

FCC TEST REPORT (15.407)

REPORT NO.: RF130207C20A-1

MODEL NO.: DXN-W224B1 (refer to item 3.1 for more details)

FCC ID: KA2XNW224A1

RECEIVED: Jan. 13, 2014

TESTED: Jan. 16, 2014

ISSUED: Jan. 17, 2014

APPLICANT: D-Link Corporation

ADDRESS: 17595 Mt. Hermann, Fountain Valley, CA 92708,

U.S.A.

ISSUED BY: Bureau Veritas Consumer Products Services

(H.K.) Ltd., Taoyuan Branch

LAB ADDRESS: No. 47, 14th Ling, Chia Pau Vil., Lin Kou Dist.,

New Taipei City, Taiwan, R.O.C.

TEST LOCATION: No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei

Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

1 of 24

TABLE OF CONTENTS

RELEASE	CONTROL RECORD	3
1.	CERTIFICATION	4
2.	SUMMARY OF TEST RESULTS	5
2.1	MEASUREMENT UNCERTAINTY	5
3.	GENERAL INFORMATION	6
3.1	GENERAL DESCRIPTION OF EUT	6
3.2	DESCRIPTION OF TEST MODES	8
3.2.1	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	9
3.3	DESCRIPTION OF SUPPORT UNITS	10
3.3.1	CONFIGURATION OF SYSTEM UNDER TEST	11
3.4	GENERAL DESCRIPTION OF APPLIED STANDARDS	12
4.	TEST TYPES AND RESULTS	13
4.1	RADIATED EMISSION AND BANDEDGE MEASUREMENT	13
4.1.1	LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT	13
4.1.2	LIMITS OF UNWANTED EMISSION OUT OF THE RESTRICTED BANDS	13
4.1.3	TEST INSTRUMENTS	14
4.1.4	TEST PROCEDURES	15
4.1.5	DEVIATION FROM TEST STANDARD	15
4.1.6	TEST SETUP	16
4.1.7	EUT OPERATING CONDITION	16
4.1.8	TEST RESULTS	17
4.2	CONDUCTED EMISSION MEASUREMENT	18
4.2.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	18
4.2.2	TEST INSTRUMENTS	18
4.2.3	TEST PROCEDURES	19
4.2.4	DEVIATION FROM TEST STANDARD	19
4.2.5	TEST SETUP	19
4.2.6	EUT OPERATING CONDITIONS	19
4.2.7	TEST RESULTS	20
5.	PHOTOGRAPHS OF THE TEST CONFIGURATION	22
6.	INFORMATION ON THE TESTING LABORATORIES	23
7.	APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO	
	THE EUT BY THE LAB	24

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF130207C20A-1	Original release	Jan. 17, 2014

3 of 24

1. CERTIFICATION

PRODUCT: Wireless Ethernet Coax Bridge

MODEL: DXN-W224B1 (refer to item 3.1 for more details)

BRAND: D-Link

APPLICANT: D-Link Corporation

TESTED: Jan. 16, 2014

TEST SAMPLE: ENGINEERING SAMPLE

STANDARDS: FCC Part 15, Subpart E (Section 15.407)

ANSI C63.10-2009

This report is issued as a supplementary report of RF130207C20-1. This report shall be used combined together with its original report.

PREPARED BY: Suntee Liu / Specialist , DATE: Jan. 17, 2014

NOTE: The radiated emission below 1GHz and conducted emission tests are performed for the addendum. Refer to original report for the other test data.

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC PART 15, SUBPART E (SECTION 15.407)						
STANDARD TEST TYPE		RESULT	REMARK			
15.407(b)(6)	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -10.45dB at 0.57969MHz.			
15.407(b/1/2/3) (b)(6)	Spurious Emissions	PASS	Meet the requirement of limit. Minimum passing margin is -2.8dB at 59.10MHz			
15.407(a/1/2)	Peak Transmit Power	N/A	Refer to NOTE below.			
15.207(a)(6)	Peak Power Excursion	N/A	Refer to NOTE below.			
15.407(a/1/2)	Peak Power Spectral Density	N/A	Refer to NOTE below.			
15.407(g)	Frequency Stability	N/A	Refer to NOTE below.			
15.203	Antenna Requirement	PASS	No antenna connector is used.			

