Spectrum Technology, Inc.

GD Itronix, Model: GD6000 PC w/GOBI2, FCC ID: KBCIX-GOBI2, Model: IX-GOBI2

Report No. SPTE0110

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2009Northwest EMC, Inc

Certificate of Test Last Date of Test: July 30, 2009 Spectrum Technology, Inc. Model: GD Itronix, Model: GD6000 PC w/GOBI2, FCC ID: KBCIX-GOBI2, Model: IX-GOBI2

Emissions					
Test Description	Specification	Test Method	Pass/Fail		
Out of Band Emissions	FCC 24E:2009	ANSI/TIA/EIA-603-C-2004	Pass		
Out of Band Emissions	FCC 22H:2009	ANSI/TIA/EIA-603-C-2004	Pass		
Equivalent Isotropic Radiated Power	FCC 24E:2009	ANSI/TIA/EIA-603-C-2004	Pass		
Equivalent Radiated Power	FCC 22H:2009	ANSI/TIA/EIA-603-C-2004	Pass		

Modifications made to the product See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc.; 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834D-2).

Approved By: Don Facteau, IS Manager

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision Number	Description	Date	Page Number
00	None		

Barometric Pressure

The recorded barometric pressure has been normalized to sea level.

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (*Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2*)

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

NVLAP LAB CODE 200629-0 NVLAP LAB CODE 200630-0 NVLAP LAB CODE 200676-0 NVLAP LAB CODE 200761-0

CE

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (*Registration Numbers. - Hillsboro: C-1071, R-1025, C-2687, T-289, and R-2318, Irvine: R-1943, C-2766, and T-298, Sultan: R-871, C-1784, and T-294*).

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017). License No.SL2-IN-E-1017.

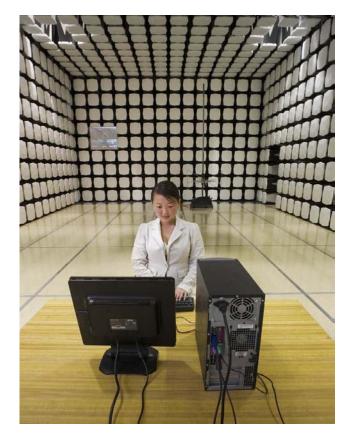
GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

KCC: Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (*Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157*)

SCOPE For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/accreditations/</u>

NEMKO

Northwest EMC Locations



Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy Suite 400 Hillsboro, OR 97124 (503) 844-4066 California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918 Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281 Washington Labs SU01-SU07 14128 339th Ave. SE Sultan, WA 98294 (360) 793-8675 New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796

Party Requesting the Test

Company Name:	Spectrum Technology, Inc.
Address:	4801 166th Place SE
City, State, Zip:	Bothell, WA 98012
Test Requested By:	Rod Munro
Model:	GD Itronix, Model: GD6000 PC w/GOBI2, FCC ID: KBCIX- GOBI2, Model: IX-GOBI2
First Date of Test:	July 14, 2009
Last Date of Test:	July 30, 2009
Receipt Date of Samples:	July 13, 2009
Equipment Design Stage:	Preproduction
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

Ruggedized PC that can be used in either a notebook or vehicle - mount configuration.

Testing Objective:

These tests were selected to satisfy the EMC requirements requested by the client.

CONFIGURATION 1 SPTE0110

Software/Firmware Running during test			
Description	Version		
Windows XP	SP3		

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
GOBI2000 WAN radio	Qualcomm	GOBI2000	Unknown			
Notebook PC	General Dynamics Itronix, Corp.	GD6000	ZZGEG9139ZZ2900			

Peripherals in test setup boundary					
Description	Serial Number				
USB Keyboard	Logitech	Y-UT76	SC7250Z		
USB Mouse	Dell	M-UK Del 3	HC8090COCNK		
Serial Modem	Epson	C202A	010286		
Microphone	Gateway	7000981	C19808008		
Headset	Coby	CV-H42	None		
AC Adapter	Delta Electronics	ADP-65JH DB	634W91900DR		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB	PA	1.8m	No	Notebook PC	USB Keyboard
USB	PA	1.9m	No	Notebook PC	USB Mouse
Serial	Yes	1.9m	No	Notebook PC	Serial Modem
Audio	PA	1.6m	No	Notebook PC	Microphone
Audio	PA	1.1m	No	Notebook PC	Headset
RJ11 Phone Cable	No	1.9m	No	Notebook PC	Unterminated
Ethernet	No	1.2m	No	Notebook PC	Unterminated
Video	Yes	1.6m	Yes	Notebook PC	Unterminated
AC Power	No	1.8m	No	AC Mains	AC Adapter
DC Power	PA	1.8m	Yes	AC Adapter	Notebook PC
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATION 2 SPTE0110

Software/Firmware Running during test				
Description	Version			
Windows XP	SP3			

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
GOBI2000 WAN radio	Qualcomm	GOBI2000	Unknown			
Notebook PC	General Dynamics Itronix, Corp.	GD6000	ZZGEG9139ZZ2900			

Peripherals in test setup boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
Serial Modem	Epson	C202A	010286			
Microphone	Gateway	7000981	C19808008			
Headset	Coby	CV-H42	None			
AC Adapter	Delta Electronics	ADP-65JH DB	634W91900DR			
Vehicle Dock	General Dynamics Itronix, Corp.	91.47M27.007G	ZZTPE7003ZN7367			
External WLAN Antenna	Maxrad	Unknown	Unknown			
PS2 Mouse	Gateway	7004055	HCA22709026			
PS2 Keyboard	Gateway	7002557	G611663			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power	No	1.8m	No	AC Mains	AC Adapter
DC Power	PA	1.8m	Yes	AC Adapter	Notebook PC
Serial	Yes	1.0m	No	Vehicle Dock	Unterminated
Ethernet	No	1.2m	No	Vehicle Dock	Unterminated
Antenna	Yes	3.0m	No	Vehicle Dock	External WLAN Antenna
Video	Yes	1.0m	Yes	Vehicle Dock	Unterminated
PS2	No	1.3m	PA	Vehicle Dock	PS2 Mouse
Audio	No	1.0m	No	Vehicle Dock	Microphone
Audio	No	1.0m	No	Vehicle Dock	Headset
USB	Yes	1.3m	No	Vehicle Dock	Unterminated
Firewire	Yes	1.3m	No	Vehicle Dock	Unterminated
PS2	Yes	1.6m	No	Vehicle Dock	PS2 Keyboard
USB	Yes	1.6m	No	Vehicle Dock	Unterminated
Serial	Yes	1.9m	No	Vehicle Dock	Serial Modem
Parallel	Yes	1.7m	No	Vehicle Dock	Unterminated
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Modifications

	Equipment modifications					
Item	Date	Test	Modification	Note	Disposition of EUT	
1	7/14/2009	Equivalent Radiated Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
2	7/20/2009	Equivalent Isotropic Radiated Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
3	7/30/2009	Out of Band Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.	

EMC

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

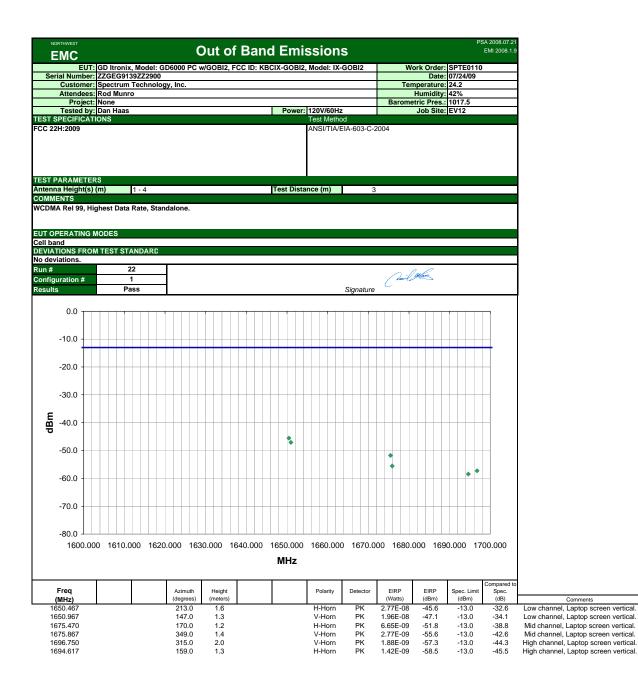
testing methods and performance sp	pecifications, as well as the t	est site used for the evaluation	h are indi	cated in the test da	ta.
MODES OF OPERATION					
Cell					
CHANNELS OF OPERATION					
Low Channel					
Mid Channel					
High Channel					
POWER SETTINGS INVESTIGATE	D				
120VAC/60Hz					
FREQUENCY RANGE INVESTIGA					
Start Frequency	30MHz	Stop Frequency		26 GHz	
SAMPLE CALCULATIONS					
Radiated Emissions: Field Strength = Measured L	evel + Antenna Factor + Cable Factor - A	mplifier Gain + Distance Adjustment Factor +	External Atte	nuation	
TEST EQUIPMENT	Manufactures	Model	ID	Lest Cal	Laternal
Description EV12 Cables	Manufacturer		ID EVS	Last Cal. 6/25/2009	Interval 13
Antenna, Biconilog	EMCO	Bilog Cables 3141	AXE	1/15/2008	24
Pre-Amplifier		AMF-3D00100800-32-13P	AVE	6/25/2009	13
Antenna, Horn	Miteq ETS	3115	AIB	8/25/2009	24
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AIB	6/26/2009	13
EV11 Cables	witted	Standard Gain Horn Cables	EVU	6/25/2009	13
Antenna, Horn	ETS	3160.07	AHZ	10/14/2008	24
Attenuator	Pasternack	PE7005-20	AUN	6/25/2009	13
Attenuator	INMET	64671 6A-10dB	AUI	6/25/2009	13
High Pass Filter	Micro-Tronics	50111	HGE	6/25/2009	13
High Pass Filter	Micro-Tronics	50108	HGF	6/25/2009	13
1-2 GHz Notch Filter	K&L Microwave	3TNF-1000/2000-N/N	HFU	7/2/2008	24
.5-1 GHz Notch Filter	K&L Microwave	3TNF-500/1000-N/N	HFT	7/2/2008	24
niversal Radio Communication Teste		CMU200	BSU	NCR	0
Low Pass Filter 0-425 MHz	Micro-Tronics	LPM50003	LFB	7/10/2009	13
Antenna, Horn	EMCO	3115	AHJ	6/29/2009	24
Power Sensor	Gigatronics	80701A	SPL	12/10/2008	13
Power Meter	Gigatronics	8651A	SPM	12/10/2008	13
Signal Generator	Hewlett-Packard	8648D	TGC	12/9/2008	13
Antenna, Dipole	ETS	3121C-DB4	ADH	3/6/2009	24

