Spectrum Technology

Sierra Wireless MC5725 WAN Radio in the IX270

May 21, 2007

Report No. SPTE0053.2

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2007 Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Issue Date: May 21, 2007 Spectrum Technology

Model: Sierra Wireless MC5725 WAN Radio in the IX270

	Emission	S		
Test Description	Specification	Test Method	Pass	Fail
Effective Isotropic Radiated Power	FCC 24E:2006	ANSI/TIA/EIA-603-B:2002	\boxtimes	
Effective Radiated Power	FCC 22H:2006	ANSI/TIA/EIA-603-B:2002	\boxtimes	
Out of Band Emissions	FCC 24E:2006	ANSI/TIA/EIA-603-B:2002		
Out of Band Emissions	FCC 22H:2006	ANSI/TIA/EIA-603-B:2002		

Modifications made to the product

See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

Approved By:

Don Facteau, IS Manager

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 05/05/03

Revision Number	Description	Date	Page Number
00	None		

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 89/336/EEC, ANSI C63.4, MIL-STD 461E, DO-160D and SAE J1113. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories, available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0604C.

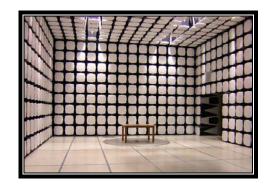
TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, C-2687, T-289, and R-2318, Irvine: R-1943, C-2766, and T-298, Sultan: R-871, C-1784, and T-294).

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.


GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/scope.asp



California – Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 Fax: (503) 844-3826

Oregon – Evergreen Facility Labs EV01 – EV11

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 Fax: (503) 844-3826

Washington – Sultan Facility Labs SU01 – SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378

Rev 11/17/06

Party Requesting the Test

Company Name:	Spectrum Technology
Address:	209 Dayton Street Suite #205
City, State, Zip:	Edmonds, WA 98020
Test Requested By:	Rod Munro
Model:	Sierra Wireless MC5725 WAN Radio in the IX270
First Date of Test:	April 13, 2007
Last Date of Test:	April 20, 2007
Receipt Date of Samples:	April 13, 2007
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

Sierra Wireless MC5725 WAN Radio in the IX270 computer

Testing Objective:

Demonstrate compliance of the Sierra Wireless MC5725 WAN radio when it is installed in the IX270 computer. The MC5725 has an internal antenna and alternate vehicle mount external magnetic mount style antenna. Only radiated spurious emissions and radiated output power will be measured. The antenna port conducted data for the radio is found under the filing for FCC ID: N7N-MC5725.

CONFIGURATION 1 SPTE0053

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
WAN Network Card	Sierra Wireless, Inc.	MC5725	None

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Notebook PC	Itronix, Corp.	IX270	ZZGEG7036ZZ1057		
AC Adapter	Delta Electronics	ADP-0=90SB BB	VCW0617007714		
USB Card Reader	ImageMate	SDDR-91	015336		
USB Mouse	Logitech	M-BE58	LZE02357693		
802.11(a)/(b)/(g) radio	Intel Corporation	2915ABG (FCC ID:KBCIX270-WL3945)	Unknown		
Bluetooth Module	Broadcomm	BT2022 (FCC ID: KBCIX270-BT2022)	Unknown		
Headset	Unknown	Unknown	Unknown		

Cables	Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
USB	Yes	1.0m	No	Card Reader	Notebook PC	
USB	Yes	1.2m	No	USB mouse	Notebook PC	
Audio	No	1.0m	No	Headset	Notebook PC	
Video	Yes	1.0m	No	Notebook PC	Unterminated	
Phone	No	1.3m	No	Notebook PC	Unterminated	
USB	Yes	1.2m	No	Notebook PC	Game controller	
Ethernet	No	1.0m	No	Notebook PC	Unterminated	
DC	No	1.2m	Yes	Notebook PC	AC Adapter	
AC	No	1.6m	No	AC Adapter	AC Mains	
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.						

CONFIGURATION 2 SPTE0053

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
WAN Network Card	Sierra Wireless, Inc.	MC5725	None

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Notebook PC	Itronix, Corp.	IX270	ZZGEG7036ZZ1057		
USB Card Reader	ImageMate	SDDR-91	015336		
USB Mouse	Logitech	M-BE58	LZE02357693		
802.11(a)/(b)/(g) radio	Intel Corporation	2915ABG	Unknown		
Bluetooth Module	Broadcomm	BT2022	Unknown		
Game Controller	Microsoft	X04-63237	6323700623744		
12V Car Battery	N/A	N/A	N/A		
External WAN Antenna	Maxrad	Unknown	Unknown		
External WLAN Antenna (to populate port only)	Maxrad	Unknown	Unknown		
Keyboard	Compaq	166516-006	B13990E39G7250		
Headset	Unknown	Unknown	Unknown		
Vehicle Dock	Itronix, Corp.	IX270 VEH DCK RF	ZZCWA7017AE0042		
DC Power Supply	Astron	VS-35M	Unknown		

Cables	Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
USB	Yes	1.3m	No	Vehicle Dock	Unterminated	
USB	Yes	1.3m	No	Vehicle Dock	Game Controller	
Serial	Yes	1.0m	No	Vehicle Dock	Untermianted	
Mouse	No	1.3m	No	PS2 Mouse	Vehicle Dock	
Keyboard	No	1.6m	No	Keyboard	Vehicle Dock	
Antenna	Yes	2m	No	External WAN Antenna	Vehicle Dock	
Antenna	Yes	2m	No	External WLAN Antenna	Vehicle Dock	
DC	No	1.6m	No	Vehicle Dock	DC Power Supply	
Serial	Yes	1.3m	No	Vehicle Dock	Unterminated	
Video	Yes	1.0m	Yes	Vehicle Dock	Unterminated	
USB	Yes	1.4m	No	Vehicle Dock	USB Mouse	
Audio	No	1.0m	No	Vehicle Dock	Headset	
Ethernet	No	1.0m	No	Vehicle Dock	Headset	
PA = Cal	ole is permar	nently attached to t	he device. S	hielding and/or presence of ferrite	may be unknown.	

	Equipment modifications					
Item	Date	Test	Modification	Note	Disposition of EUT	
		Effective	Tested as	No EMI suppression	EUT remained at	
1	4/13/2007	Radiated	delivered to	devices were added or	Northwest EMC	
		Power	Test Station.	modified during this test.	following the test.	
		Out of	Tested as	No EMI suppression	EUT remained at	
2	4/16/2007	Band	delivered to	devices were added or	Northwest EMC	
		Emissions	Test Station.	modified during this test.	following the test.	
		Effective	Tested as	No EMI suppression	EUT remained at	
3	4/20/2007	Radiated	delivered to	devices were added or	Northwest EMC	
		Power	Test Station.	modified during this test.	following the test.	
4	4/20/2007	Effective Isotropic Radiated Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.	

