APPLICANT : D-Link Co.

EQUIPMENT: 4G LTE USB Adapter

BRAND NAME: D-Link

MODEL NAME : DWM-221

FCC ID : KA2WM221B1

STANDARD : FCC 47 CFR Part 2 (2.1093)

ANSI/IEEE C95.1-1992

IEEE 1528-2003

We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and shown the compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Eric Huang / Deputy Manager

Este man?

Approved by: Jones Tsai / Manager

lac-MRA

Report No. : FA431502

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

FCC ID: KA2WM221B1

Issued Date : Apr. 25, 2014

Page 1 of 33 Form version. : 140305

Table of Contents

1. Statement of Compliance	
2. Administration Data	4
3. Guidance Standard	5
4. Equipment Under Test (EUT)	5
4.1 General Information	
4.2 Maximum Tune-up Limit	6
4.3 General LTE SAR Test and Reporting Considerations	8
5. RF Exposure Limits	
5.1 Uncontrolled Environment	9
5.2 Controlled Environment	
6. Specific Absorption Rate (SAR)	10
6.1 Introduction	10
6.2 SAR Definition	10
7. System Description and Setup	11
8. Measurement Procedures	12
8.1 Spatial Peak SAR Evaluation	12
8.2 Power Reference Measurement	13
8.3 Area Scan	13
8.4 Zoom Scan	
8.5 Volume Scan Procedures	
8.6 Power Drift Monitoring	14
9. Test Equipment List	15
10. System Verification	16
10.1 Tissue Verification	
10.2 System Performance Check Results	
11. RF Exposure Positions	
12. Conducted RF Output Power (Unit: dBm)	
13. Antenna Location	_
14. SAR Test Results	
14.1 Body SAR	29
15. Uncertainty Assessment	
16. References	33
Appendix A. Plots of System Performance Check	
Appendix B. Plots of High SAR Measurement	
Appendix C. DASY Calibration Certificate	
Appendix D. Test Setup Photos	

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

FCC ID: KA2WM221B1

Report No. : FA431502

Revision History

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FA431502	Rev. 01	Initial issue of report	Apr. 25, 2014

Page 3 of 33

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

FCC ID: KA2WM221B1

Issued Date: Apr. 25, 2014 Form version.: 140305

Report No. : FA431502

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for D-Link Co., 4G LTE USB Adapter, DWM-221, are as follows.

Report No. : FA431502

Equipment	Frequency	Operating	Highest SAR Summary	
Class	Band	Mode	Body 1g SAR (W/kg)	
	GSM850	Data	0.99	
	GSM1900	Data	0.36	
PCB	WCDMA Band V	Data	0.62	
	LTE Band 5	Data	0.47	
	LTE Band 7	Data	0.12	
Date of Testing:		04/10/2014 -	- 04/11/2014	

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2003.

2. Administration Data

Testing Laboratory					
Test Site	SPORTON INTERNATIONAL INC.				
Test Site Location	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. TEL: +886-3-327-3456 FAX: +886-3-328-4978				

Applicant				
Company Name	D-Link Co.			
Address	No.289, Sinhu 3rd Rd, Neihu District Taipei City 114 Taiwan			

Manufacturer Manufacturer				
Company Name	Shanghai BroadMobi Communication Technology Co., Ltd.			
Address	Rm.1501, Building9, No.1515 Gumei Rd., Xuhui District, Shanghai, P.R. China			

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Apr. 25, 2014 FCC ID: KA2WM221B1 Form version.: 140305 Page 4 of 33

3. Guidance Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

Report No. : FA431502

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- · IEEE 1528-2003
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r03
- FCC KDB 865664 D02 SAR Reporting v01r01
- FCC KDB 447498 D01 General RF Exposure Guidance v05r02
- FCC KDB 447498 D02 SAR Procedures for Dongle Xmtr v02
- FCC KDB 941225 D01 SAR test for 3G devices v02
- FCC KDB 941225 D02 HSPA and 1x Advanced v02r02
- FCC KDB 941225 D03 SAR Test Reduction GSM GPRS EDGE v01
- FCC KDB 941225 D05 SAR for LTE Devices v02r03