MEASUREMENT BANDWIDTHS

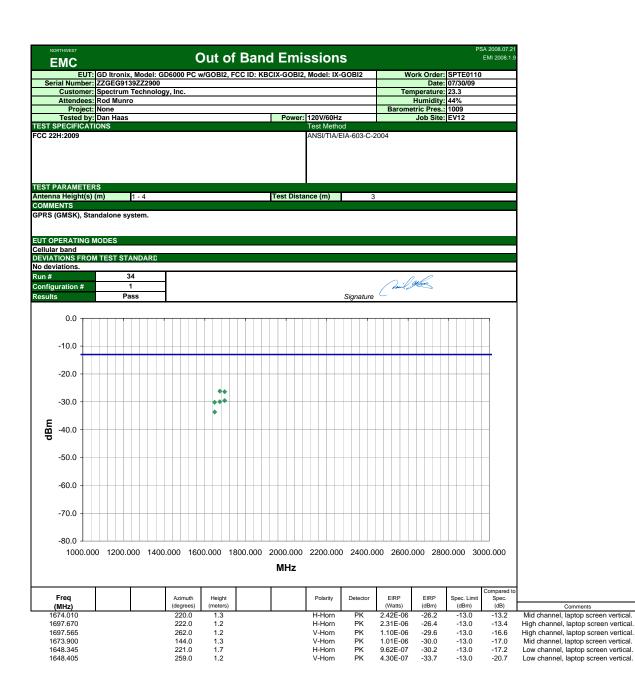
Frequency Range	Peak Data	Quasi-Peak Data	Average Data				
(MHz)	(kHz)	(kHz)	(kHz)				
0.01 - 0.15	1.0	0.2	0.2				
0.15 - 30.0	10.0	9.0	9.0				
30.0 - 1000	100.0	120.0	120.0				
Above 1000	1000.0	N/A	1000.0				
Measurements were made using the bandwidths and detectors specified. No video filter was used.							

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.


TEST DESCRIPTION

The highest gain antenna to be used with the EUT was tested for final measurements. The EUT was configured for the lowest, a middle, and the highest transmit frequency in each operational band. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.4:2003). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.


For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:

At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole that is successively tuned to each of the highest spurious emissions for emissions below 1 GHz, and a horn antenna for emissions above 1 GHz. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the antenna and its gain; the power (dBm) into an ideal ½ wave dipole antenna is determined for each radiated spurious emission.

For the purposes of preliminary measurements, the field strength of the spurious emissions can be measured and compared with a 3 meter limit. The 3 meter limit was calculated to be 82.5 dBuV/m at 3 meters. The final measurements must be made utilizing the substitution method described above

NORTHWEST											<u>PS</u>	A 2008.07.21
EMC		C	Out of I	Ban	d Em	iss	sion	S				EMI 2008.1.9
	D Itronix, Model: GI	06000 PC w	GOBI2, FCC	D: KB	CIX-GOBI	2, Mo	del: IX-	GOBI2	W	ork Order:	SPTE0110	
	ZGEG9139ZZ2900										07/30/09	
	pectrum Technolog	y, Inc.							Ter	nperature:		
Attendees: R Project: N									Barome	Humidity: etric Pres.:		
	than Schoonover				Powe	er: 120	0V/60Hz	2	Daronie	Job Site:		
TEST SPECIFICATIO							st Metho					
FCC 22H:2009						AN	ISI/TIA/E	EIA-603-C-	2004			
TEST PARAMETERS					1			1				
Antenna Height(s) (m COMMENTS	n) 1 - 4				Test Dis	tance	e (m)	3	3			
CDMA 1x RC3 (SO55)), Highest Data Rate	, Standalon	ie									
EUT OPERATING MC	DDES											
Cell band						_						
DEVIATIONS FROM	TEST STANDARD											
No deviations. Run #	33											
Configuration #	1								51 1			
Results	Pass							Signature	Ilhe A			
Results								Olghatalo	•			
0.0			.									
0.0												
-10.0												_
												-
-20.0												-
-30.0												
-30.0												
-												
E -40.0												_
q			* *									
-50.0			•									_
<u> </u>												
-60.0												
-70.0												_
-80.0												
1000.000	1200.000 1400.	000 1600	0.000 1800	0.000	2000.00	0 22	200.000	2400.0	000 2600.	000 280	0.000 30	00.000
					MHz							
												Compared to
Freq		Azimuth	Height			F	Polarity	Detector	EIRP	EIRP	Spec. Limit	Spec.
(MHz)		(degrees)	(meters)			<u> </u>		שע	(Watts)	(dBm)	(dBm)	(dB)
1648.836 1697.213		157.0 354.0	1.3 1.6				l-Horn /-Horn	PK PK	6.50E-08 5.93E-08	-41.9 -42.3	-13.0 -13.0	-28.9 -29.3
1673.589		140.0	1.2				I-Horn	PK	3.19E-08	-45.0	-13.0	-32.0
1697.202		198.0	1.2				I-Horn	PK	2.59E-08	-45.9	-13.0	-32.9
1649.885		277.0	1.6				/-Horn	PK	1.92E-08	-47.2	-13.0	-34.2
1673.443		352.0	1.7			V	/-Horn	PK	1.39E-08	-48.6	-13.0	-35.6

NORTHWEST					(Dut	of	Ba	In	d	Ξm	is	si	ons	S							ſ		2008.07.2 11 2008.1.
	: GD ltro	onix.	Model.	GD600	00 PC v	W/GOBI	2. FC	C ID	KB	CIX-	GOBI	2. №	lode	el: IX-0	GOBI2			W	ork (Order:	SPT	E011	0	
Serial Number							.,			. .	200	_,				·			. or n t	Date:			-	
Customer	: Spectr	um T			IC.													Те		ature:	24.7	,		
Attendees		unro																		nidity:				
Project																	Ba	rom		Pres.:				
Tested by		aas									Powe			//60Hz					Jol	o Site:	EV1	2		
TEST SPECIFICAT FCC 22H:2009	IONS													Metho I/TIA/E			0.4							
																0 20								
TEST PARAMETE Antenna Height(s)		1	- 4							To	st Dis	tan	co (1	m)		3								
COMMENTS	(m)	1	- 4							Te	St DIS	land	ce (I	m)		3								
EGPRS (EDGE), S EUT OPERATING Cellular band DEVIATIONS FRO	MODES																							
No deviations.		35		-																_				
Run #		35		-													("		alar	<				
Configuration #	-			_											oʻ.		(*	and		->				
Results		Pas	5												Signa	ture	-							
0.0																								
0.0																								
10.0																								
-10.0																								_
00.0																								
-20.0																								
-30.0																								
-30.0																								
_						Ť																		
E -40.0																								
•																								
-50.0																								
00.0																								
-60.0																								
0010																								
-70.0		+				+			_				_			++	++	+				+		
-80.0																								
1000.00	00 120	0.00	0 140	00.00) 160	00.000	18	00.00	00	200	0.00) :	220	0.000	240	00.00	0 2	600	.000	280	0.00	0 3	000	.000
									-			-			- /					2.5				
										N	IHz													
	T	Т				1										Т			I					mpared t
Freq					zimuth	Heigh							Pol	arity	Dete	ctor	EIF			IRP		c. Limi	t	Spec.
(MHz)					egrees)	(meter								1		,	(Wa			iBm)		dBm)		(dB)
1674.105					21.0	1.3								Horn	Pł		2.42			26.2		13.0		-13.2
1697.495 1697.395					21.0 44.0	1.2 1.7								Horn Horn	Pł Pł		2.31			26.4 30.0		13.0 13.0		-13.4 -17.0
1648.490					44.0 21.0	1.7								Horn	Pr		9.62			30.0 30.2		13.0		-17.0
1673.965					56.0	1.5								Horn	Pł		7.82			31.1		13.0		-18.1
1648.540					44.0	1.3								Horn	Pł		5.41			32.7		13.0		-19.7

EMC

24

3/7/2013

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data

testing methods and performance sp	ecifications, as well as the t	est site used for the evaluation	i are indic	cated in the test dat	ia.
MODES OF OPERATION					
Cell					
CHANNELS OF OPERATION					
Low Channel					
Mid Channel					
High Channel					
POWER SETTINGS INVESTIGATE	D				
120VAC/60Hz					
FREQUENCY RANGE INVESTIGAT					
Start Frequency	30MHz	Stop Frequency		26 GHz	
SAMPLE CALCULATIONS					
Radiated Emissions: Field Strength = Measured L	evel + Antenna Factor + Cable Factor - Ar	mplifier Gain + Distance Adjustment Factor +	External Atter	nuation	
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
EV12 Cables	Manulacturci	Bilog Cables	EVS	6/26/2013	13
Antenna, Biconilog	EMCO	3141	AXE	1/16/2012	24
Pre-Amplifier	Miteq	AMF-3D00100800-32-13P	AVE	6/26/2013	13
Antenna, Horn	ETS	3115	AIB	8/26/2012	24
Pre-Amplifier	Miteg	AMF-6F-08001200-30-10P	AVH	6/27/2013	13
EV11 Cables		Standard Gain Horn Cables	EVU	6/26/2013	13
Antenna, Horn	ETS	3160.07	AHZ	10/15/2012	24
Attenuator	Pasternack	PE7005-20	AUN	6/26/2013	13
Attenuator	INMET	64671 6A-10dB	AUI	6/26/2013	13
High Pass Filter	Micro-Tronics	50111	HGE	6/26/2013	13
High Pass Filter	Micro-Tronics	50108	HGF	6/26/2013	13
1-2 GHz Notch Filter	K&L Microwave	3TNF-1000/2000-N/N	HFU	7/3/2012	24
.5-1 GHz Notch Filter	K&L Microwave	3TNF-500/1000-N/N	HFT	7/3/2012	24
niversal Radio Communication Teste	Rhode & Schwarz	CMU200	BSU	NCR	0
Low Pass Filter 0-425 MHz	Micro-Tronics	LPM50003	LFB	7/11/2013	13
Antenna, Horn	EMCO	3115	AHJ	6/30/2013	24
Power Sensor	Gigatronics	80701A	SPL	12/11/2012	13
Power Meter	Gigatronics	8651A	SPM	12/11/2012	13
Signal Generator	Hewlett-Packard	8648D	TGC	12/10/2012	13
Antonno Dinolo	ETC	21210 004		2/7/2012	24

Antenna, Dipole MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data				
(MHz)	(kHz)	(kHz)	(kHz)				
0.01 - 0.15	1.0	0.2	0.2				
0.15 - 30.0	10.0	9.0	9.0				
30.0 - 1000	100.0	120.0	120.0				
Above 1000	1000.0	N/A	1000.0				
Measurements were made using the bandwidths and detectors specified. No video filter was used.							