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

OPERATING BANDS

North American PCS

US Cellular

MODES OF OPERATION INVESTIGATED

CDMA 1xEV-DO Rev A (IS-856-A)

CDMA 1xEV-Do Rev 0 (IS-856)

CDMA 1xRTT (IS-2000)

MODE OF OPERATION USED FOR FINAL TEST

CDMA 1xEV-DO Rev A (IS-856-A) - worst case per Sierra Wireless test report

CHANNELS INVESTIGATED

PCS, Low channel, Ch. 25, 1851.25MHz

PCS, Mid channel, Ch. 600, 1880MHz

PCS, High channel, Ch. 1175, 1908.75MHz

Cellular, Low channel, Ch. 1013, 824.7MHz

Cellular, Mid channel, Ch. 384, 836.52MHz

Cellular, High channel, Ch. 777, 848.31MHz

POWER CONTROL SETTINGS

All bits up

DATA RATES INVESTIGATED

Maximum

CONFIGURATIONS INVESTIGATED

Notebook configuration, internal antenna

Optional vehicle mount configuration, external antenna

POWER SETTINGS INVESTIGATED

120VAC/60Hz

FREQUENCY RANGE INVESTIGATED								
PCS BAND	PCS BAND							
Start Frequency	30MHz	Stop Frequency	26 GHz					
CELLULAR BAND								
Start Frequency	30MHz	Stop Frequency	10 GHz					

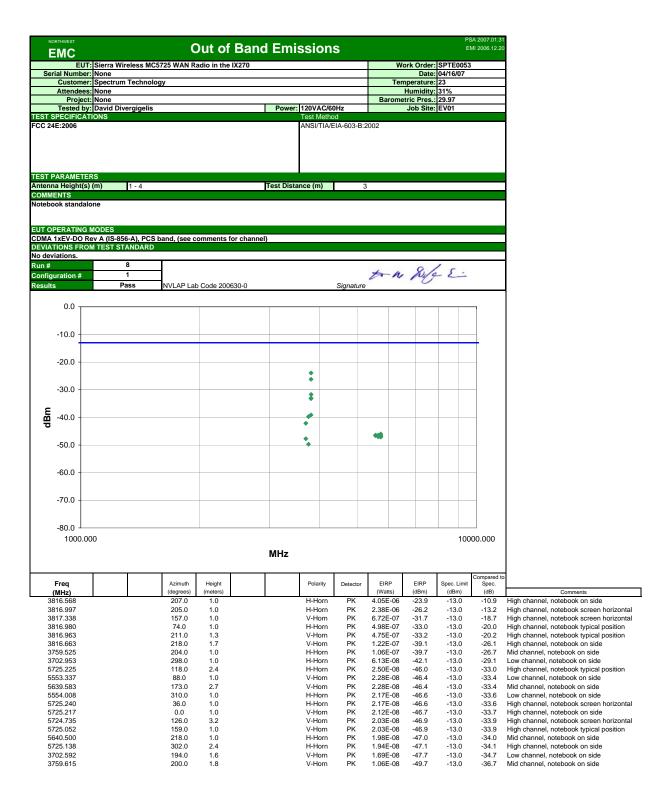
SAMPLE CALCULATIONS

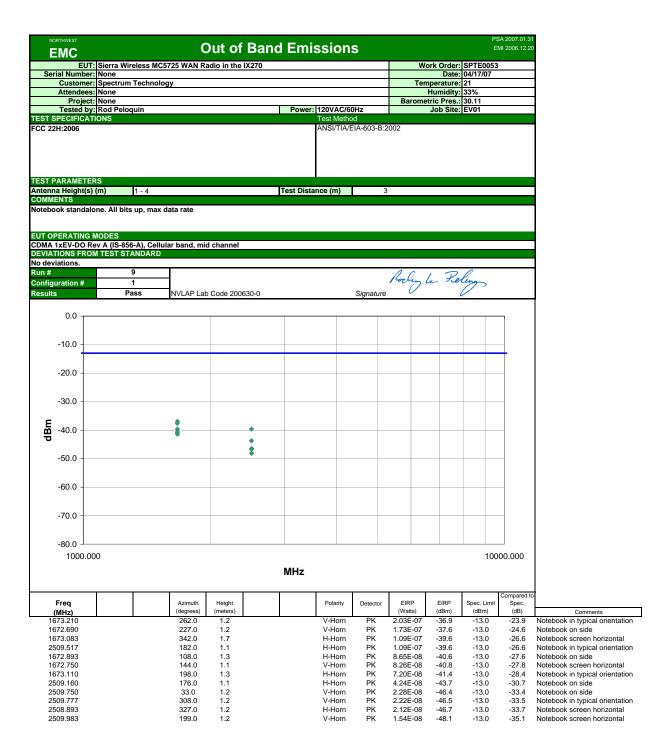
Radiated Emissions:

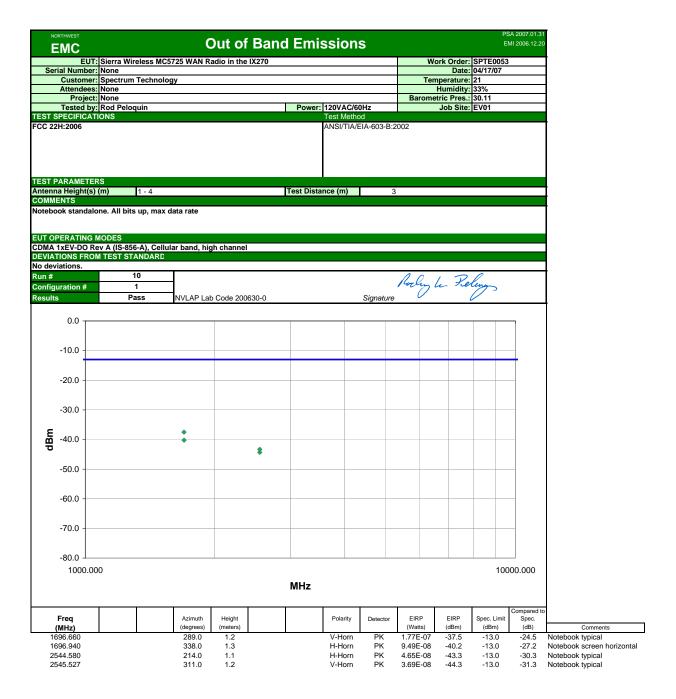
Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

