

<u>Test Report Issue Date</u> June 06, 2008 Test Report Serial No. 050508KBC-T901-S24C

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
General Population

Test Report Revision No.

Rev. 1.0 (Initial Release)

SAR TEST REPORT (FCC/IC)

SAR ILST REPORT (FCC/IC)									
RF EXPOSURE EVALU	JATION		SPECIFI	C ABSO	RPTION RATE				
APPLICANT		GENERAL D	YNAMICS I	TRONIX CO	ORPORATION				
DEVICE UNDER TEST (DUT)	Dl	JAL-BAND C	DMA/EVDO	MINI-PCI	EXPRESS CARD				
DEVICE MODEL(S)			IX-M	C5725					
DEVICE IDENTIFIER(S)	FCC ID:	KBCIX-N	AC5725	IC:	1943A-MC5725				
HOST PC	GD ITI	RONIX CORF	P. RUGGED	HANDHEL	D PC MODEL: IX750				
APPLICATION TYPE	Cla	ss II Permiss	sive Change	e (LMA) - Ad	dd IX750 Host PC				
STANDARD(S) APPLIED			FCC 47 CI	FR §2.1093					
STANDARD(S) AFFEIED	Health Canada Safety Code 6								
		FCC OET	Bulletin 65,	Suppleme	nt C (01-01)				
PROCEDURE(S) APPLIED	FCC OET SAR Measurement Procedures for 3G Devices (Rev. 2.0)								
	Industry Canada RSS-102 Issue 2								
			IEEE 15	528-2003					
FCC DEVICE CLASSIFICATION(S)	PCS	Licensed Tra	ansmitter (F	PCB)	47 CFR §24 Subpart E				
IC DEVICE OF ACCIDICATION(C)		rsonal Comi			RSS-133 Issue 4				
IC DEVICE CLASSIFICATION(S)	800 MHz	Cellular Tele New Tech		nploying	1100				
RF EXPOSURE CATEGORY		Gene	ral Populati	ion / Uncon	trolled				
DATE(S) OF EVALUATION(S)			May 12 8	k 14, 2008					
TEST REPORT SERIAL NO.			050508KBC	-T901-S24	С				
TEST REPORT REVISION NO.	Revis	ion 1.0	Initial I	Release	June 06, 2008				
	Test	ing Performe	ed By	Test	Report Prepared By				
TEST REPORT SIGNATORIES	_	ean Johnsto Iltech Labs I			onathan Hughes elltech Labs Inc.				
TEST LAB AND LOCATION	C	elltech Com	pliance Tes	ting and E	ngineering Lab				
TEST LAB AND LOCATION	21-3	864 Loughee	d Road, Kel	lowna, B.C.	V1X 7R8 Canada				
TEST LAB CONTACT INFO.	Te	l.: 250-765-70	650	Fa	ax: 250-765-7645				
. 201 E/E CONTACT IN O	info@	celltechlabs	s.com	om www.celltechlabs.com					
TEST LAB ACCREDITATION(S)			Cest Lab Certifi	ACCREDITE					

Applicant:	GD	ltronix (Corporation	FCC ID: KBCIX-MC5725 IC: 1943A-MC5725		GENERAL DYNAMICS				
Model(s):	IX-M	C5725	DUT Type:	Dual-Band	CDMA/EVDO Card in IX750 Rugged Handheld PC				Itronix	
2008 Celltech La	abs Inc.	Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Ir						s Inc.	Page 1 of 42	

Test Report Issue Date Description of Test(s) Test Report Revision No. Rev. 1.0 (Initial Release)

June 06, 2008

Specific Absorption Rate

Test Report Serial No.

050508KBC-T901-S24C

RF Exposure Category **General Population**

DECLARATION OF COMPLIANCE DE EVECUEE EVALUATION

FCC			SAR RF EXF	POSURE	EVAL	LUATIO	ON					
Address 21-384 Lougheed Road, Kelowna B.C. V1X 7R8 Canada	Tost Lab Information	Name	CELLTECH LABS	INC.								
Address 12825 E. Mirabeau Parkway, Spokane Valley, WA 92216 USA	rest Lab information	Address	21-364 Lougheed F	Road, Kelowr	na B.C. V	1X 7R8 Ca	anada					
Standard(s) Applied	Applicant Information	Name	GENERAL DYNAM	IICS ITRONI	X CORP	ORATION						
FCC OET Bulletin 65, Supplement C (01-01) IEEE 1528-2003	Applicant information	Address	12825 E. Mirabeau	Parkway, Sp	okane Va	alley, WA	92216 USA	4				
FCC PCS Licensed Transmitter (PCB)	Standard(s) Applied	FCC	47 CFR §2.1093			IC I	Health Car	ada Safety	Code 6			
FCC PCS Licensed Transmitter (PCB) 2 GHz Personal Communication Services RSS-133 Issue 4 A7 CFR §24(E)	Procedure(s) Applied	FCC	OET Bulletin 65, Sup	oplement C (0	01-01)	OET SAR	R Measuren	nent Proced	ures for 3G	Devices (Rev. 2.0)		
2 GHz Personal Communication Services	Procedure(s) Applied	IC	RSS-102 Issue 2			IEEE	1528-2003					
C R00 MHz Cellular Telephones Employing New Technologies RSS-13z Issue 2		FCC	PCS Licensed Tran	smitter (PCE	3)			47 CFR	§24(E)			
Application Type	Device Classification(s)	ıc	2 GHz Personal Co	2 GHz Personal Communication Services RSS-133 Issue 4								
Device Identifier(s) FCC ID: KBCIX-MC5725 IC: 1943A-MC5725 Model IX-MC5725		10	800 MHz Cellular Te	elephones Er	nploying N	New Techn	ologies	RSS-13	2 Issue 2			
Device Under Test (DUT)	Application Type	FCC/IC	Class II Permissive	Change	Add Nev	w Host PC	- GD Itron	ix Corp. Ruç	gged Handh	eld PC Model: IX750		
Rugged Handheld PC Model: IX750 Manufacturer General Dynamics Itronix Corporation	Device Identifier(s)	FCC ID:	KBCIX-MC5725		IC:	1943A	-MC5725	Model	IX-MC572	25		
IX-WI.3945 802.11abg WLAN Mini-PCI Card FCC ID: KBCIX-WL3945 Does not co-transmit with IX-MC5725	Device Under Test (DUT)	Dual-Band CI	OMA/EVDO Mini-PCI E	xpress Card	Modes	CDMA	1xRTT	1xEv-Do	Rev. 0	1xEv-DO Rev. A		
IX-EYXFDC Class 2 Bluetooth Module FCC ID: KBCIX-EYXFDC Does co-transmit with IX-MC5725	Host PC Description	Rugged Har	ndheld PC Model: IX7	'50	Manufa	cturer	General	Dynamics	Itronix Corp	ooration		
Note: The Bluetooth transmitter antenna output power is < 60/f _(GHz) mW and is located > 5 cm from all other simultaneous transmitting antennas; therefore simultaneous transmission SAR evaluation is not required (per FCC OET "SAF Evaluation Considerations for Laptop Computers with Antennas Built-in on Display Screens" (FCC KDB 616217 D01 v01). Test Sample Serial No.(s) IX-MC5725 D240508313520 Production Unit IX750 Host PC ZZGEG8059ZZ7258 Identical Prototype Retriction On Unit IX750 Host PC ZZGEG8059ZZ7258 Identical Prototype Retriction On Unit IX750 Host PC ZZGEG8059ZZ7258 Identical Prototype Retriction On Unit IX750 Host PC ZZGEG8059ZZ7258 Identical Prototype Retriction On Unit IX750 Host PC ZZGEG8059ZZ7258 Identical Prototype Retriction On Unit IX750 Host PC ZZGEG8059ZZ7258 Identical Prototype Retriction On Unit IX750 Host PC ZZGEG8059ZZ7258 Identical Prototype Retriction On Unit IX750 Host PC ZZGEG8059ZZ7258 Identical Prototype Retriction On Unit IX750 Host PC ZZGEG8059ZZ7258 Identical Prototype Retriction On Unit IX750 Host PC ZZGEG8059ZZ7258 Identical Prototype Retriction On Unit IX750 Host PC ZZGEG8059ZZ7258 Identical Prototype Retriction On Unit IX750 Host PC ZZGEG8059ZZ7258 Identical Prototype Retriction On Unit IX750 Host PC IXEV-Do Rev. 0 (RTAP, 153.6 kbps) IXEV-Do Rev. 0 (RTAP, 153.6 kbps)		IX-WL3945 8	802.11abg WLAN Mini-	-PCI Card	FCC ID:	: KBCIX-W	/L3945	Does no	ot co-transn	nit with IX-MC5725		
Note: The Bluetooth fransmitter antenna output power is < 60/ficate_mW and is located > 5 cm from all other simultaneous transmitting antennas; therefore simultaneous transmission SAR evaluation is not required (per FCC CDET "SAR Evaluation Considerations for Laptop Computers with Antennas Built-in on Display Screens" (FCC KDB 616217 D01 v01). Test Sample Serial No.(s) IX-MC5725 D240508313520 Production Unit IX750 Host PC ZZGEG8059ZZ7258 Identical Prototype Transmit Frequency Range(s) Band Mode Frequency Channel dBm Watts Method Av. Conducted 1851.25 MHz 1851.25 MHz 1850.00 MHz 600 25.0 0.316 Av. Conducted 1908.75 MHz 1175 24.8 0.302 Av. Conducted 1908.75 MHz 1175 24.8 0.302 Av. Conducted 24.6 0.288 Av. Conducted 386.52 MHz 384 24.6 0.288 Av. Conducted 386.52 MHz 384 24.6 0.288 Av. Conducted 386.52 MHz 384 24.6 0.288 Av. Conducted 488.31 MHz 777 Av. Conducted Antenna Type(s) Tested Internal (Top Right Side of LCD Display) Lithium-ion Rechargeable Smart Battery (Standard Capacity) Note: Extended Capacity Smart Battery not tested due to thickness and increased spacing (2.5 cm antenna spacing) Configuration(s) Tested Body Note: Extended Capacity Smart Battery not tested due to thickness and increased spacing (2.5 cm antenna spacing) PCS Band FCC//C SAR Limit 1.6 W/kg 1g average	Co-located Transmitter(s)	IX-EYXFDC	Class 2 Bluetooth Mo	odule	FCC ID:	: KBCIX-E	YXFDC	Does co	o-transmit w	vith IX-MC5725		
Test Sample Serial No.(s) IX-MC5725 D240508313520 Production Unit IX750 Host PC ZZGEG8059ZZ7258 Identical Prototype	\-',	transmitting	antennas; therefore	simultaneou	s transm	ission SA	R evaluati	on is not	required (p	er FCC OET "SAR		
Band Mode Frequency Channel dBm Watts Method	Test Sample Serial No.(s)	IX-MC5725	D240508313520	Produc	tion Unit	IX750 H	ost PC Z	ZZGEG8059	9ZZ7258	Identical Prototype		
PCS	Transmit Frequency Range(s)	Cell Band	824.70 - 848.31 MH	łz		PCS E	Band 1	1851.25 - 19	008.75 MHz	:		
Max. RF Output Power Tested PCS		Band	Mode	Freq	uency	Chan	nel	dBm	Watts	Method		
Max. RF Output Power Tested Cellular 1xEv-Do Rev. 0 (RTAP, 153.6 kbps) (RTAP, 153.6 kbps) REVERTING REV. 0 (RTAP, 153.6 kbps) Example 1x			4555	1851.	25 MHz	25	5	24.95	0.313	Av. Conducted		
Cellular Taxev-Do Rev. 0 (RTAP, 153.6 kbps) 824.70 MHz 1013 24.6 0.288 Av. Conducted 836.52 MHz 384 24.6 0.288 Av. Conducted 848.31 MHz 777 24.5 0.282 Av. Conducted 848.31 MHz 777 7.4V 4.0Ah Model: IX750-29WHR Note: Extended Capacity Smart Battery (Standard Capacity) 7.4V 4.0Ah Model: IX750-29WHR Note: Extended Capacity Smart Battery not tested due to thickness and increased spacing (2.5 cm antenna spacing) Configuration(s) Tested Bottom Side of Handheld PC - 0.0 cm Separation Distance - LCD Display Lid Fully Extended - 2.0 cm antenna spacing Rawas SAR Level(s) Evaluated Body 1g average PCS Band FCC/IC SAR Limit 1.6 W/kg 1g average PCS Band FCC/IC SAR Limit 1.6 W/kg 1g average PCS Band FCC/IC SAR Limit 1.6 W/kg 1g average PCS Band FCC/IC SAR Limit 1.6 W/kg 1g average PCS Band FCC/IC SAR Limit 1.6 W/kg 1g average PCS Band PCS Band PCC/IC SAR Limit 1.6 W/kg 1g average PCS Band PCC/IC SAR Limit 1.6 W/kg 1g average PCS Band PCC/IC SAR Limit 1.6 W/kg 1g average PCS Band PCC/IC SAR Limit 1.6 W/kg 1g average PCS Band PCC/IC SAR Limit 1.6 W/kg 1g average PCS Band PCC/IC SAR Limit 1.6 W/kg 1g average PCS Band PCC/IC SAR Limit 1.6 W/kg 1g average PCS Band PCC/IC SAR Limit 1.6 W/kg 1g average PCS Band PCC/IC SAR Limit 1.6 W/kg 1g average PCS Band PCC/IC SAR Limit 1.6 W/kg 1g average PCS Band PCC/IC SAR Limit 1.6 W/kg PCC/IC SAR Limi		PCS		s) 1880.	00 MHz	60	0	25.0	0.316	Av. Conducted		
Cellular 1xEv-Do Rev. 0 (RTAP, 153.6 kbps) 836.52 MHz 384 24.6 0.288 Av. Conducted	Max. RF Output Power Tested		·	1908.	75 MHz	117	75	24.8	0.302	Av. Conducted		
Cellular			4555		'0 MHz	101	13	24.6	0.288	Av. Conducted		
Antenna Type(s) Tested Internal (Top Right Side of LCD Display) Lithium-ion Rechargeable Smart Battery (Standard Capacity) Note: Extended Capacity Smart Battery not tested due to thickness and increased spacing (2.5 cm antenna spacing) Configuration(s) Tested Bottom Side of Handheld PC - 0.0 cm Separation Distance - LCD Display Lid Fully Extended - 2.0 cm antenna spacing Max. SAR Level(s) Evaluated Body Internal (Top Right Side of LCD Display) 7.4V 4.0Ah Model: IX750-29WHR Display Lid Fully Extended - 2.0 cm antenna spacing 1.6 W/kg 1g average		Cellular		836 6	52 MHz	38	4	24.6	0.288	Av. Conducted		
Power Source(s) Tested Lithium-ion Rechargeable Smart Battery (Standard Capacity) Note: Extended Capacity Smart Battery not tested due to thickness and increased spacing (2.5 cm antenna spacing) Configuration(s) Tested Bottom Side of Handheld PC - 0.0 cm Separation Distance - LCD Display Lid Fully Extended - 2.0 cm antenna spacing Max. SAR Level(s) Evaluated Body Lithium-ion Rechargeable Smart Battery (Standard Capacity) 7.4V 4.0Ah Model: IX750-29WHR 1.5 cm antenna spacing 1.6 W/kg 1g average PCS Band FCC/IC SAR Limit 1.6 W/kg 1g average			,	848.3	31 MHz	77	7	24.5	0.282	Av. Conducted		
Power Source(s) Tested Note: Extended Capacity Smart Battery not tested due to thickness and increased spacing (2.5 cm antenna spacing) Configuration(s) Tested Bottom Side of Handheld PC - 0.0 cm Separation Distance - LCD Display Lid Fully Extended - 2.0 cm antenna spacing Max. SAR Level(s) Evaluated Body O.138 W/kg 1g average PCS Band FCC/IC SAR Limit 1.6 W/kg 1g average	Antenna Type(s) Tested	Internal (Top	Right Side of LCD D	Display)								
Note: Extended Capacity Smart Battery not tested due to thickness and increased spacing (2.5 cm antenna spacing) Configuration(s) Tested Bottom Side of Handheld PC - 0.0 cm Separation Distance - LCD Display Lid Fully Extended - 2.0 cm antenna spacing Max. SAR Level(s) Evaluated Body O.138 W/kg 1g average PCS Band FCC/IC SAR Limit 1.6 W/kg 1g average	Power Source(s) Tested	Lithium-ion F	Rechargeable Smart	Battery (Star	idard Cap	acity)	7.4V	4.0Ah	Model: IX	750-29WHR		
Max. SAR Level(s) Evaluated Body 0.138 W/kg 1g average PCS Band FCC/IC SAR Limit 1.6 W/kg 1g average	1 0 11 0 0 0 1 0 0 (3) 1 0 3 1 0 0	Note: Extend	led Capacity Smart Battery not tested due to thickness and increased spacing (2.5 cm antenna spacing									
Max. SAR Level(s) Evaluated Body	Configuration(s) Tested	Bottom Side	of Handheld PC - 0.0	0 cm Separa	tion Dista	nce - LCD	Display Li	d Fully Exte	nded - 2.0	cm antenna spacing		
	Max SAR Level(s) Evaluated	Body	0.138 W/kg 1	g average	PCS	PCS Band FCC/IC		CC/IC SAR Limit		g 1g average		
	man onit Lovol(s) Evaluated	Dody	0.073 W/kg 1	g average	Cellul	ar Band	FCC/IC	SAR Limit	1.6 W/kg	g 1g average		

Celltech Labs Inc. declares under its sole responsibility that this wireless device is compliant with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada's Safety Code 6 for the General Population / Uncontrolled Exposure environment. The device was tested in accordance with the measurement standards and procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01), FCC OET SAR Measurement Procedures for 3G Devices (Rev. 2.0), Industry Canada RSS-102 Issue 2 and IEEE 1528-2003. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

The results and statements contained in this report pertain only to the device(s) evaluated.