NOTE: The radiated emission below 1GHz and conducted emission tests are performed for the addendum. Refer to original report for the other test data.

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY	
Conducted emissions	9kHz~30MHz	2.44 dB	
	30MHz ~ 200MHz	2.93 dB	
Dadiated emissions	200MHz ~1000MHz	2.95 dB	
Radiated emissions	1GHz ~ 18GHz	2.26 dB	
	18GHz ~ 40GHz	1.94 dB	

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

5 of 24

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

EUT	Wireless Ethernet Coax Bridge		
MODEL NO.	DXN-W224B1 (refer to Note for more details)		
POWER SUPPLY	12Vdc (Adapter)		
MODULATION TYPE	64QAM, 16QAM, QPSK, BPSK		
MODULATION TECHNOLOGY	OFDM		
TRANSFER RATE	802.11a: 54/48/36/24/18/12/9/6Mbps 802.11n: up to 300Mbps		
OPERATING FREQUENCY	5180 ~ 5240MHz		
NUMBER OF CHANNEL	802.11a, 802.11n (20MHz): 4 802.11n (40MHz): 2		
OUTPUT POWER	45.843mW		
ANTENNA TYPE	PIFA antenna with 3dBi gain PCB antenna with 3dBi gain		
ANTENNA CONNECTOR	NA		
DATA CABLE	NA		
I/O PORTS	Refer to user's manual		
ACCESSORY DEVICES	Adapter		

NOTE:

- 1. This report is issued as a supplementary report of BV ADT report no.: RF130207C20-1. This report shall be combined together with its original report.
- 2. This report is prepared for FCC class II permissive change. The difference compared with the original report is adding a model, therefore the radiated emission below 1GHz and conducted emission tests are re-tested and recorded in this report.
- 3. All models are listed as below. (New model is marked in boldface.)

Brand	Model	Difference		
D. Limb	DXN-W224	Original model		
D-Link	DXN-W224B1	Different LED direction and has a switch		

4. The EUT incorporates a MIMO function. The EUT provides 2 completed transmitters and 2 receivers.

MODULATION MODE	TX FUNCTION
802.11b	2TX
802.11g	2TX
802.11a	2TX
802.11n (20MHz)	2TX
802.11n (40MHz)	2TX

5. The EUT consumes power from the following adapter.

Brand	D-Link		
Model	CG2412-B		
Input Power	100-240Vac, 0.6A, 50-60Hz		
Output Power	+12dc, 2A		
Power Line	1.2m cable without core attached on adapter		

6. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 DESCRIPTION OF TEST MODES

4 channels are provided for 802.11a, 802.11n (20MHz):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
36	5180 MHz	44	5220 MHz
40	5200 MHz	48	5240 MHz

2 channels are provided for 802.11n (40MHz):

CHANNEL FREQUENCY		CHANNEL	FREQUENCY	
38	5190 MHz	46	5230 MHz	

Report No.: RF130207C20A-1 Reference No.: 140113C10

8 of 24

Report Format Version 5.2.0

3.2.1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT CONFIGURE	APPLICA	ABLE TO	DESCRIPTION	
MODE	RE<1G	PLC	DESCRIPTION	
-	√	√	-	

Where

RE<1G: Radiated Emission below 1GHz

PLC: Power Line Conducted Emission

NOTE: The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on Y-plane.