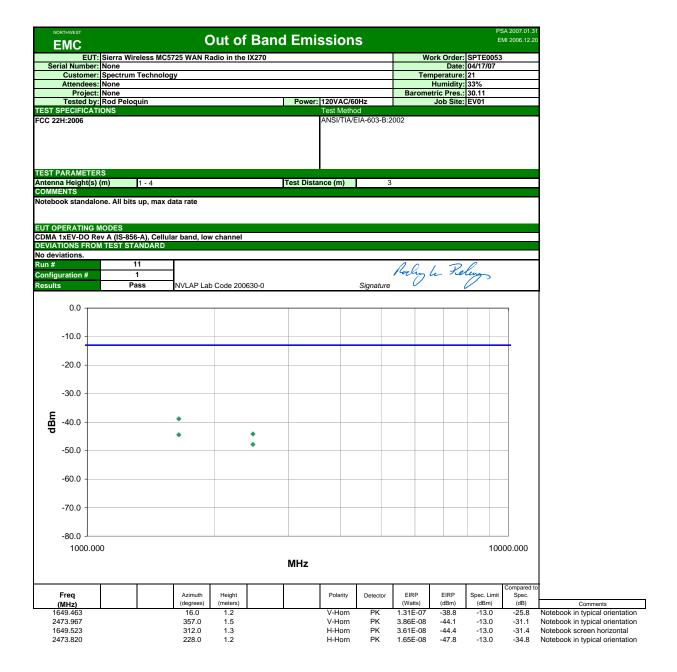
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Low Pass Filter 0-1000 MHz	Micro-Tronics	LPM50004	LFD	12/29/2006	13
Low Pass Filter 0-425 MHz	Micro-Tronics	LPM50003	LFB	12/29/2006	13
High Pass Filter 1.2 - 18 GHz	Micro-Tronics	HPM50108	HFV	12/29/2006	13
High Pass Filter	Micro-Tronics	HPM50111	HFO	12/29/2006	13
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	3/23/2006	13
Antenna, Horn	EMCO	3160-09	AHG	NCR	0
EV01 Cable D			EVD	3/30/2006	13
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APC	5/12/2006	13
EV01 cables g,h,l			EVF	4/17/2006	13
Antenna, Horn	EMCO	3160-08	AHK	NCR	0
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	12/29/2006	13
Pre-Amplifier	Miteq	AM-1616-1000	AOL	12/29/2006	13
Antenna, Biconilog	EMCO	3141	AXE	12/28/2005	24
EV01 cables c,g, h			EVA	12/29/2006	13
Antenna, Dipole (part of ADA)	ETS	3121C-DB4	ADAA	12/28/2006	24
Antenna, Dipole (ADAA included)	Roberts	Roberts	ADA	12/28/2006	24
EV01 cables g,h,j			EVB	12/29/2006	13
Antenna, Horn	EMCO	3115	AHJ	5/20/2005	24
Antenna, Horn	EMCO	3115	AHC	8/24/2006	12
Signal Generator	Hewlett-Packard	8648D	TGC	12/7/2006	13
Power Meter	Gigatronics	8651A	SPM	9/19/2006	12
Power Sensor	Gigatronics	80701A	SPL	9/19/2006	12
Spectrum Analyzer	Agilent	E4446A	AAT	12/7/2006	13

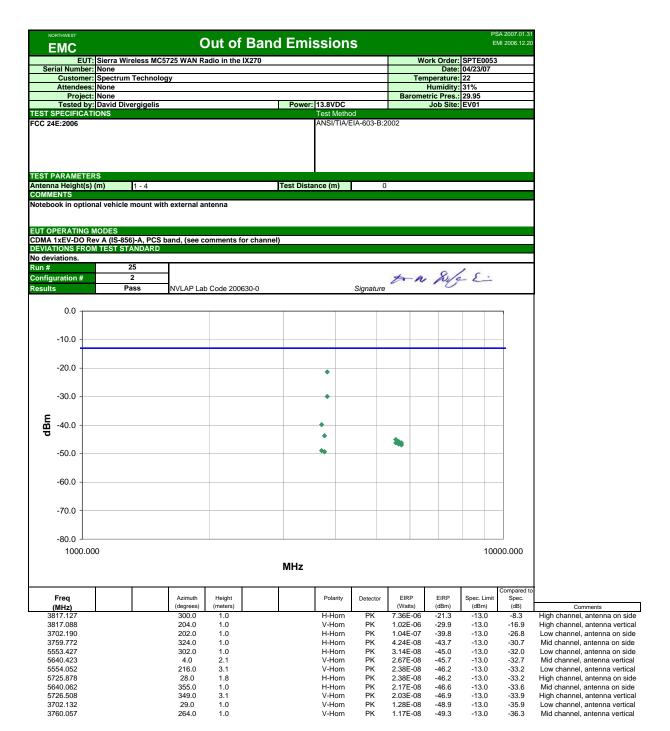
Frequenc	y Range	Peak Data	Quasi-Peak Data	Average Data
(MH	z)	(kHz)	(kHz)	(kHz)
0.01 -	0.15	1.0	0.2	0.2
0.15 -	30.0	10.0	9.0	9.0
30.0 -	1000	100.0	120.0	120.0
Above	1000	1000.0	N/A	1000.0
Measurements v	vere made using the	bandwidths and dete	ctors specified. No video filte	er was used.