Sun Donne

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc.

Test Report Approved By

Sean Johnston

Celltech Labs Inc.

Applicant:	GD I	tronix (Corporation	FCC ID:	FCC ID: KBCIX-MC5725 IC: 1943A-MC5725		GENERAL DYNAMICS		
Model(s):	IX-M	C5725	DUT Type:	Dual-Band	ual-Band CDMA/EVDO Card in IX750 Rugged Handheld PC				
2008 Celltech La	bs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs						s Inc.	Page 2 of 42	

Test Report Issue Date June 06, 2008

16.0 REFERENCES___

MEASUREMENT UNCERTAINTIES (Cont.)

MEASUREMENT UNCERTAINTIES (Cont.)

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA____

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

APPENDIX D - SAR TEST SETUP PHOTOGRAPHS _____

APPENDIX G - PLANAR PHANTOM CERTIFICATE OF CONFORMITY _____

APPENDIX A - SAR MEASUREMENT DATA _____

APPENDIX E - SYSTEM VALIDATION

APPENDIX F - PROBE CALIBRATION ___

Test Report Serial No. 050508KBC-T901-S24C

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release) RF Exposure Category

General Population

20

__ 21 _ 30

_ 35

40

41

TABLE OF CONTENTS	
1.0 INTRODUCTION	4
2.0 SAR MEASUREMENT SYSTEM	4
3.0 OUTPUT POWER MEASUREMENTS	5
OUTPUT POWER MEASUREMENTS (Cont.)	6
OUTPUT POWER MEASUREMENTS (Cont.)	7
OUTPUT POWER MEASUREMENTS (Cont.)	8
4.0 MEASUREMENT SUMMARY	9
5.0 DETAILS OF SAR EVALUATION	10
6.0 EVALUATION PROCEDURES	10
7.0 SYSTEM PERFORMANCE CHECK	11
8.0 SIMULATED EQUIVALENT TISSUES	12
9.0 SAR LIMITS	12
10.0 ROBOT SYSTEM SPECIFICATIONS	
11.0 PROBE SPECIFICATIONS	14
12.0 PLANAR PHANTOM	14
13.0 DEVICE HOLDER	14
14.0 TEST EQUIPMENT LIST	15
15.0 MEASUREMENT UNCERTAINTIES	16
MEASUREMENT UNCERTAINTIES (Cont.)	

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENE	RAL DYNAMICS	
Model(s):	IX-M	5725	DUT Type:	Dual-Band	Dual-Band CDMA/EVDO Card in IX750 Rugged Handheld PC					
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 3 of 42										

Test Report Issue Date June 06, 2008

Test Report Serial No. 050508KBC-T901-S24C

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)


Test Lab Certificate No. 2470.01

1.0 INTRODUCTION

This measurement report demonstrates that the General Dynamics Itronix Corporation Model: IX-MC5725 Dual-Band CDMA/EVDO Embedded PC Card installed in the IX750 Rugged Handheld PC complies with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]) and Health Canada's Safety Code 6 (see reference [2]) for the General Population / Uncontrolled Exposure environment. The test procedures described in FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]), FCC OET SAR Measurement Procedures for 3G Devices, Rev. 2.0 (see reference [4], Industry Canada RSS-102 Issue 2 (see reference [6]) and IEEE 1528-2003 (see reference [7]) were employed. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the various provisions of the rules are included within this test report.

2.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

DASY4 Measurement Server

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENE	RAL DYNAMICS	
Model(s):	IX-M	C5725	DUT Type:	Dual-Band	CDMA/EVDO Card in IX750 Rugged Handheld PC				Itronix	
2008 Celltech La	abs Inc.	This	document is not to	be reproduced in	whole or in part without the	s Inc.	Page 4 of 42			

<u>Test Report Issue Date</u> June 06, 2008 Test Report Serial No. 050508KBC-T901-S24C Description of Test(s)

Specific Absorption Rate

RF Exposure Category
General Population

Test Report Revision No.

Rev. 1.0 (Initial Release)

3.0 OUTPUT POWER MEASUREMENTS

1xEv-Do Rev. 0

Power Measurement Procedures

This procedure assumes the Agilent 8960 Series 10 E5515C Wireless Communications Test Set contains the following applications installed and with valid license.

<u>Application</u> <u>Rev. License</u>

1xEv-Do Terminal Test A.07.13, L

FTAP

- Call Setup → Shift & Preset
- Protocol Rev → 0 (1xEv-Do)
- $\bullet \qquad \mathsf{Application} \; \mathsf{Config} \to \mathsf{Enhanced} \; \mathsf{Test} \; \mathsf{Application} \; \mathsf{Protocol} \to \mathsf{FTAP}$
- FTAP Rate → 307.2 kbps (2 Slot, QPSK)
- Access Network Info → Cell Parameters → Sector ID → 00840AC0 → Subnet Mask → 0
- Generator Info → Termination Parameters → Max Forward Packet Duration → 16 Slots
- Rvs Power Ctrl → All Bits Up (to get the maximum power)

RTAP

- Call Setup → Shift & Preset
- Protocol Rev → 0 (1xEv-Do)
- Application Config → Enhanced Test Application Protocol → RTAP
- RTAP Rate → 153.6 kbps
- Access Network Info → Cell Parameters → Sector ID → 00840AC0 → Subnet Mask → 0
- Generator Info → Termination Parameters → Max Forward Packet Duration → 16 Slots
- Rvs Power Ctrl \rightarrow All Bits Up (to get the maximum power)

			PRELIMIN	ARY MEAS	JREMENTS			
	Freq.		Average Cor	nducted Out	put Power	Average Con	ducted Outp	out Power
Band	(MHz)	Channel	RTAP Rate (kbps)	dBm	Watts	FTAP Rate (kbps)	dBm	Watts
			9.6	24.8	0.302		24.9	0.309
			19.2	24.7	0.295			
PCS	1880.00	600	38.4	24.8	0.302	307.2 (2 slot)		
			76.8	24.9	0.309			
			153.6	25.0	0.316			
			9.6	23.4	0.219		23.5	0.224
			19.2	23.5	0.224			
Cellular	836.52	384	38.4	23.7	0.234	307.2 (2 slot)	slot)	
			76.8	24.1	0.257			
			153.6	24.6	0.288			
			WORST-C	ASE MEAS	JREMENTS			
	Freg.		Average Cor	nducted Out	put Power	Average Con	ducted Outp	out Power
Band	(MHz)	Channel	RTAP Rate (kbps)	dBm	Watts	FTAP Rate (kbps)	dBm	Watts
	1851.25	25		24.95	0.313		-	-
PCS	1880.00	600	153.6	25.0	0.316	307.2 (2 slot)	24.9	0.309
	1908.75	1175		24.8	0.302		-	-
	824.70	1013		24.6	0.288		-	-
Cellular	836.52	384	153.6	24.6	0.288	307.2 (2 slot)	23.5	0.224
	848.31	777		24.5	0.282		-	-

Applicant:	GD I	tronix (Corporation	FCC ID: KBCIX-MC5725 IC: 1943A-MC5725		GENE	RAL DYNAMICS		
Model(s):	IX-M	C5725	DUT Type:	Dual-Band	CDMA/EVDO Card in IX750 Rugged Handheld PC				
2008 Celltech La	abs Inc.	This	document is not to	be reproduced in	whole or in part without the	s Inc.	Page 5 of 42		

Test Report Issue Date
June 06, 2008

Test Report Serial No. 050508KBC-T901-S24C

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (Initial Release)
RF Exposure Category

General Population

OUTPUT POWER MEASUREMENTS (Cont.)

1xEv-Do Rev. A

Power Measurement Procedures

This procedure assumes the Agilent 8960 Series 10 E5515C Wireless Communications Test Set contains the following applications installed and with valid license.

 Application
 Rev. License

 1xEv-Do Terminal Test
 A.07.13. L

FETAP

- Call Setup → Shift & Preset
- Protocol Rev → A (1xEv-Do-A)
- $\bullet \qquad \mathsf{Application}\;\mathsf{Config} \to \mathsf{Enhanced}\;\mathsf{Test}\;\mathsf{Application}\;\mathsf{Protocol} \to \mathsf{FETAP}$
- FTAP Rate → 307.2 kbps (2 Slot, QPSK)
- $\bullet \qquad \text{Protocol Subtype Config} \to \text{Release A Physical Layer Subtype} \to \text{Subtype 0}$
- $\bullet \qquad \text{Access Network Info} \to \text{Cell Parameters} \to \text{Sector ID} \to 00840 \text{AC0} \to \text{Subnet Mask} \to 0$
- Generator Info → Termination Parameters > Max Forward Packet Duration → 16 Slots
- Rvs Power Ctrl → All Bits Up (to get the maximum power)

RETAP

- Call Setup → Shift & Preset
- Protocol Rev → A (1xEv-Do-A)
- Application Config → Enhanced Test Application Protocol → RETAP
- F-Traffic Format → 4 (1024, 2,128) Canonical (307.2k, QPSK)
- R-Data Pkt Size → 4096
- Protocol Subtype Config → Release A Physical Layer Subtype → Subtype 2
 - → PL Subtype 2 Access Channel MAC Subtype → Default (Subtype 0)
- Access Network Info → Cell Parameters → Sector ID → 00840AC0 → Subnet Mask → 0
 Generator Info → Termination Parameters → Max Forward Packet Duration > 16 Slots
 - → ACK R-Data After > Subpacket 0 (All ACK)
- Rvs Power Ctrl → All Bits Up (to get the maximum power)

(see next page for conducted output power measurement data)

Test Report Issue Date
June 06, 2008

Test Report Serial No. 050508KBC-T901-S24C

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

OUTPUT POWER MEASUREMENTS (Cont.)

1xEv-Do Rev. A (Cont.)

			PRELIMIN	ARY MEASI	JREMENTS			
	_		Average Cor	ducted Out	put Power	Average Con	ducted Outp	out Power
Band	Freq. (MHz)	Channel	RETAP Rate (bps)	dBm	Watts	FETAP Rate (kbps)	dBm	Watts
			128	24.4	0.275	307.2 (2 slot)	24.65	0.292
			256	24.6	0.288	307.2 (4 slot)	24.7	0.295
			512	24.6	0.288			
			768	24.65	0.292			
			1024	24.75	0.299			
PCS	1880.00	600	1536	24.8	0.302			
1 00	1000.00	000	2048	24.8	0.302			
			3072	24.9	0.309			
			4096	24.9	0.309			
			6144	24.9	0.309			
			8192	24.9	0.309			
			12288	24.9	0.309			
			128	23.9	0.245	307.2 (2 slot)	24.2	0.263
			256	24.0	0.251	307.2 (4 slot)	24.2	0.263
			512	24.1	0.257			
			768	24.2	0.263			
			1024	24.3	0.269			
Cellular	836.52	384	1536	24.4	0.275			
Celiulai	030.32	304	2048	24.3	0.269			
			3072	24.5	0.282			
			4096	24.5	0.282			
			6144	23.8	0.240			
			8192	23.6	0.229			
			12288	23.5	0.224			
			WORST-C	ASE MEAS	JREMENTS			
	Freq.		Average Cor	ducted Out	put Power	Average Con	ducted Outp	out Power
Band	(MHz)	Channel	RETAP Rate (bps)	dBm	Watts	FETAP Rate (kbps)	dBm	Watts
	1851.25	25	40000	24.9	0.309		-	-
PCS	1880.00	600	12288 (16 Slots)	24.9	0.309	307.2 (4 slot)	24.7	0.295
	1908.75	1175		24.8	0.302		-	-
	824.70	1013	4000	24.5	0.282		-	-
Cellular 836.52	384	4096 (16 Slots)	24.5	0.282	307.2 (4 slot)	24.2	0.263	
	848.31	777	(12 3.0.0)	24.4	0.275		-	-

The maximum average output of each RF channel is less than that measured in Subtype 0/1 Physical Layer configurations for Rev. 0, therefore SAR evaluation is not required (per FCC OET SAR Measurement Procedures for 3G Devices Rev. 2.0).

Applicant:	GD I	tronix (Corporation	FCC ID: KBCIX-MC5725 IC: 1943A-MC5725				GENERAL DYNAMICS		
Model(s):	IX-M	C5725	DUT Type:	Dual-Band	CDMA/EVDO Card in IX750 Rugged Handheld PC				Itronix	
2008 Celltech La	abs Inc.	This	document is not to	be reproduced in	s Inc.	Page 7 of 42				

Test Report Issue Date
June 06, 2008

Test Report Serial No. 050508KBC-T901-S24C

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
General Population

Test Report Revision No.

Rev. 1.0 (Initial Release)

OUTPUT POWER MEASUREMENTS (Cont.)

CDMA 1xRTT

Power Measurement Procedures

This procedure assumes the Agilent 8960 Series 10 E5515C Wireless Communications Test Set contains the following applications installed and with valid license.

Application

Rev. License

CDMA2000 Mobile Test

B.12.12, L

1xRTT

- Call Setup → Shift & Preset
- Protocol Rev → 6 (IS-2000-0)
- Radio Config (RC) → RC3 (Fwd3, Rvs3)
- FCH Service Option (SO) Setup → SO55
- Traffic Data Rate → Full
- Cell info → Cell Parameters → System ID (SID) → 2238 (for Cellular) and 4145 (for PCS)

 \rightarrow Network ID (NID) \rightarrow 65535

Rvs Power Ctrl → All Bits Up (to get the maximum power)

	AVERAGE CONDUCTED OUTPUT POWER										
WORST-CASE MEASUREMENTS											
Band	Freq. (MHz)	Channel	Rate (kbps)	Radio Config. (RC)	Service Option (SO)	dBm	Watts				
	1851.25	25			2000	24.8	0.302				
PCS	1880.00	600	9600	RC3	SO32 (FCH+SCH)	25.0	0.316				
	1908.75	1175			,	24.7	0.295				
	824.70	1013			0000	24.4	0.275				
Cellular	836.52	384	9600	RC3	SO32 (FCH+SCH)	24.6	0.288				
	848.31	777			(= 0013)	24.7	0.295				

The maximum average output of each channel is less than ¼ dB higher than that measured in Subtype 0/1 Physical Layer configurations for Rev. 0, therefore SAR evaluation is not required (per FCC OET SAR Measurement Procedures for 3G Devices Rev. 2.0).

Applicant:	GD I	D Itronix Corporation		FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENE	RAL DYNAMICS
Model(s):	I(s): IX-MC5725 DUT Type:		Dual-Band	Dual-Band CDMA/EVDO Card in IX750 Rugged Handheld PC					
2008 Celltech La	abs Inc.	This	document is not to	be reproduced in	e reproduced in whole or in part without the prior written permission of Celltech Lab				

Test Report Issue Date
June 06, 2008

Test Report Serial No. 050508KBC-T901-S24C

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
General Population

Test Report Revision No.