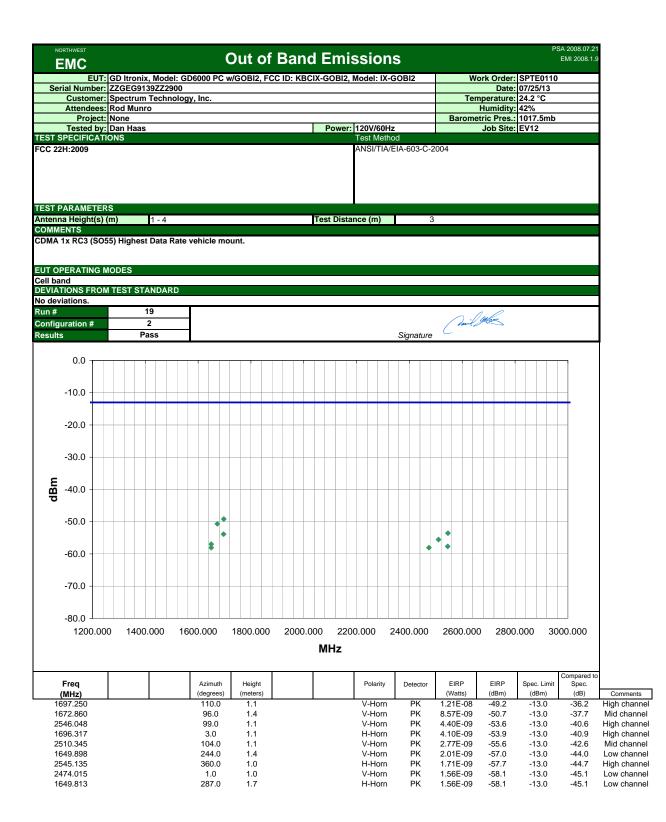
ETS

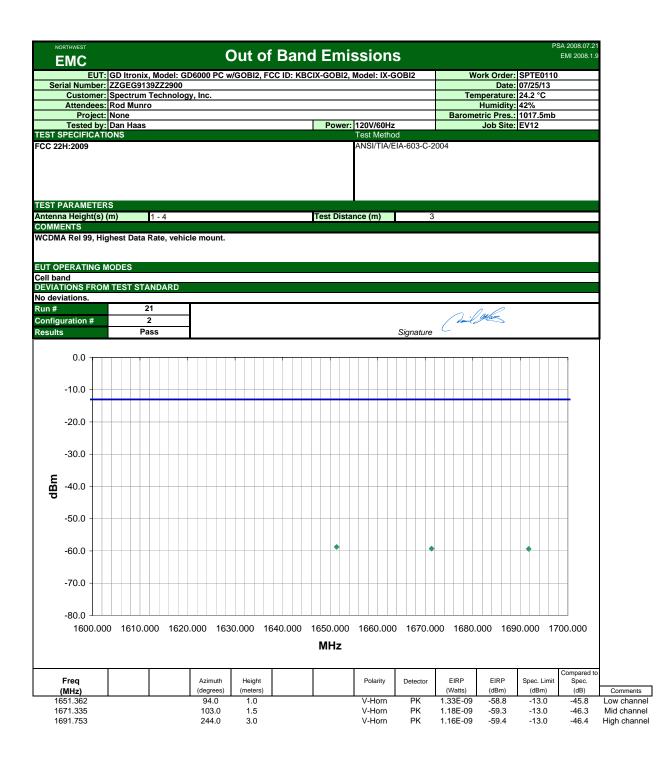
3121C-DB4

ADH

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.


TEST DESCRIPTION


The highest gain antenna to be used with the EUT was tested for final measurements. The EUT was configured for the lowest, a middle, and the highest transmit frequency in each operational band. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.4:2003). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:

At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole that is successively tuned to each of the highest spurious emissions for emissions below 1 GHz, and a horn antenna for emissions above 1 GHz. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the antenna and its gain; the power (dBm) into an ideal ½ wave dipole antenna is determined for each radiated spurious emission.

For the purposes of preliminary measurements, the field strength of the spurious emissions can be measured and compared with a 3 meter limit. The 3 meter limit was calculated to be 82.5 dBuV/m at 3 meters. The final measurements must be made utilizing the substitution method described above

EMC

Out of Band Emissions

PSA 2007.05.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION					
PCS					
CHANNELS OF OPERAT	ION				
Low Channel					
Mid Channel					
High Channel					
POWER SETTINGS INVE	STIGATED				
120VAC/60Hz					
	VESTICATED				
FREQUENCY RANGE IN	LONGATED				
FREQUENCY RANGE IN Start Frequency	30MHz	Stop Frequency		26 GHz	
Start Frequency	30MHz	Stop Frequency		26 GHz	
Start Frequency	30MHz	Stop Frequency		26 GHz	
Start Frequency SAMPLE CALCULATION	30MHz	Stop Frequency	ictor + External At		
Start Frequency SAMPLE CALCULATION Radiated Emissions: Field Strength	30MHz		ictor + External At		
Start Frequency SAMPLE CALCULATION	30MHz		ictor + External At		

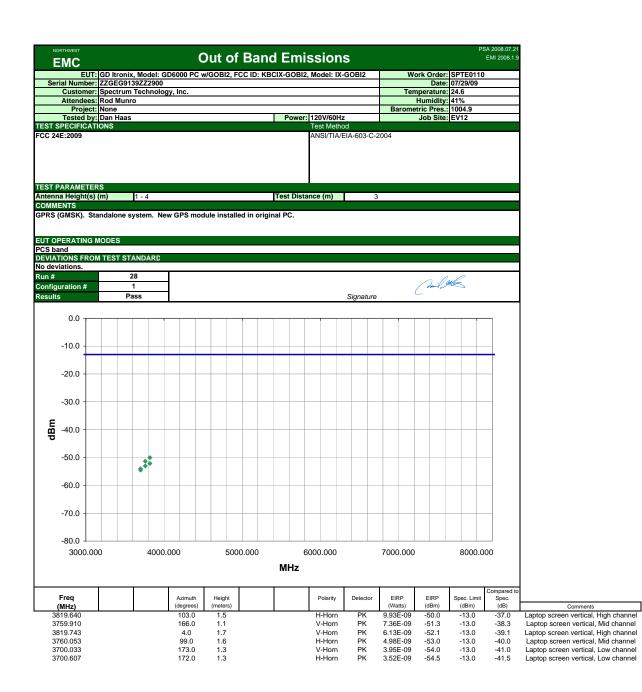
Description	Manufacturer	Model	ID	Last Cal.	Interval
EV12 Cables		Bilog Cables	EVS	6/25/2009	13
Antenna, Biconilog	EMCO	3141	AXE	1/15/2008	24
Pre-Amplifier	Miteq	AMF-3D00100800-32-13P	AVF	6/25/2009	13
Antenna, Horn	ETS	3115	AIB	8/25/2008	24
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVH	6/26/2009	13
EV11 Cables		Standard Gain Horn Cables	EVU	6/25/2009	13
Antenna, Horn	ETS	3160.07	AHZ	10/14/2008	24
Attenuator	Pasternack	PE7005-20	AUN	6/25/2009	13
Attenuator	INMET	64671 6A-10dB	AUI	6/25/2009	13
High Pass Filter	Micro-Tronics	50111	HGE	6/25/2009	13
High Pass Filter	Micro-Tronics	50108	HGF	6/25/2009	13
1-2 GHz Notch Filter	K&L Microwave	3TNF-1000/2000-N/N	HFU	7/2/2008	24
.5-1 GHz Notch Filter	K&L Microwave	3TNF-500/1000-N/N	HFT	7/2/2008	24
niversal Radio Communication Test	Rhode & Schwarz	CMU200	BSU	NCR	0
Low Pass Filter 0-425 MHz	Micro-Tronics	LPM50003	LFB	7/10/2009	13
Antenna, Horn	EMCO	3115	AHJ	6/29/2009	24
Power Sensor	Gigatronics	80701A	SPL	12/10/2008	13
Power Meter	Gigatronics	8651A	SPM	12/10/2008	13
Signal Generator	Hewlett-Packard	8648D	TGC	12/9/2008	13
Antenna, Dipole	ETS	3121C-DB4	ADH	3/6/2009	24

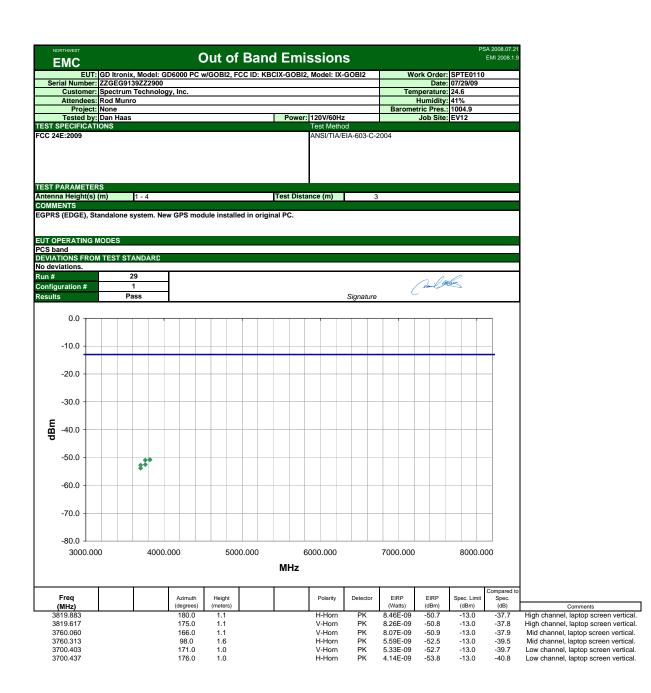
MEASUREMENT BANDWIDTHS

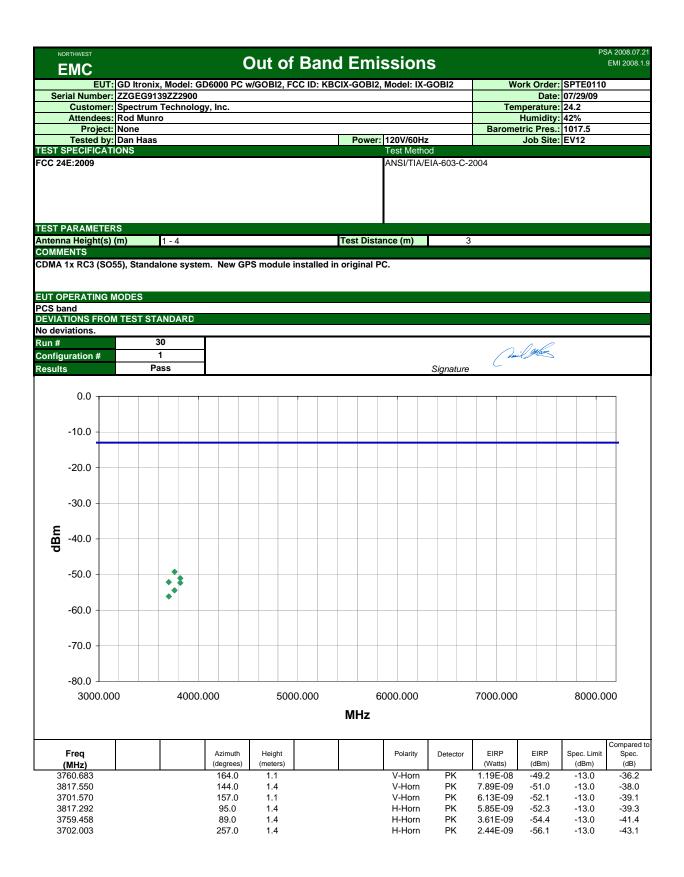
Freque	ncy Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.0	1 - 0.15	1.0	0.2	0.2
0.1	5 - 30.0	10.0	9.0	9.0
30.	0 - 1000	100.0	120.0	120.0
Abo	ve 1000	1000.0	N/A	1000.0
Measuremen	ts were made usi	ng the bandwidths and dete	ctors specified. No video filt	er was used.

