Report Serial No. 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
Testing and Engineering Services Lat	<u>Test Report Issue Date</u> July 08, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Test Lab Certificate No. 2470.01

11.0 PROBE SPECIFICATIONS

ET3DV6 E-Field F	Probe	
Construction:	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, glycol)	
Calibration:	In air from 10 MHz to 2.5 \dot{G} Hz In brain simulating tissue at frequencies of 900 MHz and 1.8 GHz (accuracy \pm 8%)	
Frequency:	10 MHz to > 6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz)	
Directivity:	± 0.2 dB in brain tissue (rotation around probe axis) ± 0.4 dB in brain tissue (rotation normal to probe axis)	
Dynamic Range:	5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB	
Surface Detect:	± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces	
Dimensions:	Overall length: 330 mm Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm	
Application:	General dosimetry up to 3 GHz	
	Compliance tests of mobile phone	ET3DV6 E-Field Probe
EX3DV4 E-Field I	Probe	
Construction:	Symmetrical design with triangular core	

Construction:	Symmetrical design with triangular core	
	Built-in shielding against static charges	
	PEEK enclosure material (resistant to organic solvents, e.g. DGBE)	
Calibration:	Basic Broadband Calibration in air: 10-3000 MHz	And a state of the
	Conversion Factors (CF) for HSL 900 and HSL 1750	
Frequency:	10 MHz to >6 GHz; Linearity: ±0.2 dB (30 MHz to 3 GHz)	
Directivity:	±0.3 dB in HSL (rotation around probe axis)	
-	±0.5 dB in tissue material (rotation normal to probe axis)	
Dynamic Range:	10 μ W/g to >100 mW/g; Linearity: \pm 0.2 dB	
	(noise: typically < 1 μW/g)	
Dimensions:	Overall length: 330 mm (Tip: 20 mm)	
	Tip diameter: 2.5 mm (Body: 12 mm)	
	Typical distance from probe tip to dipole centers: 1.0 mm	
Application:	High precision dosimetric measurements in any exposure	
	scenario (e.g., very strong gradient fields). Only probe	
	which enables compliance testing for frequencies up to	
	6 GHz with precision of better than 30%.	EX3DV4 E-Field Probe

12.0 PLANAR PHANTOM

The planar phantom is a Fiberglas shell phantom with a 2.0 mm (+/-0.2mm) thick device measurement area at the center of the phantom for SAR evaluations of devices with a larger surface area than the planar section of the SAM phantom. The planar phantom is mounted to the wooden table of the DASY4 compact system. The planar phantom is also used for system validations (\geq 835 MHz). See Appendix G for the dimensions and specifications.

13.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65° . The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. For evaluations of larger devices a Plexiglas platform is attached to the device holder.

Device Holder

Applicant:	GD	tronix (Corporation	FCC ID: KBCIX-MC8775 IC: 1943A-MC8775				GENERAL DYNAMICS	
Model(s):	IX-M	C8775	DUT Type:	Dual-Band	ual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC			Itronix	
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Lab					is Inc.	Page 14 of 52			

Celltech Terr an Engeneral Service La	Date(s) of Evaluation May 12 & 14, 2008	<u>Test Report Serial No.</u> 050708KBC-T903-S24G	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> July 08, 2008	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> General Population	Test Lab Certificate No. 2470.01

14.0 TEST EQUIPMENT LIST

	TEST EQ	UIPMENT	ASSET NO.	SERIAL NO.	D	ATE	CALIBRATION
USED	DE	SCRIPTION			CALI	BRATED	DUE DATE
х	Schmid & P	artner DASY4 System	-	-		-	-
х	-DASY4 N	Measurement Server	00158	1078		NA	NA
х		-Robot	00046	599396-01	NA		NA
х		-DAE4	00019	353	22Apr08		22Apr09
х	-EX3D	V4 E-Field Probe	00213	3600	19	Apr08	19Apr09
х	-ET3D	V6 E-Field Probe	00016	1387	22	Apr08	22Apr09
	-300 MH	Iz Validation Dipole	00023	135	30	Apr08	30Apr09
	-450 MH	Iz Validation Dipole	00024	136	01	May08	01May09
х	-835 MH	Iz Validation Dipole	00022	411	Body	02May08	02May09
	-900 MH	Iz Validation Dipole	00020	054	Body	20May08	20May09
	-1800 Mł	Iz Validation Dipole	00021	247	Body	22May08	22May09
х	-1900 Mł	Hz Validation Dipole	00032	151	Body	14May08	14May09
	-2450 MHz Validation Dipole		00025	150	Brain	16Jul07	16Jul08
			00025	150	Body	16Jun08	16Jun09
		-5200 MHz			Body	21Apr08	21Apr09
	5GHz Validation	-5500 MHz	00126	1031	Body	21Apr08	21Apr09
	Dipole	5800 MH-	00126		Brain	21Apr08	21Apr09
		-3000 MITZ			Body	21Apr08	21Apr09
	-SAM	Phantom V4.0C	00154	1033	NA		NA
х	-Barsk	i Planar Phantom	00155	03-01		NA	NA
	-Plexiglas	Side Planar Phantom	00156	161		NA	NA
	-Plexiglas Va	lidation Planar Phantom	00157	137		NA	NA
	ALS-PR-DI	EL Dielectric Probe Kit	00160	260-00953		NA	NA
х	HP 85070	C Dielectric Probe Kit	00033	US39240170		NA	NA
x	Gigatronic	s 8652A Power Meter	00007	1835272	23	Apr08	23Apr09
х	Gigatronics	80701A Power Sensor	00014	1833699	23	Apr08	23Apr09
x	HP 8753E	T Network Analyzer	00134	US39170292	28	Apr08	28Apr09
x	Rohde & Schwar	z SMR20 Signal Generator	00006	100104	23	Apr08	23Apr09
х	Amplifier Resea	rch 5S1G4 Power Amplifier	00106	26235		NR	NR
	Amplifier Research	10W1000C Power Amplifier	00041	27887		NR	NR
	Nextec NB00	383 Microwave Amplifier	00151	0535		NR	NR
x	Agilent E5515C Wi	reless Communication Test Set	1076274	GB46311309	27	May07	13Jun09
Notes		NA = Not Applicable			NR = No	t Required	

Applicant:	GD I	tronix (Corporation	FCC ID: KBCIX-MC8775 IC: 1943A-MC8775		GENER	RAL DYNAMICS		
Model(s):	IX-MC	8775	DUT Type:	Dual-Band	I-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC			Itronix	
2008 Celltech La	abs Inc.	This	document is not to	be reproduced in	e reproduced in whole or in part without the prior written permission of Celltech Lab				

Celltech Testa and Exponents Service Let	Date(s) of Evaluation May 12 & 14, 2008	Test Report Serial No. 050708KBC-T903-S24G	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
	Test Report Issue Date July 08, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Test Lab Certificate No. 2470.01

15.0 MEASUREMENT UNCERTAINTIES

UI	NCERTAINT	Y BUDGET FOR	DEVICE EVAL	UATION			
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}	
Measurement System							
Probe calibration (Cell Band)	5.5	Normal	1	1	5.5	80	
Axial isotropy of the probe	4.7	Rectangular	1.732050808	0.7	1.9	8	
Spherical isotropy of the probe	9.6	Rectangular	1.732050808	0.7	3.9	ø	
Spatial resolution	0	Rectangular	1.732050808	1	0.0	8	
Boundary effects	0.9	Rectangular	1.732050808	1	0.5	œ	
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	00	
Detection limit	1	Rectangular	1.732050808	1	0.6	œ	
Readout electronics	0.3	Normal	1	1	0.3	8	
Response time	0.8	Rectangular	1.732050808	1	0.5	8	
Integration time	2.6	Rectangular	1.732050808	1	1.5	×	
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	œ	
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	8	
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	œ	
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	×	
Test Sample Related							
Device positioning	2.9	Normal	1	1	2.9	12	
Device holder uncertainty	3.6	Normal	1	1	3.6	8	
Power drift	5	Rectangular	1.732050808	1	2.9	8	
Phantom and Setup							
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	8	
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	8	
Liquid conductivity (measured)	2	Normal	1	0.64	1.3	8	
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	8	
Liquid permittivity (measured)	1.1	Normal	1	0.6	0.7	00	
Combined Standard Uncertain	ity				10.45		
Expanded Uncertainty (k=2) 20.89							
Measurement Unc	ertainty Table	in accordance with	IEEE Standard 152	8-2003 (see	e reference [7])		

Applicant:	GD I	tronix (Corporation	FCC ID: KBCIX-MC8775 IC: 1943A-MC8775		GENERAL DYNAMICS			
Model(s):	IX-MC	C8775	DUT Type:	Dual-Band	GPRS/EDGE/WCDMA Card in IX750 Handheld PC		Itronix		
2008 Celltech La	abs Inc.	This	document is not to	be reproduced in whole or in part without the prior written permission of Celltech Lab					Page 16 of 52

Celltech Trans and Engineering Services Lat	Date(s) of Evaluation May 12 & 14, 2008	<u>Test Report Serial No.</u> 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
	Test Report Issue Date July 08, 2008	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> General Population	Test Lab Certificate No. 2470.01

MEASUREMENT UNCERTAINTIES (Cont.)

UI	NCERTAINT	Y BUDGET FOR	DEVICE EVAL	UATION				
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}		
Measurement System								
Probe calibration (PCS Band)	5.5	Normal	1	1	5.5	8		
Axial isotropy of the probe	4.7	Rectangular	1.732050808	0.7	1.9	8		
Spherical isotropy of the probe	9.6	Rectangular	1.732050808	0.7	3.9	8		
Spatial resolution	0	Rectangular	1.732050808	1	0.0	×		
Boundary effects	0.2	Rectangular	1.732050808	1	0.1	x		
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	×		
Detection limit	1	Rectangular	1.732050808	1	0.6	×		
Readout electronics	0.3	Normal	1	1	0.3	×		
Response time	0.8	Rectangular	1.732050808	1	0.5	8		
Integration time	2.6	Rectangular	1.732050808	1	1.5	8		
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	00		
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	×		
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	8		
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	8		
Test Sample Related								
Device positioning	2.9	Normal	1	1	2.9	12		
Device holder uncertainty	3.6	Normal	1	1	3.6	8		
Power drift	5	Rectangular	1.732050808	1	2.9	8		
Phantom and Setup								
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	8		
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	8		
Liquid conductivity (measured)	2.6	Normal	1	0.64	1.7	x		
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	8		
Liquid permittivity (measured)	4.7	Normal	1	0.6	2.8	8		
Combined Standard Uncertain	ity				10.84			
Expanded Uncertainty (k=2)	Expanded Uncertainty (k=2) 21.68							
Measurement Unc	ertainty Table	in accordance with	IEEE Standard 152	8-2003 (see	e reference [7])			

Applicant:	GD I	tronix (Corporation	FCC ID: KBCIX-MC8775 IC: 1943A-MC8775		GENER	RAL DYNAMICS		
Model(s):	IX-MC	8775	DUT Type:	Dual-Band	al-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				
2008 Celltech La	abs Inc.	This	document is not to	be reproduced in	e reproduced in whole or in part without the prior written permission of Celltech Lab				

Celltech Terr at Extreme Server La	Date(s) of Evaluation May 12 & 14, 2008	Test Report Serial No. 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
	Test Report Issue Date July 08, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Test Lab Certificate No. 2470.01

MEASUREMENT UNCERTAINTIES (Cont.)