Rev. 1.0 (Initial Release)

4.0 MEASUREMENT SUMMARY

					В	ODY	SAR	EVALUAT	ON	RESULTS				
Test Date	Band	Freq.	Chan.		Test N	/lode		Host PC Position to Plana Phantom		Host PC LCD Display Position	Antenna Distance to Planar Phantom	Conducted Power Before Test	SAR Drift During Test	Measured SAR 1g
		MHz						- Harton		1 GOILION	T Huntoni	dBm	dB	W/kg
May 12	2 Cellular	824.70	1013	Ev-D Rev.		RTA 307.2 k 2 slo	dps	Bottom Side T	ouch	Extended	2.0 cm	24.6 Av.	-0.011	0.054
May 12	2 Cellular	836.52	384	Ev-D Rev.		RTA 307.2 k (2 slo	dbps	Bottom Side T	ouch	Extended	2.0 cm	24.6 Av.	-0.177	0.070
May 12	Cellular	848.31	777	Ev-D Rev.		RTA 307.2 k (2 slo	dbps	Bottom Side T	ouch	Extended	2.0 cm	24.5 Av.	0.055	0.073
May 14	PCS	1851.25	25	Ev-D Rev.		RTA 307.2 k (2 slo	dps	Bottom Side T	ouch	Extended	2.0 cm	24.95 Av.	-0.058	0.099
May 14	PCS	1880.00	600	Ev-D Rev.		307.2 k	RTAP 07.2 kbps (2 slot) Bottom Side Touc		ouch	Extended	2.0 cm	25.0 Av.	0.142	0.138
May 14	PCS	1908.75	1175	Ev-D Rev.		RTA 307.2 k (2 slo	dps	Bottom Side T	ouch	Extended	2.0 cm	24.8 Av.	0.074	0.088
		SAR LI	VIT(S)					BODY		SPATIAL	PEAK	RF EXPO	SURE CATE	GORY
FCC	47 CFR 2.109	3 Hea	alth Cana	ada Safe	ty Code	9 6		1.6 W/kg		1g ave	rage	General Pop	ulation / Un	controlled
Tes	st Date(s)		May 12	, 2008			1	May 14, 2008		Measure	ed Fluid Type	835 MHz	1880 MH	z Unit
D:	ielectric		835 MHz	z Body			1880 MHz Body			Relativ	e Humidity	35	35	%
	onstant	IEEE T	arget	Meas.	Dev.	IEEE Target		get Meas.	Dev	. Atmosph	Atmospheric Pressure		101.1	kPa
	ε _r	55.2	+ 5%	55.8	+1.1%	53.3	3 ±	5% 50.8	.8 -4.7% Ambient To		Tomporaturo	22.0	24.5	°C
	ε _r 55.2 ± 5% 55.8 +1.1% 53.3						1880 MHz Body			Ambient	remperature	22.0	24.5	C
		33.2	835 MHz						-4.7		emperature	20.3	23.3	°C
	nductivity	IEEE T	835 MHz		Dev.	IEE		880 MHz Body	Dev	Fluid T		_	-	_
	nductivity (mho/m)		835 MHz	z Body	Dev. -2.0%	1EE	18 E Tarç	880 MHz Body		Fluid T	emperature	20.3	23.3	°C
	•	IEEE T	835 MHz	z Body Meas.			18 E Tarç	380 MHz Body get Meas.	Dev	Fluid T	emperature id Depth	20.3	23.3 ≥ 15	°C
Notes	(mho/m)	IEEE To 0.97	835 MHz arget ± 5% were obt	Meas. 0.95	-2.0%	1.5	18 EE Tarç 2 ±	380 MHz Body get Meas.	Dev -2.6%	Fluid T	emperature id Depth (Kg/m³)	20.3 ≥ 15	23.3 ≥ 15 1000	°C cm
Notes 1. Tm	(mho/m) The measuremnaximum SAR	ent results location of des tested	835 MHz arget ± 5% were obt f the DUT and repe	Meas. 0.95 tained with are reported in t	-2.0% th the D orted in A	UT tes Appendate	18 EE Tarç 2 ± ted in t	980 MHz Body 9et Meas. 5% 1.48	Dev -2.6%	Fluid T Fluid T Fluid T Fluid T	id Depth (Kg/m³)	20.3 ≥ 15 easurement data	23.3 ≥ 15 1000 a and plots s	°C cm
Notes 1. Tm 2. Tp	(mho/m) The measurem naximum SAR The device mo	0.97 ent results location of des tested 3G Device	835 MHz arget ± 5% were obt f the DUT and repo	Meas. 0.95 tained with are reported in to 0 (see recommend)	-2.0% th the Dorted in A	UT tes Appendice test [4]).	18 EE Targ 2 ± ted in tdix A. data ta	get Meas. 5% 1.48 the conditions d	Dev -2.6% escribe	Fluid T	id Depth (Kg/m³) rt. Detailed me	20.3 ≥ 15 easurement data ribed in FCC C	23.3 ≥ 15 1000 a and plots s	°C cm
Notes 1. Tm 2. Tp 3. T	The measuremnaximum SAR The device moreocedures for	ent results location of des tested 3G Device ations were	were obten the DUT and reports Rev. 2.	Meas. 0.95 tained with are reported in to 0 (see removed with to 1).	-2.0% th the D prized in / he above ference he DUT	UT tes Append ve test [4]).	18 EE Targ 2 ± tted in tdix A. data ta	get Meas. 5% 1.48 the conditions deable were selections.	Dev -2.6% escribe	Fluid T Fluid T Fluid T Fluid T Agilent 8960 S	rt. Detailed me occedures describes 10 E5515	20.3 ≥ 15 easurement data ribed in FCC C	23.3 ≥ 15 1000 a and plots s	°C cm
Notes 1.	The measuremnaximum SAR The device moreocedures for	ent results location of des tested 3G Device ations were s of the DU	were obtour and reports Rev. 2. e perform	Meas. 0.95 tained with are reported in the control of the contro	-2.0% th the D red in the above ference he DUT e DASY	UT tes Appendure test [4]). comm	ted in the data to	get Meas. 5% 1.48 the conditions deable were selecting via airlink withing the SAR evaluations.	Dev -2.6% escribe	Fluid T Fluid T Fluid T Fluid T Agilent 8960 S	rt. Detailed me occedures describes 10 E5515	20.3 ≥ 15 easurement data ribed in FCC C	23.3 ≥ 15 1000 a and plots s	°C cm
Notes 1. Tm 2. Pp 3. T 4. T 5. T	The measuremnaximum SAR The device mo Procedures for The SAR evaluation in the power drift The Host PC be	ent results location of des tested 3G Device ations were sof the DU attery was erature was	were obten the DUT and reports Rev. 2. The perform of the purifully charts measures measures.	Meas. 0.95 tained with are reported in the office of the open content of the open co	-2.0% th the D rted in A he above ference he DUT to the S to and	UT tes Appender test [4]). comm (4 systematics)	ted in talix A. data taliunicatii em dur	get Meas. 5% 1.48 the conditions deable were selecting via airlink withing the SAR evaluations.	Dev -2.6% escribe ted ba	Fluid T Fluid T Fluid T P P P P P P P P P P P P P	id Depth (Kg/m³) rt. Detailed me ocedures describes 10 E5515 from the start p	20.3 ≥ 15 easurement data ribed in FCC C 6C Wireless Colower.	23.3 ≥ 15 1000 a and plots s DET SAR Me	cm cm
Notes 1. Tm 2. Tp 3. T 4. T 5. T 6. Tr 7. T	The measurem saximum SAR for device mo procedures for the SAR evaluation for the Host PC but the fluid temple ported during	ent results location of des tested 3G Device ations were s of the DU attery was at the dielect parameters	were obtour the DUT and reports Rev. 2. the perform of the sire of	Meas. 0.95 tained with are reported in to 0 (see reported by the ged prior red prior meter meanulated times.)	-2.0% th the Dorted in A he above ference he DUT to the S to and assurements assue m	UT tes Appender test [4]). commerce safer trents.	ted in talix A. data talix alunication em duralization em SAF	get Meas. 5% 1.48 the conditions deable were selecting via airlink withing the SAR evans.	-2.6% escribe ted batted balluation	Fluid T Fluid T Fluid T Fluid T Fluid T P Red in this report Red on the pr Regilent 8960 S Ins were <5% f The the tempera	id Depth (Kg/m³) rt. Detailed me ocedures desc eries 10 E5515 rom the start p	20.3 ≥ 15 easurement data ribed in FCC Coower. within +/-2°C coower.	23.3 ≥ 15 1000 a and plots s DET SAR Me mmunication of the fluid to	cm cm chowing the easurement s Test Set.

Applicant:	GD I	D Itronix Corporation		FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENE	RAL DYNAMICS
Model(s):	del(s): IX-MC5725 DUT Type:			Dual-Band	Itronix				
2008 Celltech La	abs Inc.	This	document is not to	not to be reproduced in whole or in part without the prior written permission of Celltech Lab					Page 9 of 42

Test Report Issue Date
June 06, 2008

Test Report Serial No. 050508KBC-T901-S24C

Description of Test(s)
Specific Absorption Rate

Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category
General Population
Te

5.0 DETAILS OF SAR EVALUATION

The General Dynamics Itronix Corporation Model: IX-MC5725 Dual-Band CDMA/EVDO Embedded PC Card installed in the IX750 Rugged Handheld PC was compliant for localized Specific Absorption Rate (Uncontrolled Exposure) based on the test provisions and conditions described below. The detailed test setup photographs are shown in Appendix D.

Test Configuration(s)

1. The DUT was tested for body SAR (lap-held) with the bottom side of the IX750 Handheld PC placed parallel to, and touching, the outer surface of the planar phantom. The LCD display lid was fully extended with a 2.0 cm spacing from the antenna to the planar phantom. Note: The DUT is not intended to transmit with the LCD display lid closed.

Test Mode(s)

 The DUT was tested in continuous transmit operation with a modulated CDMA signal communicating via air-link with the Agilent 8960 Series 10 E5515C Wireless Communications Test Set at maximum power in "all bits up" power control mode.

Power Level(s)

3. The conducted power levels of the DUT were measured prior to the SAR evaluations using the Agilent 8960 Series 10 E5515C Wireless Communications Test Set and Gigatronics Universal Power Meter according to the procedures described in FCC OET SAR Measurement Procedures for 3G Devices (see reference [4]).

Test Conditions

- 4. The fluid temperature was measured prior to and after the SAR evaluations to ensure the temperature remained within +/-2°C of the fluid temperature reported during the dielectric parameter measurements.
- 5. The dielectric parameters of the simulated tissue mixtures were measured prior to the SAR evaluations using an HP 85070C Dielectric Probe Kit and HP 8753ET Network Analyzer (see Appendix C).

6.0 EVALUATION PROCEDURES

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 - (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.
 - An area scan was determined as follows:
- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.
 - A 1g and 10g spatial peak SAR was determined as follows:
- e. Extrapolation is used to determine the values between the dipole center of the probe and the surface of the phantom. For E-Field Probe EX3DV4 this data cannot be measured because the center of the dipole sensors is 1.0 mm away from the probe tip and the distance between the probe and the boundary must be larger than 25% of the probe diameter. The probe diameter is 2.4 mm (see probe calibration document in Appendix F). In the DASY4 software, the distance between the sensor center and phantom surface is set to 2.0 mm. This provides a distance of 1.0 mm between the probe tip and the surface. For E-Field Probe ET3DV6 this data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix F). The extrapolation of the values between the dipole center and the surface of the phantom was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

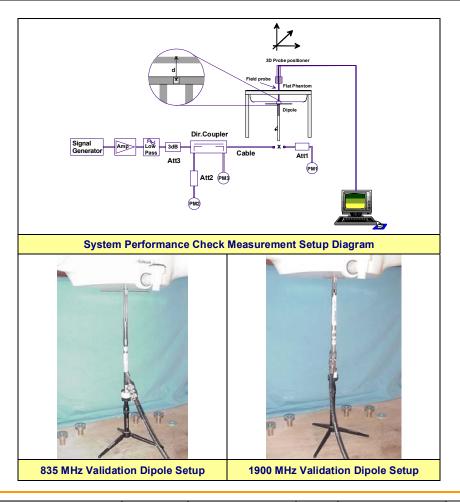
Applicant:	GD	Itronix Corporation		FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENE	RAL DYNAMICS
Model(s):	odel(s): IX-MC5725 DUT Type:		Dual-Band	Dual-Band CDMA/EVDO Card in IX750 Rugged Handheld PC					
2008 Celltech La	abs Inc.	This	document is not to	e reproduced in whole or in part without the prior written permission of Celltech Labs					Page 10 of 42

Test Report Issue Date
June 06, 2008

Test Report Serial No. 050508KBC-T901-S24C

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category


General Population

7.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluations, system checks were performed using a Fiberglas planar phantom with 835 MHz and 1900 MHz dipoles (see Appendix B for system performance check test plots). The dielectric parameters of the simulated tissue mixtures were measured prior to the system performance checks using an HP 85070C Dielectric Probe Kit and an HP 8753ET Network Analyzer (see Appendix C). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of ±10% from the system validation target SAR values (see Appendix E for system validation procedures).

				S	/STEM P	ERFO	RMAN	ICE CHE	CK EV	'ALUA	TIONS	3				
Test	Fluid Freq.	SAR 1g (W/kg)			Dielectric Constant ε _r				Conductivity σ (mho/m)			Amb.	Fluid	Fluid Depth	Humid.	Barom.
Date	Body (MHz)	Sys. Val. Target	Meas.	Dev.	Sys. Val. Target Sys. Val. Target Meas. Dev. Sys. Val. Target Dev. Property (°C) Temp. (°C) Temp. (°C)								(cm)		Press. (kPa)	
May 12	835	2.53 ±10%	2.48	-2.0%	57.5 ±5%	55.8	-2.9%	0.97 ±5%	0.95	-2.0%	1000	22.0	20.3	≥ 15	35	101.1
May 14	1900	10.3 ±10%	10.3	0.0%	51.1 ±5%	51.1	0.0%	1.51 ±5%	1.51	0.0%	1000	24.5	23.3	≥ 15	35	101.1
		1. The targe	et SAR v	alue is ref	erenced fror	n the Sys	stem Vali	dation proce	dure perf	ormed by	Celltech	Labs Inc	(see Ap	pendix E).	
		2. The targe	et dielect	ric param	eters are ref	erenced	from the	System Valid	dation pro	cedure p	erformed	by Cellte	ech Labs	Inc. (see	Appendix	E).
Note	Note(s) 3. The fluid temperature was measured prior to and after the SAR evaluations to ensure the temperature remained within +/-2°C of the fluid temperature reported during the dielectric parameter measurements.									the fluid						
	4. The SAR evaluations were performed within 24 hours of the system performance check.									·						

Applicant:	GD	D Itronix Corporation		FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENE	RAL DYNAMICS
Model(s):): IX-MC5725 DUT Type:		Dual-Band	Dual-Band CDMA/EVDO Card in IX750 Rugged Handheld PC					
2008 Celltech La	abs Inc.	This	document is not to	pe reproduced in whole or in part without the prior written permission of Celltech Lab					Page 11 of 42

<u>Test Report Issue Date</u> June 06, 2008 Test Report Serial No. 050508KBC-T901-S24C

<u>Description of Test(s)</u>
Specific Absorption Rate

RF Exposure Category
General Population

Test Report Revision No. Rev. 1.0 (Initial Release)

8.0 SIMULATED EQUIVALENT TISSUES

The 1880/1900MHz simulated equivalent tissue mixture consisted of Glycol-monobutyl, water, and salt. The 835MHz simulated equivalent tissue mixture consisted of a viscous gel using saline solution. Preservation with a bactericide was added and visual inspection was made to ensure air bubbles were not trapped during the mixing process. The fluids were prepared according to standardized procedures and measured for dielectric parameters (permittivity and conductivity).

	PCS BAND TISSUE MIXTURE									
INGREDIENT	1900 MHz Body	1880 MHz Body								
INGREDIENT	System Performance Check	DUT Evaluation								
Water	69.85 %	69.85 %								
Glycol Monobutyl	29.89 %	29.89 %								
Salt	0.26 %	0.26 %								

CEI	LLULAR BAND TISSUE MIXTUR	E
INGREDIENT	835 MHz Body	835 MHz Body
INGREDIENT	System Performance Check	DUT Evaluation
Water	53.79 %	53.79 %
Sugar	45.13 %	45.13 %
Salt	0.98 %	0.98 %
Bactericide	0.10 %	0.10 %

9.0 SAR LIMITS

	SAR RF EXPOSURE LIMITS										
FCC 47 CFR 2.1093	Health Canada Safety Code 6	(General Population / Uncontrolled Exposure)	(Occupational / Controlled Exposure)								
Spatial / (averaged over	Average the whole body)	0.08 W/kg	0.4 W/kg								
	l Peak any 1 g of tissue)	1.6 W/kg	8.0 W/kg								
Spatia (hands/wrists/feet/ankle	l Peak es averaged over 10 g)	4.0 W/kg	20.0 W/kg								

The Spatial Average value of the SAR averaged over the whole body.