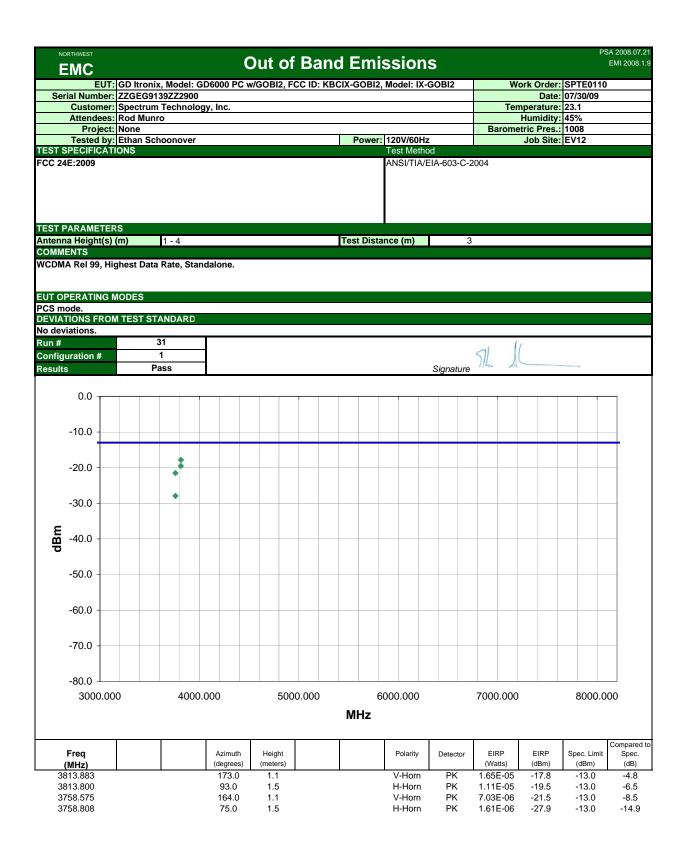
MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.


TEST DESCRIPTION


The highest gain antenna to be used with the EUT was tested for final measurements. The EUT was configured for the lowest, a middle, and the highest transmit frequency in each operational band. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.4:2003). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.


For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:


At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole that is successively tuned to each of the highest spurious emissions for emissions below 1 GHz, and a hom antenna for emissions above 1 GHz. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the antenna and its gain; the power (dBm) into an ideal ½ wave dipole antenna is determined for each radiated spurious emission.

For the purposes of preliminary measurements, the field strength of the spurious emissions can be measured and compared with a 3 meter limit. The 3 meter limit was calculated to be 82.5 dBuV/m at 3 meters. The final measurements must be made utilizing the substitution method described above





EMC

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

testing methods and performance sp	ecifications, as well as the t	est site used for the evaluation	h are indi	cated in the test da	ta.
MODES OF OPERATION					
PCS					
1.00					
CHANNELS OF OPERATION					
Low Channel					
Mid Channel					
High Channel					
r light officialities					
POWER SETTINGS INVESTIGATE	ס				
120VAC/60Hz					
FREQUENCY RANGE INVESTIGAT	ED				
Start Frequency	30MHz	Stop Frequency		26 GHz	
otart roducity	0011112	otop i requerity		20 0112	
SAMPLE CALCULATIONS					
Radiated Emissions: Field Strength = Measured Le	evel + Antenna Factor + Cable Factor - A	molifier Gain + Distance Adjustment Factor +	External Atte	auation	
Radiated Emissions. Tield Orlength = Measured En		inpliner Gain + Distance Aujustinent i actor +	External Atte	luation	
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
EV12 Cables		Bilog Cables	EVS	6/25/2009	13
Antenna, Biconilog	EMCO	3141	AXE	1/15/2008	24
Pre-Amplifier	Miteq	AMF-3D00100800-32-13P	AVF	6/25/2009	13
Antenna, Horn	ETS	3115	AIB	8/25/2008	24
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVH	6/26/2009	13
EV11 Cables		Standard Gain Horn Cables	EVU	6/25/2009	13
Antenna, Horn	ETS	3160.07	AHZ	10/14/2008	24
Attenuator	Pasternack	PE7005-20	AUN	6/25/2009	13
Attenuator	INMET	64671 6A-10dB	AUI	6/25/2009	13
High Pass Filter	Micro-Tronics	50111	HGE	6/25/2009	13
High Pass Filter	Micro-Tronics	50108	HGF	6/25/2009	13
1-2 GHz Notch Filter	K&L Microwave	3TNF-1000/2000-N/N	HFU	7/2/2008	24
.5-1 GHz Notch Filter	K&L Microwave	3TNF-500/1000-N/N	HFT	7/2/2008	24
niversal Radio Communication Teste	Rhode & Schwarz	CMU200	BSU	NCR	0
Low Pass Filter 0-425 MHz	Micro-Tronics	LPM50003	LFB	7/10/2009	13
Antenna, Horn	EMCO	3115	AHJ	6/29/2009	24
Power Sensor	0:	007044	ODI	40/40/0000	10
FUWEI SEIISUI	Gigatronics	80701A	SPL	12/10/2008	13

Antenna, Dipole

Signal Generator

	Frequency Range	Peak Data	Quasi-Peak Data	Average Data					
	(MHz)	(kHz)	(kHz)	(kHz)					
	0.01 - 0.15	1.0	0.2	0.2					
	0.15 - 30.0	10.0	9.0	9.0					
	30.0 - 1000	100.0	120.0	120.0					
	Above 1000	1000.0	N/A	1000.0					
Ν	Measurements were made using the bandwidths and detectors specified. No video filter was used.								