RADIATED EMISSION TEST (BELOW 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
-	802.11n (20MHz)	36 to 48	40	OFDM	BPSK	7.2

POWER LINE CONDUCTED EMISSION TEST:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- ☑ Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	AVAILABLE CHANNEL		MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
-	802.11n (20MHz)	36 to 48	40	OFDM	BPSK	7.2

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE<1G	25deg. C, 68%RH	120Vac, 60Hz	Sun Lin
PLC	25deg. C, 65%RH	120Vac, 60Hz	Sun Lin

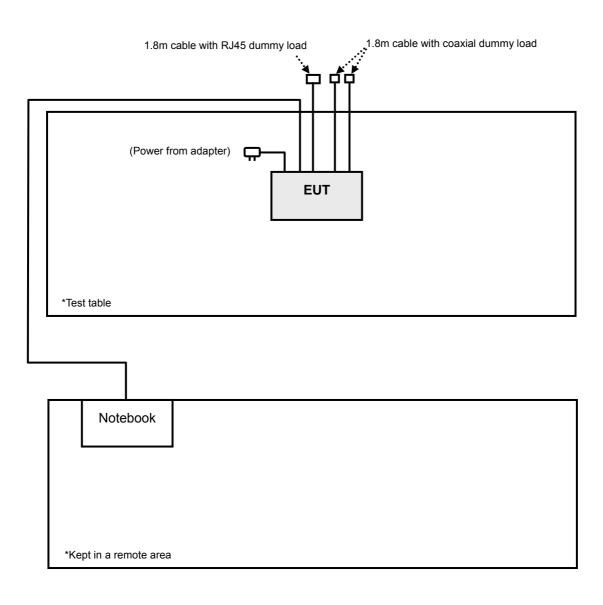
Report No.: RF130207C20A-1

Reference No.: 140113C10

3.3 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	RJ45 Dummy Load	NA	NA	NA	NA
2	Coaxial Dummy Load	NA	NA	NA	NA
3	Coaxial Dummy Load	NA	NA	NA	NA
4	Notebook	DELL	D531	CN-0XM006-48643-8 1U-2973	QDS-BRCM1020


NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	1.8m RJ45 UTP cable with load connected to EUT
2	1.8m coaxial cable with load connected to EUT
3	1.8m coaxial cable with load connected to EUT
4	10m RJ45 UTP cable

NOTE:

- 1. All power cords of the above support units are non-shielded (1.8m).
- 2. Item 4 acted as a communication partner to transfer data.

3.3.1 CONFIGURATION OF SYSTEM UNDER TEST

3.4 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart E (15.407)
789033 D01 General UNII Test Procedures v01 r03
662911 D01 Multiple Transmitter Output v02
ANSI C63.10-2009

All test items have been performed and recorded as per the above standards.

NOTE: The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

4. TEST TYPES AND RESULTS

4.1 RADIATED EMISSION AND BANDEDGE MEASUREMENT

4.1.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table:

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	.490 ~ 1.705 24000/F(kHz) 30	
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 LIMITS OF UNWANTED EMISSION OUT OF THE RESTRICTED BANDS

APPLICABLE TO	LIMIT			
	FIELD STRENGTH AT 3m (dBμV/m)			
$\sqrt{}$	PK	AV		
	74	54		
	EIRP LIMIT (dBm) EQUIVALENT FIELD STRENGTH AT 3n (dBµV/m)			
	PK	PK		
	-27	68.3		

NOTE: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

Report No.: RF130207C20A-1 13 of 24 Report Format Version 5.2.0 Reference No.: 140113C10

4.1.3 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESCS30	100289	Nov. 29, 2013	Nov. 28, 2014
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100269	Jan. 28, 2013	Jan. 27, 2014
BILOG Antenna SCHWARZBECK	VULB9168	9168-156	Mar. 22, 2013	Mar. 21, 2014
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-209	Sep. 12, 2013	Sep. 11, 2014
HORN Antenna SCHWARZBECK	BBHA 9170	148	Jul. 15, 2013	Jul. 14, 2014
Preamplifier Agilent	8449B	3008A01911	Aug. 22, 2013	Aug. 21, 2014
Preamplifier Agilent	8447D	2944A10638	Oct. 18, 2013	Oct. 17, 2014
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	248780/4 309222/4 274092/4	Aug. 26, 2013	Aug. 25, 2014
RF signal cable Worken	5D-FB	Cable-HYCH9-01	Aug. 11, 2013	Aug. 10, 2014
Software BV ADT	ADT_Radiated_ V7.6.15.9.4	NA	NA	NA
Antenna Tower EMCO	2070/2080	512.835.4684	NA	NA
Turn Table EMCO	2087-2.03	NA	NA	NA
Antenna Tower &Turn Table Controller EMCO	2090	NA	NA	NA
26GHz ~ 40GHz Amplifier	EM26400	815221	Oct. 18, 2013	Oct. 17, 2014