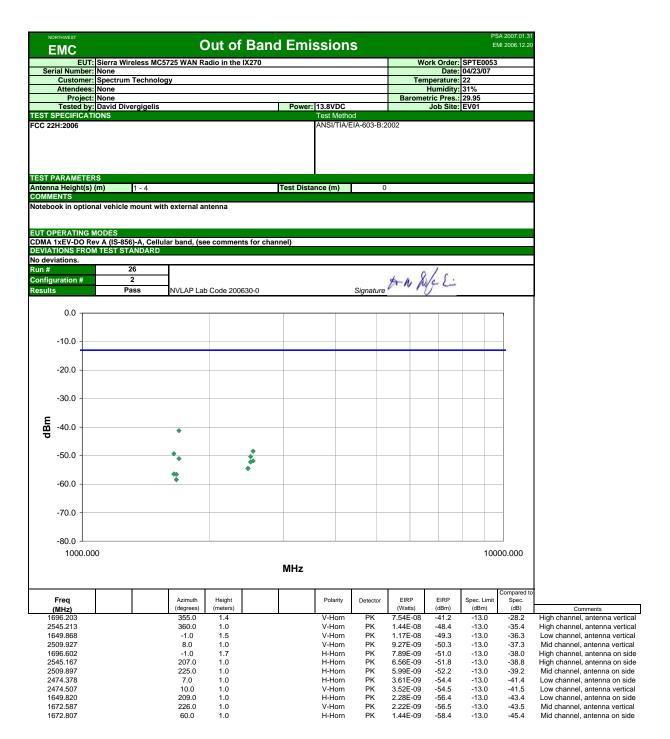

MEASUREMENT UNCERTAINTY

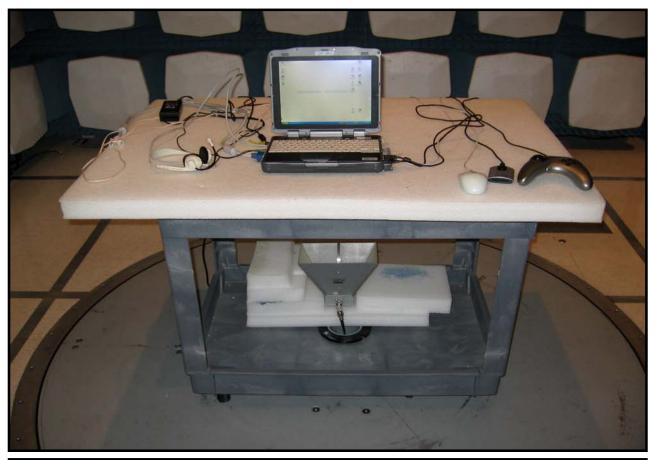

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct

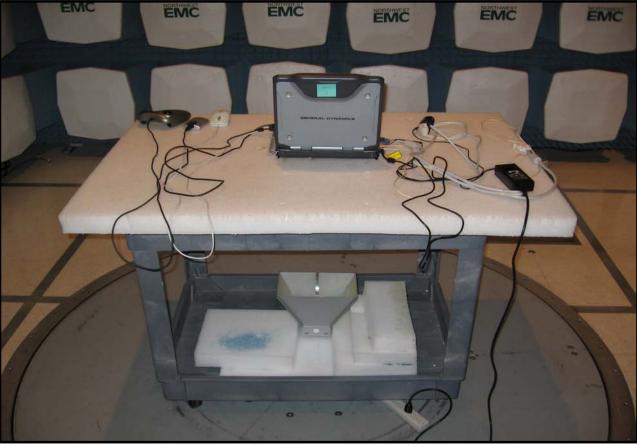

TEST DESCRIPTION

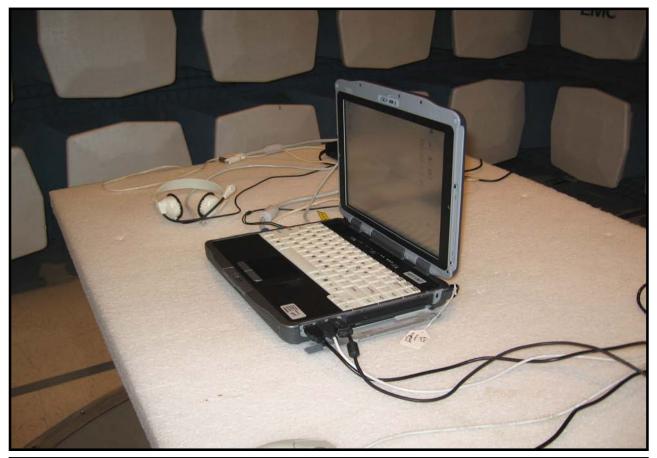

The antennas to be used with the EUT were tested. The EUT was transmitting and/or receiving while set at the lowest channel, a middle channel, and the highest channel available. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003).


The amplitude and frequency of the highest emissions were noted. The EUT was then replaced with a horn or dipole antenna. A signal generator was connected to the horn (or dipole) antenna and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the cable loss to the horn (or dipole) antenna and its gain (dBi); the effective isotropic radiated power for each fundamental emission was determined.

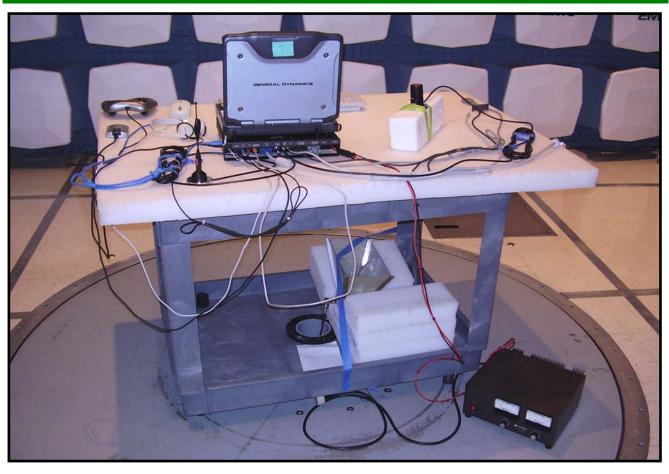












PSA 2007.01.31

Effective Isotropic Radiated Power

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

OPERATING BANDS

North American PCS

MODES OF OPERATION

CDMA 1xEV-DO Rev A (IS-856-A)

CDMA 1xEV-Do Rev 0 (IS-856)

CDMA 1xRTT (IS-2000)

CHANNELS INVESTIGATED

Low channel, Ch. 25, 1851.25MHz Mid channel, Ch. 600, 1880MHz

High channel, Ch. 1175, 1908.75MHz

POWER CONTROL SETTINGS

All bits up

DATA RATES INVESTIGATED

Maximum

CONFIGURATIONS INVESTIGATED

Notebook configuration, internal antenna

Optional vehicle mount configuration, external antenna

POWER SETTINGS INVESTIGATED

120VAC/60Hz

13 8 VDC

FREQUENCY RANGE INVESTIGATED

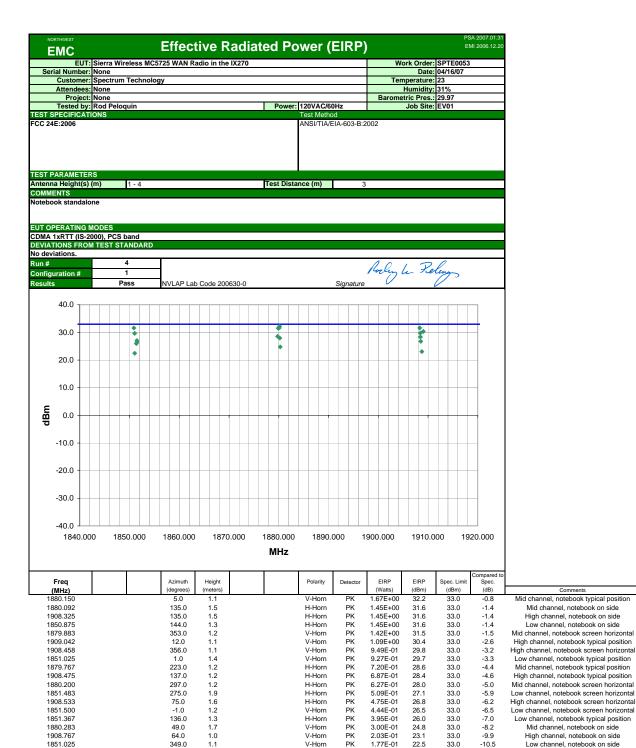
Start Frequency 1851.25MHz Stop Frequency 1908.75MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
EV01 cables g,h,j			EVB	12/29/2006	13
Antenna, Horn	EMCO	3115	AHJ	5/20/2005	24
Antenna, Horn	EMCO	3115	AHC	8/24/2006	12
Signal Generator	Hewlett-Packard	8648D	TGC	12/7/2006	13
Power Meter	Gigatronics	8651A	SPM	9/19/2006	12
Power Sensor	Gigatronics	80701A	SPL	9/19/2006	12
Spectrum Analyzer	Agilent	F4446A	AAT	12/7/2006	13

MEASUREMENT BANDWIDTHS							
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data			
	(MHz)	(kHz)	(kHz)	(kHz)			
	0.01 - 0.15	1.0	0.2	0.2			
	0.15 - 30.0	10.0	9.0	9.0			
	30.0 - 1000	100.0	120.0	120.0			
	Above 1000	1000.0	N/A	1000.0			
	Massuraments were made us	sing the handwidths and dete	ctors specified No video filte	ar was usad			


MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting and/or receiving while set at the lowest channel, a middle channel, and the highest channel available. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003).