U		/ BUDGET FOR	SYSTEM VALI	DATION		
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}
Measurement System						
Probe calibration (835 MHz)	5.5	Normal	1	1	5.5	∞
Axial isotropy of the probe	4.7	Rectangular	1.732050808	1	2.7	∞
Spherical isotropy of the probe	0	Rectangular	1.732050808	1	0.0	∞
Spatial resolution	0	Rectangular	1.732050808	1	0.0	00
Boundary effects	0.9	Rectangular	1.732050808	1	0.5	00
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	ø
Detection limit	1	Rectangular	1.732050808	1	0.6	00
Readout electronics	0.3	Normal	1	1	0.3	x
Response time	0	Rectangular	1.732050808	1	0.0	œ
Integration time	0	Rectangular	1.732050808	1	0.0	×
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	x
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	x
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	00
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	ø
Dipole						
Dipole Positioning	2	Normal	1.732050808	1	1.2	00
Power & Power Drift	4.7	Normal	1.732050808	1	2.7	x
Phantom and Setup						
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	x
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	x
Liquid conductivity (measured)	2	Normal	1	0.64	1.3	x
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	x
Liquid permittivity (measured)	2.9	Normal	1	0.6	1.7	œ
Combined Standard Uncertain	v				8.77	
Expanded Uncertainty (k=2) 17.55						
Measurement Unc	ertainty Table i	n accordance with I	EEE Standard 152	8-2003 (see	reference [7])	

Applicant:	GD I	Itronix Corporation		FCC ID:	KBCIX-MC8775	IC:	1943A-MC8775	GENERAL DYNAMICS	
Model(s):	IX-MC	8775	DUT Type:	Dual-Band	Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC		Itronix		
2008 Celltech La	abs Inc.	This	document is not to	e reproduced in whole or in part without the prior written permission of Celltech Labs					Page 18 of 52

Callback	Date(s) of Evaluation May 12 & 14, 2008	Test Report Serial No. 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
Testrg and Engineering Services Lat	Test Report Issue Date July 08, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Test Lab Certificate No. 2470.01

MEASUREMENT UNCERTAINTIES (Cont.)

U	CERTAINT	Y BUDGET FOR	SYSTEM VALI	DATION		
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}
Measurement System						
Probe calibration (1900 MHz)	5.5	Normal	1	1	5.5	x
Axial isotropy of the probe	4.7	Rectangular	1.732050808	1	2.7	×
Spherical isotropy of the probe	0	Rectangular	1.732050808	1	0.0	80
Spatial resolution	0	Rectangular	1.732050808	1	0.0	80
Boundary effects	0.2	Rectangular	1.732050808	1	0.1	8
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	80
Detection limit	1	Rectangular	1.732050808	1	0.6	8
Readout electronics	0.3	Normal	1	1	0.3	8
Response time	0	Rectangular	1.732050808	1	0.0	80
Integration time	0	Rectangular	1.732050808	1	0.0	8
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	8
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	8
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	00
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	8
Dipole						
Dipole Positioning	2	Normal	1.732050808	1	1.2	x
Power & Power Drift	4.7	Normal	1.732050808	1	2.7	8
Phantom and Setup						
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	8
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	8
Liquid conductivity (measured)	0	Normal	1	0.64	0.0	8
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	00
Liquid permittivity (measured)	0	Normal	1	0.6	0.0	8
Combined Standard Uncertaint	y				8.49	
Expanded Uncertainty (k=2)					16.98	
Measurement Unc	ertainty Table i	n accordance with I	EEE Standard 152	8-2003 (see	reference [7])	

Applicant:	GD I	Itronix Corporation		FCC ID:	KBCIX-MC8775	IC:	1943A-MC8775	GENERAL DYNAMICS	
Model(s):	IX-MO	8775	DUT Type:	Dual-Band	nd GPRS/EDGE/WCDMA Card in IX750 Handheld PC		Itronix		
2008 Celltech La	abs Inc.	This	document is not to	e reproduced in whole or in part without the prior written permission of Celltech Labs					Page 19 of 52

Celltech Testa and Engineering Services Lab
--

Date(s) of Evaluation May 12 & 14, 2008	Test Report Serial No. 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
Test Report Issue Date	Description of Test(s)	RF Exposure Category	ACCREDITED
July 08, 2008	Specific Absorption Rate	General Population	Test Lab Certificate No. 2470.01

16.0 REFERENCES

[1] Federal Communications Commission - "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093.

[2] Health Canada - "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6: 1999.

[3] Federal Communications Commission - "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.

[4] Federal Communications Commission - "SAR Measurement Procedures for 3G Devices": Lab. Div., OET, October 2007 (Rev. 2.0).

[5] Federal Communications Commission - "SAR Evaluation Considerations for Laptop Computers with Antennas Built-in on Display Screens" (KDB 616217 D01 v01): Lab. Div., OET, December 2007.

[6] Industry Canada - "Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)", Radio Standards Specification RSS-102 Issue 2: November 2005.

[7] IEEE Standard 1528-2003 - "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC8775	IC:	1943A-MC8775	GENERAL DYNAMICS	
Model(s):	IX-MC	C8775	DUT Type:	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				Itronix	
2008 Celltech La	abs Inc.	This	document is not to	be reproduced in	reproduced in whole or in part without the prior written permission of Celltech Labs				

College	Date(s) of Evaluation May 12 & 14, 2008	Test Report Serial No. 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
CCENTECN	<u>Test Report Issue Date</u>	Description of Test(s)	<u>RF Exposure Category</u>	Test Lab Certificate No. 2470.01
Testrg and Engineering Services Lat	July 08, 2008	Specific Absorption Rate	General Population	

APPENDIX A - SAR MEASUREMENT DATA

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC8775	IC:	1943A-MC8775	GENER	RAL DYNAMICS
Model(s):	IX-MC	C8775	DUT Type:	Dual-Band	d GPRS/EDGE/WCDMA Card in IX750 Handheld PC		Itronix		
2008 Celltech La	abs Inc.	This	document is not to	e reproduced in whole or in part without the prior written permission of Celltech Labs					Page 21 of 52

Colltoch	Date(s) of Evaluation May 12 & 14, 2008	<u>Test Report Serial No.</u> 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
Testrg and Engineering Services Lat	Test Report Issue Date	Description of Test(s)	<u>RF Exposure Category</u>	ACCREDITED
	July 08, 2008	Specific Absorption Rate	General Population	Test Lab Certificate No. 2470.01

Body SAR - Cellular Band - GPRS (1 Slot) - 836.6 MHz - Ch. 190 - LCD Display Fully Extended

DUT: General Dynamics Itronix Corp.; Type: IX750 Handheld PC with IX-MC8775 GPRS/EDGE/WCDMA; Serial: None

Ambient Temp: 22°C; Fluid Temp: 20.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: Cellular GPRS Frequency: 836.6 MHz; Duty Cycle: 1:8.3 7.4V, 4.0Ah Li-ion Smart Battery (Model: IX750-29WHR) Medium: M835 Medium parameters: f = 836.6 MHz; σ = 0.95 mho/m; ϵ_r = 55.8; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1387; ConvF(5.96, 5.96, 5.96); Calibrated: 22/04/2008

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008

- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - GPRS 1 Slot Area Scan (15x22x1): Measurement grid: dx=15mm, dy=15mm

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - GPRS 1 Slot Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.24 V/m; Power Drift = -0.101 dB Peak SAR (extrapolated) = 0.087 W/kg

SAR(1 g) = 0.071 mW/g; SAR(10 g) = 0.054 mW/g

Maximum value of SAR (measured) = 0.076 mW/g

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC8775	IC:	1943A-MC8775	GENER	AL DYNAMICS
Model(s):	IX-MC	8775	DUT Type:	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC			Itronix		
2008 Celltech La	abs Inc.	This	document is not to	o be reproduced in whole or in part without the prior written permission of Celltech Labs					Page 22 of 52

Callbach	Date(s) of Evaluation May 12 & 14, 2008	<u>Test Report Serial No.</u> 050708KBC-T903-S24G	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
Testrg and Engineering Services Lat	<u>Test Report Issue Date</u> July 08, 2008	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> General Population	Test Lab Certificate No. 2470.01

Body SAR - Cellular Band - GPRS (2 Slots) - 836.6 MHz - Ch. 190 - LCD Display Fully Extended

DUT: General Dynamics Itronix Corp.; Type: IX750 Handheld PC with IX-MC8775 GPRS/EDGE/WCDMA; Serial: None

Ambient Temp: 22°C; Fluid Temp: 20.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: Cellular GPRS Frequency: 836.6 MHz; Duty Cycle: 1:4.16 7.4V, 4.0Ah Li-ion Smart Battery (Model: IX750-29WHR) Medium: M835 Medium parameters used: f = 836.6 MHz; σ = 0.95 mho/m; ε_r = 55.8; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1387; ConvF(5.96, 5.96, 5.96); Calibrated: 22/04/2008

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008

- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - GPRS 2 Slots Area Scan (13x13x1): Measurement grid: dx=15mm, dy=15mm

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - GPRS 2 Slots Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.0 V/m; Power Drift = -0.036 dB Peak SAR (extrapolated) = 0.169 W/kg

SAR(1 g) = 0.137 mW/g; SAR(10 g) = 0.104 mW/g

Maximum value of SAR (measured) = 0.145 mW/g

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC8775	IC:	1943A-MC8775	GENER	GENERAL DYNAMICS	
Model(s):	IX-MC	8775	DUT Type:	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				Itronix		
2008 Celltech La	abs Inc.	s Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs						is Inc.	Page 23 of 52	

Callbach	Date(s) of Evaluation May 12 & 14, 2008	<u>Test Report Serial No.</u> 050708KBC-T903-S24G	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
Testrg and Engineering Services Lat	<u>Test Report Issue Date</u> July 08, 2008	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> General Population	Test Lab Certificate No. 2470.01

Body SAR - Cellular Band - GPRS (3 Slots) - 836.6 MHz - Ch. 190 - LCD Display Fully Extended

DUT: General Dynamics Itronix Corp.; Type: IX750 Handheld PC with IX-MC8775 GPRS/EDGE/WCDMA; Serial: None

Ambient Temp: 22°C; Fluid Temp: 20.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: Cellular GPRS Frequency: 836.6 MHz; Duty Cycle: 1:2.6 7.4V, 4.0Ah Li-ion Smart Battery (Model: IX750-29WHR) Medium: M835 Medium parameters used: f = 836.6 MHz; σ = 0.95 mho/m; ϵ_r = 55.8; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1387; ConvF(5.96, 5.96, 5.96); Calibrated: 22/04/2008

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008

- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - GPRS 3 Slots Area Scan (13x13x1): Measurement grid: dx=15mm, dy=15mm

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - GPRS 3 Slots Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.1 V/m; Power Drift = -0.104 dB Peak SAR (extrapolated) = 0.130 W/kg

SAR(1 g) = 0.106 mW/g; SAR(10 g) = 0.079 mW/g Maximum value of SAR (measured) = 0.111 mW/g

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC8775	IC:	1943A-MC8775	775 GENERAL DYNAM		
Model(s):	IX-MC	8775	DUT Type:	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Hand			IX750 Handheld PC	Itronix		
2008 Celltech La	abs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs						s Inc.	Page 24 of 52	

Callbach	Date(s) of Evaluation May 12 & 14, 2008	<u>Test Report Serial No.</u> 050708KBC-T903-S24G	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
Testrg and Engineering Services Lat	<u>Test Report Issue Date</u> July 08, 2008	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> General Population	Test Lab Certificate No. 2470.01

Body SAR - Cellular Band - GPRS (4 Slots) - 836.6 MHz - Ch. 190 - LCD Display Fully Extended

DUT: General Dynamics Itronix Corp.; Type: IX750 Handheld PC with IX-MC8775 GPRS/EDGE/WCDMA; Serial: None

Ambient Temp: 22°C; Fluid Temp: 20.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: Cellular GPRS Frequency: 836.6 MHz; Duty Cycle: 1:2 7.4V, 4.0Ah Li-ion Smart Battery (Model: IX750-29WHR) Medium: M835 Medium parameters used: f = 836.6 MHz; σ = 0.95 mho/m; ϵ_r = 55.8; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1387; ConvF(5.96, 5.96, 5.96); Calibrated: 22/04/2008

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008

- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - GPRS 4 Slots Area Scan (13x13x1): Measurement grid: dx=15mm, dy=15mm

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - GPRS 4 Slots Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.20 V/m; Power Drift = 0.177 dB Peak SAR (extrapolated) = 0.088 W/kg

SAR(1 g) = 0.071 mW/g; SAR(10 g) = 0.053 mW/g Maximum value of SAR (measured) = 0.075 mW/g

Applicant:	GD Itronix Corporation		FCC ID:	KBCIX-MC8775	IC: 1943A-MC8775		GENERAL DYNAMICS			
Model(s):	IX-MC	8775	DUT Type:	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				e: Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC		
2008 Celltech La	2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs						s Inc.	Page 25 of 52		