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Applicant:	GD I	GD Itronix Corporation		FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENERAL DYNAMICS	
Model(s):	lodel(s): IX-MC5725 DUT Type:		Dual-Band	Dual-Band CDMA/EVDO Card in IX750 Rugged Handheld PC					
2008 Celltech La	abs Inc.	This	document is not to	e reproduced in whole or in part without the prior written permission of Celltech Lab				s Inc.	Page 12 of 42

<u>Test Report Issue Date</u> June 06, 2008 Test Report Serial No. 050508KBC-T901-S24C

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category

General Population

10.0 ROBOT SYSTEM SPECIFICATIONS

<u>Specifications</u>	
Positioner	Stäubli Unimation Corp. Robot Model: RX60L
Repeatability	0.02 mm
No. of axis	6
Data Acquisition Electronic	DAE) System
Cell Controller	
Processor	AMD Athlon XP 2400+
Clock Speed	2.0 GHz
Operating System	Windows XP Professional
Data Converter	
Features	Signal Amplifier, multiplexer, A/D converter, and control logic
Software	Measurement Software: DASY4, V4.7 Build 44
Contware	Postprocessing Software: SEMCAD, V1.8 Build 171
Connecting Lines	Optical downlink for data and status info.; Optical uplink for commands and clock
DASY4 Measurement Server	
Function	Real-time data evaluation for field measurements and surface detection
Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface
E-Field Probe	
Probe (Cell Band)	
Model	ET3DV6
Serial No.	1387
Construction	Triangular core fiber optic detection system
Frequency	10 MHz to 6 GHz
Linearity	±0.2 dB (30 MHz to 3 GHz)
Probe (PCS Band)	
Model	EX3DV4
Serial No.	3600
Construction	Symmetrical design with triangular core
Frequency	10 MHz to 6 GHz
Linearity	±0.2 dB (30 MHz to 3 GHz)
Phantom(s)	
Туре	Planar Phantom
Shell Material	Fiberglas
Thickness	2.0 ±0.1 mm
Dimensions	94 cm (L) x 44 cm (W) x 22 cm (H)

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENE	RAL DYNAMICS			
Model(s):	IX-M	C5725	DUT Type:	Dual-Band CDMA/EVDO Card in IX750 Rugged Handheld PC								
2008 Celltech La	abs Inc.	This	document is not to	be reproduced in	reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 13 of 42							

June 06, 2008

050508KBC-T901-S24C Test Report Issue Date Description of Test(s)

Specific Absorption Rate

Test Report Serial No. Test Report Revision No. Rev. 1.0 (Initial Release)

> RF Exposure Category **General Population**

11.0 PROBE SPECIFICATIONS

ET3DV6 E-Field Probe

Symmetrical design with triangular core Construction:

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, glycol)

Calibration: In air from 10 MHz to 2.5 GHz

In brain simulating tissue at frequencies of 900 MHz

and 1.8 GHz (accuracy ± 8%)

Frequency: 10 MHz to > 6 GHz; Linearity: \pm 0.2 dB

(30 MHz to 3 GHz)

Directivity: \pm 0.2 dB in brain tissue (rotation around probe axis)

 \pm 0.4 dB in brain tissue (rotation normal to probe axis)

5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB Dynamic Range: Surface Detect:

 \pm 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces

Dimensions: Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

General dosimetry up to 3 GHz Application:

Compliance tests of mobile phone

ET3DV6 E-Field Probe

EX3DV4 E-Field Probe

Symmetrical design with triangular core Construction:

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g. DGBE)

Calibration: Basic Broadband Calibration in air: 10-3000 MHz

Conversion Factors (CF) for HSL 900 and HSL 1750

Frequency: 10 MHz to >6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz) Directivity: ±0.3 dB in HSL (rotation around probe axis)

 ± 0.5 dB in tissue material (rotation normal to probe axis)

Dynamic Range: 10 μ W/g to >100 mW/g; Linearity: \pm 0.2 dB

(noise: typically < 1 μ W/q)

Overall length: 330 mm (Tip: 20 mm) Dimensions:

Tip diameter: 2.5 mm (Body: 12 mm)

Typical distance from probe tip to dipole centers: 1.0 mm Application: High precision dosimetric measurements in any exposure

scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to

6 GHz with precision of better than 30%.

EX3DV4 E-Field Probe

12.0 PLANAR PHANTOM

The planar phantom is a Fiberglas shell phantom with a 2.0 mm (+/-0.2mm) thick device measurement area at the center of the phantom for SAR evaluations of devices with a larger surface area than the planar section of the SAM phantom. The planar phantom is mounted to the wooden table of the DASY4 compact system. The planar phantom is also used for system validations (≥ 835 MHz). See Appendix G for the dimensions and specifications.

Planar Phantom

13.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. For evaluations of larger devices a Plexiglas platform is attached to the device holder.

Device Holder

Applicant:	GD Itronix	Corporation	FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENERAL D
Model(s):	IX-MC5725	DUT Type:	Dual-Band	CDMA/EVDO Card in	IX750 R	ugged Handheld PC	Itronix

DYNAMICS

<u>Test Report Issue Date</u> June 06, 2008 <u>Test Report Serial No.</u> 050508KBC-T901-S24C

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category

General Population

14.0 TEST EQUIPMENT LIST

X X X X X	Schmid & Pa	SCRIPTION artner DASY4 System Measurement Server	ASSET NO.	SERIAL NO.	CALII	BRATED	DUE DATE
X X X		<u> </u>	-				
x x	-DASY4 N	leasurement Server		-		-	-
х			00158	1078		NA	NA
		-Robot	00046	599396-01		NA	NA
х		-DAE4	00019	353	22	Apr08	22Apr09
	-EX3D\	V4 E-Field Probe	00213	3600	19.	Apr08	19Apr09
х	-ET3D\	V6 E-Field Probe	00016	1387	22.	Apr08	22Apr09
	-300 MH:	z Validation Dipole	00023	135	30.	Apr08	30Apr09
	-450 MH:	z Validation Dipole	00024	136	011	May08	01May09
	925 MH	- Validation Dinala	00022	444	Brain	07Jun07	07Jun08
х	-835 IVIH	z Validation Dipole	00022	411	Body	02May08	02May09
	000 MH	- Validation Dinala	00000	054	Brain	07Jun07	07Jun08
	-900 MH	z Validation Dipole	00020	054	Body	20May08	20May09
	4000 MI	I-Malidatian Dinala	00004	0.47	Brain	06Jun07	06Jun08
	-1800 MH	Iz Validation Dipole	00021	247	Body	06Jun07	06Jun08
	4000 \$41	L M EL E BELL	2222	454	Brain	06Jun07	06Jun08
Х	-1900 MH	Iz Validation Dipole	00032	151	Body	14May08	14May09
	0.450 \$41		2225	450	Brain	16Jul07	16Jul08
	-2450 MH	Iz Validation Dipole	00025	150	Body	08Jun07	08Jun08
		-5200 MHz			Body	21Apr08	21Apr09
	5GHz	-5500 MHz		1001	Body	21Apr08	21Apr09
	Validation Dipole	5000 1411	00126	1031	Brain	21Apr08	21Apr09
	P	-5800 MHz			Body	21Apr08	21Apr09
	-SAM	Phantom V4.0C	00154	1033		NA	NA
х	-Barski	Planar Phantom	00155	03-01		NA	NA
	-Plexiglas S	Side Planar Phantom	00156	161		NA	NA
	-Plexiglas Val	idation Planar Phantom	00157	137		NA	NA
	ALS-PR-DIE	EL Dielectric Probe Kit	00160	260-00953		NA	NA
х	HP 850700	C Dielectric Probe Kit	00033	US39240170		NA	NA
х	Gigatronics	8652A Power Meter	00007	1835272	23.	Apr08	23Apr09
х	Gigatronics 8	80701A Power Sensor	00014	1833699	23.	Apr08	23Apr09
х	HP 8753E	T Network Analyzer	00134	US39170292		Apr08	28Apr09
х	Rohde & Schwarz	z SMR20 Signal Generator	00006	100104	23.	Apr08	23Apr09
х	Amplifier Resear	ch 5S1G4 Power Amplifier	00106	26235		NR	NR
1	Amplifier Research	10W1000C Power Amplifier	00041	27887		NR	NR
		383 Microwave Amplifier	00151	0535		NR	NR
х	Agilent E5515C Wire	eless Communication Test Set	1076274	GB46311309	271	May07	13Jun09
Notes		NA = Not Applicable		ı	NR = No	t Required	

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENE	RAL DYNAMICS
Model(s):	IX-MC	5725	DUT Type:	Dual-Band	CDMA/EVDO Card in	IX750 Rt	ugged Handheld PC	Itronix	
2008 Celltech La	abs Inc.	This	document is not to	pe reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 15 of 42					

<u>Test Report Issue Date</u> June 06, 2008 <u>Test Report Serial No.</u> 050508KBC-T901-S24C

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category

General Population

15.0 MEASUREMENT UNCERTAINTIES

UI	NCERTAINT	Y BUDGET FOR	DEVICE EVAL	UATION		
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}
Measurement System						
Probe calibration (835 MHz)	5.5	Normal	1	1	5.5	∞
Axial isotropy of the probe	4.7	Rectangular	1.732050808	0.7	1.9	∞
Spherical isotropy of the probe	9.6	Rectangular	1.732050808	0.7	3.9	∞
Spatial resolution	0	Rectangular	1.732050808	1	0.0	8
Boundary effects	0.9	Rectangular	1.732050808	1	0.5	∞
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	∞
Detection limit	1	Rectangular	1.732050808	1	0.6	∞
Readout electronics	0.3	Normal	1	1	0.3	∞
Response time	0.8	Rectangular	1.732050808	1	0.5	∞
Integration time	2.6	Rectangular	1.732050808	1	1.5	∞
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	∞
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	∞
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	∞
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	∞
Test Sample Related						
Device positioning	2.9	Normal	1	1	2.9	12
Device holder uncertainty	3.6	Normal	1	1	3.6	8
Power drift	4.2	Rectangular	1.732050808	1	2.4	80
Phantom and Setup						
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	∞
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	∞
Liquid conductivity (measured)	2	Normal	1	0.64	1.3	8
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	∞
Liquid permittivity (measured)	1.1	Normal	1	0.6	0.7	∞
Combined Standard Uncertain	tv				10.33	
Expanded Uncertainty (k=2)					20.66	
	ertainty Table	in accordance with	IEEE Standard 152	8-2003 (so		
measurement one	citality rable	in accordance with	ILLE Glandard 192	0 2000 (36	0 1010101100 [7])	

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENE	RAL DYNAMICS
Model(s):	IX-MC	5725	DUT Type:	Dual-Band	CDMA/EVDO Card in	IX750 Rt	ugged Handheld PC	Itronix	
2008 Celltech La	abs Inc.	nc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 16 of 42							

<u>Test Report Issue Date</u> June 06, 2008 <u>Test Report Serial No.</u> 050508KBC-T901-S24C

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category

General Population

MEASUREMENT UNCERTAINTIES (Cont.)

U	NCERTAINT	Y BUDGET FOR	DEVICE EVAL	UATION						
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}				
Measurement System										
Probe calibration (1810 MHz)	5.5	Normal	1	1	5.5	∞				
Axial isotropy of the probe	4.7	Rectangular	1.732050808	0.7	1.9	∞				
Spherical isotropy of the probe	9.6	Rectangular	1.732050808	0.7	3.9	∞				
Spatial resolution	0	Rectangular	1.732050808	1	0.0	∞				
Boundary effects	0.2	Rectangular	1.732050808	1	0.1	∞				
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	∞				
Detection limit	1	Rectangular	1.732050808	1	0.6	∞				
Readout electronics	0.3	Normal	1	1	0.3	∞				
Response time	0.8	Rectangular	1.732050808	1	0.5	∞				
Integration time	2.6	Rectangular	1.732050808	1	1.5	∞				
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	∞				
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	∞				
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	∞				
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	∞				
Test Sample Related										
Device positioning	2.9	Normal	1	1	2.9	12				
Device holder uncertainty	3.6	Normal	1	1	3.6	8				
Power drift	3.4	Rectangular	1.732050808	1	2.0	∞				
Phantom and Setup										
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	∞				
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	∞				
Liquid conductivity (measured)	2.6	Normal	1	0.64	1.7	∞				
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	∞				
Liquid permittivity (measured)	4.7	Normal	1	0.6	2.8	∞				
Combined Standard Uncertain	tv				10.63					
Expanded Uncertainty (k=2)					21.27					
	Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [7])									
weasurement onc	ertaility rable	in accordance with	ILLE Standard 152	0-2003 (50)						

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENE	RAL DYNAMICS
Model(s):	IX-MC	5725	DUT Type:	Dual-Band	CDMA/EVDO Card in	IX750 Rt	ugged Handheld PC	Itronix	
2008 Celltech La	abs Inc.	This	document is not to	ument is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 17 of 42					

Test Report Issue Date
June 06, 2008

<u>Test Report Serial No.</u> 050508KBC-T901-S24C

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category

General Population

MEASUREMENT UNCERTAINTIES (Cont.)

UN	ICERTAINT'	Y BUDGET FOR	SYSTEM VALI	DATION		
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}
Measurement System						
Probe calibration (835 MHz)	5.5	Normal	1	1	5.5	∞
Axial isotropy of the probe	4.7	Rectangular	1.732050808	1	2.7	∞
Spherical isotropy of the probe	0	Rectangular	1.732050808	1	0.0	∞
Spatial resolution	0	Rectangular	1.732050808	1	0.0	∞
Boundary effects	0.9	Rectangular	1.732050808	1	0.5	∞
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	∞
Detection limit	1	Rectangular	1.732050808	1	0.6	∞
Readout electronics	0.3	Normal	1	1	0.3	∞
Response time	0	Rectangular	1.732050808	1	0.0	∞
Integration time	0	Rectangular	1.732050808	1	0.0	∞
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	∞
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	∞
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	∞
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	∞
Dipole						
Dipole Positioning	2	Normal	1.732050808	1	1.2	∞
Power & Power Drift	4.7	Normal	1.732050808	1	2.7	8
Phantom and Setup						
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	∞
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	∞
Liquid conductivity (measured)	2	Normal	1	0.64	1.3	∞
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	∞
Liquid permittivity (measured)	2.9	Normal	1	0.6	1.7	∞
Combined Standard Uncertaint	v				8.77	
Expanded Uncertainty (k=2)					17.55	
	ertainty Table i	n accordance with I	EEE Standard 152	8-2003 (see	reference [7])	

Applicant:	GD I	tronix (Corporation	FCC ID:	D: KBCIX-MC5725 IC: 1943A-MC5725		GENE	RAL DYNAMICS	
Model(s):	IX-MC	5725	DUT Type:	Dual-Band	CDMA/EVDO Card in	IX750 Rt	ugged Handheld PC	Itronix	
2008 Celltech La	abs Inc.	This	document is not to	be reproduced in	whole or in part without the	s Inc.	Page 18 of 42		

Test Report Issue Date
June 06, 2008

<u>Test Report Serial No.</u> 050508KBC-T901-S24C

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category

General Population

MEASUREMENT UNCERTAINTIES (Cont.)

UI	CERTAINT	/ BUDGET FOR	SYSTEM VALI	DATION		
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}
Measurement System						
Probe calibration (1810 MHz)	5.5	Normal	1	1	5.5	œ
Axial isotropy of the probe	4.7	Rectangular	1.732050808	1	2.7	œ
Spherical isotropy of the probe	0	Rectangular	1.732050808	1	0.0	∞
Spatial resolution	0	Rectangular	1.732050808	1	0.0	œ
Boundary effects	0.2	Rectangular	1.732050808	1	0.1	œ
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	∞
Detection limit	1	Rectangular	1.732050808	1	0.6	œ
Readout electronics	0.3	Normal	1	1	0.3	œ
Response time	0	Rectangular	1.732050808	1	0.0	∞
Integration time	0	Rectangular	1.732050808	1	0.0	∞
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	œ
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	oc
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	œ
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	∞
Dipole						
Dipole Positioning	2	Normal	1.732050808	1	1.2	∞
Power & Power Drift	4.7	Normal	1.732050808	1	2.7	∞
Phantom and Setup						
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	∞
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	∞
Liquid conductivity (measured)	0	Normal	1	0.64	0.0	∞
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	∞
Liquid permittivity (measured)	0	Normal	1	0.6	0.0	∞
Combined Standard Uncertain	tv				8.49	
Expanded Uncertainty (k=2)					16.98	
	ertainty Table i	n accordance with	FFF Standard 1529	8-2003 (see		

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENE	RAL DYNAMICS
Model(s):	IX-MC	5725	DUT Type:	Dual-Band	CDMA/EVDO Card in	IX750 Rt	ugged Handheld PC	Itronix	
2008 Celltech La	abs Inc.	This	document is not to	to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 19 of 42					

Test Report Issue Date
June 06, 2008

<u>Test Report Serial No.</u> 050508KBC-T901-S24C

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)

Test Lab Certificate No. 2470.01

16.0 REFERENCES

- [1] Federal Communications Commission "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093.
- [2] Health Canada "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6: 1999.
- [3] Federal Communications Commission "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [4] Federal Communications Commission "SAR Measurement Procedures for 3G Devices": Lab. Div., OET, October 2007 (Rev. 2.0).
- [5] Federal Communications Commission "SAR Evaluation Considerations for Laptop Computers with Antennas Built-in on Display Screens" (KDB 616217 D01 v01): Lab. Div., OET, December 2007.
- [6] Industry Canada "Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)", Radio Standards Specification RSS-102 Issue 2: November 2005.
- [7] IEEE Standard 1528-2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.