The amplitude and frequency of the highest emissions were noted. The EUT was then replaced with a horn antenna. A signal generator was connected to the horn antenna and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the cable loss to the horn antenna and its gain (dBi); the effective isotropic radiated power for each fundamental emission was determined.

V-Horn H-Horn

V-Horn

V-Horn

V-Horn

4.44E-01 3.95E-01

3.00E-01

2.03E-01

1.77E-01

26.5 26.0

24.8 23.1 22.5

33.0 33.0

33.0 33.0

33.0

-6.5 -7.0

-8.2 -9.9 -10.5

1.2 1.3 1.7 1.0

-1.0

136.0

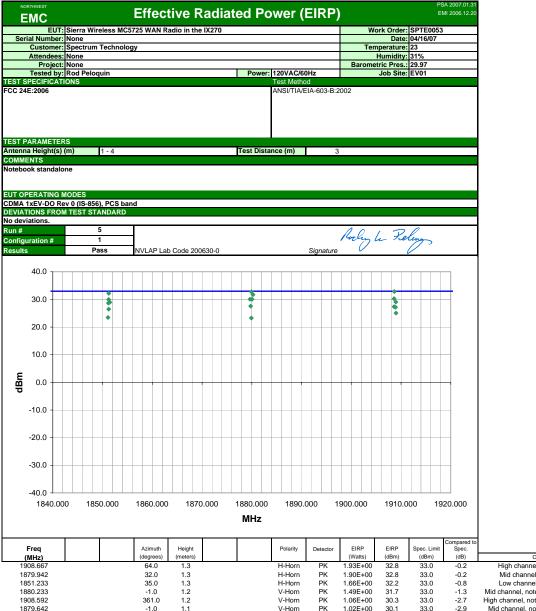
49.0

349.0

1851.500

1880.283

1851.025


High channel, notebook screen horizontal

Low channel, notebook screen horizontal Low channel, notebook typical position

Mid channel, notebook on side

High channel, notebook on side

Low channel, notebook on side

F	A miner rate	Helek		Delevie		EIRP	EIRP	C Liis	Compared to
Freq	Azimuth	Height		Polarity	Detector			Spec. Limit	Spec.
(MHz)	(degrees)	(meters)				(Watts)	(dBm)	(dBm)	(dB)
1908.667	64.0	1.3		H-Horn	PK	1.93E+00	32.8	33.0	-0.2
1879.942	32.0	1.3		H-Horn	PK	1.90E+00	32.8	33.0	-0.2
1851.233	35.0	1.3		H-Horn	PK	1.66E+00	32.2	33.0	-0.8
1880.233	-1.0	1.2		V-Horn	PK	1.49E+00	31.7	33.0	-1.3
1908.592	361.0	1.2		V-Horn	PK	1.06E+00	30.3	33.0	-2.7
1879.642	-1.0	1.1		V-Horn	PK	1.02E+00	30.1	33.0	-2.9
1880.058	107.0	1.3		H-Horn	PK	1.02E+00	30.1	33.0	-2.9
1851.217	352.0	1.5		V-Horn	PK	9.93E-01	30.0	33.0	-3.0
1908.958	-1.0	1.1		V-Horn	PK	8.07E-01	29.1	33.0	-3.9
1851.458	297.0	1.2		H-Horn	PK	7.89E-01	29.0	33.0	-4.0
1851.175	360.0	1.2		V-Horn	PK	7.36E-01	28.7	33.0	-4.3
1879.767	24.0	1.2		H-Horn	PK	5.72E-01	27.6	33.0	-5.4
1908.592	299.0	1.2		H-Horn	PK	5.46E-01	27.4	33.0	-5.6
1908.892	107.0	1.2		H-Horn	PK	5.21E-01	27.2	33.0	-5.8
1851.242	110.0	1.3		H-Horn	PK	4.44E-01	26.5	33.0	-6.5
1908.983	164.0	1.1		V-Horn	PK	3.21E-01	25.1	33.0	-7.9
1851.100	197.0	1.2		V-Horn	PK	2.22E-01	23.5	33.0	-9.5
1879.917	70.0	1.1		V-Horn	PK	2.12E-01	23.3	33.0	-9.7

Comments

High channel, notebook on side

Mid channel, notebook on side

Low channel, notebook on side

Low channel, notebook on side

Mid channel, notebook screen horizontal

High channel, notebook screen horizontal

Mid channel, notebook typical position

Mid channel, notebook typical position

Low channel, notebook typical position

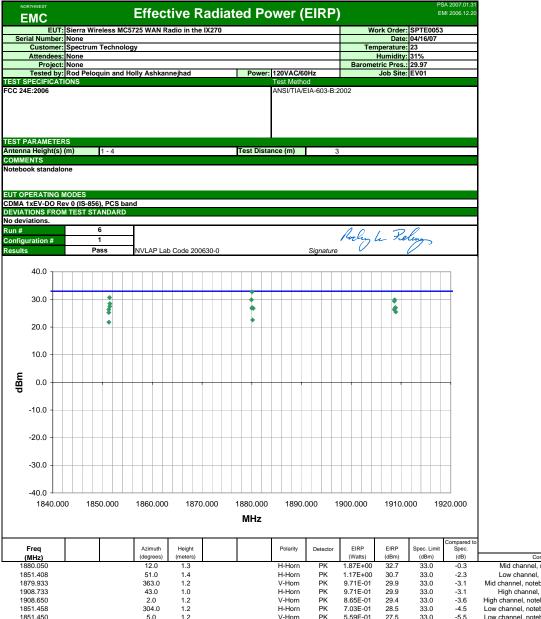
Ligh channel, notebook screen horizontal