Callbach	Date(s) of Evaluation May 12 & 14, 2008	<u>Test Report Serial No.</u> 050708KBC-T903-S24G	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
Testrg and Engineering Services Lat	<u>Test Report Issue Date</u> July 08, 2008	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> General Population	Test Lab Certificate No. 2470.01

Body SAR - Cellular Band - GPRS (2 Slots) - 824.2 MHz - Ch. 128 - LCD Display Fully Extended

DUT: General Dynamics Itronix Corp.; Type: IX750 Handheld PC with IX-MC8775 GPRS/EDGE/WCDMA; Serial: None

Ambient Temp: 22°C; Fluid Temp: 20.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: Cellular GPRS Frequency: 824.2 MHz; Duty Cycle: 1:4.16 7.4V, 4.0Ah Li-ion Smart Battery (Model: IX750-29WHR) Medium: M835 Medium parameters used: f = 824.2 MHz; $\sigma = 0.95$ mho/m; $\varepsilon_r = 55.8$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 - SN1387; ConvF(5.96, 5.96, 5.96); Calibrated: 22/04/2008

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008

- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - GPRS 2 Slots Area Scan (13x13x1): Measurement grid: dx=15mm, dy=15mm

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - GPRS 2 Slots Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.4 V/m; Power Drift = -0.083 dB

Peak SAR (extrapolated) = 0.290 W/kg

SAR(1 g) = 0.130 mW/g; SAR(10 g) = 0.097 mW/g Maximum value of SAR (measured) = 0.134 mW/g

Applicant:	GD I	GD Itronix Corporation		FCC ID:	KBCIX-MC8775	3CIX-MC8775 IC: 1943A-MC8775		GENERAL DYNAMICS	
Model(s):	IX-MC	8775	DUT Type:	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC			Itronix		
2008 Celltech La	Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs						s Inc.	Page 26 of 52	

Callbach	Date(s) of Evaluation May 12 & 14, 2008	<u>Test Report Serial No.</u> 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
Testrg and Engineering Services Lat	Test Report Issue Date	Description of Test(s)	<u>RF Exposure Category</u>	ACCREDITED
	July 08, 2008	Specific Absorption Rate	General Population	Test Lab Certificate No. 2470.01

Body SAR - Cellular Band - GPRS (2 Slots) - 848.8 MHz - Ch. 251 - LCD Display Fully Extended

DUT: General Dynamics Itronix Corp.; Type: IX750 Handheld PC with IX-MC8775 GPRS/EDGE/WCDMA; Serial: None

Ambient Temp: 22°C; Fluid Temp: 20.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: Cellular GPRS Frequency: 848.8 MHz; Duty Cycle: 1:4.16 7.4V, 4.0Ah Li-ion Smart Battery (Model: IX750-29WHR) Medium: M835 Medium parameters used: f = 848.8 MHz; $\sigma = 0.95$ mho/m; $\varepsilon_r = 55.8$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 - SN1387; ConvF(5.96, 5.96, 5.96); Calibrated: 22/04/2008

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008

- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - GPRS 2 Slots Area Scan (13x13x1): Measurement grid: dx=15mm, dy=15mm

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - GPRS 2 Slots Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.0 V/m; Power Drift = -0.055 dB Peak SAR (extrapolated) = 0.171 W/kg SAR(1 g) = 0.139 mW/g; SAR(10 g) = 0.106 mW/g

Maximum value of SAR (measured) = 0.146 mW/g

Applicant:	GD Itronix Corporation			FCC ID:	KBCIX-MC8775	IC:	1943A-MC8775	GENERAL DYNAMIC	
Model(s):	IX-MC	8775	DUT Type:	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				Itronix	
2008 Celltech La	bs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs					s Inc.	Page 27 of 52		

Celltech	Date(s) of Evaluation May 12 & 14, 2008	Test Report Serial No. 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> July 08, 2008	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> General Population	Test Lab Certificate No. 2470.01

Z-Axis Scan

Applicant:	GD I	GD Itronix Corporation		FCC ID:	KBCIX-MC8775	KBCIX-MC8775 IC: 1943A-MC8775		GENERAL DYNAMICS	
Model(s):	IX-MC	8775	DUT Type:	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				Itronix	
2008 Celltech La	008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs						s Inc.	Page 28 of 52	

Callbach	Date(s) of Evaluation May 12 & 14, 2008	Test Report Serial No.Test Report Revision No.050708KBC-T903-S24GRev. 1.0 (Initial Release)		
Testrg and Engineering Services Lat	Test Report Issue Date	Description of Test(s)	<u>RF Exposure Category</u>	ACCREDITED
	July 08, 2008	Specific Absorption Rate	General Population	Test Lab Certificate No. 2470.01

Body SAR - Cellular Band - EDGE (4 Slots) - 848.8 MHz - Ch. 251 - LCD Display Fully Extended

DUT: General Dynamics Itronix Corp.; Type: IX750 Handheld PC with IX-MC8775 GPRS/EDGE/WCDMA; Serial: None

Ambient Temp: 22°C; Fluid Temp: 20.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: Cellular EDGE Frequency: 848.8 MHz; Duty Cycle: 1:2 7.4V, 4.0Ah Li-ion Smart Battery (Model: IX750-29WHR) Medium: M835 Medium parameters used: f = 848.8 MHz; σ = 0.95 mho/m; ϵ_r = 55.8; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1387; ConvF(5.96, 5.96, 5.96); Calibrated: 22/04/2008

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008

- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - EDGE 4 Slots Area Scan (13x13x1): Measurement grid: dx=15mm, dy=15mm

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - EDGE 4 Slots Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.65 V/m; Power Drift = -0.041 dB Peak SAR (extrapolated) = 0.058 W/kg SAR(1 g) = 0.088 mW/g; SAR(10 g) = 0.067 mW/g

Maximum value of SAR (measured) = 0.093 mW/g

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC8775	IC:	1943A-MC8775	GENER	AL DYNAMICS
Model(s):	IX-MC	8775	DUT Type:	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				Itronix	
2008 Celltech La	2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs						s Inc.	Page 29 of 52	

Colltoch	Date(s) of Evaluation May 12 & 14, 2008	<u>Test Report Serial No.</u> 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
Testrg and Engineering Services Lat	Test Report Issue Date July 08, 2008	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> General Population	Test Lab Certificate No. 2470.01

Body SAR - Cellular Band - WCDMA (RMS 12.2k) - 836.4 MHz - Ch. 4180 - LCD Display Fully Extended

DUT: General Dynamics Itronix Corp.; Type: IX750 Handheld PC with IX-MC8775 GPRS/EDGE/WCDMA; Serial: None

Ambient Temp: 22°C; Fluid Temp: 20.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: Cellular WCDMA Frequency: 836.4 MHz; Duty Cycle: 1:1 7.4V, 4.0Ah Li-ion Smart Battery (Model: IX750-29WHR) Medium: M835 Medium parameters used: f = 836.52 MHz; σ = 0.95 mho/m; ϵ_r = 55.8; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1387; ConvF(5.96, 5.96, 5.96); Calibrated: 22/04/2008

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008

- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - WCDMA Area Scan (15x22x1): Measurement grid: dx=15mm, dy=15mm

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - WCDMA Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.2 V/m; Power Drift = -0.146 dB Peak SAR (extrapolated) = 0.120 W/kg SAR(1 g) = 0.100 mW/g; SAR(10 g) = 0.075 mW/g Maximum value of SAR (measured) = 0.106 mW/g

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC8775	IC:	1943A-MC8775	GENERAL DYNAMI		
Model(s):	IX-MC8775 DUT Type: Dual-E		Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				Itronix			
2008 Celltech La	abs Inc.	This	his document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs					s Inc.	Page 30 of 52	

Colltoch	Date(s) of Evaluation May 12 & 14, 2008	Test Report Serial No.Test Report Revision No.050708KBC-T903-S24GRev. 1.0 (Initial Release)		
Testrg and Engineering Services Lat	<u>Test Report Issue Date</u> July 08, 2008	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> General Population	Test Lab Certificate No. 2470.01

Body SAR - PCS Band - GPRS (1 Slot) - 1880 MHz - Ch. 661 - LCD Display Fully Extended

DUT: General Dynamics Itronix Corp.; Type: IX750 Handheld PC with IX-MC8775 GPRS/EDGE/WCDMA; Serial: None

Ambient Temp: 24.5°C; Fluid Temp: 23.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: PCS GPRS Frequency: 1880 MHz; Duty Cycle: 1:8.3 7.4V, 4.0Ah Li-ion Smart Battery (Model: IX750-29WHR) Medium: M1900 Medium parameters used: f = 1880 MHz; σ = 1. 48 mho/m; ϵ_r = 50.8; ρ = 1000 kg/m³

- Probe: EX3DV4 - SN3600; ConvF(7.45, 7.45, 7.45); Calibrated: 19/04/2008

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - GPRS 1 Slot Area Scan (15x22x1): Measurement grid: dx=15mm, dy=15mm

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - GPRS 1 Slot Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.57 V/m; Power Drift = 0.020 dB Peak SAR (extrapolated) = 0.077 W/kg SAR(1 g) = 0.046 mW/g; SAR(10 g) = 0.030 mW/g

Maximum value of SAR (measured) = 0.051 mW/g

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC8775	IC:	1943A-MC8775	GENER	AL DYNAMICS
Model(s):	IX-MC	8775	DUT Type:	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				Itronix	
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs						s Inc.	Page 31 of 52		

Callbach	Date(s) of Evaluation May 12 & 14, 2008	Test Report Serial No.Test Report Revision No.050708KBC-T903-S24GRev. 1.0 (Initial Release)		
Testrg and Engineering Services Lat	Test Report Issue Date	Description of Test(s)	<u>RF Exposure Category</u>	ACCREDITED
	July 08, 2008	Specific Absorption Rate	General Population	Test Lab Certificate No. 2470.01

Body SAR - PCS Band - GPRS (2 Slots) - 1880 MHz - Ch. 661 - LCD Display Fully Extended

DUT: General Dynamics Itronix Corp.; Type: IX750 Handheld PC with IX-MC8775 GPRS/EDGE/WCDMA; Serial: None

Ambient Temp: 24.5°C; Fluid Temp: 23.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: PCS GPRS Frequency: 1880 MHz; Duty Cycle: 1:4.16 7.4V, 4.0Ah Li-ion Smart Battery (Model: IX750-29WHR) Medium: M1900 Medium parameters used: f = 1880 MHz; σ = 1.48 mho/m; ϵ_r = 50.8; ρ = 1000 kg/m³

- Probe: EX3DV4 - SN3600; ConvF(7.45, 7.45, 7.45); Calibrated: 19/04/2008

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008

- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - GPRS 2 Slots Area Scan (15x22x1): Measurement grid: dx=15mm, dy=15mm

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - GPRS 2 Slots Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.07 V/m; Power Drift = -0.099 dB Peak SAR (extrapolated) = 0.193 W/kg

SAR(1 g) = 0.090 mW/g; SAR(10 g) = 0.058 mW/g Maximum value of SAR (measured) = 0.099 mW/g

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC8775	IC:	1943A-MC8775	GENER	AL DYNAMICS
Model(s):	IX-MC	8775	DUT Type:	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				Itronix	
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs						s Inc.	Page 32 of 52		

Colltoch	Date(s) of Evaluation May 12 & 14, 2008	<u>Test Report Serial No.</u> 050708KBC-T903-S24G	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
Testrg and Engineering Services Lat	Test Report Issue Date	Description of Test(s)	<u>RF Exposure Category</u>	ACCREDITED
	July 08, 2008	Specific Absorption Rate	General Population	Test Lab Certificate No. 2470.01

Body SAR - PCS Band - GPRS (3 Slots) - 1880 MHz - Ch. 661 - LCD Display Fully Extended

DUT: General Dynamics Itronix Corp.; Type: IX750 Handheld PC with IX-MC8775 GPRS/EDGE/WCDMA; Serial: None

Ambient Temp: 24.5°C; Fluid Temp: 23.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: PCS GPRS Frequency: 1880 MHz; Duty Cycle: 1:2.6 7.4V, 4.0Ah Li-ion Smart Battery (Model: IX750-29WHR) Medium: M1900 Medium parameters used: f = 1880 MHz; σ = 1.48 mho/m; ϵ_r = 50.8; ρ = 1000 kg/m³