Test Report Issue Date
June 06, 2008

Test Report Serial No. 050508KBC-T901-S24C

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

APPENDIX A - SAR MEASUREMENT DATA

	Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENE	RAL DYNAMICS
	Model(s):	IX-M	C5725	DUT Type:	Dual-Band	CDMA/EVDO Card in	IX750 Rt	igged Handheld PC	Itronix	
:	2008 Celltech La	bs Inc.	This	document is not to	be reproduced in	whole or in part without the	prior writte	n permission of Celltech Lab	s Inc.	Page 21 of 42

<u>Test Report Issue Date</u> June 06, 2008

<u>Test Report Serial No.</u> 050508KBC-T901-S24C

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

Date Tested: 05/12/2008

Body SAR - Cellular Band - EV-DO Rev. 0 - 824.7 MHz - Ch. 1013 - LCD Display Fully Extended

DUT: General Dynamics Itronix Corp.; Type: IX750 Handheld PC with CDMA/EV-DO; Serial: ZZGEG8059ZZ7258

Ambient Temp: 22°C; Fluid Temp: 20.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

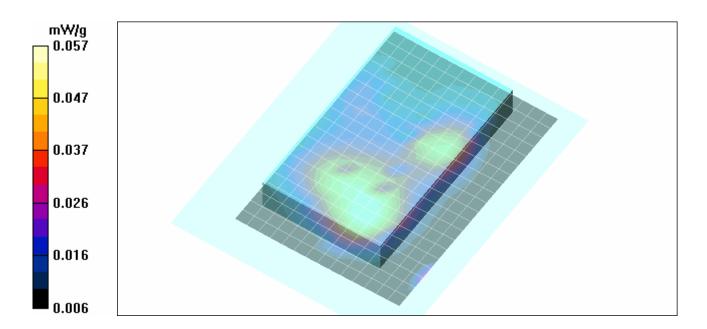
Communication System: Cellular CDMA Frequency: 824.70 MHz; Duty Cycle: 1:1 RF Output Power: 24.6 dBm (Conducted)

7.4V, 4.0Ah Li-ion Smart Battery (Model: IX750-29WHR)

Medium: M835 Medium parameters used: f = 824.7 MHz; $\sigma = 0.95$ mho/m; $\epsilon_r = 55.8$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1387; ConvF(5.96, 5.96, 5.96); Calibrated: 22/04/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - Ch. 1013 Area Scan (15x22x1): Measurement grid: dx=15mm, dy=15mm


Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - Ch. 1013

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.24 V/m; Power Drift = -0.011 dB

Peak SAR (extrapolated) = 0.081 W/kg

SAR(1 g) = 0.054 mW/g; SAR(10 g) = 0.041 mW/g Maximum value of SAR (measured) = 0.057 mW/g

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENE	RAL DYNAMICS
Model(s):	IX-MC5725 DUT Type:		Dual-Band	CDMA/EVDO Card in	IX750 Rt	ugged Handheld PC	Itronix		
2008 Celltech La	2008 Celltech Labs Inc. This document is no				whole or in part without the	prior writte	n permission of Celltech Lab	s Inc.	Page 22 of 42

<u>Test Report Issue Date</u> June 06, 2008

<u>Test Report Serial No.</u> 050508KBC-T901-S24C

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

Date Tested: 05/12/2008

Body SAR - Cellular Band - EV-DO Rev. 0 - 835.52 MHz - Ch. 384 - LCD Display Fully Extended

DUT: General Dynamics Itronix Corp.; Type: IX750 Handheld PC with CDMA/EV-DO; Serial: ZZGEG8059ZZ7258

Ambient Temp: 22°C; Fluid Temp: 20.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

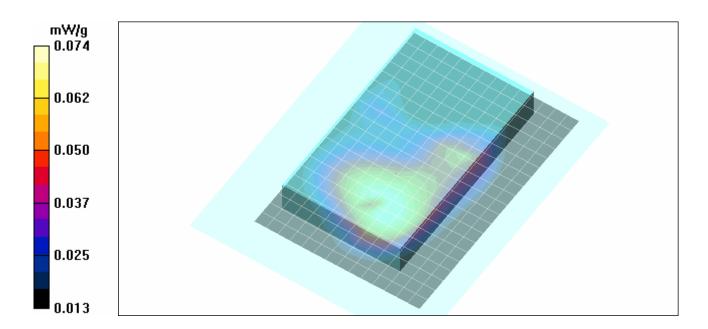
Communication System: Cellular CDMA Frequency: 836.52 MHz; Duty Cycle: 1:1 RF Output Power: 24.6 dBm (Conducted)

7.4V, 4.0Ah Li-ion Smart Battery (Model: IX750-29WHR)

Medium: M835 Medium parameters used: f = 836.52 MHz; σ = 0.95 mho/m; ϵ_r = 55.8; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1387; ConvF(5.96, 5.96, 5.96); Calibrated: 22/04/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - Ch. 384 Area Scan (15x22x1): Measurement grid: dx=15mm, dy=15mm


Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - Ch. 384

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.43 V/m; Power Drift = -0.177 dB

Peak SAR (extrapolated) = 0.086 W/kg

SAR(1 g) = 0.070 mW/g; SAR(10 g) = 0.054 mW/g Maximum value of SAR (measured) = 0.074 mW/g

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENE	RAL DYNAMICS
Model(s):	IX-M	IX-MC5725 DUT Type:		Dual-Band	CDMA/EVDO Card in	IX750 Rt	ugged Handheld PC	Itronix	
2008 Celltech La	08 Celltech Labs Inc. This document is no				whole or in part without the	prior writte	n permission of Celltech Lab	s Inc.	Page 23 of 42

<u>Test Report Issue Date</u> June 06, 2008

<u>Test Report Serial No.</u> 050508KBC-T901-S24C

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

Date Tested: 05/12/2008

Body SAR - Cellular Band - EV-DO Rev. 0 - 848.31 MHz - Ch. 777 - LCD Display Fully Extended

DUT: General Dynamics Itronix Corp.; Type: IX750 Handheld PC with CDMA/EV-DO; Serial: ZZGEG8059ZZ7258

Ambient Temp: 22°C; Fluid Temp: 20.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

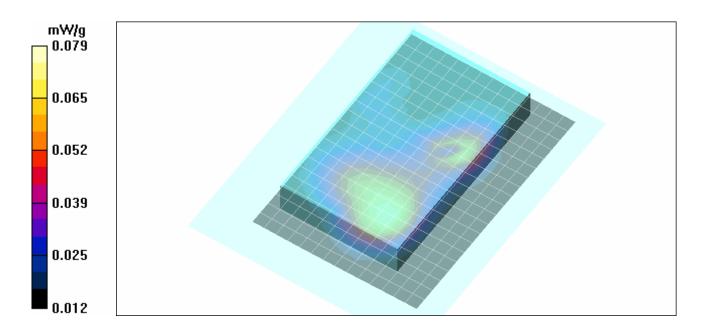
Communication System: Cellular CDMA Frequency: 848.31 MHz; Duty Cycle: 1:1 RF Output Power: 24.5 dBm (Conducted)

7.4V, 4.0Ah Li-ion Smart Battery (Model: IX750-29WHR)

Medium: M835 Medium parameters used: f = 848.31 MHz; σ = 0.95 mho/m; ϵ_r = 55.8; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1387; ConvF(5.96, 5.96, 5.96); Calibrated: 22/04/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - Ch. 777 Area Scan (15x22x1): Measurement grid: dx=15mm, dy=15mm


Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - Ch. 777

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.36 V/m; Power Drift = 0.055 dB

Peak SAR (extrapolated) = 0.092 W/kg

SAR(1 g) = 0.073 mW/g; SAR(10 g) = 0.055 mW/g Maximum value of SAR (measured) = 0.079 mW/g

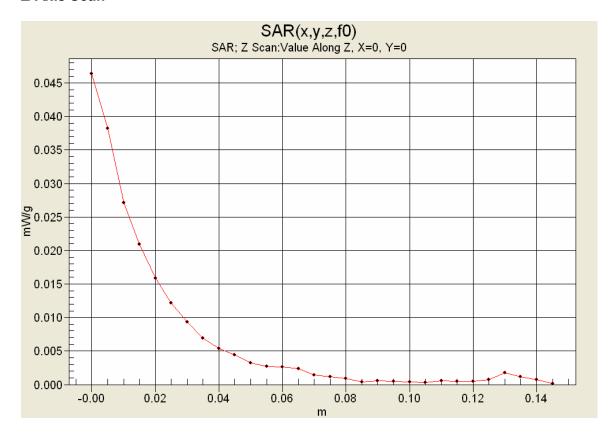
Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENE	RAL DYNAMICS
Model(s):	IX-M	IX-MC5725 DUT Type:		Dual-Band	CDMA/EVDO Card in	IX750 Rt	ugged Handheld PC	Itronix	
2008 Celltech La	abs Inc.	This	document is not to	be reproduced in	whole or in part without the	prior writte	n permission of Celltech Lab	s Inc.	Page 24 of 42

Test Report Issue Date
June 06, 2008

<u>Test Report Serial No.</u> 050508KBC-T901-S24C

Description of Test(s)

Specific Absorption Rate


RF Exposure Category
General Population

Test Report Revision No.

Rev. 1.0 (Initial Release)

Z-Axis Scan

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENE	RAL DYNAMICS
Model(s):	IX-M	X-MC5725 DUT Type:		Dual-Band	CDMA/EVDO Card in	IX750 Rt	ugged Handheld PC	Itronix	
2008 Celltech La	abs Inc.	This	document is not to	be reproduced in	whole or in part without the	prior writte	n permission of Celltech Lab	s Inc.	Page 25 of 42

<u>Test Report Issue Date</u> June 06, 2008

<u>Test Report Serial No.</u> 050508KBC-T901-S24C

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

Date Tested: 05/14/2008

Body SAR - PCS Band - EV-DO Rev. 0 - 1851.25 MHz - Ch. 25 - LCD Display Fully Extended

DUT: General Dynamics Itronix Corp.; Type: IX750 Handheld PC with CDMA/EV-DO; Serial: ZZGEG8059ZZ7258

Ambient Temp: 24.5°C; Fluid Temp: 23.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

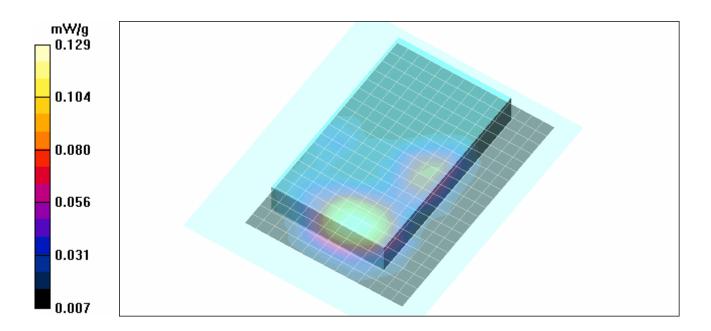
Communication System: PCS CDMA Frequency: 1851.25 MHz; Duty Cycle: 1:1 RF Output Power: 24.95 dBm (Conducted)

7.4V, 4.0Ah Li-ion Smart Battery (Model: IX750-29WHR)

Medium: M1900 Medium parameters used: f = 1851.25 MHz; σ = 1.48 mho/m; ε_r = 50.8; ρ = 1000 kg/m³

- Probe: EX3DV4 SN3600; ConvF(7.45, 7.45, 7.45); Calibrated: 19/04/2008
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - Ch. 25 Area Scan (15x22x1): Measurement grid: dx=15mm, dy=15mm


Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - Ch. 25

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.16 V/m; Power Drift = -0.058 dB

Peak SAR (extrapolated) = 0.158 W/kg

SAR(1 g) = 0.099 mW/g; SAR(10 g) = 0.069 mW/gMaximum value of SAR (measured) = 0.129 mW/g

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENE	RAL DYNAMICS
Model(s):	IX-M	IX-MC5725 DUT Type:		Dual-Band	CDMA/EVDO Card in	IX750 Rt	ugged Handheld PC	Itronix	
2008 Celltech La	2008 Celltech Labs Inc. This document is no				whole or in part without the	prior writte	n permission of Celltech Lab	s Inc.	Page 26 of 42

<u>Test Report Issue Date</u> June 06, 2008

<u>Test Report Serial No.</u> 050508KBC-T901-S24C

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

Date Tested: 05/14/2008

Body SAR - PCS Band - EV-DO Rev. 0 - 1880 MHz - Ch. 600 - LCD Display Fully Extended

DUT: General Dynamics Itronix Corp.; Type: IX750 Handheld PC with CDMA/EV-DO; Serial: ZZGEG8059ZZ7258

Ambient Temp: 24.5°C; Fluid Temp: 23.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

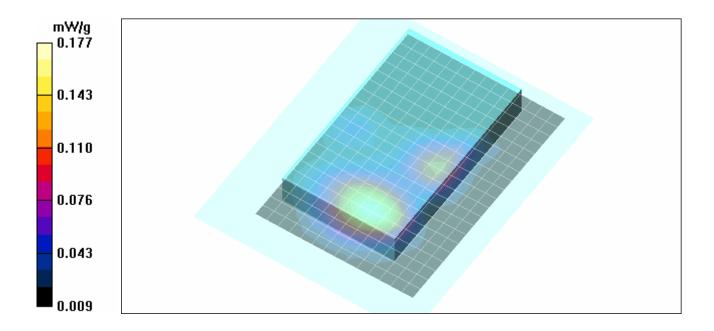
Communication System: PCS CDMA Frequency: 1880 MHz; Duty Cycle: 1:1 RF Output Power: 25.0 dBm (Conducted)

7.4V, 4.0Ah Li-ion Smart Battery (Model: IX750-29WHR)

Medium: M1900 Medium parameters used: f = 1880 MHz; σ = 1.48 mho/m; ϵ_r = 50.8; ρ = 1000 kg/m³

- Probe: EX3DV4 SN3600; ConvF(7.45, 7.45, 7.45); Calibrated: 19/04/2008
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - Ch. 600 Area Scan (15x22x1): Measurement grid: dx=15mm, dy=15mm


Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - Ch. 600

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.80 V/m; Power Drift = 0.142 dB

Peak SAR (extrapolated) = 0.212 W/kg

SAR(1 g) = 0.138 mW/g; SAR(10 g) = 0.092 mW/g Maximum value of SAR (measured) = 0.177 mW/g

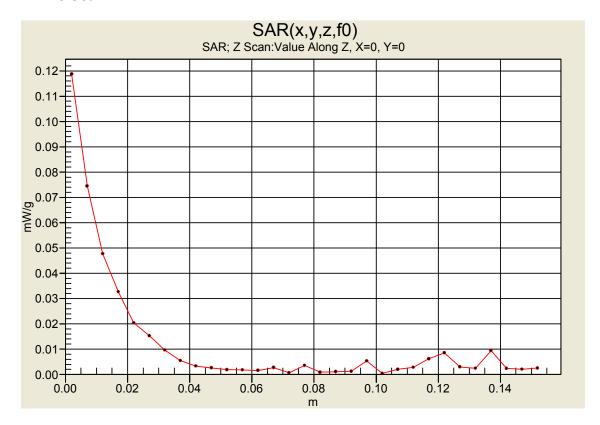
Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENE	RAL DYNAMICS
Model(s):	IX-MC5725 DUT Type:		Dual-Band	CDMA/EVDO Card in	IX750 Rt	ugged Handheld PC	Itronix		
2008 Celltech La	2008 Celltech Labs Inc. This document is no				whole or in part without the	prior writte	n permission of Celltech Lab	s Inc.	Page 27 of 42

Test Report Issue Date
June 06, 2008

Test Report Serial No. 050508KBC-T901-S24C

Description of Test(s)

Specific Absorption Rate


RF Exposure Category
General Population

Test Report Revision No.