Low channel, notebook screen horizontal

Low channel, notebook screen horizontal

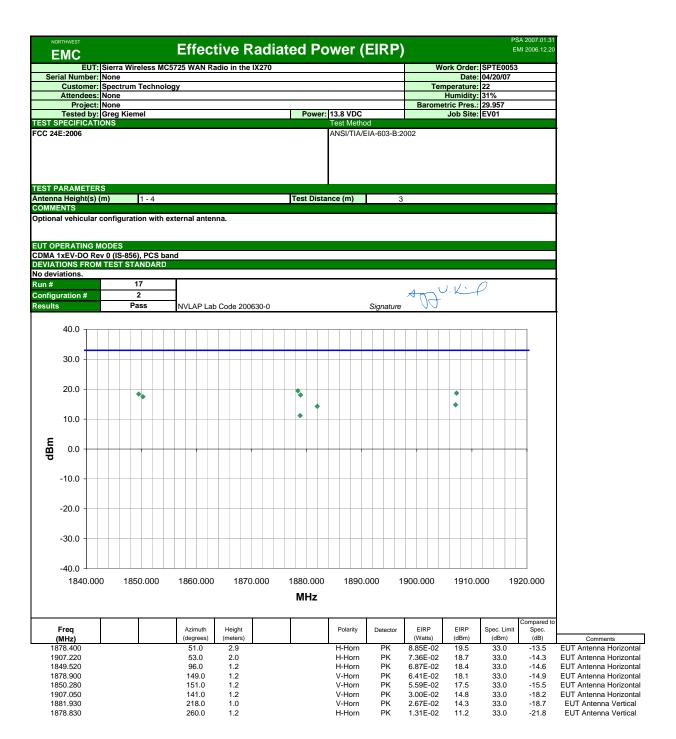
High channel, notebook screen horizontal