- Probe: EX3DV4 - SN3600; ConvF(7.45, 7.45, 7.45); Calibrated: 19/04/2008

- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008

- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - GPRS 3 Slots Area Scan (15x22x1): Measurement grid: dx=15mm, dy=15mm

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - GPRS 3 Slots Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.48 V/m; Power Drift = 0.006 dB Peak SAR (extrapolated) = 0.167 W/kg

SAR(1 g) = 0.102 mW/g; SAR(10 g) = 0.066 mW/g

Maximum value of SAR (measured) = 0.107 mW/g

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC8775	IC:	1943A-MC8775	GENER	AL DYNAMICS
Model(s):	IX-MC	8775	DUT Type:	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				Itronix	
2008 Celltech La	h Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs						s Inc.	Page 33 of 52	

Callbach	Date(s) of Evaluation May 12 & 14, 2008	Test Report Serial No.Test Report Revision No.050708KBC-T903-S24GRev. 1.0 (Initial Release)		
Testrg and Engineering Services Lat	Test Report Issue Date	Description of Test(s)	<u>RF Exposure Category</u>	ACCREDITED
	July 08, 2008	Specific Absorption Rate	General Population	Test Lab Certificate No. 2470.01

Body SAR - PCS Band - GPRS (4 Slots) - 1880 MHz - Ch. 661 - LCD Display Fully Extended

DUT: General Dynamics Itronix Corp.; Type: IX750 Handheld PC with IX-MC8775 GPRS/EDGE/WCDMA; Serial: None

Ambient Temp: 24.5°C; Fluid Temp: 23.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: PCS GPRS Frequency: 1880 MHz; Duty Cycle: 1:2 7.4V, 4.0Ah Li-ion Smart Battery (Model: IX750-29WHR) Medium: M1900 Medium parameters used: f = 1880 MHz; σ = 1.48 mho/m; ϵ_r = 50.8; ρ = 1000 kg/m³

- Probe: EX3DV4 - SN3600; ConvF(7.45, 7.45, 7.45); Calibrated: 19/04/2008

- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008

- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - GPRS 4 Slots Area Scan (15x22x1): Measurement grid: dx=15mm, dy=15mm

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - GPRS 4 Slots Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.46 V/m; Power Drift = 0.046 dB Peak SAR (extrapolated) = 0.195 W/kg

SAR(1 g) = 0.125 mW/g; SAR(10 g) = 0.083 mW/g

Maximum value of SAR (measured) = 0.135 mW/g

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC8775	IC:	1943A-MC8775	GENER	AL DYNAMICS
Model(s):	IX-MC	8775	DUT Type:	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				Itronix	
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs						is Inc.	Page 34 of 52		

Celltech Terry and Engineering Services Lat	Date(s) of Evaluation May 12 & 14, 2008	<u>Test Report Serial No.</u> 050708KBC-T903-S24G	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
	Test Report Issue Date July 08, 2008	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> General Population	ACCREDITED Test Lab Certificate No. 2470.01

Body SAR - PCS Band - GPRS (4 Slots) - 1850.2 MHz - Ch. 512 - LCD Display Fully Extended

DUT: General Dynamics Itronix Corp.; Type: IX750 Handheld PC with IX-MC8775 GPRS/EDGE/WCDMA; Serial: None

Ambient Temp: 24.5°C; Fluid Temp: 23.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: PCS GPRS Frequency: 1850.2 MHz; Duty Cycle: 1:2 7.4V, 4.0Ah Li-ion Smart Battery (Model: IX750-29WHR) Medium: M1900 Medium parameters used: f = 1850.2 MHz; σ = 1.48 mho/m; ϵ_r = 50.8; ρ = 1000 kg/m³

- Probe: EX3DV4 - SN3600; ConvF(7.45, 7.45, 7.45); Calibrated: 19/04/2008

- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008

- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - GPRS 4 Slots Area Scan (15x22x1): Measurement grid: dx=15mm, dy=15mm

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - GPRS 4 Slots Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.7 V/m; Power Drift = -0.166 dB Peak SAR (extrapolated) = 0.287 W/kg

SAR(1 g) = 0.164 mW/g; SAR(10 g) = 0.105 mW/g

Maximum value of SAR (measured) = 0.174 mW/g

Applicant:	GD Itronix Corporation		FCC ID:	KBCIX-MC8775	IC: 1943A-MC8775		GENERAL DYNAMICS	
Model(s):	IX-MC	8775	DUT Type:	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs					s Inc.	Page 35 of 52		

Celltech Torg at Equerg Series La	Date(s) of Evaluation May 12 & 14, 2008	<u>Test Report Serial No.</u> 050708KBC-T903-S24G	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
	Test Report Issue Date July 08, 2008	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> General Population	Test Lab Certificate No. 2470.01

Z-Axis Scan

Applicant:	GD Itronix Corporation		FCC ID:	KBCIX-MC8775	IC:	1943A-MC8775		AL DYNAMICS	
Model(s):	IX-MC	8775	DUT Type:	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				Itronix	
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs						s Inc.	Page 36 of 52		
Callhada	Date(s) of Evaluation May 12 & 14, 2008	<u>Test Report Serial No.</u> 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)						
-------------------------------------	--	--	--	----------------------------------					
Testrg and Engineering Services Lat	Test Report Issue Date	Description of Test(s)	<u>RF Exposure Category</u>	ACCREDITED					
	July 08, 2008	Specific Absorption Rate	General Population	Test Lab Certificate No. 2470.01					

Body SAR - PCS Band - GPRS (4 Slots) - 1909.8 MHz - Ch. 810 - LCD Display Fully Extended

DUT: General Dynamics Itronix Corp.; Type: IX750 Handheld PC with IX-MC8775 GPRS/EDGE/WCDMA; Serial: None

Ambient Temp: 24.5°C; Fluid Temp: 23.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: PCS GPRS Frequency: 1909.8 MHz; Duty Cycle: 1:2 7.4V, 4.0Ah Li-ion Smart Battery (Model: IX750-29WHR) Medium: M1900 Medium parameters used: f = 1909.8 MHz; σ = 1.48 mho/m; ϵ_r = 50.8; ρ = 1000 kg/m³

- Probe: EX3DV4 - SN3600; ConvF(7.45, 7.45, 7.45); Calibrated: 19/04/2008

- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008

- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - GPRS 4 Slots Area Scan (15x22x1): Measurement grid: dx=15mm, dy=15mm

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - GPRS 4 Slots Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.75 V/m; Power Drift = 0.109 dB Peak SAR (extrapolated) = 0.192 W/kg

SAR(1 g) = 0.119 mW/g; SAR(10 g) = 0.072 mW/g

Maximum value of SAR (measured) = 0.130 mW/g

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC8775	IC:	1943A-MC8775	GENEF	AL DYNAMICS
Model(s):	IX-MC	8775	DUT Type:	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				Itronix	
2008 Celltech La	abs Inc.	In Sinc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs						s Inc.	Page 37 of 52

Callhada	Date(s) of Evaluation May 12 & 14, 2008	<u>Test Report Serial No.</u> 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
Testrg and Engineering Services Lat	Test Report Issue Date	Description of Test(s)	<u>RF Exposure Category</u>	ACCREDITED
	July 08, 2008	Specific Absorption Rate	General Population	Test Lab Certificate No. 2470.01

Body SAR - PCS Band - EDGE (4 Slots) - 1850.2 MHz - Ch. 512 - LCD Display Fully Extended

DUT: General Dynamics Itronix Corp.; Type: IX750 Handheld PC with IX-MC8775 GPRS/EDGE/WCDMA; Serial: None

Ambient Temp: 24.5°C; Fluid Temp: 23.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: PCS EDGE Frequency: 1850.2 MHz; Duty Cycle: 1:2 7.4V, 4.0Ah Li-ion Smart Battery (Model: IX750-29WHR) Medium: M1900 Medium parameters used: f = 1850.2 MHz; σ = 1.48 mho/m; ϵ_r = 50.8; ρ = 1000 kg/m³

- Probe: EX3DV4 - SN3600; ConvF(7.45, 7.45, 7.45); Calibrated: 19/04/2008

- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008

- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - EDGE 4 Slots Area Scan (15x22x1): Measurement grid: dx=15mm, dy=15mm

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - EDGE 4 Slots Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.16 V/m; Power Drift = -0.036 dB Peak SAR (extrapolated) = 0.527 W/kg SAR(1 g) = 0.121 mW/g; SAR(10 g) = 0.078 mW/g

Maximum value of SAR (measured) = 0.127 mW/g

Applicant:	GD Itronix Corporation			FCC ID:	KBCIX-MC8775 IC: 1943A-MC8775			GENERAL DYNAMICS	
Model(s):	IX-MC	8775	DUT Type:	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				Itronix	
2008 Celltech La	abs Inc.	Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs						s Inc.	Page 38 of 52

Callbach	Date(s) of Evaluation May 12 & 14, 2008	<u>Test Report Serial No.</u> 050708KBC-T903-S24G	<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)	
Testrg and Engineering Services Lat	<u>Test Report Issue Date</u> July 08, 2008	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> General Population	Test Lab Certificate No. 2470.01

Body SAR - PCS Band - WCDMA (RMS 12.2k) - 1880 MHz - Ch. 9400 - LCD Display Fully Extended

DUT: General Dynamics Itronix Corp.; Type: IX750 Handheld PC with IX-MC8775 GPRS/EDGE/WCDMA; Serial: None

Ambient Temp: 24.5°C; Fluid Temp: 23.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: PCS WCDMA Frequency: 1880 MHz; Duty Cycle: 1:1 7.4V, 4.0Ah Li-ion Smart Battery (Model: IX750-29WHR) Medium: M1900 Medium parameters used: f = 1880 MHz; σ = 1.48 mho/m; ϵ_r = 50.8; ρ = 1000 kg/m³

- Probe: EX3DV4 - SN3600; ConvF(7.45, 7.45, 7.45); Calibrated: 19/04/2008

- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - WCDMA Area Scan (15x22x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.080 mW/g

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - WCDMA Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.10 V/m; Power Drift = 0.135 dB Peak SAR (extrapolated) = 0.098 W/kg SAR(1 g) = 0.063 mW/g; SAR(10 g) = 0.042 mW/g Maximum value of SAR (measured) = 0.081 mW/g

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC8775	KBCIX-MC8775 IC: 19			AL DYNAMICS
Model(s):	IX-MC	8775	DUT Type:	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				Itronix	
2008 Celltech La	abs Inc.	This	document is not to	t to be reproduced in whole or in part without the prior written permission of Celltech Lab					Page 39 of 52

Colling	Date(s) of Evaluation May 12 & 14, 2008	Test Report Serial No. 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
Centecn	<u>Test Report Issue Date</u>	Description of Test(s)	<u>RF Exposure Category</u>	Test Lab Certificate No. 2470.01
Testrg and Engineering Services Lat	July 08, 2008	Specific Absorption Rate	General Population	

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC8775	IC:	1943A-MC8775	GENER	AL DYNAMICS
Model(s):	IX-MC	C8775	DUT Type:	Dual-Band	ual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				
2008 Celltech La	abs Inc.	This	his document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs						Page 40 of 52

Celltech	Date(s) of Evaluation May 12 & 14, 2008	Test Report Serial No. 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
	Test Report Issue Date July 08, 2008	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> General Population	Test Lab Certificate No. 2470.01

System Performance Check - 835 MHz Dipole - MSL

DUT: Dipole 835 MHz; Asset: 00022; Serial: 411; Validation: 05/02/2008

Ambient Temp: 22°C; Fluid Temp: 20.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Forward Conducted Power: 250 mW Frequency: 835 MHz; Duty Cycle: 1:1 Medium: M835 Medium parameters used: f = 835 MHz; σ = 0.95 mho/m; ϵ_r = 55.8; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1387; ConvF(5.96, 5.96, 5.96); Calibrated: 22/04/2008

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

835 MHz Dipole - System Performance Check

Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

835 MHz Dipole - System Performance Check

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.0 V/m; Power Drift = -0.052 dB Peak SAR (extrapolated) = 3.44 W/kg SAR(1 g) = 2.48 mW/g; SAR(10 g) = 1.65 mW/g Maximum value of SAR (measured) = 2.69 mW/g