8648D

3121C-DB4

TGC

ADH

12/9/2008

3/6/2009

13

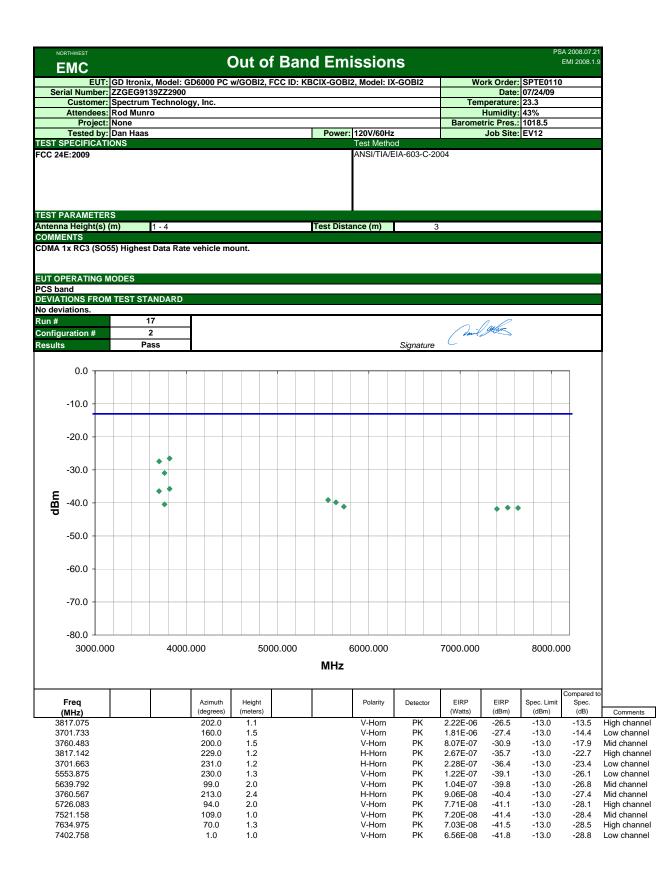
24

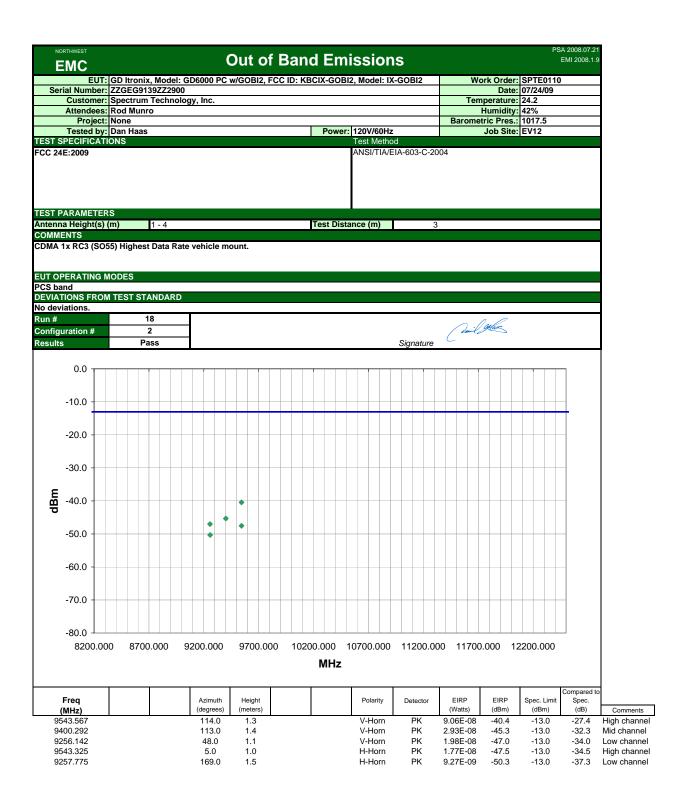
Hewlett-Packard

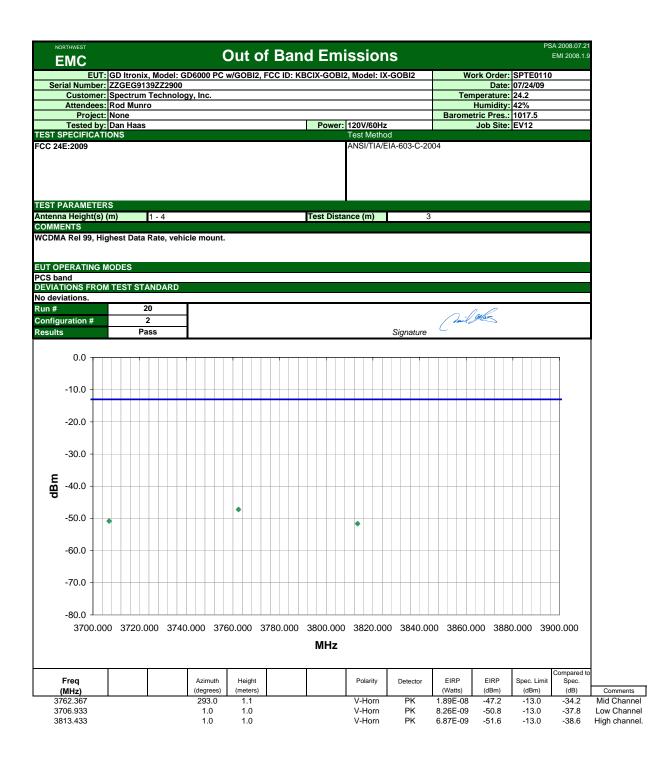
ETS

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.


TEST DESCRIPTION


The highest gain antenna to be used with the EUT was tested for final measurements. The EUT was configured for the lowest, a middle, and the highest transmit frequency in each operational band. For each configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.4:2003). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.


For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:

At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole that is successively tuned to each of the highest spurious emissions for emissions below 1 GHz, and a horn antenna for emissions above 1 GHz. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the antenna and its gain; the power (dBm) into an ideal ½ wave dipole antenna is determined for each radiated spurious emission.

For the purposes of preliminary measurements, the field strength of the spurious emissions can be measured and compared with a 3 meter limit. The 3 meter limit was calculated to be 82.5 dBuV/m at 3 meters. The final measurements must be made utilizing the substitution method described above

EMC Equivalent Isotropic Radiated Power (EIRP)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION	
PCS Band	

POWER SETTINGS INVESTIGATED

120VAC/60Hz

FREQUENCY RANGE INVESTIGATED

Start Frequency

Stop Frequency

2000MHz

SAMPLE CALCULATIONS

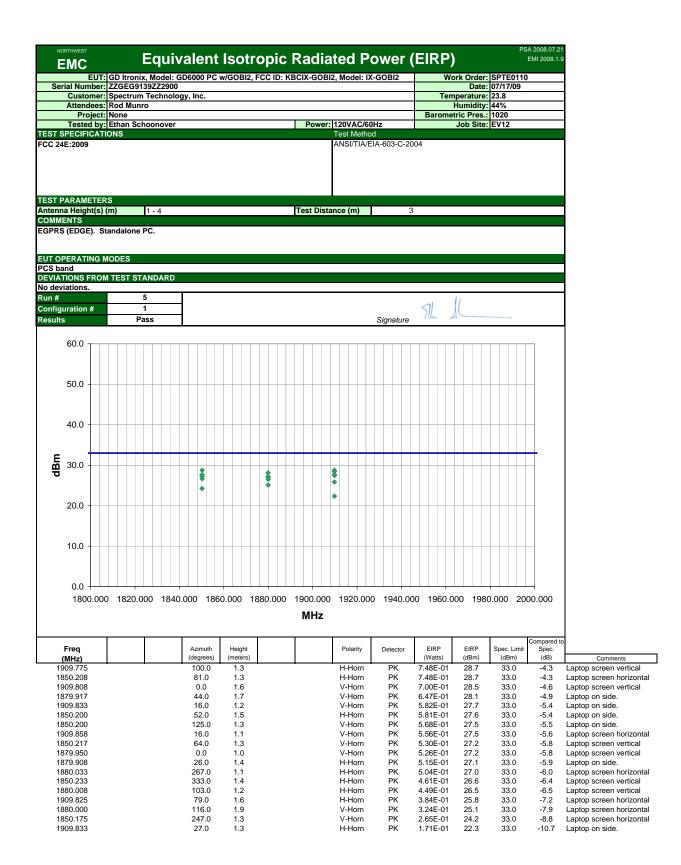
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

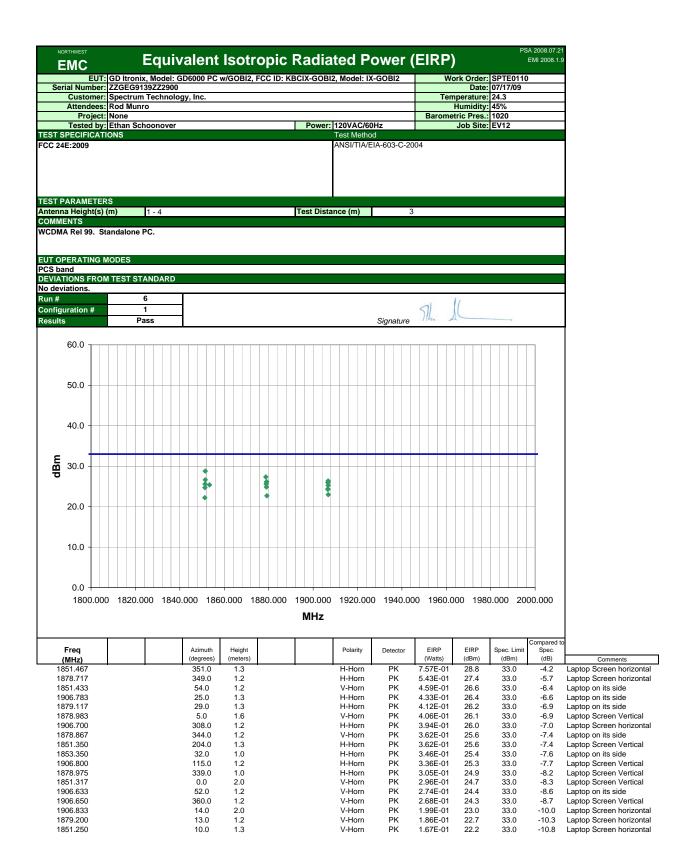
1800MHz

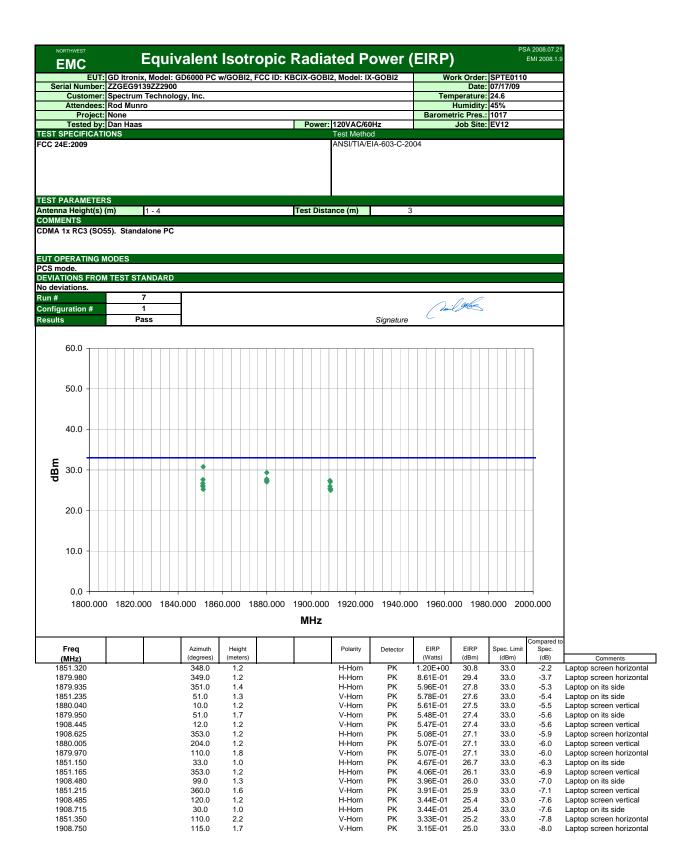
T EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E44440A	AFA	11/14/2008	12
EV12 Cables		Bilog Cables	EVS	6/25/2009	13
Antenna, Horn	ETS	3115	AIB	8/25/2008	24
Power Sensor	Gigatronics	80701A	SPL	12/10/2008	13
Power Meter	Gigatronics	8651A	SPM	12/10/2008	13
Signal Generator	Agilent	E8257D	TGX	12/10/2008	13
Antenna, Horn	EMCO	3115	AHJ	6/29/2009	24

Frequency Range	Peak Data	Quasi-Peak Data	Average Data			
(MHz)	(kHz)	(kHz)	(kHz)			
0.01 - 0.15	1.0	0.2	0.2			
0.15 - 30.0	10.0	9.0	9.0			
30.0 - 1000	100.0	120.0	120.0			
Above 1000	1000.0	N/A	1000.0			

Measurements were made using the bandwidths and detectors specified. No video filter was

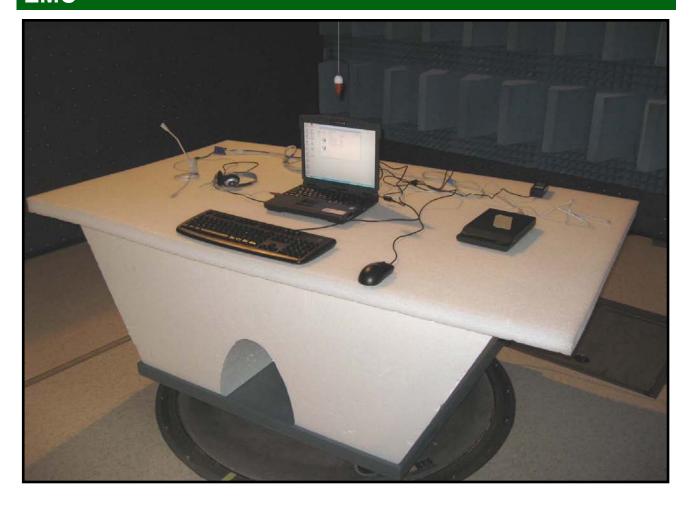

MEASUREMENT UNCERTAINTY


Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.