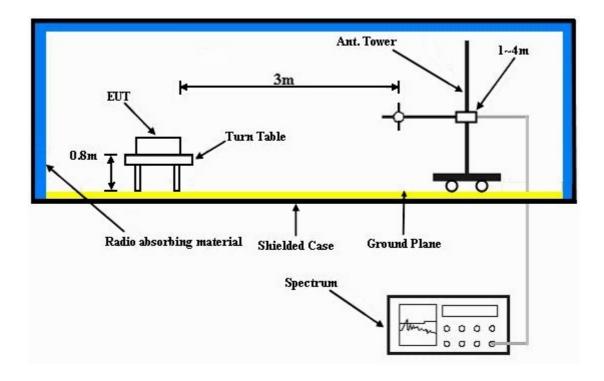
NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 9.
- 3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 215374.
- 5. The IC Site Registration No. is IC 7450F-9.

4.1.4 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz(Duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.5 DEVIATION FROM TEST STANDARD

No deviation.

4.1.6 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.7 EUT OPERATING CONDITION

- a. Placed the EUT on the testing table.
- b. Prepared a notebook to act as a communication partner and placed it outside of testing area.
- c. The communication partner connected with EUT via a RJ45 cable and ran a test program (provided by manufacturer) to enable EUT under transmission condition continuously at specific channel frequency.
- d. The communication partner sent data to EUT by command "PING".
- e. The necessary accessories enabled the system in full functions.

4.1.8 TEST RESULTS

BELOW 1GHz WORST-CASE DATA: 802.11n (20MHz)

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 40	FREQUENCY RANGE	Below 1000MHz	
INPUT POWER (SYSTEM)	120Vac, 60Hz	DETECTOR FUNCTION	Quasi-Peak	
ENVIRONMENTAL CONDITIONS	25deg. C, 68%RH	TESTED BY	Sun Lin	

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AI3M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	30.00	33.3 QP	40.0	-6.7	2.00 H	25	49.10	-15.80
2	99.84	38.8 QP	43.5	-4.7	2.00 H	250	57.30	-18.50
3	175.50	31.2 QP	43.5	-12.3	1.50 H	131	46.10	-14.90
4	249.22	31.9 QP	46.0	-14.1	1.01 H	203	46.10	-14.20
5	625.58	37.3 QP	46.0	-8.7	1.01 H	268	42.90	-5.60
6	961.20	39.5 QP	54.0	-14.5	1.25 H	74	39.20	0.30
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	30.48	36.8 QP	40.0	-3.2	1.02 V	247	52.80	-16.00
2	59.10	37.2 QP	40.0	-2.8	1.00 V	37	52.50	-15.30
3	97.90	34.6 QP	43.5	-8.9	1.49 V	238	53.50	-18.90
4	375.32	34.2 QP	46.0	-11.8	1.24 V	84	44.90	-10.70
5	625.58	35.0 QP	46.0	-11.0	1.49 V	95	40.60	-5.60
6	961.20	40.4 QP	54.0	-13.6	1.00 V	79	40.10	0.30

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

4.2 CONDUCTED EMISSION MEASUREMENT

4.2.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)	
	Quasi-peak	Average
0.15 ~ 0.5 0.5 ~ 5 5 ~ 30	66 to 56	56 to 46
	56	46
	60	50