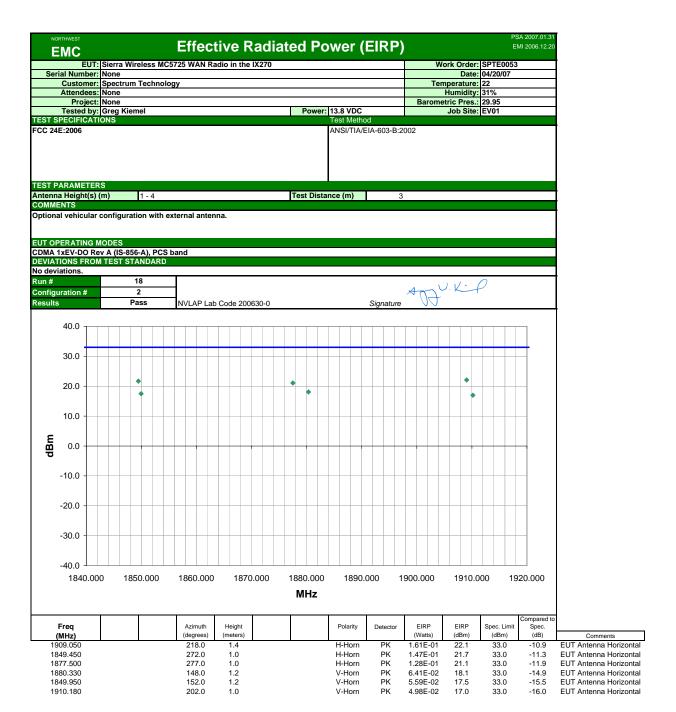
High channel, notebook typical position

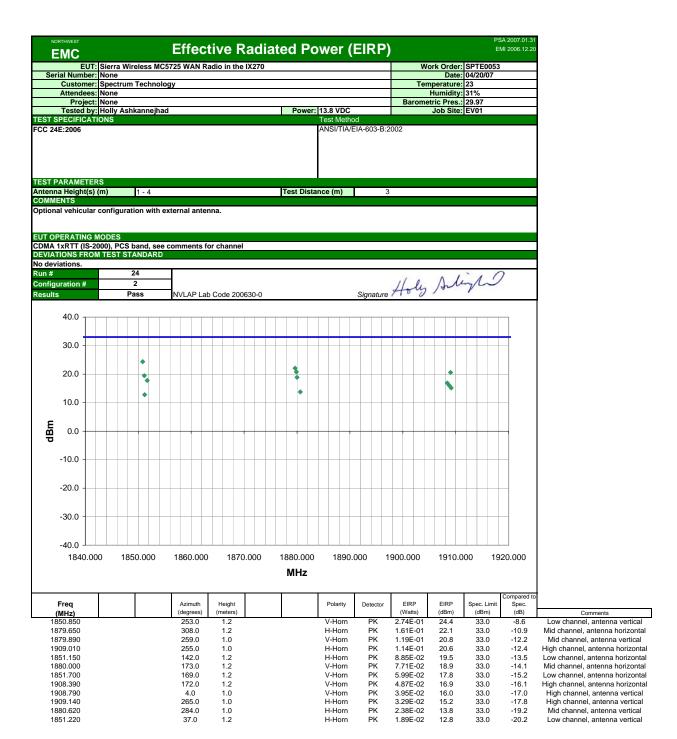

Low channel, notebook typical position

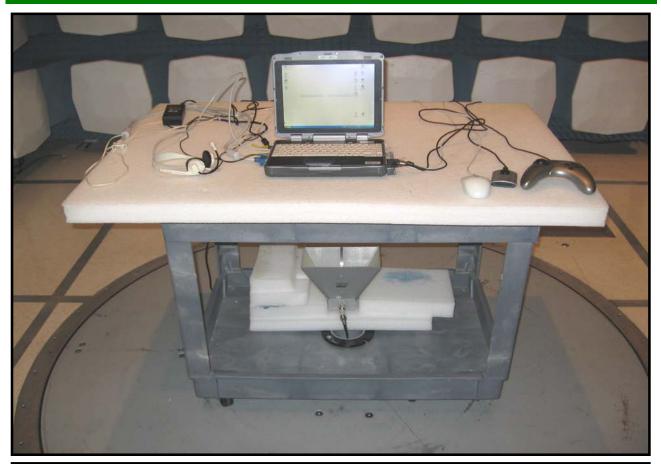
Low channel, notebook typical position

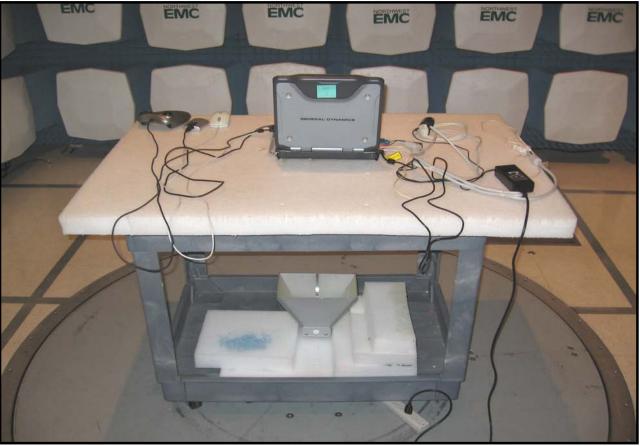
High channel, notebook on side


Low channel, notebook on side

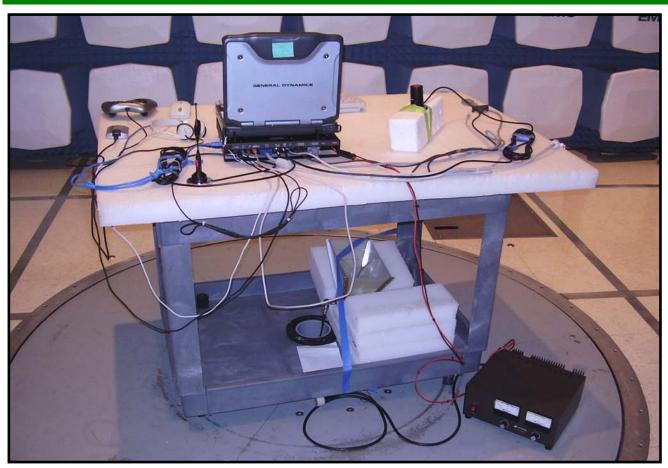

Mid channel, notebook on side




Freq		Azimuth	Height		Polarity	Detector	EIRP	EIRP	Spec. Limit	Spec.
(MHz)		(degrees)	(meters)				(Watts)	(dBm)	(dBm)	(dB)
1880.050		12.0	1.3		H-Horn	PK	1.87E+00	32.7	33.0	-0.3
1851.408		51.0	1.4		H-Horn	PK	1.17E+00	30.7	33.0	-2.3
1879.933		363.0	1.2		V-Horn	PK	9.71E-01	29.9	33.0	-3.1
1908.733		43.0	1.0		H-Horn	PK	9.71E-01	29.9	33.0	-3.1
1908.650		2.0	1.2		V-Horn	PK	8.65E-01	29.4	33.0	-3.6
1851.458		304.0	1.2		H-Horn	PK	7.03E-01	28.5	33.0	-4.5
1851.450		5.0	1.2		V-Horn	PK	5.59E-01	27.5	33.0	-5.5
1880.067		34.0	1.3		H-Horn	PK	5.09E-01	27.1	33.0	-5.9
1908.858		310.0	1.2		H-Horn	PK	5.09E-01	27.1	33.0	-5.9
1908.883		-2.0	1.1		V-Horn	PK	4.98E-01	27.0	33.0	-6.0
1880.000		0.0	2.2		V-Horn	PK	4.87E-01	26.9	33.0	-6.1
1880.292		97.0	1.2		H-Horn	PK	4.75E-01	26.8	33.0	-6.2
1851.250		156.0	1.0		H-Horn	PK	4.34E-01	26.4	33.0	-6.6
1908.625		104.0	1.2		H-Horn	PK	4.34E-01	26.4	33.0	-6.6
1908.933		360.0	1.4		H-Horn	PK	3.52E-01	25.5	33.0	-7.5
1851.250		68.0	1.0		V-Horn	PK	3.37E-01	25.3	33.0	-7.7
1880.150		144.0	1.2		V-Horn	PK	1.81E-01	22.6	33.0	-10.4
1851.275		147.0	1.2		V-Horn	PK	1.50E-01	21.8	33.0	-11.2


Mid channel, notebook on side
Low channel, notebook on side
Mid channel, notebook screen horizontal
High channel, notebook screen horizontal
High channel, notebook screen horizontal
Low channel, notebook screen horizontal
Low channel, notebook screen horizontal
Mid channel, notebook screen horizontal
High channel, notebook screen horizontal
High channel, notebook typical position
Mid channel, notebook typical position
Mid channel, notebook typical position
Low channel, notebook typical position
High channel, notebook typical position
High channel, notebook on side
Low channel, notebook on side
Low channel, notebook on side





PSA 2007.01.31

Effective Radiated Power

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

OPERATING BANDS

US Cellular

MODES OF OPERATION

CDMA 1xEV-DO Rev A (IS-856-A)

CDMA 1xEV-Do Rev 0 (IS-856)

CDMA 1xRTT (IS-2000)

CHANNELS INVESTIGATED

Cellular, Low channel, Ch. 1013, 824.7MHz Cellular, Mid channel, Ch. 384, 836.52MHz Cellular, High channel, Ch. 777, 848.31MHz

POWER CONTROL SETTINGS

All bits up

DATA RATES INVESTIGATED

Maximum

CONFIGURATIONS INVESTIGATED

Notebook configuration, internal antenna

Optional vehicle mount configuration, external antenna

POWER SETTINGS INVESTIGATED

120VAC/60Hz

13.8 VDC

FREQUENCY RANGE INVESTIGATED

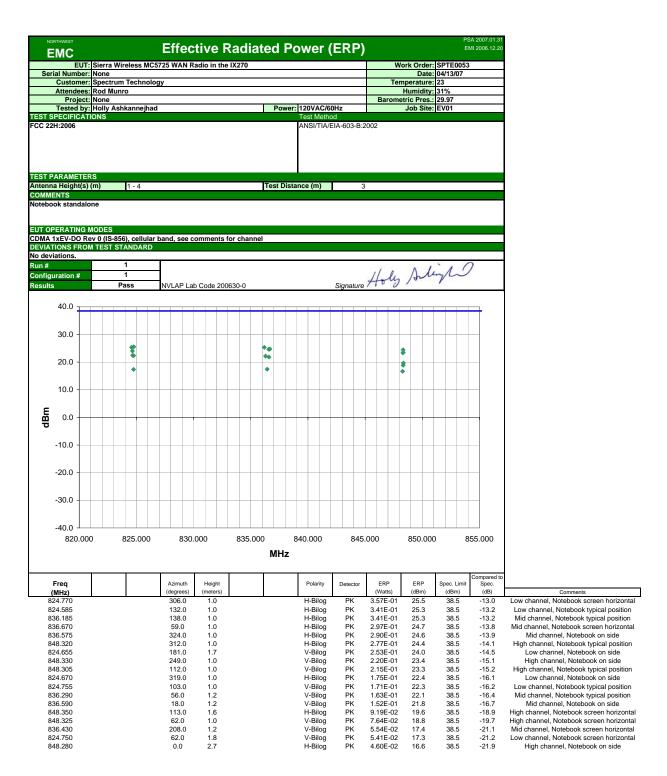
start Frequency 824.7MHz Stop Frequency 848.31MHz