TEST DESCRIPTION

The fundamental emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarizationThe amplitude and frequency of the highest emission were noted. The EUT was then replaced with a ½ wave dipole that was successively tuned to the highest emission. A signal generator was connected to the dipole, and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded. The signal generator, amplifier, and cable were then connected to an analyzer and the power output was recorded. By factoring in the dipole antenna gain (dBi), the effective radiated power for the maximum fundamental emission was determined.

	NORTHWEST				E	q	ui	va	ale	en	t I	sc	otr	op	oic	F	Ra	dia	ate	ed	I F	0 0	w	'eı	r (E	IR	P)						A 2008.07.2 EMI 2008.1	
									600	0 P	C w	GO	BI2,	FCO	C ID:	ID: KBCIX-GOBI2, Model: IX-GOBI2 Work Order: SPTE0110																				
Se	erial Nun									_		Date: 07/16/09 Temperature: 24.5																								
	Custo Attend						nnol	ogy	/, In	с.																		ler		erati Imid						-
		ject:																								E	Bar	ome		c Pr						
	Teste	d by:	Eth	an S	icho	oon	over	r									Pe	ower												ob S						
	SPECIF		IONS	3																est I																
FCC 2	24E:2009																		AI	NSI	πa	/EIA	4-60)3-C	-20	04										
Anten	PARAM Ina Heigi MENTS				1	- 4										1	rest	Dist	tanc	ce (r	n)				3											
	(GMSK)). Sta	anda	lone	e PC).																														
EUT C	DPERATI Dand	NG N	IOD	ES																																
No de	ATIONS I		И ТЕ	STS			ARD																													
Run # Confi	e guration	#	-		4			-																		5	1			(
Resul					Pas	S																3	Sigr	natu	re	1	Len.		Δ	5	_		_	,		4
1	60.0																																		7	
	50.0																																		_	
	40.0				_	-		-				+			+					_			+			-		-	-						-	
	-																																		1	
dBm	30.0														+				ŧ				-													
										•																										
	20.0																																		_	
	40.0																																			
	10.0																																			
	0.0																																			
		, 0.000	D 1	820	.00	0	184	0.0	00	18	360.	000	1	' 880	.000	1	900	, 0.00	0 '	192	0.0	00	19	940	.00	0	196	60.(000) 1	980	, 0.00	0	200	0.000	
																	М	Hz																		
	Freq								Azin			Heiç								Pola	arity		De	tecto	r		EIRF			EIRI			ec. Li	imit	Compared Spec.	
	(MHz)								(deg)	(mete							L								Watt			(dBn	,		dBm		(dB)	Comments
	1850.135 1879.905								34 34	6.0 3.0		1.:								H-H H-H				PK PK				+00 +00		32. 30.:			33.0 33.0		-0.5 -2.8	Low channel, Laptop screen horizontal. Mid channel, Laptop screen horizontal.
	1880.065									3.0 1.0		1.4								п-п Н-Н				PK			58E			29.9			33.0		-2.0	Mid channel, Laptop on its side.
1	1909.855								34	5.0		1.:	2							H-H	orn		F	PΚ		9.27E-01 29.7					-01 29.7 33.0				-3.3	High channel, Laptop screen horizontal.
	1850.125									2.0		1.								H-H				PK		8.97E-01 29.				29.5		33.0				Low channel, Laptop on its side.
	1850.125 1879.945									7.0 9.0		2. 1.								V-H V-H				PK PK							33.0 33.0		33.0 -3.8 33.0 -3.9			Low channel, Laptop on its side. Mid channel, Laptop on its side.
	1909.795									3.0		1.								v-n H-H				PK		8.20E-01 29.1 7.71E-01 28.9					33.0		-3.9	High channel, Laptop screen vertical.		
1	1909.820								7.	.0		2.0)				V-Horn						F	PΚ		7.4	16E	-01		28.	7	33.0			-4.3	High channel, Laptop screen vertical.
	1880.010									.0								V-Horn PK						-4.4	Mid channel, Laptop screen vertical.											
	1909.710 1850.200									7.0 0.0		1.: 1.(V-H H-H				PK PK			31E 31E			28. 28.			33.0 33.0		-4.7 -4.7	High channel, Laptop on its side. Low channel, Laptop screen vertical.
	1909.785									0.0 1.0		1.1								п-п Н-Н				PK			56E			28.			33.C		-4.7	High channel, Laptop on its side.
	1879.970									2.0		1.3								н-н				PK			55E			28.			33.0		-4.8	Mid channel, Laptop screen vertical.
1	1850.183								88	3.0		1.:	3							V-H	orn		F	PΚ		4.4	14E	-01		26.	5	:	33.0)	-6.5	Low channel, Laptop screen vertical.
	1879.975									6.0		1.								V-H				PK			41E			26.			33.0		-6.6	Mid channel, Laptop screen horizontal.
	1909.820 1850.205								23	7.0 8.0		1.4 1.4								V-H V-H				PK PK			40E 05E			26. 26.			33.0 33.0		-6.6 -6.9	High channel, Laptop screen horizontal. Low channel, Laptop screen horizontal.
	1000.200								10	0.0		1.3								v-r1	511		1	TX.		4.0	.JE	01		∠0.			00.0		-0.9	Low channel, Laptop Screen nonzontal.


Equivalent Isotropic Radiated Power (EIRP)

EMC Equivalent Isotropic Radiated Power (EIRP)

PSA 2008.07.21

EMC Equivalent Isotropic Radiated Power (EIRP)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION	
PCS Band	

POWER SETTINGS INVESTIGATED

120VAC/60Hz

FREQUENCY RANGE INVESTIGATED

Start Frequency

Stop Frequency

2000MHz

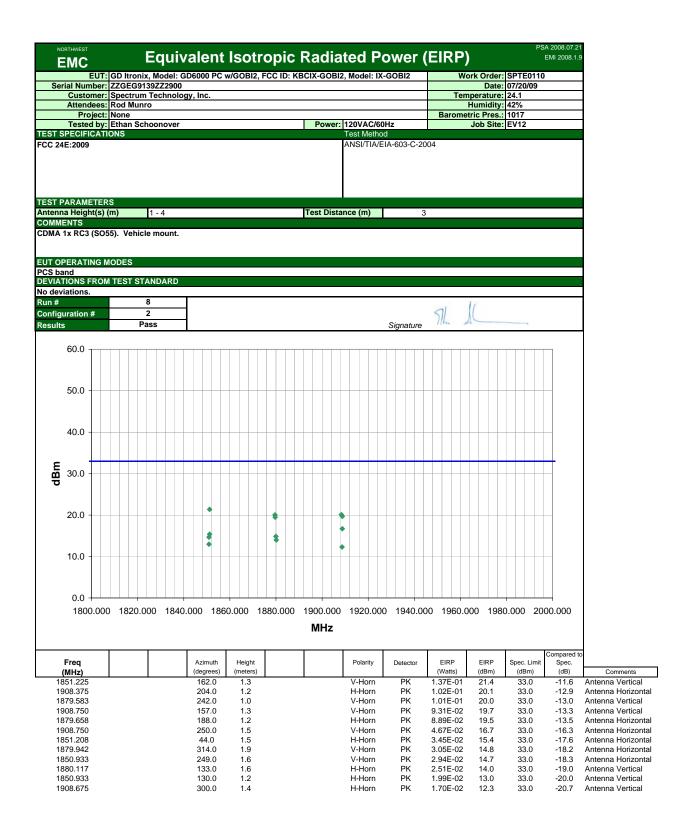
SAMPLE CALCULATIONS

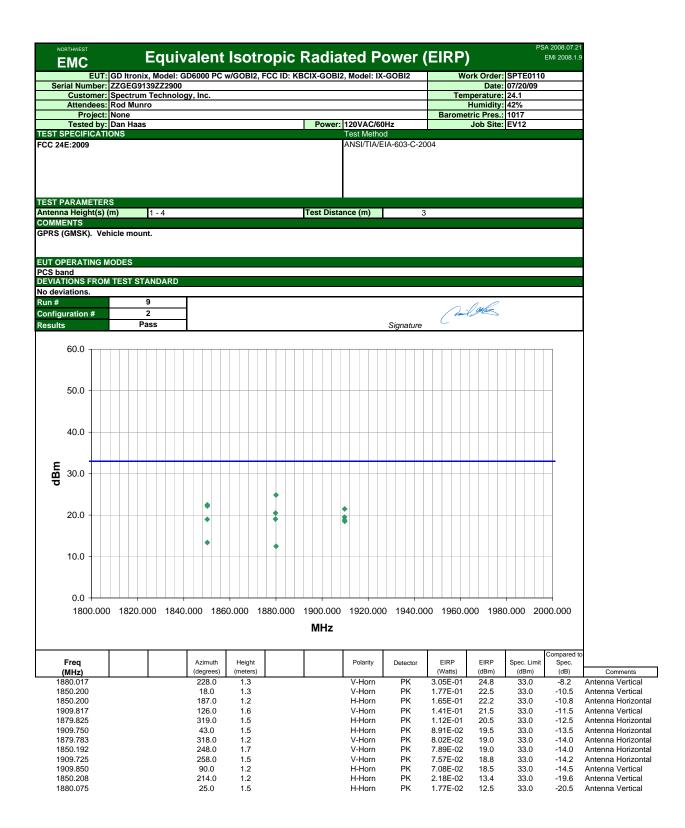
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