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC8775	IC:	1943A-MC8775	GENER	AL DYNAMICS
Model(s):	IX-MC	8775	DUT Type:	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				Itronix	
2008 Celltech La	abs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs						s Inc.	Page 41 of 52

Celltech	Date(s) of Evaluation May 12 & 14, 2008	Test Report Serial No. 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> July 08, 2008	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> General Population	ACCREDITED

Z-Axis Scan

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC8775	IC:	1943A-MC8775	GENER	RAL DYNAMICS
Model(s):	IX-MC	8775	DUT Type:	Dual-Band	al-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				
2008 Celltech La	abs Inc.	This	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs						Page 42 of 52

Celltech	Date(s) of Evaluation May 12 & 14, 2008	Test Report Serial No. 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
	Test Report Issue Date July 08, 2008	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Test Lab Certificate No. 2470.01

System Performance Check - 1900 MHz Dipole - MSL

DUT: Dipole 1900 MHz; Asset: 00032; Serial: 151; Validation: 05/14/2008

Ambient Temp: 24.5°C; Fluid Temp: 23.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Forward Conducted Power: 250 mW Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: M1900 Medium parameters used: f = 1900 MHz; σ = 1.51 mho/m; ϵ_r = 51.1; ρ = 1000 kg/m³

- Probe: EX3DV4 - SN3600; ConvF(7.45, 7.45, 7.45); Calibrated: 19/04/2008

- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

1900 MHz Dipole - System Performance Check

Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

1900 MHz Dipole - System Performance Check

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.5 V/m; Power Drift = -0.069 dB Peak SAR (extrapolated) = 19.2 W/kg SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.26 mW/g Maximum value of SAR (measured) = 14.7 mW/g

Applicant:	GD I	tronix (Corporation	FCC ID: KBCIX-MC8775 IC: 1943A-MC8775				GENER	AL DYNAMICS
Model(s):	IX-MC	8775	DUT Type:	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				Itronix	
2008 Celltech La	abs Inc.	This	document is not to	e reproduced in whole or in part without the prior written permission of Celltech Lab					Page 43 of 52

Celltech	Date(s) of Evaluation May 12 & 14, 2008	Test Report Serial No. 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> July 08, 2008	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> General Population	Test Lab Certificate No. 2470.01

Z-Axis Scan

Applicant:	GD I	tronix (Corporation	FCC ID: KBCIX-MC8775 IC: 1			1943A-MC8775	GENER	RAL DYNAMICS
Model(s):	IX-MC	8775	DUT Type:	Dual-Band	Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				
2008 Celltech La	abs Inc.	This	document is not to	e reproduced in whole or in part without the prior written permission of Celltech Labs				s Inc.	Page 44 of 52

Collhooth	Date(s) of Evaluation May 12 & 14, 2008	Test Report Serial No. 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
CCENTECN	<u>Test Report Issue Date</u>	Description of Test(s)	RF Exposure Category	Test Lab Certificate No. 2470.01
Testrg and Engineering Services Lat	July 08, 2008	Specific Absorption Rate	General Population	

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

Applicant:	GD I	tronix (Corporation	FCC ID: KBCIX-MC8775		IC: 1943A-MC8775		GENERAL DYNAMICS	
Model(s):	IX-MC	8775	DUT Type:	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC			Itronix		
2008 Celltech La	abs Inc.	This	document is not to	e reproduced in whole or in part without the prior written permission of Celltech Labs				is Inc.	Page 45 of 52

Celltech	Date(s) of Evaluation May 12 & 14, 2008	Test Report Serial No. 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> July 08, 2008	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> General Population	Test Lab Certificate No. 2470.01

835 MHz System Performance Check & DUT Evaluation (Body)

Celltech Labs Inc. Test Result for UIM Dielectric Parameter Mon 12/May/2008 Frequency (GHz) FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM								
Frea	FCC eB	FCC st	3 Teste	Test s				
0.7350	55.59	0.96	56.35	0.85				
0.7450	55.55	0.96	56.68	0.85				
0.7550	55.51	0.96	56.74	0.88				
0.7650	55.47	0.96	56.51	0.87				
0.7750	55.43	0.97	56.37	0.89				
0.7850	55.39	0.97	56.18	0.90				
0.7950	55.36	0.97	56.27	0.92				
0.8050	55.32	0.97	56.14	0.91				
0.8150	55.28	0.97	55.72	0.93				
0.8250	55.24	0.97	55.89	0.94				
0.8350	55.20	0.97	55.80	0.95				
0.8450	55.17	0.98	55.57	0.96				
0.8550	55.14	0.99	55.74	0.98				
0.8650	55.11	1.01	55.50	0.99				
0.0750	55.06	1.02	55.29	1.00				
0.8850	55.00	1.03	55.20	1.01				
0.0000	55.02	1.04	55.04	1.02				
0.9150	55.00	1.00	55 23	1.02				
0.9250	54.98	1.06	55.00	1.04				
0.9350	54.96	1.07	54.83	1.05				

Applicant:	GD I	tronix (Corporation	FCC ID: KBCIX-MC8775			IC: 1943A-MC8775		GENERAL DYNAMICS	
Model(s):	IX-MC	8775	DUT Type:	Dual-Band	I-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC					
2008 Celltech La	abs Inc.	This	document is not to	be reproduced in	e reproduced in whole or in part without the prior written permission of Celltech Labs				Page 46 of 52	

College	Date(s) of Evaluation May 12 & 14, 2008	<u>Test Report Serial No.</u> 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
Testrg and Engineering Services Lat	<u>Test Report Issue Date</u> July 08, 2008	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> General Population	Test Lab Certificate No. 2470.01

1900 MHz System Performance Check & 1880 MHz DUT Evaluation (Body)

Celltech Labs Inc. Test Result for UIM Dielectric Parameter Wed 14/May/2008 Frequency (GHz) FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM								
Freq	FCC eB	FCC st	R Test e	Test s				
1 8000	53 30	1 52	51.30	1 41				
1.8100	53.30	1.52	51.39	1.40				
1.8200	53.30	1.52	51.28	1.43				
1.8300	53.30	1.52	51.24	1.42				
1.8400	53.30	1.52	51.17	1.44				
1.8500	53.30	1.52	51.18	1.44				
1.8600	53.30	1.52	51.15	1.47				
1.8700	53.30	1.52	51.03	1.49				
1.8800	53.30	1.52	50.83	<mark>1.48</mark>				
1.8900	53.30	1.52	50.91	1.50				
<mark>1.9000</mark>	53.30	1.52	51.06	1.51				
1.9100	53.30	1.52	51.07	1.53				
1.9200	53.30	1.52	50.85	1.53				
1.9300	53.30	1.52	50.83	1.55				
1.9400	53.30	1.52	50.89	1.55				
1.9500	53.30	1.52	50.93	1.54				
1.9600	53.30	1.52	50.73	1.56				
1.9700	53.30	1.52	50.85	1.57				
1.9800	53.30	1.52	50.72	1.58				
1.9900	53.30	1.52	50.78	1.62				
2.0000	53.30	1.52	50.7 7	1.63				

Applicant:	GD I	tronix (Corporation	FCC ID: KBCIX-MC8775 IC: 1943A-MC8775		GENER	RAL DYNAMICS		
Model(s):	IX-MC	8775	DUT Type:	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				Itronix	
2008 Celltech La	abs Inc.	This	document is not to	be reproduced in	e reproduced in whole or in part without the prior written permission of Celltech Labs				Page 47 of 52

Date(s) of E May 12 & Tests and Engineering Services Lat Tests Report July 08,	Date(s) of Evaluation May 12 & 14, 2008	Test Report Serial No. 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
	<u>Test Report Issue Date</u> July 08, 2008	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> General Population	Test Lab Certificate No. 2470.01

APPENDIX E - SYSTEM VALIDATION

Applicant:	GD I	tronix (Corporation	FCC ID: KBCIX-MC8775 IC: 1943A-MC8775		GENER	RAL DYNAMICS		
Model(s):	IX-MC	C8775	DUT Type:	: Dual-Band GPRS/EDGE/WCDMA Card in IX		Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC		Itronix	
2008 Celltech La	abs Inc.	This	document is not to	o be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					

Date of Evaluation:	May 02, 2008	Document Serial No.:		SV835M-050208-R1.0		
Evaluation Type:	System Validation	Validation Dipole:	835 MI	Hz	Fluid Type:	Body

835 MHz SYSTEM VALIDATION

Celltech Labs Inc. certifies that the 835 MHz System Validation was performed on the date indicated above.

Performed by:

Sean Johnston

Signature:

Sum Jund

Celltech Labs Inc. 21-364 Lougheed Rd., Kelowna, B.C. V1X 7R8 Canada Tel. 250-765-7650 • Fax. 250-765-7645 • e-mail: info@celltechlabs.com www.celltechlabs.com

	Date of Evaluation:	May 02, 2008	Document Serial No.:		SV835M-050208-R1.0		
Celifech Testing and Engineering Services Lab	Evaluation Type:	System Validation	Validation Dipole:	835 Mł	Hz	Fluid Type:	Body

1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the requirements specified in IEEE Standard 1528-2003 and International Standard IEC 62209-1:2005. The electrical properties were measured using an HP 8753ET Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 15.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 835 MHz	Re{Z} = 54.736Ω
	$Im{Z} = 2.4258\Omega$

Return Loss at 835 MHz

-25.852dB

2. Validation Dipole VSWR Data

	Date of Evaluation:	May 02, 2008	Document Serial No.:		SV835M-050208-R1.0		
Testing and Engineering Services Lat	Evaluation Type:	System Validation	Validation Dipole:	835 MF	łz	Fluid Type:	Body

3. Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	396.0	250.0	6.0
450	270.0	167.0	6.0
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.5	30.4	3.6
3000	41.5	25.0	3.6

4. Validation Phantom

The validation phantom is a Fiberglass shell planar phantom manufactured by Barski Industries Ltd. The phantom is in conformance with the requirements defined by IEEE SCC34-SC2 for the dosimetric evaluations of body-worn and lap-held operating configurations. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids.

Shell Thickness: $2.0 \pm 0.1 \text{ mm}$ Filling Volume:Approx. 55 litersDimensions: $94 \text{ cm} (L) \times 44 \text{ cm} (W) \times 22 \text{ cm} (H)$

5. Test Equipment List

TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE OF CAL.	CAL. DUE DATE
SPEAG DASY4 Measurement Server	00158	1078	N/A	N/A
SPEAG Robot	00046	599396-01	N/A	N/A
SPEAG DAE4	00019	353	22Apr08	22Apr09
SPEAG ET3DV6 E-Field Probe	00016	1387	22Apr08	22Apr09
835 MHz Validation Dipole	00022	411	02May08	02May09
Barski Planar Phantom	00155	03-01	N/A	N/A
ALS-PR-DIEL Dielectric Probe Kit	00160	260-00953	N/A	N/A
Gigatronics 8652A Power Meter	00007	1835272	23Apr08	23Apr09
Gigatronics 80701A Power Sensor	00014	1833699	23Apr08	23Apr09
HP 8753ET Network Analyzer	00134	US39170292	28Apr08	28Apr09
HP 8648D Signal Generator	00005	3847A00611	NCR	NCR
Amplifier Research 5S1G4 Power Amplifier	00106	26235	NCR	NCR

Date of Evalua	Date of Evaluation:	May 02, 2008	Document Serial No.:		SV835M-050208-R1.0		
Testing and Engineering Services Lab	Evaluation Type:	System Validation	Validation Dipole:	835 MH	Hz Fluid Type:	Body	

6. 835 MHz Validation Dipole & Planar Phantom

Date of Evaluation		May 02, 2008	Document Serial No.:		SV835M-050208-R1.0		
Celifech Testing and Engineering Services Lab	Evaluation Type:	System Validation	Validation Dipole:	835 M⊦	Iz Fluid Type:	Body	

7. SAR Measurement

Measurements were made using a dosimetric E-field probe ET3DV6 (S/N: 1387, Conversion Factor 5.96). The SAR measurement was performed with the E-field probe in mechanical and optical surface detection mode. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

Colltoch

8. Measurement Conditions

The planar phantom was filled with 835 MHz Body tissue simulant.