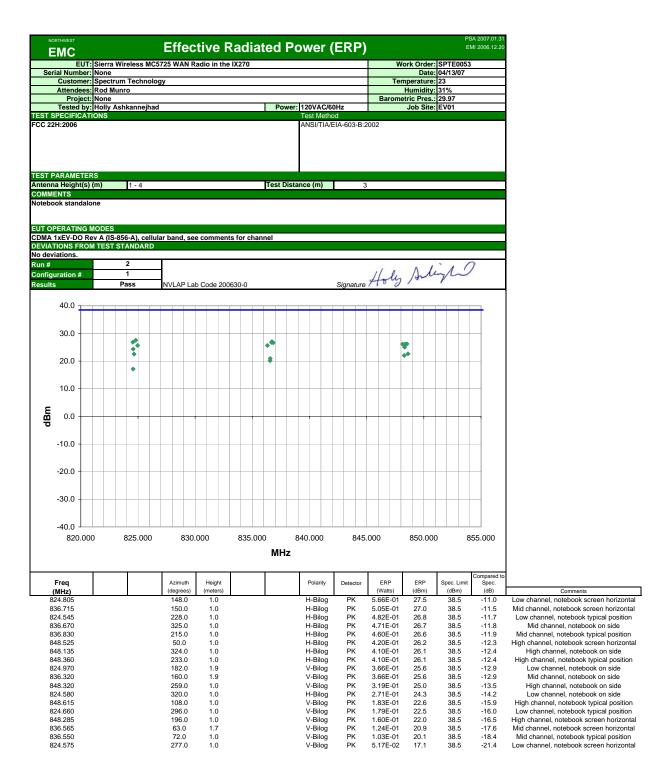
SAMPLE CALCULATIONS

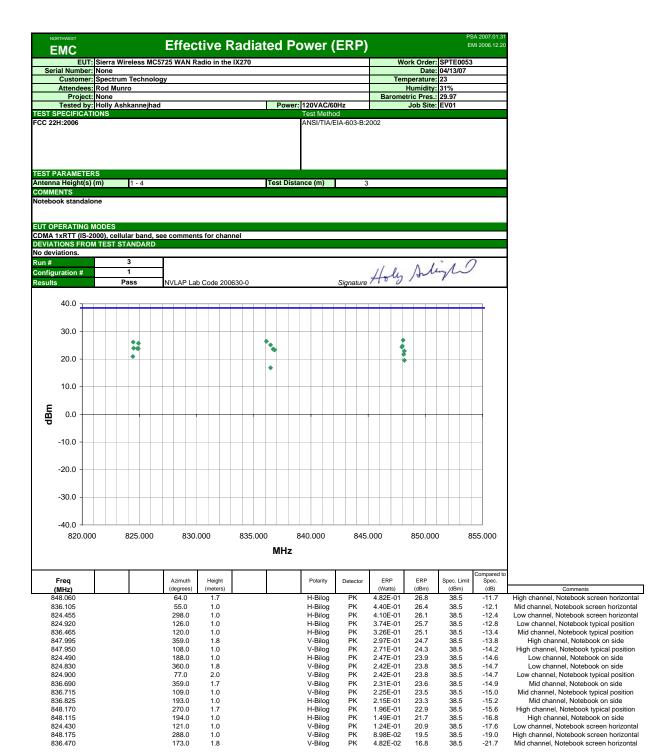
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

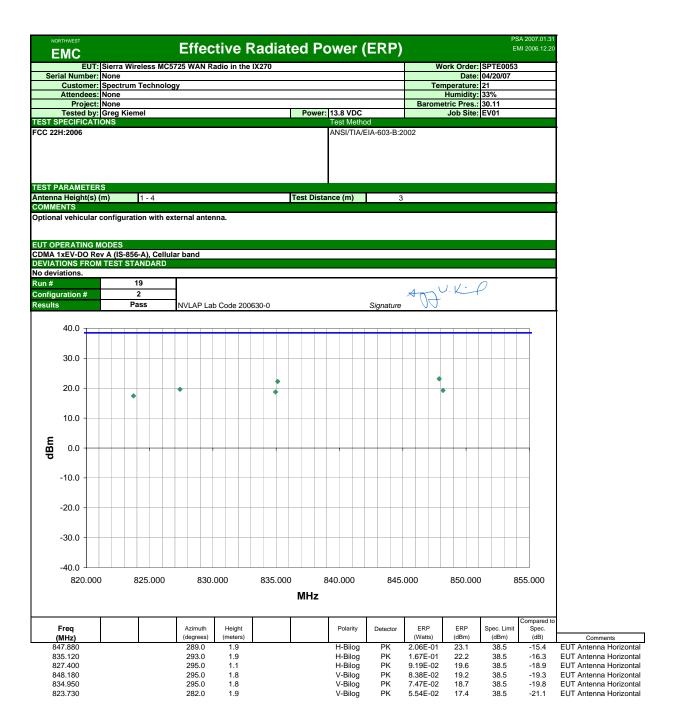
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Dipole (part of ADA)	ETS	3121C-DB4	ADAA	12/28/2006	24
Antenna, Dipole (ADAA included)	Roberts	Roberts	ADA	12/28/2006	24
Signal Generator	Hewlett-Packard	8648D	TGC	12/7/2006	13
Power Meter	Gigatronics	8651A	SPM	9/19/2006	12
Power Sensor	Gigatronics	80701A	SPL	9/19/2006	12
Spectrum Analyzer	Agilent	E4446A	AAT	12/7/2006	13
EV01 cables c,g, h			EVA	12/29/2006	13
Antenna, Biconilog	EMCO	3141	AXE	12/28/2005	24

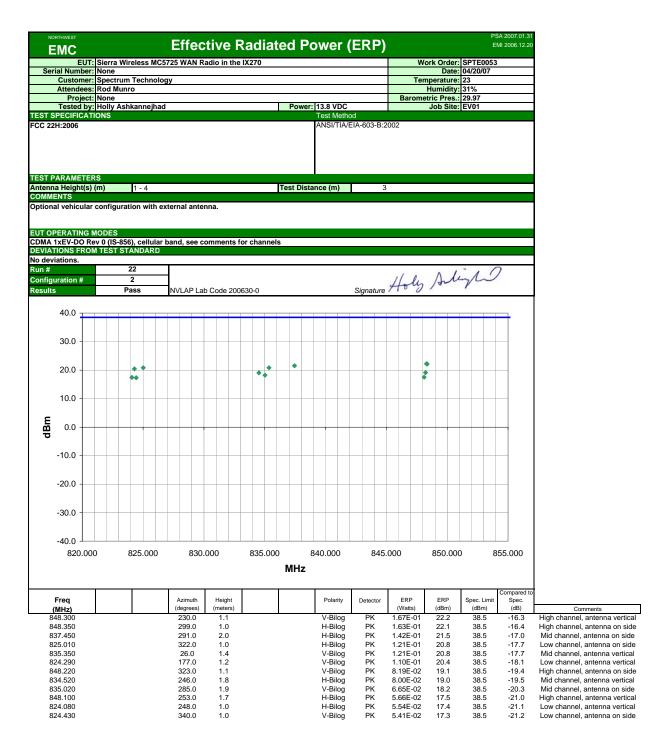
Frequency Ra	nge Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0


MEASUREMENT UNCERTAINTY


Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.


TEST DESCRIPTION


The antennas to be used with the EUT were tested. The EUT was transmitting and/or receiving while set at the lowest channel, a middle channel, and the highest channel available. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003).


The amplitude and frequency of the highest emissions were noted. The EUT was then replaced with a dipole antenna. A signal generator was connected to the dipole antenna and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the cable loss to the dipole antenna and its gain (dBi); the effective radiated power for each radiated spurious emission was determined.