Rev. 1.0 (Initial Release)

Z-Axis Scan

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENE	RAL DYNAMICS
Model(s):	IX-M	X-MC5725 DUT Type:		Dual-Band	CDMA/EVDO Card in	IX750 Rt	igged Handheld PC	Itronix	
2008 Celltech La	abs Inc.	This	document is not to	be reproduced in	whole or in part without the	prior writte	n permission of Celltech Lab	s Inc.	Page 28 of 42

<u>Test Report Issue Date</u> June 06, 2008

Test Report Serial No. 050508KBC-T901-S24C

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

Date Tested: 05/14/2008

Body SAR - PCS Band - EV-DO Rev. 0 - 1908.75 MHz - Ch. 1175 - LCD Display Fully Extended

DUT: General Dynamics Itronix Corp.; Type: IX750 Handheld PC with CDMA/EV-DO; Serial: ZZGEG8059ZZ7258

Ambient Temp: 24.5°C; Fluid Temp: 23.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

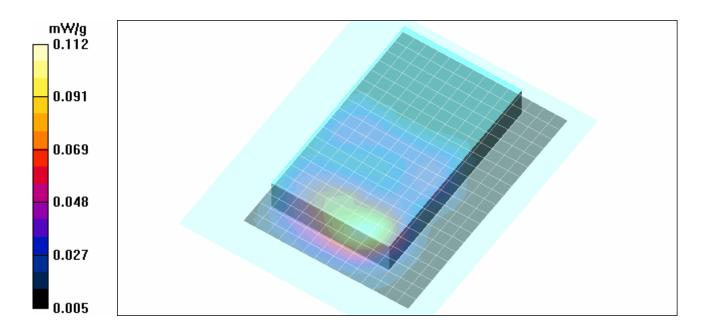
Communication System: PCS CDMA Frequency: 1908.75 MHz; Duty Cycle: 1:1 RF Output Power: 24.8 dBm (Conducted)

7.4V, 4.0Ah Li-ion Smart Battery (Model: IX750-29WHR)

Medium: M1900 Medium parameters used: f = 1908.75 MHz; σ = 1.48 mho/m; ε_r = 50.8; ρ = 1000 kg/m³

- Probe: EX3DV4 SN3600; ConvF(7.45, 7.45, 7.45); Calibrated: 19/04/2008
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - Ch. 1175 Area Scan (15x22x1): Measurement grid: dx=15mm, dy=15mm


Body SAR - Bottom Side of PC Touching Planar Phantom - 2.0 cm Spacing from Antenna to Phantom - Ch. 1175

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.93 V/m; Power Drift = 0.074 dB

Peak SAR (extrapolated) = 0.137 W/kg

SAR(1 g) = 0.088 mW/g; SAR(10 g) = 0.057 mW/g Maximum value of SAR (measured) = 0.112 mW/g

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENE	RAL DYNAMICS
Model(s):	IX-M	IX-MC5725 DUT Type:		Dual-Band	CDMA/EVDO Card in	IX750 Rt	ugged Handheld PC	Itronix	
2008 Celltech La	08 Celltech Labs Inc. This document is no				whole or in part without the	prior writte	n permission of Celltech Lab	s Inc.	Page 29 of 42

Test Report Issue Date
June 06, 2008

Test Report Serial No. 050508KBC-T901-S24C

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
General Population

Test Report Revision No.

Rev. 1.0 (Initial Release)

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

	Applicant:	GD I	GD Itronix Corporation		FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENE	RAL DYNAMICS
	Model(s):	IX-M	IX-MC5725 DUT Type:		Dual-Band	CDMA/EVDO Card in	IX750 Rt	igged Handheld PC	Itronix	
:	2008 Celltech La	bs Inc.			be reproduced in	whole or in part without the	prior writte	n permission of Celltech Lab	s Inc.	Page 30 of 42

Test Report Issue Date

June 06, 2008

Description of Test(s)

Specific Absorption Rate

Test Report Serial No.

050508KBC-T901-S24C

<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

Date Tested: 05/12/2008

System Performance Check - 835 MHz Dipole - MSL

DUT: Dipole 835 MHz; Asset: 00022; Serial: 411; Validation: 05/02/2008

Ambient Temp: 22°C; Fluid Temp: 20.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

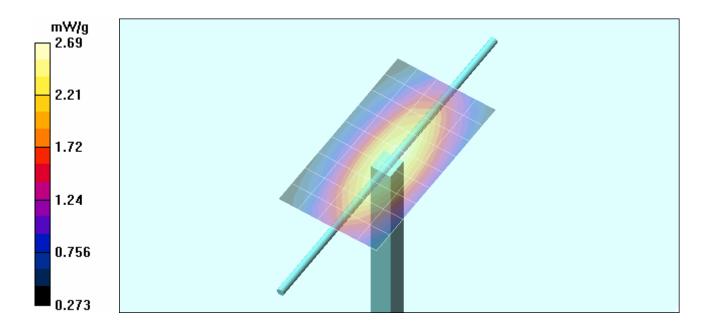
Forward Conducted Power: 250 mW Frequency: 835 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used: f = 835 MHz; σ = 0.95 mho/m; ϵ_r = 55.8; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1387; ConvF(5.96, 5.96, 5.96); Calibrated: 22/04/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

835 MHz Dipole - System Performance Check

Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm


835 MHz Dipole - System Performance Check

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.0 V/m; Power Drift = -0.052 dB

Peak SAR (extrapolated) = 3.44 W/kg

SAR(1 g) = 2.48 mW/g; SAR(10 g) = 1.65 mW/g Maximum value of SAR (measured) = 2.69 mW/g

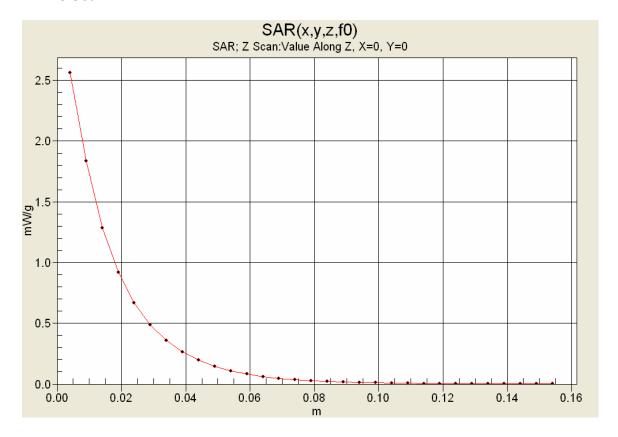
A	pplicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENE	RAL DYNAMICS
M	lodel(s):	IX-M	X-MC5725 DUT Type:		Dual-Band	CDMA/EVDO Card in	IX750 R	ugged Handheld PC	Itronix	
200	08 Celltech La	abs Inc.	This	document is not to	be reproduced in	whole or in part without the	prior writte	n permission of Celltech Lab	s Inc.	Page 31 of 42

Test Report Issue Date
June 06, 2008

Test Report Serial No. 050508KBC-T901-S24C

Description of Test(s)

Specific Absorption Rate


RF Exposure Category
General Population

Test Report Revision No.

Rev. 1.0 (Initial Release)

Z-Axis Scan

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENE	RAL DYNAMICS
Model(s):	IX-M	IX-MC5725 DUT Type:		Dual-Band	CDMA/EVDO Card in	IX750 Rt	ugged Handheld PC	Itronix	
2008 Celltech La	7,1			be reproduced in	whole or in part without the	prior writte	n permission of Celltech Lab	s Inc.	Page 32 of 42

<u>Test Report Issue Date</u> June 06, 2008 Test Report Serial No. 050508KBC-T901-S24C

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

General Population

Date Tested: 05/14/2008

System Performance Check - 1900 MHz Dipole - MSL

DUT: Dipole 1900 MHz; Asset: 00032; Serial: 151; Validation: 05/14/2008

Ambient Temp: 24.5°C; Fluid Temp: 23.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

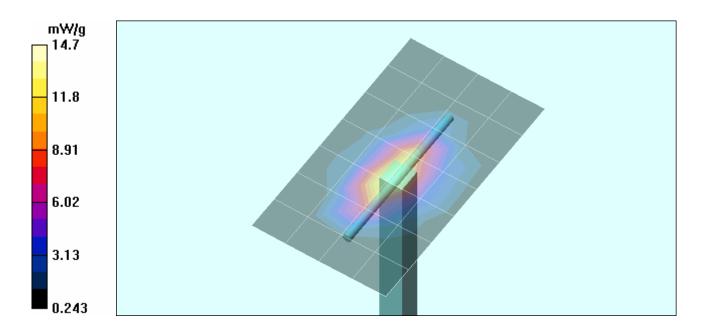
Forward Conducted Power: 250 mW Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: M1900 Medium parameters used: f = 1900 MHz; σ = 1.51 mho/m; ϵ_r = 51.1; ρ = 1000 kg/m³

- Probe: EX3DV4 SN3600; ConvF(7.45, 7.45, 7.45); Calibrated: 19/04/2008
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

1900 MHz Dipole - System Performance Check

Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm


1900 MHz Dipole - System Performance Check

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.5 V/m; Power Drift = -0.069 dB

Peak SAR (extrapolated) = 19.2 W/kg

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.26 mW/g Maximum value of SAR (measured) = 14.7 mW/g

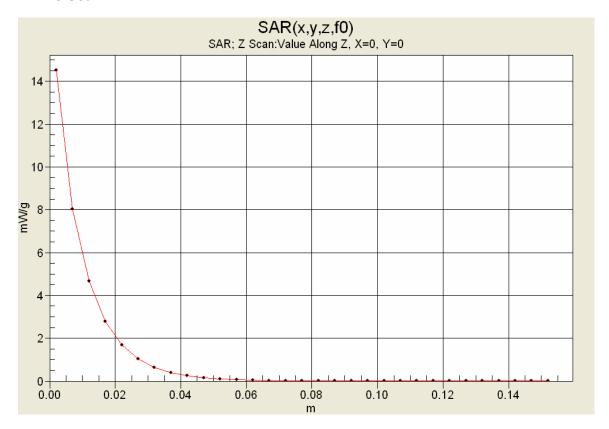
Test Report Issue Date
June 06, 2008

Test Report Serial No. 050508KBC-T901-S24C

Description of Test(s)

Specific Absorption Rate

RF Exposure Category


General Population

Test Report Revision No.

Rev. 1.0 (Initial Release)

Z-Axis Scan

Applicant:	GD I	tronix (Corporation	FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENE	RAL DYNAMICS
Model(s):	IX-M	IX-MC5725 DUT Type:		Dual-Band	CDMA/EVDO Card in	IX750 Rt	ugged Handheld PC	Itronix	
2008 Celltech La	2008 Celltech Labs Inc. This document is no				whole or in part without the	prior writte	n permission of Celltech Lab	s Inc.	Page 34 of 42

Test Report Issue Date
June 06, 2008

Test Report Serial No. 050508KBC-T901-S24C

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
General Population

Test Report Revision No.

Rev. 1.0 (Initial Release)

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

Applicant:	GD Itronix Corporation			FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENERAL DYNAMICS	
Model(s):	IX-MC5725 DUT Type		DUT Type:	Dual-Band CDMA/EVDO Card in IX750 Rugged Handheld PC			Itronix		
2008 Celltech Labs Inc. This document is not to be				e reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 35 of 42	

Test Report Issue Date
June 06, 2008

Test Report Serial No. 050508KBC-T901-S24C

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

835 MHz System Performance Check & DUT Evaluation (Body)

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
Mon 12/May/2008
Frequency (GHz)
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM

******	******	******	******	******
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
0.7350	55.59	0.96	56.35	0.85
0.7450	55.55	0.96	56.68	0.85
0.7550	55.51	0.96	56.74	0.88
0.7650	55.47	0.96	56.51	0.87
0.7750	55.43	0.97	56.37	0.89
0.7850	55.39	0.97	56.18	0.90
0.7950	55.36	0.97	56.27	0.92
0.8050	55.32	0.97	56.14	0.91
0.8150	55.28	0.97	55.72	0.93
0.8250	55.24	0.97	55.89	0.94
0.8350	55.20	0.97	55.80	0.95
0.8450	55.17	0.98	55.57	0.96
0.8550	55.14	0.99	55.74	0.98
0.8650	55.11	1.01	55.56	0.99
0.8750	55.08	1.02	55.29	1.00
0.8850	55.05	1.03	55.26	1.01
0.8950	55.02	1.04	55.47	1.02
0.9050	55.00	1.05	55.04	1.02
0.9150	55.00	1.06	55.23	1.04
0.9250	54.98	1.06	55.00	1.04
0.9350	54.96	1.07	54.83	1.05

Applicant:	GD Itronix Corporation			FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENERAL DYNAMICS	
Model(s):	IX-MC5725		DUT Type:	Dual-Band	Oual-Band CDMA/EVDO Card in IX750 Rugged Handheld PC			Itronix	
2008 Celltech Labs Inc. This document is not to			e reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				s Inc.	Page 36 of 42	

Test Report Issue Date
June 06, 2008

<u>Test Report Serial No.</u> 050508KBC-T901-S24C

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)

1900 MHz System Performance Check & 1880 MHz DUT Evaluation (Body)

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
Wed 14/May/2008
Frequency (GHz)
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma
Test e Epsilon of UIM

Test_s Sigma of UIM

******	*****	******	******	******
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
1.8000	53.30	1.52	51.30	1.41
1.8100	53.30	1.52	51.39	1.40
1.8200	53.30	1.52	51.28	1.43
1.8300	53.30	1.52	51.24	1.42
1.8400	53.30	1.52	51.17	1.44
1.8500	53.30	1.52	51.18	1.44
1.8600	53.30	1.52	51.15	1.47
1.8700	53.30	1.52	51.03	1.49
1.8800	53.30	1.52	50.83	1.48
1.8900	53.30	1.52	50.91	1.50
1.9000	53.30	1.52	51.06	1.51
1.9100	53.30	1.52	51.07	1.53
1.9200	53.30	1.52	50.85	1.53
1.9300	53.30	1.52	50.83	1.55
1.9400	53.30	1.52	50.89	1.55
1.9500	53.30	1.52	50.93	1.54
1.9600	53.30	1.52	50.73	1.56
1.9700	53.30	1.52	50.85	1.57
1.9800	53.30	1.52	50.72	1.58
1.9900	53.30	1.52	50.78	1.62
2.0000	53.30	1.52	50.77	1.63

Applicant:	GD I	GD Itronix Corporation		FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENERAL DYNAMICS	
Model(s):	del(s): IX-MC5725 DUT Type:			Dual-Band	CDMA/EVDO Card in	Itronix			
2008 Celltech La	abs Inc.	This	document is not to	be reproduced in	whole or in part without the	prior writte	n permission of Celltech Lab	s Inc.	Page 37 of 42

Test Report Issue Date
June 06, 2008

Test Report Serial No. 050508KBC-T901-S24C

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
General Population

Test Report Revision No.

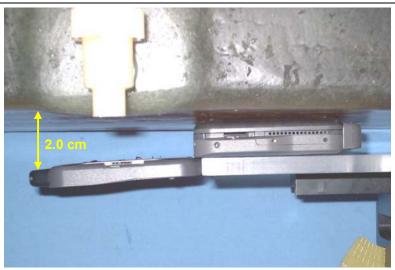
Rev. 1.0 (Initial Release)

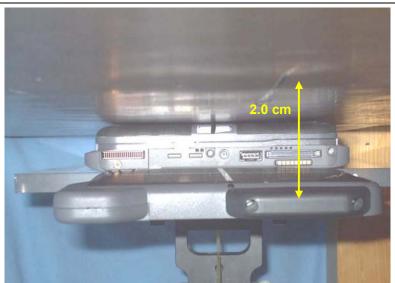
APPENDIX D - SAR TEST SETUP PHOTOGRAPHS

Applicant:	GD I	GD Itronix Corporation		FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENE	RAL DYNAMICS
Model(s):	Model(s): IX-MC5725 DUT Type:			Dual-Band	CDMA/EVDO Card in	Itronix			
2008 Celltech La	abs Inc.	This	document is not to	be reproduced in	whole or in part without the	prior writte	n permission of Celltech Lab	s Inc.	Page 38 of 42

<u>Test Report Issue Date</u> June 06, 2008 Test Report Serial No. 050508KBC-T901-S24C

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)


RF Exposure Category
General Population



BODY SAR TEST SETUP PHOTOGRAPHS

2.0 cm Spacing from DUT Antenna to Planar Phantom Bottom Side of PC Touching Phantom - LCD Lid Extended

Applicant:	GD I	GD Itronix Corporation		FCC ID:	KBCIX-MC5725	IC:	IC: 1943A-MC5725		GENERAL DYNAMICS		
Model(s):	del(s): IX-MC5725 DUT Type:			Dual-Band	CDMA/EVDO Card in	Itronix					
2008 Celltech Labs Inc. This document is not t				be reproduced in	whole or in part without the	prior writte	n permission of Celltech Lab	s Inc.	Page 39 of 42		

Test Report Issue Date
June 06, 2008

Test Report Serial No. 050508KBC-T901-S24C

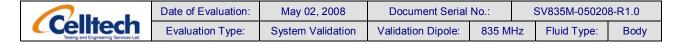
<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

APPENDIX E - SYSTEM VALIDATION

Applicant:	· ·		FCC ID:	KBCIX-MC5725	IC:	1943A-MC5725	GENE	RAL DYNAMICS	
Model(s):			Dual-Band	CDMA/EVDO Card in	Itronix				
2008 Celltech La	ibs Inc.	This	document is not to	be reproduced in	whole or in part without the	prior writte	n permission of Celltech Lab	s Inc.	Page 40 of 42

Validation Dipole:

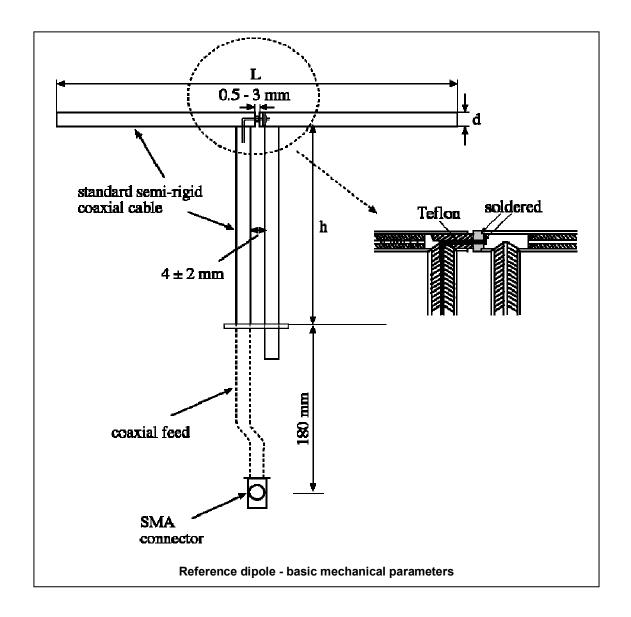

835 MHz SYSTEM VALIDATION

Type:	835 MHz Validation Dipole
Asset Number:	00022
Serial Number:	411
Place of Validation:	Celltech Labs Inc.
Date of Validation:	May 02, 2008

Celltech Labs Inc. certifies that the 835 MHz System Validation was performed on the date indicated above.