Relative Permittivity:	57.5 (+4.2% deviation from target)
Conductivity:	0.97 mho/m (0.0% deviation from target)
Fluid Temperature:	20.3 °C (Start of Test) / 20.5 °C (End of Test)
Fluid Depth:	≥ 15.0 cm
Environmental Conditio	ns:
Ambient Temperature:	22.0°C
Barometric Pressure:	101.1 kPa

Humidity: 35%

The 835 MHz Body tissue simulant consisted of the following ingredients:

Ingredient	Percentage by weight		
Water	53.79%		
Sugar	45.13%		
Salt	0	.98%	
Dowicil 75	0.10%		
IEEE/IEC Target Dielectric Parameters (835 MHz):	ε _r = 55.2 (+/- 5%)	σ = 0.97 S/m (+/- 5%)	

9. System Validation SAR Results

Input	t ave	raged ove	er 1g (W/kg)	g (W/kg)			1W Inpu	t a	veraged o	ver	1g (W/kg)	
et	Me	asured	Deviation	I	SPEAG Target Measured Deviat				Deviation			
0%		2.53	+4.2%		9.71		+/- 10%	,	10.1		+4.2%	
Input	aver	averaged over 10g (W/kg)			SAR @	<u>)</u> 11	W Input a	ave	araged over	er 1	0g (W/kg)	
et	Me	asured	Deviation		SPE	AG	Target		Measure	d	Deviation	
0%		1.69	+5.6%		6.38		+/- 10%	,	6.76		+6.0%	
Dipo Type D300 D450 D833 D900 D143 D150 D164 D180 D190 D200 D244 D300 : Nt	ble b)V2 b)	Distance [mm] 15 15 15 10 10 10 10 10 10 10 10 10 10 10 10 10	Frequency [MHz] 300 450 835 900 1450 1500 1640 1800 1900 2000 2450 3000 e SAR values	S.	AR (1g) [W/kg] 3.02 5.01 9.71 11.1 29.6 30.8 34.4 38.5 39.8 40.9 51.2 61.9 r SPEAG	SA	AR (10g) [W/kg] 2.06 3.36 6.38 7.17 16.6 17.1 18.7 20.3 20.8 21.2 23.7 24.8 poles and	S.	AR (peak) [W/kg] 4.36 7.22 14.1 16.3 49.8 52.1 59.4 67.5 69.6 71.5 97.6 136.7 t phantom	fillec	l with	
	Input et 0% Input et 0% Dipo Typo D450 D450 D450 D164 D150 D164 D150 D164 D150 D164 D150 C164 D190 D204 D204 D204 C204 D204 C204 C204 C204 C204 C204 C204 C204 C	Input aver et Me 0%	Input averaged over Measured 0% 2.53 Input averaged over Measured 0% 1.69 Dipole Distance Type [mm] D300 V2 15 D450 V2 15 D900 V2 15 D1450 V2 10 D1500 V2 10 D1640 V2 10 D1900 V2 10 D1600 V2 10 D1600 V2 10 D1600 V2 10 D1900 V2 10 D1900 V2 10 D2000 V2 10 D3000 V2 10	Input averaged over 1g (W/kg) et Measured Deviation 0% 2.53 +4.2% Input averaged over 10g (W/kg) Input averaged over 10g (W/kg) Input averaged over 10g (W/kg) Imput averaged over 10 Imput averaged over 10 D300V2 15 300 D16402 Imput averaged over 15 Imput averaged over 15 <th cols<="" th=""><th>Input averaged over 1g (W/kg) et Measured Deviation 0% 2.53 +4.2% Input averaged over 10g (W/kg) Measured Deviation 0% 1.69 +5.6% Dipole Distance Frequency S Type [mm] [MHz] S D300V2 15 300 1 D450V2 15 835 1 D835V2 15 835 1 D900V2 15 900 1 D1450V2 10 1450 1 D1500V2 10 1800 1 D1800V2 10 1800 1 D1900V2 10 2000 1 D2000V2 10 2450 1 D3000V2 10 3000 1</th><th>Input averaged over 1g (W/kg) SAR et Measured Deviation SPE 0% 2.53 +4.2% 9.71 Input averaged over 10g (W/kg) SAR @ et Measured Deviation SPE Input averaged over 10g (W/kg) SAR @ et Measured Deviation SPE 0% 1.69 +5.6% 6.38 Dipole Distance Frequency SAR (1g) Type [mm] [MHz] [W/kg] D300 V2 15 300 3.02 D450 V2 15 450 5.01 D835 V2 15 835 9.71 D900 V2 15 900 11.1 D1450 V2 10 1450 29.6 D1500 V2 10 1500 30.8 D1640 V2 10 1800 38.5 D1900 V2 10 1800 38.5 D1900 V2 10 2000 40.9 <</th><th>Input averaged over 1g (W/kg) SAR @ et Measured Deviation SPEAG 0% 2.53 +4.2% 9.71 Input averaged over 10g (W/kg) SAR @ 1 et Measured Deviation SPEAG 0% 1.69 +5.6% 6.38 Dipole Distance Frequency SAR (1g) S. Type [mm] [MHz] [W/kg] S. Dipole Distance Frequency SAR (1g) S. Type [mm] [MHz] [W/kg] S. D300V2 15 300 3.02 D D450V2 15 835 9.71 D D835V2 15 835 9.71 D D900V2 15 900 11.1 D D1450V2 10 1450 29.6 D D1500V2 10 1500 30.8 D D1640V2 10 1800 38.5</th><th>Input averaged over 1g (W/kg) SAR @ 1W Input et Measured Deviation SPEAG Target 10% 2.53 +4.2% 9.71 +/- 10% Input averaged over 10g (W/kg) SAR @ 1W Input averaged SAR @ 1W Input averaged et Measured Deviation SPEAG Target 10% 1.69 +5.6% 6.38 +/- 10% Dipole Distance Frequency SAR (1g) SAR (10g) Type [mm] [MHz] [W/kg] [W/kg] D300V2 15 300 3.02 2.06 D450V2 15 835 9.71 6.38 D900V2 15 900 11.1 7.17 D1450V2 10 1450 29.6 16.6 D1500V2 10 1500 30.8 17.1 D14640V2 10 1640 34.4 18.7 D1800V2 10 1800 38.5 20.3 D1900V2 10 2000</th><th>Input averaged over 1g (W/kg) SAR @ 1W Input averaged over 1g (W/kg) et Measured Deviation SPEAG Target 10% 2.53 +4.2% 9.71 +/- 10% Input averaged over 10g (W/kg) SAR @ 1W Input averaged SAR @ 1W Input averaged et Measured Deviation SPEAG Target 10% 1.69 +5.6% 6.38 +/- 10% Dipole Distance Frequency SAR (1g) SAR (10g) S. Type [mm] [MHz] [W/kg] [W/kg] S. Dipole Distance Frequency SAR (1g) SAR (10g) S. Type [mm] [MHz] [W/kg] [W/kg] S. D300V2 15 300 3.02 2.06 D. D450V2 15 835 9.71 6.38 D. D900V2 15 900 11.1 7.17 D. D1450V2 10 1450 30.8 17.1 D.</th><th>Input averaged over 1g (W/kg) SAR @ 1W Input averaged over 0 et Measured Deviation SPEAG Target Measured 0% 2.53 +4.2% 9.71 +/- 10% 10.1 Input averaged over 10g (W/kg) SAR @ 1W Input averaged over 0 Measured Measured Measured 0% 1.69 +5.6% 6.38 +/- 10% 6.76 Dipole Distance Frequency SAR (1g) SAR (10g) SAR (peak) Type [mm] [MHz] [W/kg] [W/kg] [W/kg] [W/kg] Dioolv2 15 300 3.02 2.06 4.36 D450V2 15 450 5.01 3.36 7.22 D835V2 15 835 9.71 6.38 14.1 D900V2 15 900 11.1 7.17 16.3 D1450V2 10 1450 29.6 16.6 49.8 D1500V2 10 1500 30.8 17.1 52.1 <</th><th>Input averaged over 1g (W/kg) SAR @ 1W Input averaged over et Measured Deviation SPEAG Target Measured 10% 2.53 +4.2% 9.71 +/- 10% 10.1 Input averaged over 10g (W/kg) SAR @ 1W Input averaged over 1 Measured Input averaged over 10g (W/kg) SAR @ 1W Input averaged over 1 et Measured Deviation SPEAG Target Measured 0% 1.69 +5.6% 6.38 +/- 10% 6.76 Dipole Distance Frequency SAR (1g) SAR (10g) SAR (peak) Type [mm] [MHz] [W/kg] [W/kg] [W/kg] D300V2 15 300 3.02 2.06 4.36 D450V2 15 450 5.01 3.36 7.22 D835V2 15 835 9.71 6.38 14.1 D900V2 10 1450 29.6 16.6 49.8 D1500V2 10 1640 34.4 18.7 59.4</th></th>	<th>Input averaged over 1g (W/kg) et Measured Deviation 0% 2.53 +4.2% Input averaged over 10g (W/kg) Measured Deviation 0% 1.69 +5.6% Dipole Distance Frequency S Type [mm] [MHz] S D300V2 15 300 1 D450V2 15 835 1 D835V2 15 835 1 D900V2 15 900 1 D1450V2 10 1450 1 D1500V2 10 1800 1 D1800V2 10 1800 1 D1900V2 10 2000 1 D2000V2 10 2450 1 D3000V2 10 3000 1</th> <th>Input averaged over 1g (W/kg) SAR et Measured Deviation SPE 0% 2.53 +4.2% 9.71 Input averaged over 10g (W/kg) SAR @ et Measured Deviation SPE Input averaged over 10g (W/kg) SAR @ et Measured Deviation SPE 0% 1.69 +5.6% 6.38 Dipole Distance Frequency SAR (1g) Type [mm] [MHz] [W/kg] D300 V2 15 300 3.02 D450 V2 15 450 5.01 D835 V2 15 835 9.71 D900 V2 15 900 11.1 D1450 V2 10 1450 29.6 D1500 V2 10 1500 30.8 D1640 V2 10 1800 38.5 D1900 V2 10 1800 38.5 D1900 V2 10 2000 40.9 <</th> <th>Input averaged over 1g (W/kg) SAR @ et Measured Deviation SPEAG 0% 2.53 +4.2% 9.71 Input averaged over 10g (W/kg) SAR @ 1 et Measured Deviation SPEAG 0% 1.69 +5.6% 6.38 Dipole Distance Frequency SAR (1g) S. Type [mm] [MHz] [W/kg] S. Dipole Distance Frequency SAR (1g) S. Type [mm] [MHz] [W/kg] S. D300V2 15 300 3.02 D D450V2 15 835 9.71 D D835V2 15 835 9.71 D D900V2 15 900 11.1 D D1450V2 10 1450 29.6 D D1500V2 10 1500 30.8 D D1640V2 10 1800 38.5</th> <th>Input averaged over 1g (W/kg) SAR @ 1W Input et Measured Deviation SPEAG Target 10% 2.53 +4.2% 9.71 +/- 10% Input averaged over 10g (W/kg) SAR @ 1W Input averaged SAR @ 1W Input averaged et Measured Deviation SPEAG Target 10% 1.69 +5.6% 6.38 +/- 10% Dipole Distance Frequency SAR (1g) SAR (10g) Type [mm] [MHz] [W/kg] [W/kg] D300V2 15 300 3.02 2.06 D450V2 15 835 9.71 6.38 D900V2 15 900 11.1 7.17 D1450V2 10 1450 29.6 16.6 D1500V2 10 1500 30.8 17.1 D14640V2 10 1640 34.4 18.7 D1800V2 10 1800 38.5 20.3 D1900V2 10 2000</th> <th>Input averaged over 1g (W/kg) SAR @ 1W Input averaged over 1g (W/kg) et Measured Deviation SPEAG Target 10% 2.53 +4.2% 9.71 +/- 10% Input averaged over 10g (W/kg) SAR @ 1W Input averaged SAR @ 1W Input averaged et Measured Deviation SPEAG Target 10% 1.69 +5.6% 6.38 +/- 10% Dipole Distance Frequency SAR (1g) SAR (10g) S. Type [mm] [MHz] [W/kg] [W/kg] S. Dipole Distance Frequency SAR (1g) SAR (10g) S. Type [mm] [MHz] [W/kg] [W/kg] S. D300V2 15 300 3.02 2.06 D. D450V2 15 835 9.71 6.38 D. D900V2 15 900 11.1 7.17 D. D1450V2 10 1450 30.8 17.1 D.</th> <th>Input averaged over 1g (W/kg) SAR @ 1W Input averaged over 0 et Measured Deviation SPEAG Target Measured 0% 2.53 +4.2% 9.71 +/- 10% 10.1 Input averaged over 10g (W/kg) SAR @ 1W Input averaged over 0 Measured Measured Measured 0% 1.69 +5.6% 6.38 +/- 10% 6.76 Dipole Distance Frequency SAR (1g) SAR (10g) SAR (peak) Type [mm] [MHz] [W/kg] [W/kg] [W/kg] [W/kg] Dioolv2 15 300 3.02 2.06 4.36 D450V2 15 450 5.01 3.36 7.22 D835V2 15 835 9.71 6.38 14.1 D900V2 15 900 11.1 7.17 16.3 D1450V2 10 1450 29.6 16.6 49.8 D1500V2 10 1500 30.8 17.1 52.1 <</th> <th>Input averaged over 1g (W/kg) SAR @ 1W Input averaged over et Measured Deviation SPEAG Target Measured 10% 2.53 +4.2% 9.71 +/- 10% 10.1 Input averaged over 10g (W/kg) SAR @ 1W Input averaged over 1 Measured Input averaged over 10g (W/kg) SAR @ 1W Input averaged over 1 et Measured Deviation SPEAG Target Measured 0% 1.69 +5.6% 6.38 +/- 10% 6.76 Dipole Distance Frequency SAR (1g) SAR (10g) SAR (peak) Type [mm] [MHz] [W/kg] [W/kg] [W/kg] D300V2 15 300 3.02 2.06 4.36 D450V2 15 450 5.01 3.36 7.22 D835V2 15 835 9.71 6.38 14.1 D900V2 10 1450 29.6 16.6 49.8 D1500V2 10 1640 34.4 18.7 59.4</th>	Input averaged over 1g (W/kg) et Measured Deviation 0% 2.53 +4.2% Input averaged over 10g (W/kg) Measured Deviation 0% 1.69 +5.6% Dipole Distance Frequency S Type [mm] [MHz] S D300V2 15 300 1 D450V2 15 835 1 D835V2 15 835 1 D900V2 15 900 1 D1450V2 10 1450 1 D1500V2 10 1800 1 D1800V2 10 1800 1 D1900V2 10 2000 1 D2000V2 10 2450 1 D3000V2 10 3000 1	Input averaged over 1g (W/kg) SAR et Measured Deviation SPE 0% 2.53 +4.2% 9.71 Input averaged over 10g (W/kg) SAR @ et Measured Deviation SPE Input averaged over 10g (W/kg) SAR @ et Measured Deviation SPE 0% 1.69 +5.6% 6.38 Dipole Distance Frequency SAR (1g) Type [mm] [MHz] [W/kg] D300 V2 15 300 3.02 D450 V2 15 450 5.01 D835 V2 15 835 9.71 D900 V2 15 900 11.1 D1450 V2 10 1450 29.6 D1500 V2 10 1500 30.8 D1640 V2 10 1800 38.5 D1900 V2 10 1800 38.5 D1900 V2 10 2000 40.9 <	Input averaged over 1g (W/kg) SAR @ et Measured Deviation SPEAG 0% 2.53 +4.2% 9.71 Input averaged over 10g (W/kg) SAR @ 1 et Measured Deviation SPEAG 0% 1.69 +5.6% 6.38 Dipole Distance Frequency SAR (1g) S. Type [mm] [MHz] [W/kg] S. Dipole Distance Frequency SAR (1g) S. Type [mm] [MHz] [W/kg] S. D300V2 15 300 3.02 D D450V2 15 835 9.71 D D835V2 15 835 9.71 D D900V2 15 900 11.1 D D1450V2 10 1450 29.6 D D1500V2 10 1500 30.8 D D1640V2 10 1800 38.5	Input averaged over 1g (W/kg) SAR @ 1W Input et Measured Deviation SPEAG Target 10% 2.53 +4.2% 9.71 +/- 10% Input averaged over 10g (W/kg) SAR @ 1W Input averaged SAR @ 1W Input averaged et Measured Deviation SPEAG Target 10% 1.69 +5.6% 6.38 +/- 10% Dipole Distance Frequency SAR (1g) SAR (10g) Type [mm] [MHz] [W/kg] [W/kg] D300V2 15 300 3.02 2.06 D450V2 15 835 9.71 6.38 D900V2 15 900 11.1 7.17 D1450V2 10 1450 29.6 16.6 D1500V2 10 1500 30.8 17.1 D14640V2 10 1640 34.4 18.7 D1800V2 10 1800 38.5 20.3 D1900V2 10 2000	Input averaged over 1g (W/kg) SAR @ 1W Input averaged over 1g (W/kg) et Measured Deviation SPEAG Target 10% 2.53 +4.2% 9.71 +/- 10% Input averaged over 10g (W/kg) SAR @ 1W Input averaged SAR @ 1W Input averaged et Measured Deviation SPEAG Target 10% 1.69 +5.6% 6.38 +/- 10% Dipole Distance Frequency SAR (1g) SAR (10g) S. Type [mm] [MHz] [W/kg] [W/kg] S. Dipole Distance Frequency SAR (1g) SAR (10g) S. Type [mm] [MHz] [W/kg] [W/kg] S. D300V2 15 300 3.02 2.06 D. D450V2 15 835 9.71 6.38 D. D900V2 15 900 11.1 7.17 D. D1450V2 10 1450 30.8 17.1 D.	Input averaged over 1g (W/kg) SAR @ 1W Input averaged over 0 et Measured Deviation SPEAG Target Measured 0% 2.53 +4.2% 9.71 +/- 10% 10.1 Input averaged over 10g (W/kg) SAR @ 1W Input averaged over 0 Measured Measured Measured 0% 1.69 +5.6% 6.38 +/- 10% 6.76 Dipole Distance Frequency SAR (1g) SAR (10g) SAR (peak) Type [mm] [MHz] [W/kg] [W/kg] [W/kg] [W/kg] Dioolv2 15 300 3.02 2.06 4.36 D450V2 15 450 5.01 3.36 7.22 D835V2 15 835 9.71 6.38 14.1 D900V2 15 900 11.1 7.17 16.3 D1450V2 10 1450 29.6 16.6 49.8 D1500V2 10 1500 30.8 17.1 52.1 <	Input averaged over 1g (W/kg) SAR @ 1W Input averaged over et Measured Deviation SPEAG Target Measured 10% 2.53 +4.2% 9.71 +/- 10% 10.1 Input averaged over 10g (W/kg) SAR @ 1W Input averaged over 1 Measured Input averaged over 10g (W/kg) SAR @ 1W Input averaged over 1 et Measured Deviation SPEAG Target Measured 0% 1.69 +5.6% 6.38 +/- 10% 6.76 Dipole Distance Frequency SAR (1g) SAR (10g) SAR (peak) Type [mm] [MHz] [W/kg] [W/kg] [W/kg] D300V2 15 300 3.02 2.06 4.36 D450V2 15 450 5.01 3.36 7.22 D835V2 15 835 9.71 6.38 14.1 D900V2 10 1450 29.6 16.6 49.8 D1500V2 10 1640 34.4 18.7 59.4