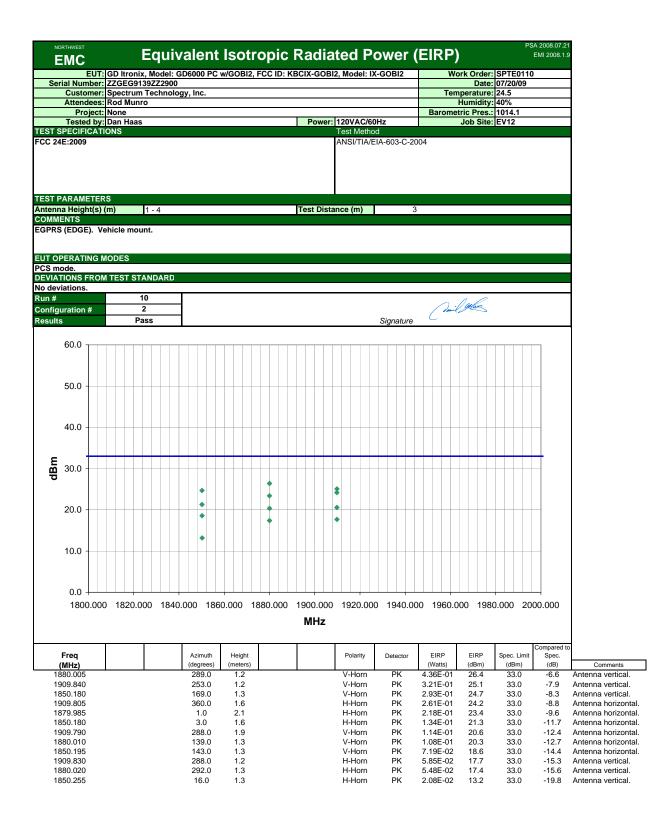
1800MHz

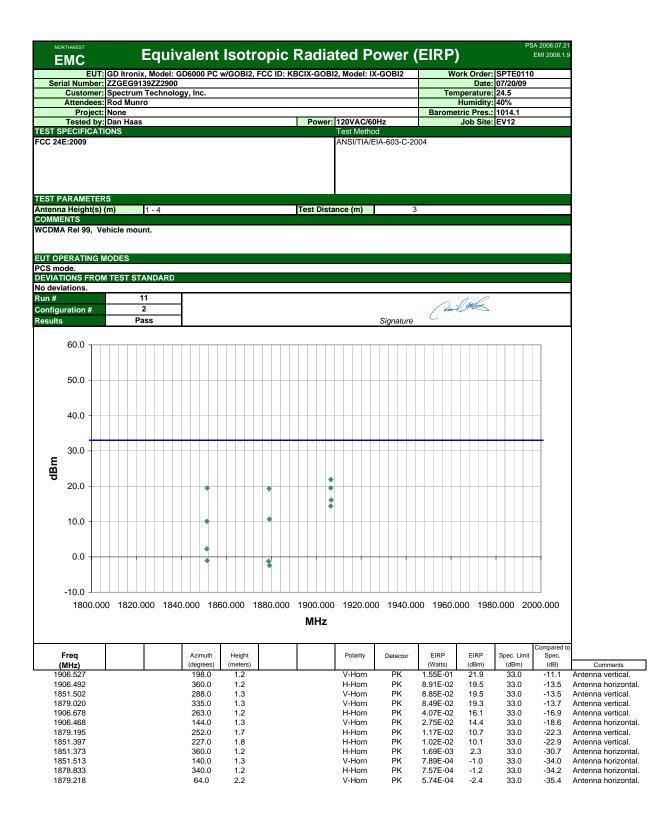
T EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E44440A	AFA	11/14/2008	12
EV12 Cables		Bilog Cables	EVS	6/25/2009	13
Antenna, Horn	ETS	3115	AIB	8/25/2008	24
Power Sensor	Gigatronics	80701A	SPL	12/10/2008	13
Power Meter	Gigatronics	8651A	SPM	12/10/2008	13
Signal Generator	Agilent	E8257D	TGX	12/10/2008	13
Antenna, Horn	EMCO	3115	AHJ	6/29/2009	24

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0


Measurements were made using the bandwidths and detectors specified. No video filter


MEASUREMENT UNCERTAINTY


Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.


TEST DESCRIPTION

The fundamental emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarizationThe amplitude and frequency of the highest emission were noted. The EUT was then replaced with a ½ wave dipole that was successively tuned to the highest emission. A signal generator was connected to the dipole, and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded. The signal generator, amplifier, and cable were then connected to an analyzer and the power output was recorded. By factoring in the dipole antenna gain (dBi), the effective radiated power for the maximum fundamental emission was determined.



Equivalent Isotropic Radiated Power (EIRP)

PSA 2008.07.21

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION	
Cellular Band	

POWER SETTINGS INVESTIGATED

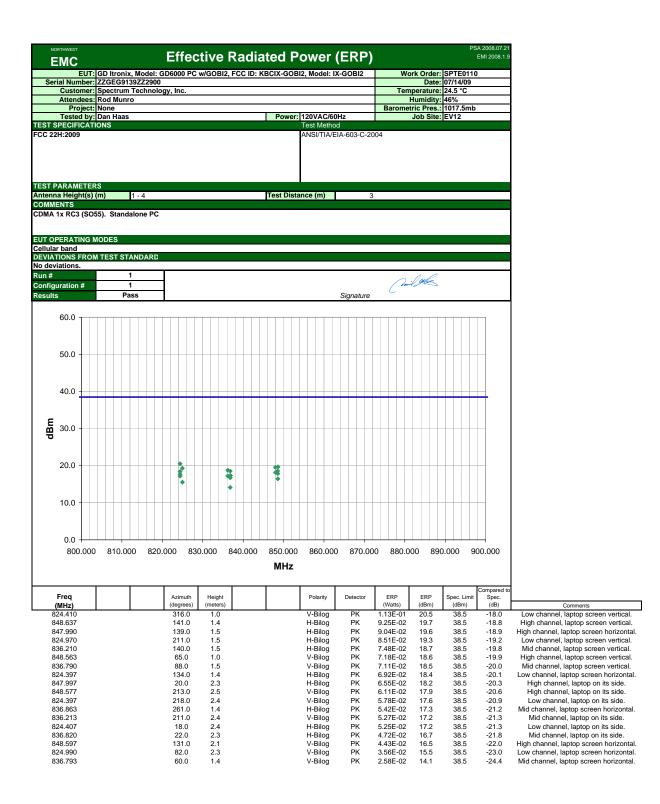
120VAC/60Hz

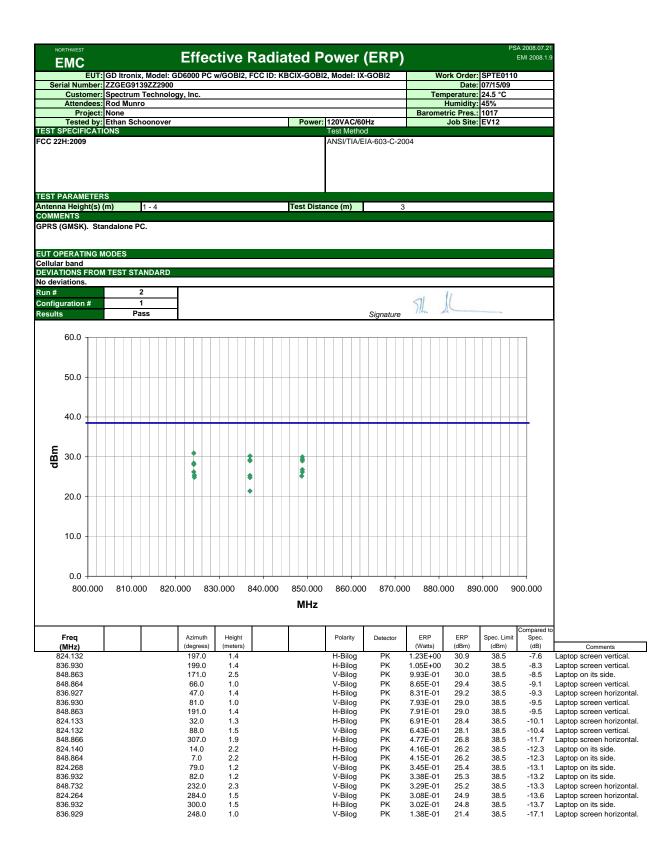
FREQUENCY RANGE IN	/ESTIGATED		
Start Frequency	824MHz	Stop Frequency	849MHz

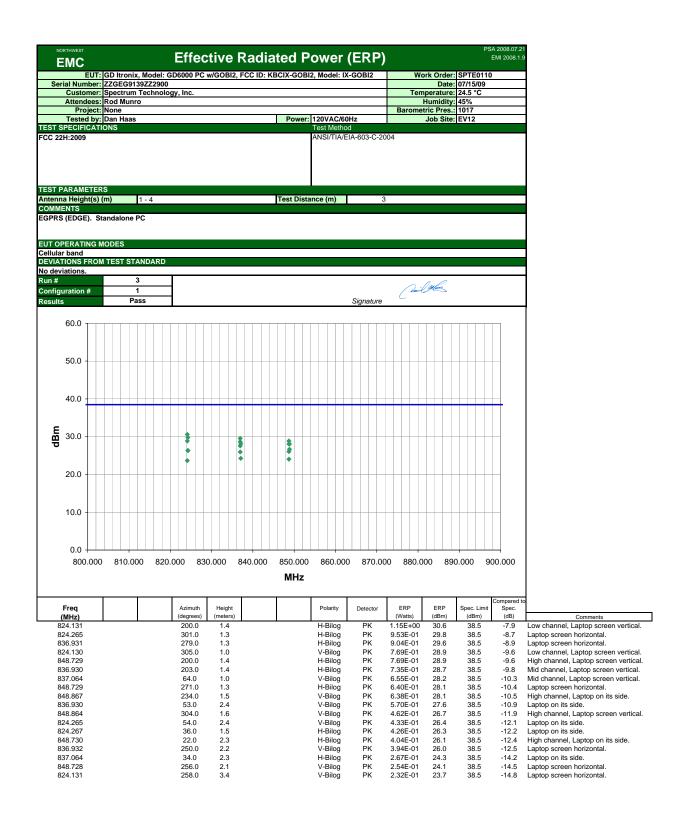
SAMPLE CALCULATIONS

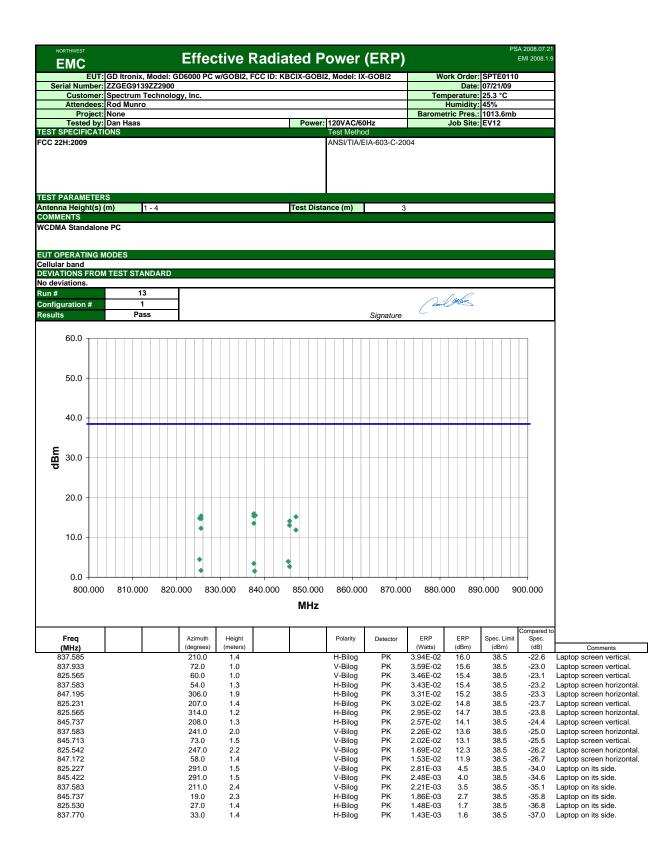
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

T EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E44440A	AFA	11/14/2008	12
EV12 Cables		Bilog Cables	EVS	6/25/2009	13
Antenna, Biconilog	EMCO	3141	AXG	11/4/2008	13
Power Sensor	Gigatronics	80701A	SPL	12/10/2008	13
Power Meter	Gigatronics	8651A	SPM	12/10/2008	13
Signal Generator	Agilent	E8257D	TGX	12/10/2008	13
Antenna, Dipole	ETS	3121C-DB4	ADH	3/6/2009	24

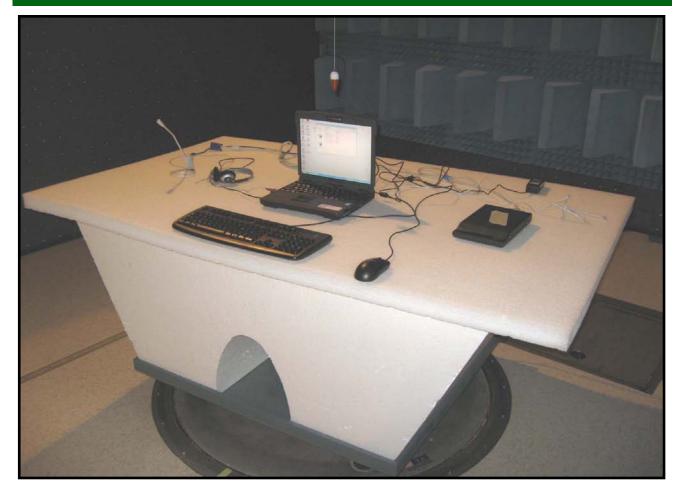

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0


MEASUREMENT UNCERTAINTY


Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.


TEST DESCRIPTION

The fundamental emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarizationThe amplitude and frequency of the highest emission were noted. The EUT was then replaced with a ½ wave dipole that was successively tuned to the highest emission. A signal generator was connected to the dipole, and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded. The signal generator, amplifier, and cable were then connected to an analyzer and the power output was recorded. By factoring in the dipole antenna gain (dBi), the effective radiated power for the maximum fundamental emission was determined.


Effective Radiated Power (ERP)

PSA 2008.07.21

NORTHWEST

Effective Radiated Power (ERP)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION	
Cellular Band	

POWER SETTINGS INVESTIGATED

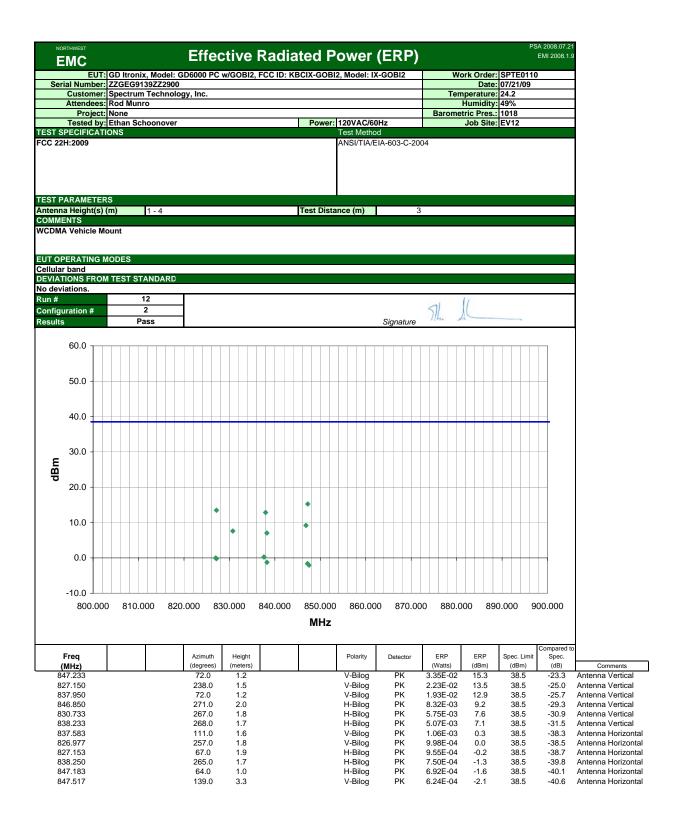
120VAC/60Hz

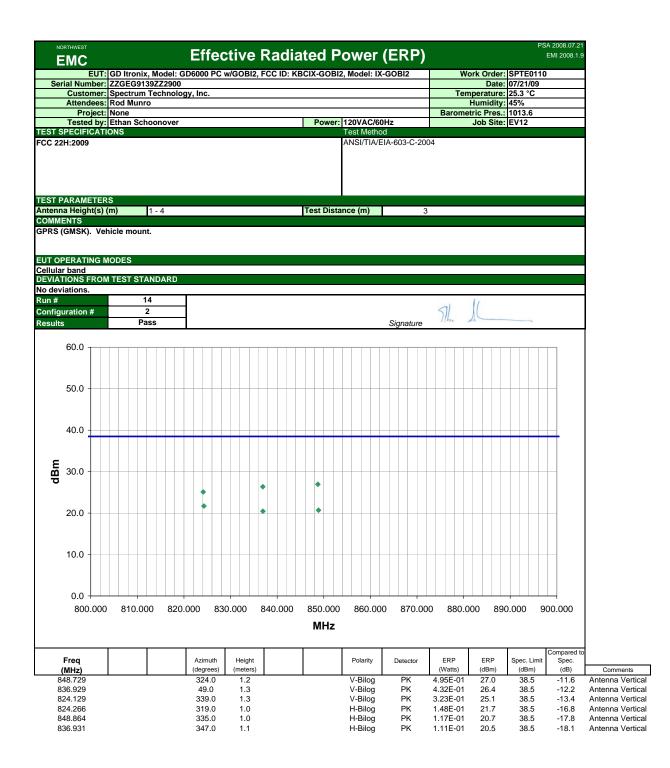
FREQUENCY RANGE IN	/ESTIGATED		
Start Frequency	824MHz	Stop Frequency	849MHz

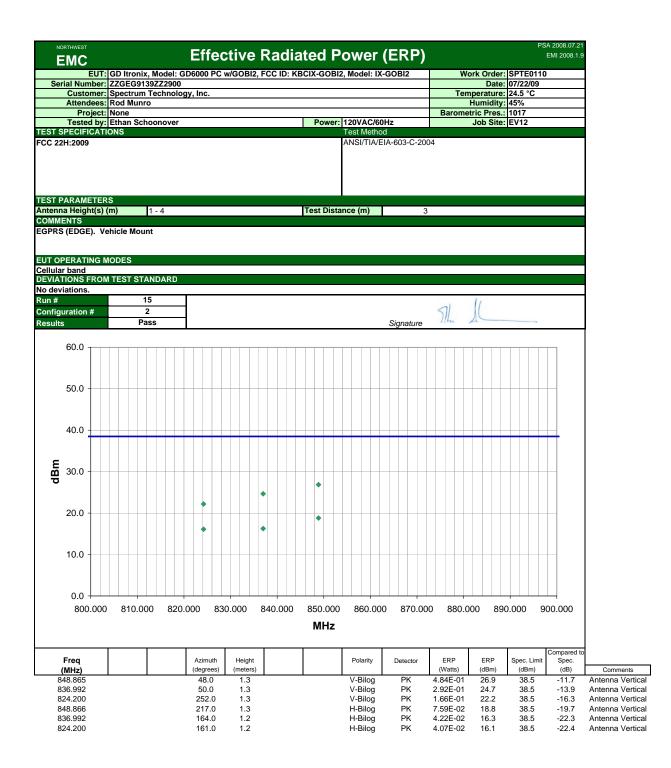
SAMPLE CALCULATIONS

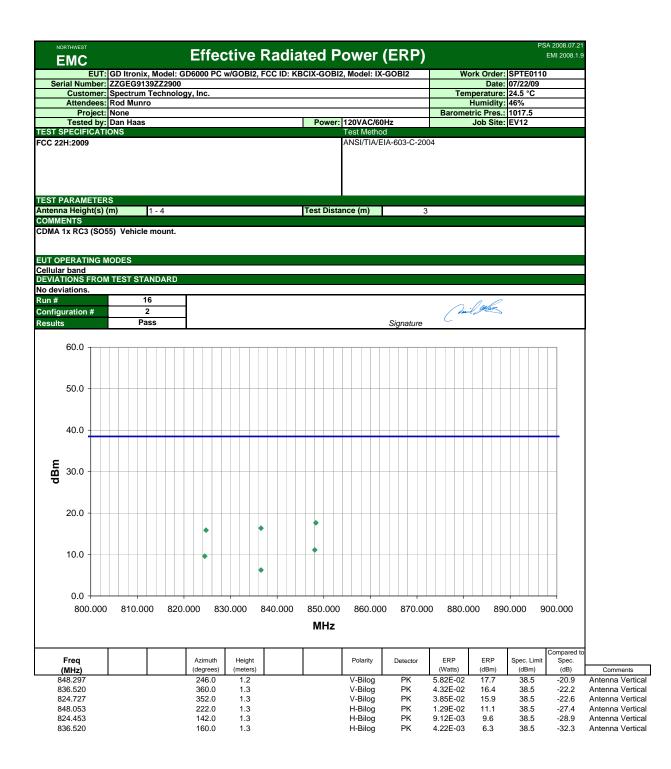
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

ST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E44440A	AFA	11/14/2008	12
EV12 Cables		Bilog Cables	EVS	6/25/2009	13
Antenna, Biconilog	EMCO	3141	AXG	11/4/2008	13
Power Sensor	Gigatronics	80701A	SPL	12/10/2008	13
Power Meter	Gigatronics	8651A	SPM	12/10/2008	13
Signal Generator	Agilent	E8257D	TGX	12/10/2008	13
Antenna, Dipole	ETS	3121C-DB4	ADH	3/6/2009	24


Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0


MEASUREMENT UNCERTAINTY


Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.


TEST DESCRIPTION

The fundamental emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarizationThe amplitude and frequency of the highest emission were noted. The EUT was then replaced with a ½ wave dipole that was successively tuned to the highest emission. A signal generator was connected to the dipole, and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded. The signal generator, amplifier, and cable were then connected to an analyzer and the power output was recorded. By factoring in the dipole antenna gain (dBi), the effective radiated power for the maximum fundamental emission was determined.

Effective Radiated Power (ERP)