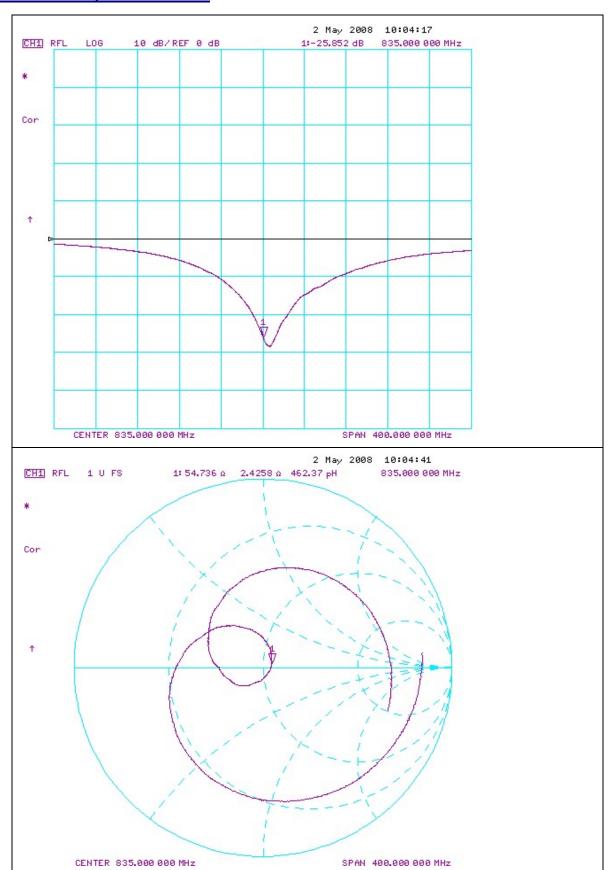
Репогмеа by:	Sean Johnston
Signature:	Sum Dint

Celltech Labs Inc. 21-364 Lougheed Rd., Kelowna, B.C. V1X 7R8 Canada Tel. 250-765-7650 • Fax. 250-765-7645 • e-mail: info@celltechlabs.com www.celltechlabs.com


1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the requirements specified in IEEE Standard 1528-2003 and International Standard IEC 62209-1:2005. The electrical properties were measured using an HP 8753ET Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 15.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 835 MHz $Re{Z} = 54.736\Omega$


 $Im{Z} = 2.4258\Omega$

Return Loss at 835 MHz -25.852dB

2. Validation Dipole VSWR Data

3. Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)		
300	396.0	250.0	6.0		
450	270.0	167.0	6.0		
835	161.0	89.8	3.6		
900	149.0	83.3	3.6		
1450	89.1	51.7	3.6		
1800	72.0	41.7	3.6		
1900	68.0	39.5	3.6		
2000	64.5	37.5	3.6		
2450	51.5	30.4	3.6		
3000	41.5	25.0	3.6		

4. Validation Phantom

The validation phantom is a Fiberglass shell planar phantom manufactured by Barski Industries Ltd. The phantom is in conformance with the requirements defined by IEEE SCC34-SC2 for the dosimetric evaluations of body-worn and lap-held operating configurations. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids.

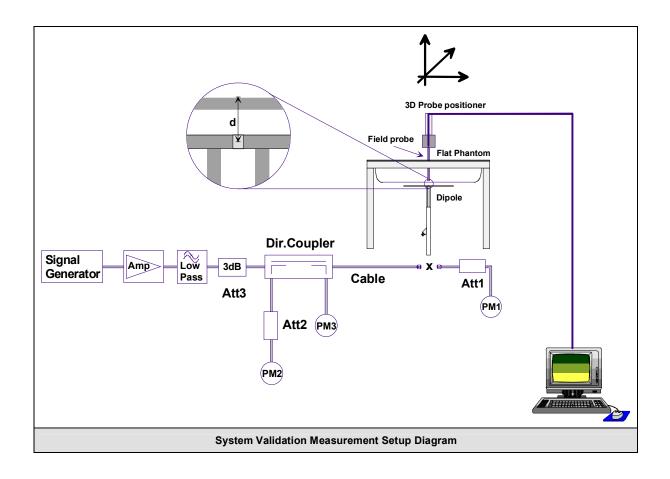
Shell Thickness: $2.0 \pm 0.1 \text{ mm}$ Filling Volume: Approx. 55 liters

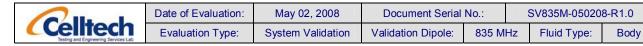
Dimensions: 94 cm (L) x 44 cm (W) x 22 cm (H)

5. Test Equipment List

TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE OF CAL.	CAL. DUE DATE
SPEAG DASY4 Measurement Server	00158	1078	N/A	N/A
SPEAG Robot	00046	599396-01	N/A	N/A
SPEAG DAE4	00019	353	22Apr08	22Apr09
SPEAG ET3DV6 E-Field Probe	00016	1387	22Apr08	22Apr09
835 MHz Validation Dipole	00022	411	02May08	02May09
Barski Planar Phantom	00155	03-01	N/A	N/A
ALS-PR-DIEL Dielectric Probe Kit	00160	260-00953	N/A	N/A
Gigatronics 8652A Power Meter	00007	1835272	23Apr08	23Apr09
Gigatronics 80701A Power Sensor	00014	1833699	23Apr08	23Apr09
HP 8753ET Network Analyzer	00134	US39170292	28Apr08	28Apr09
HP 8648D Signal Generator	00005	3847A00611	NCR	NCR
Amplifier Research 5S1G4 Power Amplifier	00106	26235	NCR	NCR

6. 835 MHz Validation Dipole & Planar Phantom





7. SAR Measurement

Measurements were made using a dosimetric E-field probe ET3DV6 (S/N: 1387, Conversion Factor 5.96). The SAR measurement was performed with the E-field probe in mechanical and optical surface detection mode. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

8. Measurement Conditions

The planar phantom was filled with 835 MHz Body tissue simulant.

Relative Permittivity: 57.5 (+4.2% deviation from target)

Conductivity: 0.97 mho/m (0.0% deviation from target)
Fluid Temperature: 20.3 °C (Start of Test) / 20.5 °C (End of Test)

Fluid Depth: \geq 15.0 cm

Environmental Conditions:

Ambient Temperature: 22.0°C
Barometric Pressure: 101.1 kPa
Humidity: 35%

The 835 MHz Body tissue simulant consisted of the following ingredients:

Ingredient	Percentage by weight				
Water	53.79%				
Sugar	45.13%				
Salt	0.98%				
Dowicil 75	0.10%				
IEEE/IEC Target Dielectric Parameters (835 MHz):	$\varepsilon_{\rm r}$ = 55.2 (+/- 5%)	σ = 0.97 S/m (+/- 5%)			

9. System Validation SAR Results

SAR @ 0	.25W	Input	t avei	raged ove	er 1g (W/kg))	SAR @ 1W Input averaged over 1g (W/kg)						
SPEAG	Targe	et	Me	asured	Deviation	1	SPEAG Target				Measured		Deviation
2.43 +/- 10%		0%		2.53	+4.2%		9.71		+/- 10%	,	10.1		+4.2%
SAR @ 0.25W Input averaged ove					r 10g (W/kg	J)	SAR@	<u> 1</u> \	W Input a	ave	eraged over	er 1	0g (W/kg)
SPEAG Target Measured				asured	Deviation	1	SPE	AG	Target		Measure	d	Deviation
1.60	+/- 1	-/- 10 % 1.69		+5.6%		6.38		+/- 10%		6.76		+6.0%	
	Dipo Type D300 D450 D833 D900 D143 D150 D164 D190 D200 D243 D300	0V2 0V2 0V2 0V2 0V2 00V2 00V2 00V2 00V2	Distance [mm] 15 15 15 15 10 10 10 10 10 10 10 10 10	Frequency [MHz] 300 450 835 900 1450 1500 1640 1800 2000 2450 3000		R (1g) V/kg] 3.02 5.01 9.71 11.1 29.6 30.8 34.4 38.5 39.8 40.9 51.2 61.9		AR (10g) [W/kg] 2.06 3.36 6.38 7.17 16.6 17.1 18.7 20.3 20.8 21.2 23.7 24.8	S	AR (peak) [W/kg] 4.36 7.22 14.1 16.3 49.8 52.1 59.4 67.5 69.6 71.5 97.6 136.7			

Table 32.1: Numerical reference SAR values for SPEAG dipoles and flat phantom filled with body-tissue simulating liquid. Note: All SAR values normalized to 1 W forward power.

Date Tested: 05/02/2008

System Validation - 835 MHz Dipole - MSL

DUT: Dipole 835 MHz; Asset: 00022; Serial: 411; Validation: 05/02/2008

Ambient Temp: 22°C; Fluid Temp: 20.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW Forward Conducted Power: 250 mW Frequency: 835 MHz; Duty Cycle: 1:1

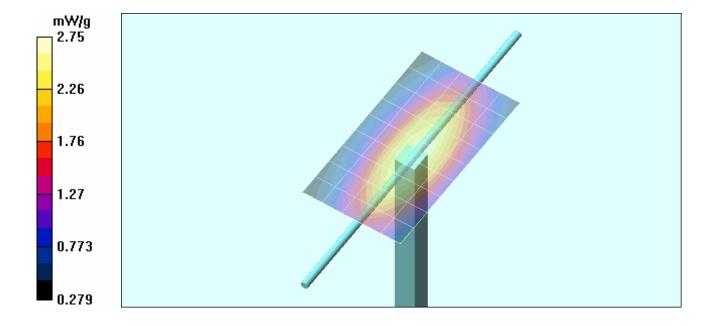
Medium: M835 Medium parameters used: f = 835 MHz; $\sigma = 0.97$ mho/m; $\varepsilon_r = 57.5$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1387; ConvF(5.96, 5.96, 5.96); Calibrated: 22/04/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

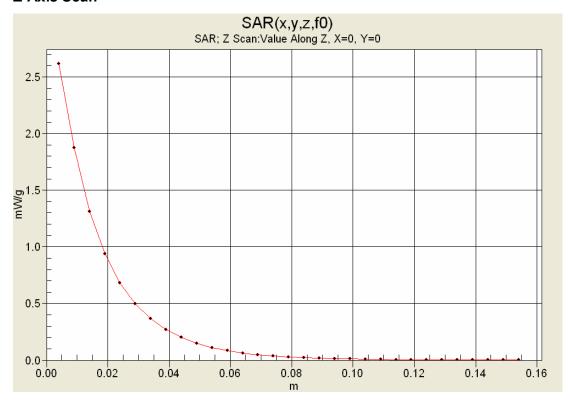
835 MHz Dipole - System Validation

Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 2.74 mW/g


835 MHz Dipole - System Validation

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 55.0 V/m; Power Drift = -0.052 dB

Peak SAR (extrapolated) = 3.52 W/kg

SAR(1 g) = 2.53 mW/g; SAR(10 g) = 1.69 mW/g Maximum value of SAR (measured) = 2.75 mW/g

Z-Axis Scan

10. Measured Fluid Dielectric Parameters

System Validation - 835 MHz (Body)

Celltech Labs Inc. Test Result for UIM Dielectric Parameter Fri 02/May/2008 Frequency (GHz)

IEEE 1528-2003 Limits for Body Epsilon IEEE 1528-2003 Limits for Body Sigma

Test_e Epsilon of UIM Test_s Sigma of UIM

	Freq	IEEE_eB	IEEE_sB	Test_e	Test_s				
	0.7350	55.59	0.96	57.99	0.86				
	0.7450	55.55	0.96	57.98	0.88				
	0.7550	55.51	0.96	57.89	0.90				
	0.7650	55.47	0.96	58.17	0.92				
	0.7750	55.43	0.97	57.98	0.92				
	0.7850	55.39	0.97	57.68	0.91				
	0.7950	55.36	0.97	57.63	0.94				
	0.8050	55.32	0.97	57.57	0.95				
	0.8150	55.28	0.97	57.80	0.96				
	0.8250	55.24	0.97	57.64	0.96				
	0.8350	55.20	0.97	57.51	0.97				
	0.8450	55.17	0.98	57.41	1.00				
	0.8550	55.14	0.99	57.24	1.00				
	0.8650	55.11	1.01	57.30	1.00				
	0.8750	55.08	1.02	57.27	1.01				
	0.8850	55.05	1.03	57.21	1.03				
	0.8950	55.02	1.04	56.98	1.03				
	0.9050	55.00	1.05	56.68	1.04				
	0.9150	55.00	1.06	56.71	1.06				
	0.9250	54.98	1.06	56.72	1.08				
	0.9350	54.96	1.07	56.69	1.08				

e of Evaluation: May 02, 2008
raluation Type: System Validation

Document Serial No.:

Validation Dipole: 835 MHz

SV835M-050208-R1.0

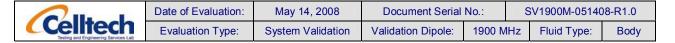
Fluid Type:

Body

11. Measurement Uncertainties

UI	NCERTAINTY	/ BUDGET FOR	SYSTEM VALI	DATION		
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}
Measurement System						
Probe calibration (835 MHz)	5.5	Normal	1	1	5.5	00
Axial isotropy of the probe	4.7	Rectangular	1.732050808	1	2.7	∞
Spherical isotropy of the probe	0	Rectangular	1.732050808	1	0.0	00
Spatial resolution	0	Rectangular	1.732050808	1	0.0	œ
Boundary effects	0.9	Rectangular	1.732050808	1	0.5	œ
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	œ
Detection limit	1	Rectangular	1.732050808	1	0.6	∞
Readout electronics	0.3	Normal	1	1	0.3	∞
Response time	0	Rectangular	1.732050808	1	0.0	œ
Integration time	0	Rectangular	1.732050808	1	0.0	∞
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	∞
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	∞
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	∞
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	∞
Dipole						
Dipole Positioning	2	Normal	1.732050808	1	1.2	œ
Power & Power Drift	4.7	Normal	1.732050808	1	2.7	∞
Phantom and Setup						
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	œ
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	œ
Liquid conductivity (measured)	0	Normal	1	0.64	0.0	∞
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	∞
Liquid permittivity (measured)	4.2	Normal	1	0.6	2.5	∞
Combined Standard Unc	ertainty				8.87	
Expanded Uncertainty	(k=2)				17.74	
Measurement Uncertaint	y Table in acco	rdance with IEEE S	tandard 1528-2003	and IEC S	tandard 62209-1	:2005

Validation Dipole:

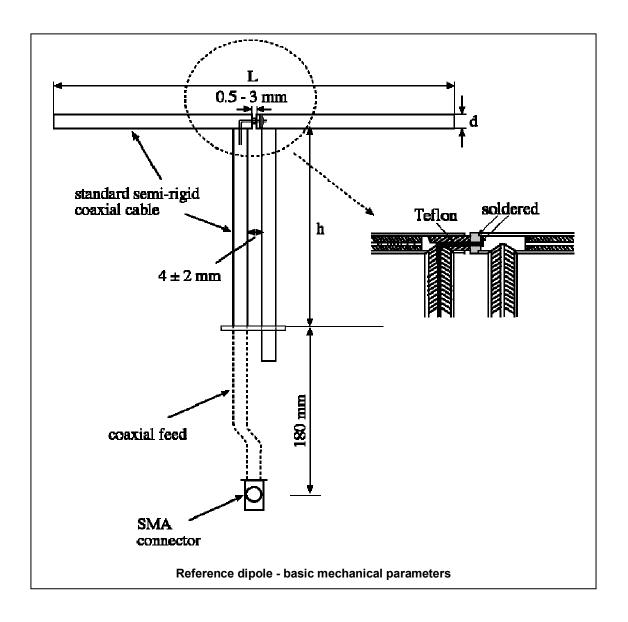

1900 MHz SYSTEM VALIDATION

Type:	1900 MHz Validation Dipole
Asset Number:	00032
Serial Number:	151
Place of Validation:	Celltech Labs Inc.
Date of Validation:	May 14, 2008

Celltech Labs Inc. certifies that the 1900 MHz System Validation was performed on the date indicated above.