NOTE: 1. The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

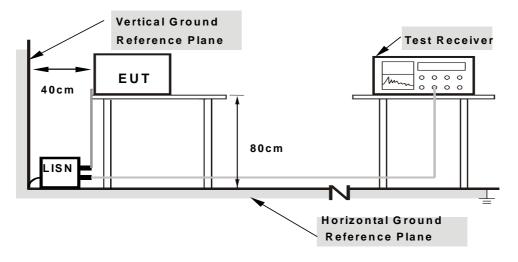
4.2.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESCS30	100288	Nov. 17, 2013	Nov. 16, 2014
RF signal cable Woken	5D-FB	Cable-HYCO2-01	Dec. 27, 2013	Dec. 26, 2014
LISN ROHDE & SCHWARZ (EUT)	ESH2-Z5	100100	Dec. 23, 2013	Dec. 22, 2014
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100312	Jul. 08, 2013	Jul. 07, 2014
Software ADT	BV ADT_Cond_ V7.3.7.3	NA	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 2.
- 3. The VCCI Site Registration No. is C-2047.

4.2.3 TEST PROCEDURES


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation.

4.2.5 TEST SETUP

Note: 1.Support units were connected to second LISN.

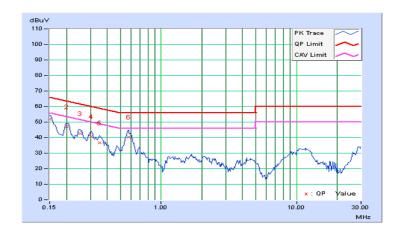
2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT OPERATING CONDITIONS

Same as 4.1.6.

4.2.7 TEST RESULTS

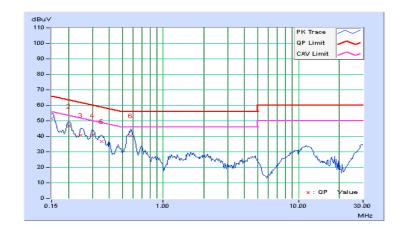

CONDUCTED WORST-CASE DATA: 802.11n (20MHz)

DUACE	Line 1		OLU-
PHASE	Line 1	6dB BANDWIDTH	9kHz

Nia	Freq.	Corr. Factor	Reading Value		Emission Level		Limit		Margin	
No			[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	0.26	51.58	42.94	51.84	43.20	66.00	56.00	-14.16	-12.80
2	0.20078	0.28	46.58	40.04	46.86	40.32	63.58	53.58	-16.72	-13.26
3	0.25156	0.29	42.32	36.47	42.61	36.76	61.71	51.71	-19.10	-14.95
4	0.30625	0.29	40.36	35.64	40.65	35.93	60.07	50.07	-19.42	-14.14
5	0.34922	0.29	36.53	31.23	36.82	31.52	58.98	48.98	-22.16	-17.46
6	0.57578	0.31	40.04	34.89	40.35	35.20	56.00	46.00	-15.65	-10.80

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



PHASE	Line 2	6dB BANDWIDTH	9kHz
-------	--------	---------------	------

No	Freq.	Corr. Factor	Reading Value		Emission Level		Limit		Margin	
			[dB	(uV)]	[dB	(uV)]	[dB	(uV)]	(dl	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	0.26	51.38	42.94	51.64	43.20	66.00	56.00	-14.36	-12.80
2	0.20078	0.28	46.52	40.04	46.80	40.32	63.58	53.58	-16.78	-13.26
3	0.24766	0.28	40.47	33.62	40.75	33.90	61.84	51.84	-21.08	-17.93
4	0.30234	0.29	40.44	36.11	40.73	36.40	60.18	50.18	-19.45	-13.78
5	0.34922	0.29	36.55	31.23	36.84	31.52	58.98	48.98	-22.14	-17.46
6	0.57969	0.31	40.06	35.24	40.37	35.55	56.00	46.00	-15.63	-10.45

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

5. PHOTOGRAPHS OF THE TEST CONFIGURATION					
Please refer to the attached file (Test Setup Photo).					

6. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

 Linko EMC/RF Lab:
 Hsin Chu EMC/RF Lab:

 Tel: 886-2-26052180
 Tel: 886-3-5935343

 Fax: 886-2-26051924
 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Telecom Lab:

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

7. APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No modifications were	e made to the EUT	by the lab	during the test.
-----------------------	-------------------	------------	------------------

---END---