Date Tested: 05/02/2008

System Validation - 835 MHz Dipole - MSL

DUT: Dipole 835 MHz; Asset: 00022; Serial: 411; Validation: 05/02/2008

Ambient Temp: 22°C; Fluid Temp: 20.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Forward Conducted Power: 250 mW Frequency: 835 MHz; Duty Cycle: 1:1 Medium: M835 Medium parameters used: f = 835 MHz; σ = 0.97 mho/m; ϵ_r = 57.5; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1387; ConvF(5.96, 5.96, 5.96); Calibrated: 22/04/2008

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn353; Calibrated: 22/04/2008

- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

835 MHz Dipole - System Validation

Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 2.74 mW/g

835 MHz Dipole - System Validation

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.0 V/m; Power Drift = -0.052 dB Peak SAR (extrapolated) = 3.52 W/kg SAR(1 g) = 2.53 mW/g; SAR(10 g) = 1.69 mW/g Maximum value of SAR (measured) = 2.75 mW/g

Celltech	Date of Evaluation:	May 02, 2008	Document Serial	No.:	SV835M-050208-R1.0		
	Evaluation Type:	System Validation	Validation Dipole:	835 MF	Iz Fluid Type:	Body	

Z-Axis Scan

10. Measured Fluid Dielectric Parameters

System Validation - 835 MHz (Body)

Celltech Labs Inc. Test Result for UIM Dielectric Parameter Fri 02/May/2008 Frequency (GHz) IEEE 1528-2003 Limits for Body Epsilon IEEE 1528-2003 Limits for Body Sigma							
Test e	Epsilon of	UIM					
Tests	Sigma of	UIM					
*********	**********	*********	*******	********	***		
Freq 0.7350 0.7450 0.7550 0.7650 0.7750 0.7750 0.7850 0.8050 0.8050 0.8150 0.8250		IEEE_eB 55.59 55.55 55.51 55.47 55.43 55.39 55.36 55.32 55.32 55.28 55.24	IEEE_\$B 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97	Test_e 57.99 57.98 57.89 58.17 57.98 57.68 57.63 57.63 57.63 57.80 57.80 57.64	Test_s 0.86 0.88 0.90 0.92 0.92 0.92 0.91 0.94 0.95 0.96 0.96		
0.8350		55 20	0.97	57 51	0.00		
0.8450		55.17	0.98	57.41	1.00		
0.8550		55.14	0.99	57.24	1.00		
0.8650		55.11	1.01	57.30	1.00		
0.8750		55.08	1.02	57.27	1.01		
0.8850		55.05	1.03	57.21	1.03		
0.8950		55.02	1.04	56.98	1.03		
0.9050		55.00	1.05	56.68	1.04		
0.9150		55.00	1.06	56.71	1.06		
0.9250		54.98	1.06	56.72	1.08		
0.9350		54.96	1.07	56.69	1.08		

11. Measurement Uncertainties

UNCERTAINTY BUDGET FOR SYSTEM VALIDATION							
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}	
Measurement System							
Probe calibration (835 MHz)	5.5	Normal	1	1	5.5	8	
Axial isotropy of the probe	4.7	Rectangular	1.732050808	1	2.7	×	
Spherical isotropy of the probe	0	Rectangular	1.732050808	1	0.0	×	
Spatial resolution	0	Rectangular	1.732050808	1	0.0	8	
Boundary effects	0.9	Rectangular	1.732050808	1	0.5	∞	
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	×	
Detection limit	1	Rectangular	1.732050808	1	0.6	∞	
Readout electronics	0.3	Normal	1	1	0.3	∞	
Response time	0	Rectangular	1.732050808	1	0.0	∞	
Integration time	0	Rectangular	1.732050808	1	0.0	∞	
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	∞	
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	×	
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	∞	
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	×	
Dipole							
Dipole Positioning	2	Normal	1.732050808	1	1.2	×	
Power & Power Drift	4.7	Normal	1.732050808	1	2.7	8	
Phantom and Setup							
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	8	
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	8	
Liquid conductivity (measured)	0	Normal	1	0.64	0.0	8	
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	8	
Liquid permittivity (measured)	4.2	Normal	1	0.6	2.5	8	
Combined Standard Unce	ertainty				8.87		
Expanded Uncertainty	(k=2)				17.74		
Measurement Uncertaint	y Table in acco	rdance with IEEE S	tandard 1528-2003	and IEC St	andard 62209-	1:2005	

Celltech	Date of Evaluation:	May 14, 2008	Document Serial	No.:	SV1900M-05140	SV1900M-051408-R1.0		
	Evaluation Type:	System Validation	Validation Dipole:	1900 MH	Hz Fluid Type:	Body		

1900 MHz SYSTEM VALIDATION

Туре:	1900 MHz Validation Dipole
Asset Number:	00032
Serial Number:	151
Place of Validation:	Celltech Labs Inc.
Date of Validation:	May 14, 2008

Celltech Labs Inc. certifies that the 1900 MHz System Validation was performed on the date indicated above.