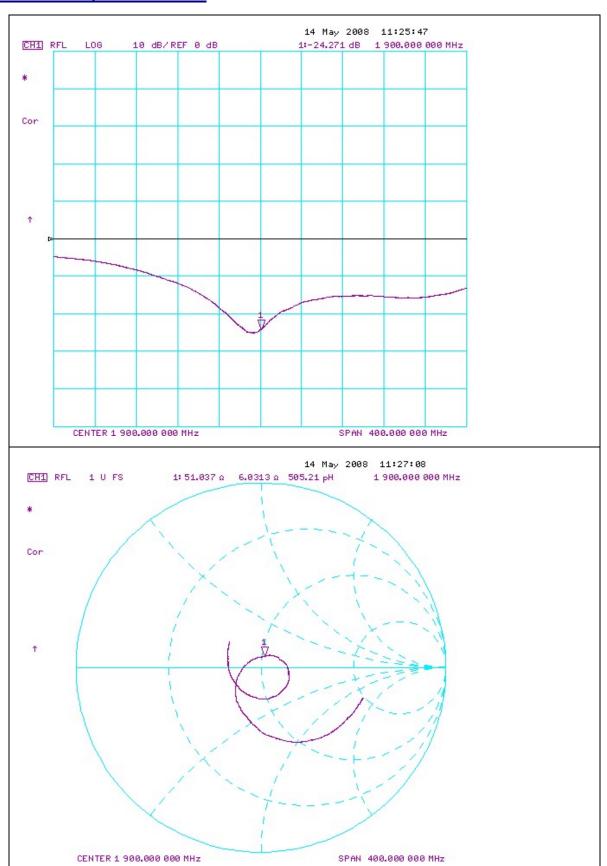
Performed by: **Sean Johnston**

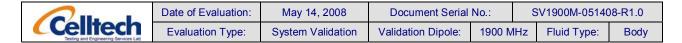
Signature:


1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the requirements specified in IEEE Standard 1528-2003 and International Standard IEC 62209-1:2005. The electrical properties were measured using an HP 8753ET Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 1900 MHz Re{Z} = 51.037Ω


 $Im{Z} = 6.0313\Omega$


Return Loss at 1900 MHz -24.271dB

2. Validation Dipole VSWR Data

3. Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	396.0	250.0	6.0
450	270.0	167.0	6.0
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.5	30.4	3.6
3000	41.5	25.0	3.6

4. Validation Phantom

The validation phantom is a Fiberglass shell planar phantom manufactured by Barski Industries Ltd. The phantom is in conformance with the requirements defined by IEEE SCC34-SC2 for the dosimetric evaluations of body-worn and lap-held operating configurations. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids.

Shell Thickness: $2.0 \pm 0.1 \text{ mm}$ **Filling Volume:** Approx. 55 liters

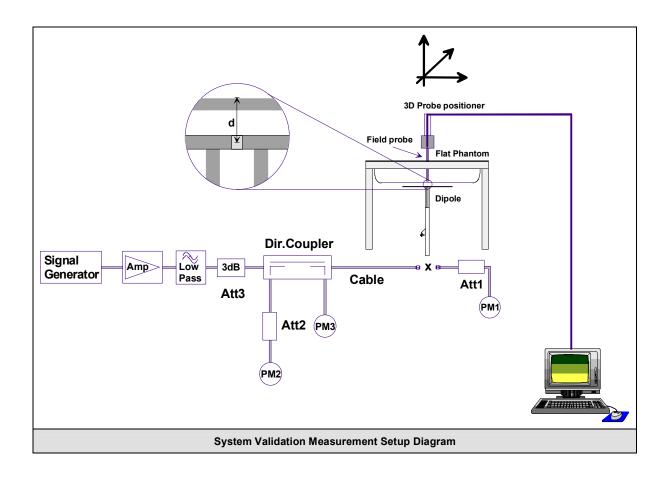
Dimensions: 94 cm (L) x 44 cm (W) x 22 cm (H)

5. Test Equipment List

TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE OF CAL.	CAL. DUE DATE
SPEAG DASY4 Measurement Server	00158	1078	N/A	N/A
SPEAG Robot	00046	599396-01	N/A	N/A
SPEAG DAE4	00019	353	22Apr08	22Apr09
EX3DV4 E-Field Probe	00213	3600	19Apr08	19Apr09
1900 MHz Validation Dipole	00032	151	14May08	14May09
Barski Planar Phantom	00155	03-01	N/A	N/A
ALS-PR-DIEL Dielectric Probe Kit	00160	260-00953	N/A	N/A
Gigatronics 8652A Power Meter	00007	1835272	23Apr08	23Apr09
Gigatronics 80701A Power Sensor	00014	1833699	23Apr08	23Apr09
HP 8753ET Network Analyzer	00134	US39170292	28Apr08	28Apr09
HP 8648D Signal Generator	00005	3847A00611	NCR	NCR
Amplifier Research 5S1G4 Power Amplifier	00106	26235	NCR	NCR

	Date of Evaluation:	May 14, 2008	Document Serial	al No.: SV1900M-0514	08-R1.0	
Celltech Testing and Engineering Services Lab	Evaluation Type:	System Validation	Validation Dipole:	1900 MH	z Fluid Type:	Body

6. 1900 MHz Validation Dipole & Planar Phantom



7. SAR Measurement

Measurements were made using a dosimetric E-field probe EX3DV4 (S/N: 3600, Conversion Factor 7.45). The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the procedures described below.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 50dB below the forward power.

8. Measurement Conditions

The planar phantom was filled with 1900 MHz Body tissue simulant.

Relative Permittivity: 51.1 (-4.1% deviation from target)

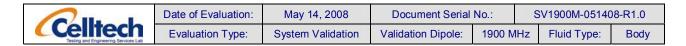
Conductivity: 1.51 mho/m (-0.6% deviation from target)
Fluid Temperature: 23.3 °C (Start of Test) / 23.2 °C (End of Test)

Fluid Depth: \geq 15.0 cm

Environmental Conditions:

Ambient Temperature: 24.5 °C
Barometric Pressure: 101.1 kPa
Humidity: 35%

The 1900 MHz Body tissue simulant consisted of the following ingredients:


Ingredient	Percentage by weight			
Water	69.85%			
Glycol	29.89%			
Salt	0.26%			
IEEE/IEC Target Dielectric Parameters (1900 MHz):	$\varepsilon_{\rm r}$ = 53.3 (+/-5%)	σ = 1.52 S/m (+/-5%)		

9. System Validation SAR Results

SAR @ 0.25W Input averaged over 1g (W/kg)			SAR @ 1W Input averaged over 1g (W/kg)					
SPEAG	Target	Measured	Deviation	SPEAG Target		Measured	Deviation	
9.95	+/- 10%	10.3	+3.6%	39.8	+/- 10%	41.2	+3.6%	
SAR @ 0.2	25W Input av	veraged over	10g (W/kg)	SAR @ 1W Input averaged over 10g (W/kg)				
SPEAG	Target	Measured	Deviation	SPEAG Target		Measured	Deviation	
5.20	+/- 10%	5.26	+1.2%	20.8	+/- 10%	21.04	+1.2%	

Dipole	Distance	Frequency	SAR (1g)	SAR (10g)	SAR (peak)
Type	[mm]	[MHz]	[W/kg]	[W/kg]	[W/kg]
D300V2	15	300	3.02	2.06	4.36
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1500V2	10	1500	30.8	17.1	52.1
D1640V2	10	1640	34.4	18.7	59.4
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6
D3000V2	10	3000	61.9	24.8	136.7

Table 32.1: Numerical reference SAR values for SPEAG dipoles and flat phantom filled with body-tissue simulating liquid. Note: All SAR values normalized to 1 W forward power.

Date Tested: 05/14/2008

System Validation - 1900 MHz Dipole - MSL

DUT: Dipole 1900 MHz; Asset: 00032; Serial: 151; Validation: 05/14/2008

Ambient Temp: 24.5°C; Fluid Temp: 23.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

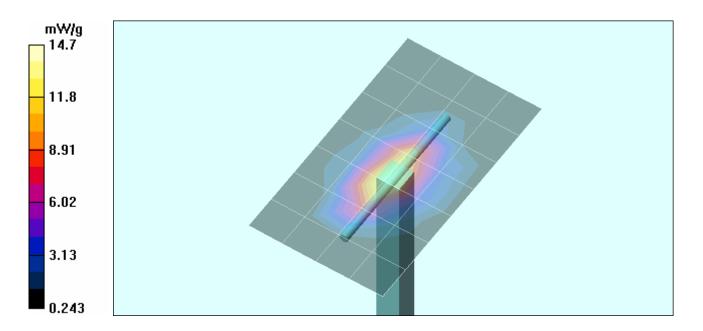
Communication System: CW Forward Conducted Power: 250 mW Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: M1900 Medium parameters used: f = 1900 MHz; σ = 1.51 mho/m; ϵ_r = 51.1; ρ = 1000 kg/m³

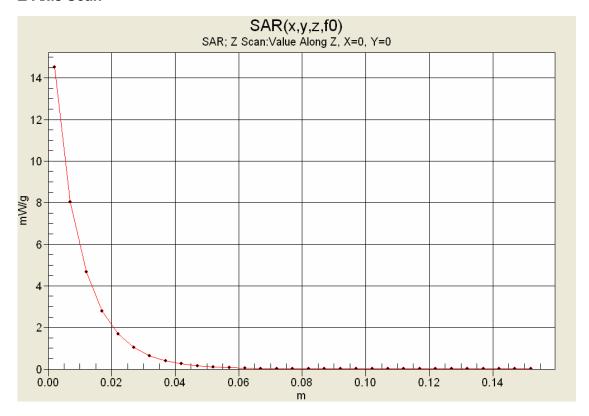
- Probe: EX3DV4 SN3600; ConvF(7.45, 7.45, 7.45); Calibrated: 19/04/2008
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

1900 MHz Dipole - System Validation

Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm


1900 MHz Dipole - System Validation

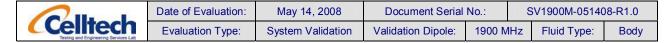
Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 96.5 V/m; Power Drift = -0.069 dB

Peak SAR (extrapolated) = 19.2 W/kg

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.26 mW/gMaximum value of SAR (measured) = 14.7 mW/g

Z-Axis Scan



10. Measured Fluid Dielectric Parameters

System Validation - 1900 MHz (Body)

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
Wed 14/May/2008
Frequency (GHz)
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM

*********		*****	*****	***
Freq 1.8000	FCC_eB 53.30	FCC_sB 1.52	Test_e 51.30	Test_s 1.41
1.8100	53.30	1.52	51.39	1.40
1.8200	53.30	1.52	51.28	1.43
1.8300	53.30	1.52	51.24	1.42
1.8400	53.30	1.52	51.17	1.44
1.8500	53.30	1.52	51.18	1.44
1.8600	53.30	1.52	51.15	1.47
1.8700	53.30	1.52	51.03	1.49
1.8800	53.30	1.52	50.83	1.48
1.8900	53.30	1.52	50.91	1.50
1.9000	53.30	1.52	51.06	1.51
1.9100	53.30	1.52	51.07	1.53
1.9200	53.30	1.52	50.85	1.53
1.9300	53.30	1.52	50.83	1.55
1.9400	53.30	1.52	50.89	1.55
1.9500	53.30	1.52	50.93	1.54
1.9600	53.30	1.52	50.73	1.56
1.9700	53.30	1.52	50.85	1.57
1.9800	53.30	1.52	50.72	1.58
1.9900	53.30	1.52	50.78	1.62
2.0000	53.30	1.52	50.77	1.63

11. Measurement Uncertainties

UI	NCERTAINT	/ BUDGET FOR	SYSTEM VALI	DATION		
Error Description	Uncertainty Value ±% Probability Distribution Divisor		Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}
Measurement System						
Probe calibration (1810 MHz)	5.5	Normal	1	1	5.5	∞
Axial isotropy of the probe	4.7	Rectangular	1.732050808	1	2.7	œ
Spherical isotropy of the probe	0	Rectangular	1.732050808	1	0.0	∞
Spatial resolution	0	Rectangular	1.732050808	1	0.0	œ
Boundary effects	0.2	Rectangular	1.732050808	1	0.1	œ
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	œ
Detection limit	1	Rectangular	1.732050808	1	0.6	œ
Readout electronics	0.3	Normal	1	1	0.3	∞
Response time	0	Rectangular	1.732050808	1	0.0	∞
Integration time	0	Rectangular	1.732050808	1	0.0	∞
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	∞
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	∞
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	∞
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	∞
Dipole						
Dipole Positioning	2	Normal	1.732050808	1	1.2	∞
Power & Power Drift	4.7	Normal	1.732050808	1	2.7	∞
Phantom and Setup						
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	∞
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	∞
Liquid conductivity (measured)	0.6	Normal	1	0.64	0.4	∞
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	∞
Liquid permittivity (measured)	4.1	Normal	1	0.6	2.5	∞
Combined Standard Uncertain	ty				8.85	
Expanded Uncertainty (k=2)					17.69	
Measurement Uncertaint	v Table in acco	rdance with IEEE S	tandard 1528-2003	and IEC St		.2005

Test Report Issue Date
June 06, 2008

<u>Test Report Serial No.</u> 050508KBC-T901-S24C

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

APPENDIX G - PLANAR PHANTOM CERTIFICATE OF CONFORMITY

Applicant:	GD I	tronix (Corporation	FCC ID: KBCIX-MC5725		IC: 1943A-MC5725		GENE	RAL DYNAMICS
Model(s):	IX-MC	C5725	DUT Type:	Dual-Band	Dual-Band CDMA/EVDO Card in IX750 Rugged Handheld PC		Itronix		
2008 Celltech La	abs Inc.	This	document is not to	50					Page 42 of 42

2378 Westlake Road Kelowna, B.C. Canada V1Z-2V2

Ph. # 250-769-6848 Fax # 250-769-6334

E-mail: <u>barskiind@shaw.ca</u>
Web: www.bcfiberglass.com

FIBERGLASS FABRICATORS

Certificate of Conformity

Item: Flat Planar Phantom Unit # 03-01

Date: June 16, 2003

Manufacturer: Barski Industries (1985 Ltd)

Test	Requirement	Details
Shape	Compliance to geometry according to drawing	Supplied CAD drawing
Material Thickness	Compliant with the requirements	2mm +/- 0.2mm in measurement area
Material Parameters	Dielectric parameters for required frequencies Based on Dow Chemical technical data	100 MHz-5 GHz Relative permittivity<5 Loss Tangent<0.05

Conformity

Based on the above information, we certify this product to be compliant to the requirements specified.

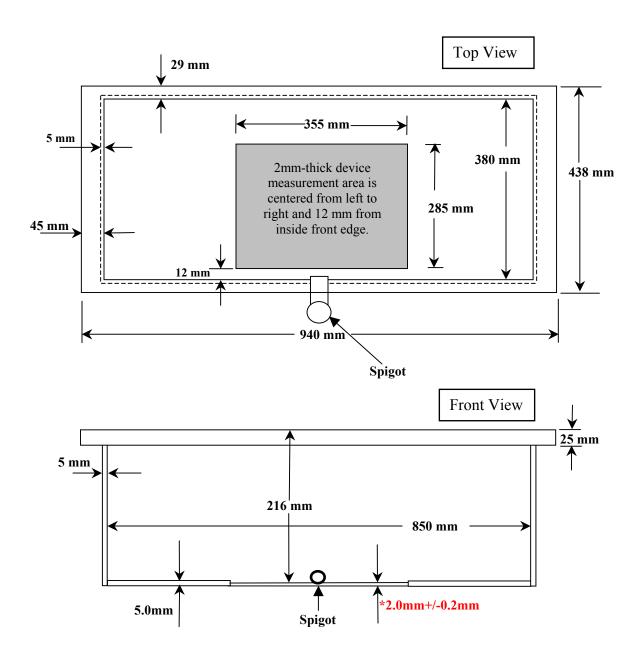
Signature:

Daniel Chailler

Fiberglass Planar Phantom - Top View

Fiberglass Planar Phantom - Front View

Fiberglass Planar Phantom - Back View



Fiberglass Planar Phantom - Bottom View

Dimensions of Fiberglass Planar Phantom

(Manufactured by Barski Industries Ltd. - Unit# 03-01)

Note: Measurements that aren't repeated for the opposite sides are the same as the side measured.

This drawing is not to scale.