Performed by:

Sean Johnston

Signature:

Sum Jund

Celltech Labs Inc. 21-364 Lougheed Rd., Kelowna, B.C. V1X 7R8 Canada Tel. 250-765-7650 • Fax. 250-765-7645 • e-mail: info@celltechlabs.com www.celltechlabs.com

	Date of Evaluation:	May 14, 2008	Document Serial No.:		SV1900M-051408-R1.0		
Testing and Engineering Services Lat	Evaluation Type:	System Validation	Validation Dipole:	1900 MH	Iz Fluid Type:	Body	

1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the requirements specified in IEEE Standard 1528-2003 and International Standard IEC 62209-1:2005. The electrical properties were measured using an HP 8753ET Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 1900 MHz	Re{Z} = 51.037Ω
	lm{Z} = 6.0313Ω

Return Loss at 1900 MHz

-24.271dB

2. Validation Dipole VSWR Data

Celltech	Date of Evaluation:	May 14, 2008	Document Serial No.:		SV1900M-051408-R1.0		
	Evaluation Type:	System Validation	Validation Dipole:	1900 MHz	Fluid Type:	Body	

3. Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	396.0	250.0	6.0
450	270.0	167.0	6.0
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.5	30.4	3.6
3000	41.5	25.0	3.6

4. Validation Phantom

The validation phantom is a Fiberglass shell planar phantom manufactured by Barski Industries Ltd. The phantom is in conformance with the requirements defined by IEEE SCC34-SC2 for the dosimetric evaluations of body-worn and lap-held operating configurations. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids.

Shell Thickness: $2.0 \pm 0.1 \text{ mm}$ Filling Volume:Approx. 55 litersDimensions:94 cm (L) x 44 cm (W) x 22 cm (H)

5. Test Equipment List

TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE OF CAL.	CAL. DUE DATE
SPEAG DASY4 Measurement Server	00158	1078	N/A	N/A
SPEAG Robot	00046	599396-01	N/A	N/A
SPEAG DAE4	00019	353	22Apr08	22Apr09
EX3DV4 E-Field Probe	00213	3600	19Apr08	19Apr09
1900 MHz Validation Dipole	00032	151	14May08	14May09
Barski Planar Phantom	00155	03-01	N/A	N/A
ALS-PR-DIEL Dielectric Probe Kit	00160	260-00953	N/A	N/A
Gigatronics 8652A Power Meter	00007	1835272	23Apr08	23Apr09
Gigatronics 80701A Power Sensor	00014	1833699	23Apr08	23Apr09
HP 8753ET Network Analyzer	00134	US39170292	28Apr08	28Apr09
HP 8648D Signal Generator	00005	3847A00611	NCR	NCR
Amplifier Research 5S1G4 Power Amplifier	00106	26235	NCR	NCR

Callhada	Date of Evaluation:	Evaluation: May 14, 2008 Document Serial No.: SV1900M-051408)8-R1.0	
Testing and Engineering Services Lat	Evaluation Type:	System Validation	Validation Dipole:	1900 MI	Hz Fluid Type:	Body

6. 1900 MHz Validation Dipole & Planar Phantom

Callbach	Date of Evaluation:	May 14, 2008	Document Serial No.:		SV1900M-051408-R1.0		
Testing and Engineering Services Lat	Evaluation Type:	System Validation	Validation Dipole:	1900 MH	z Fluid Type:	Body	

7. SAR Measurement

Measurements were made using a dosimetric E-field probe EX3DV4 (S/N: 3600, Conversion Factor 7.45). The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the procedures described below.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 50dB below the forward power.

8. Measurement Conditions

The planar phantom was filled with 1900 MHz Body tissue simulant.

Relative Permittivity:	51.1 (-4.1% deviation from target)
Conductivity:	1.51 mho/m (-0.6% deviation from target)
Fluid Temperature:	23.3 °C (Start of Test) / 23.2 °C (End of Test)
Fluid Depth:	≥ 15.0 cm
Environmental Condition	ns:
Environmental Condition Ambient Temperature:	ns: 24.5 °C
Environmental Condition Ambient Temperature: Barometric Pressure:	ns: 24.5 °C 101.1 kPa

The 1900 MHz Body tissue simulant consisted of the following ingredients:

Ingredient	Percentage by weight			
Water	69.85%			
Glycol	29.89%			
Salt	0.26%			
IEEE/IEC Target Dielectric Parameters (1900 MHz):	ε _r = 53.3 (+/-5%)	σ = 1.52 S/m (+/-5%)		

9. System Validation SAR Results

SAR @ 0.25W Input averaged over 1g (W/kg)				SAR @ 1W Input averaged over 1g (W/kg)				
SPEAG	SPEAG Target Measured Deviation SPEAG Tar		SPEAG Target		Measured	Deviation		
9.95	+/- 10%	10.3	+3.6%	39.8	39.8 +/- 10%		+3.6%	
SAR @ 0.2	5W Input av	veraged over 1	10g (W/kg)	SAR @ 1W Input averaged over 10g (W/kg)				
SPEAG	Target	Measured	Deviation	SPEAG	Target	Measured	Deviation	
5.20	+/- 10%	5.26	+1.2%	20.8 +/- 10%		21.04	+1.2%	

Dipole	Distance	Frequency	SAR (1g)	SAR $(10g)$	SAR (peak)
Type	[mm]	[MHz]	[W/kg]	[W/kg]	[W/kg]
D300V2	15	300	3.02	2.06	4.36
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1500V2	10	1500	30.8	17.1	52.1
D1640V2	10	1640	34.4	18.7	59.4
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6
D3000V2	10	3000	61.9	24.8	136.7

Table 32.1: Numerical reference SAR values for SPEAG dipoles and flat phantom filled with body-tissue simulating liquid. Note: All SAR values normalized to 1 W forward power.

Callbach	Date of Evaluation:	May 14, 2008	Document Serial	No.:	SV1900M-051408-R1.0		
Testing and Engineering Services Lat	Evaluation Type:	System Validation	Validation Dipole:	1900 MH	z Fluid Type:	Body	

System Validation - 1900 MHz Dipole - MSL

DUT: Dipole 1900 MHz; Asset: 00032; Serial: 151; Validation: 05/14/2008

Ambient Temp: 24.5°C; Fluid Temp: 23.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Forward Conducted Power: 250 mW Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: M1900 Medium parameters used: f = 1900 MHz; σ = 1.51 mho/m; ϵ_r = 51.1; ρ = 1000 kg/m³

- Probe: EX3DV4 - SN3600; ConvF(7.45, 7.45, 7.45); Calibrated: 19/04/2008

- Sensor-Surface: 2mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn353; Calibrated: 22/04/2008

- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

1900 MHz Dipole - System Validation

Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

1900 MHz Dipole - System Validation

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.5 V/m; Power Drift = -0.069 dB Peak SAR (extrapolated) = 19.2 W/kg SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.26 mW/g Maximum value of SAR (measured) = 14.7 mW/g

Colling	Date of Evaluation:	May 14, 2008	Document Serial No.:		SV1900M-051408-R1.0		
Celifech Testing and Engineering Services Lat:	Evaluation Type:	System Validation	Validation Dipole:	1900 MH	Iz Fluid Type:	Body	

Z-Axis Scan

10. Measured Fluid Dielectric Parameters

System Validation - 1900 MHz (Body)

********	********	*********	********	**********	***
Celltech L Test Resu Wed 14/M Frequenc FCC_eB FCC_sB Test_e Test_s Si	abs Inc. It for UIM May/2008 y (GHz) FCC Limi FCC Limi Epsilon of gma of UII	Dielectric ts for Body ts for Body f UIM M	Paramete / Epsilon / Sigma	r ************	****
Freq 1.8000		FCC_eB 53.30	FCC_sB 1.52	Test_e 51.30	Test_s 1.41
1.8100		53.30	1.52	51.39	1.40
1.8200		53.30	1.52	51.28	1.43
1.8300		53.30	1.52	51.24	1.42
1.8400		53.30	1.52	51.17	1.44
1.8500		53.30	1.52	51.18	1.44
1.8600		53.30	1.52	51.15	1.47
1.0700		53.30	1.52	50.93	1.49
1.8900		53.30	1.52	50.03	1.40
1.9000		53.30	1.52	51.06	1.51
1.9100		53.30	1.52	51.07	1.53
1.9200		53.30	1.52	50.85	1.53
1.9300		53.30	1.52	50.83	1.55
1.9400		53.30	1.52	50.89	1.55
1.9500		53.30	1.52	50.93	1.54
1.9600		53.30	1.52	50.73	1.56
1.9700		53.30	1.52	50.85	1.57
1.9800		53.30	1.52	50.72	1.58
1.9900		53.3U	1.52	50.78	1.02
2.0000		JJ.JU	1.52	JU.//	1.03

11. Measurement Uncertainties

U	CERTAINT	Y BUDGET FOR	SYSTEM VALI	DATION		
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}
Measurement System						
Probe calibration (1810 MHz)	5.5	Normal	1	1	5.5	00
Axial isotropy of the probe	4.7	Rectangular	1.732050808	1	2.7	œ
Spherical isotropy of the probe	0	Rectangular	1.732050808	1	0.0	00
Spatial resolution	0	Rectangular	1.732050808	1	0.0	00
Boundary effects	0.2	Rectangular	1.732050808	1	0.1	œ
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	×
Detection limit	1	Rectangular	1.732050808	1	0.6	x
Readout electronics	0.3	Normal	1	1	0.3	œ
Response time	0	Rectangular	1.732050808	1	0.0	×
Integration time	0	Rectangular	1.732050808	1	0.0	00
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	œ
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	œ
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	œ
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	8
Dipole						
Dipole Positioning	2	Normal	1.732050808	1	1.2	00
Power & Power Drift	4.7	Normal	1.732050808	1	2.7	œ
Phantom and Setup						
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	œ
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	8
Liquid conductivity (measured)	0.6	Normal	1	0.64	0.4	8
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	8
Liquid permittivity (measured)	4.1	Normal	1	0.6	2.5	œ
Combined Standard Uncertaint	ty				8.85	
Expanded Uncertainty (k=2)					17.69	
Measurement Uncertaint	y Table in acco	rdance with IEEE S	tandard 1528-2003	and IEC St	andard 62209-	1:2005

Colltoch	Date(s) of Evaluation May 12 & 14, 2008	Test Report Serial No. 050708KBC-T903-S24G	Test Report Revision No. Rev. 1.0 (Initial Release)	
Testrg and Engineering Services Lat	Test Report Issue Date July 08, 2008	Description of Test(s) Specific Absorption Rate	<u>RF Exposure Category</u> General Population	Test Lab Certificate No. 2470.01

APPENDIX G - PLANAR PHANTOM CERTIFICATE OF CONFORMITY

Applicant:	GD I	tronix (Corporation	FCC ID: KBCIX-MC8775 IC: 1943A-MC			1943A-MC8775	GENER	RAL DYNAMICS
Model(s):	IX-MC	C8775	DUT Type:	Dual-Band GPRS/EDGE/WCDMA Card in IX750 Handheld PC				Itronix	
2008 Celltech La	abs Inc.	This	document is not to	be reproduced in whole or in part without the prior written permission of Celltech Labs					Page 52 of 52

2378 Westlake Road Kelowna, B.C. Canada V1Z-2V2

Ph. # 250-769-6848 Fax # 250-769-6334 E-mail: <u>barskiind@shaw.ca</u> Web: www.bcfiberglass.com

FIBERGLASS FABRICATORS

Certificate of Conformity

Item : Flat Planar Phantom Unit # 03-01 Date: June 16, 2003 Manufacturer: Barski Industries (1985 Ltd)

Test	Requirement	Details
Shape	Compliance to geometry according to drawing	Supplied CAD drawing
Material Thickness	Compliant with the requirements	2mm +/- 0.2mm in measurement area
Material Parameters	Dielectric parameters for required frequencies Based on Dow Chemical technical data	100 MHz-5 GHz Relative permittivity<5 Loss Tangent<0.05

Conformity

Based on the above information, we certify this product to be compliant to the requirements specified.

Signature:

Daniel Chailler

Fiberglass Planar Phantom - Top View

Fiberglass Planar Phantom - Front View

Fiberglass Planar Phantom - Back View

Fiberglass Planar Phantom - Bottom View

Dimensions of Fiberglass Planar Phantom

(Manufactured by Barski Industries Ltd. - Unit# 03-01)