4. Equipment Under Test (EUT)

4.1 General Information

	Product Feature & Specification
Equipment Name	4G LTE USB Adapter
Brand Name	D-Link
Model Name	DWM-221
FCC ID	KA2WM221B1
Wireless Technology and Frequency Range	GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8 MHz WCDMA Band V: 826.4 MHz ~ 846.6 MHz LTE Band 5: 824 MHz ~ 849 MHz LTE Band 7: 2500 MHz ~ 2570 MHz
Mode	• GPRS/EGPRS • RMC 12.2Kbps • HSDPA • HSUPA • DC-HSDPA • LTE: QPSK, 16QAM
HW Version	B1
SW Version	1.0.2

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Apr. 25, 2014

FCC ID : KA2WM221B1 Page 5 of 33 Form version. : 140305

4.2 Maximum Tune-up Limit

Mode	Burst average power(dBm)				
iviode	GSM 850	GSM 1900			
GPRS (GMSK, 1 Tx slot)	33.00	30.00			
GPRS (GMSK, 2 Tx slots)	30.00	27.00			
GPRS (GMSK, 3 Tx slots)	28.50	25.50			
GPRS (GMSK, 4 Tx slots)	27.50	24.50			
EDGE (8PSK, 1 Tx slot)	26.50	25.00			
EDGE (8PSK, 2 Tx slots)	26.50	25.00			
EDGE (8PSK, 3 Tx slots)	26.50	25.00			
EDGE (8PSK, 4 Tx slots)	26.50	24.00			

Report No. : FA431502

Mode	Average power(dBm)
Mode	WCDMA Band V
RMC 12.2K	23.00
HSDPA Subtest-1	22.50
DC-HSDPA Subtest-1	22.50
HSUPA Subtest-5	22.50

		LTE Band 5		
Modulation	BW (MHz)	RB size	Target MPR	Average power(dBm)
QPSK	10	≤ 12	0	23.00
QPSK	10	> 12	1	22.00
16QAM	10	≤ 12	1	22.00
16QAM	10	> 12	2	21.00
QPSK	5	≤ 8	0	23.00
QPSK	5	> 8	1	22.00
16QAM	5	≤ 8	1	22.00
16QAM	5	> 8	2	21.00
QPSK	3	≤ 4	0	23.00
QPSK	3	> 4	1	22.00
16QAM	3	≤ 4	1	22.00
16QAM	3	> 4	2	21.00
QPSK	1.4	≤ 5	0	23.00
QPSK	1.4	> 5	1	22.00
16QAM	1.4	≤ 5	1	22.00
16QAM	1.4	> 5	2	21.00

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Apr. 25, 2014 Form version. : 140305 FCC ID: KA2WM221B1 Page 6 of 33

		LTE Band 7		
Modulation	BW (MHz)	RB size	Target MPR	Average power(dBm)
QPSK	20	≤ 18	0	22.5
QPSK	20	> 18	1	21.5
16QAM	20	≤ 18	1	21.5
16QAM	20	> 18	2	20.5
QPSK	15	≤ 16	0	22.5
QPSK	15	> 16	1	21.5
16QAM	15	≤ 16	1	21.5
16QAM	15	> 16	2	20.5
QPSK	10	≤ 12	0	22.5
QPSK	10	> 12	1	21.5
16QAM	10	≤ 12	1	21.5
16QAM	10	> 12	2	20.5
QPSK	5	≤ 8	0	22.5
QPSK	5	> 8	1	21.5
16QAM	5	≤ 8	1	21.5
16QAM	5	> 8	2	20.5

Report No.: FA431502

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Apr. 25, 2014 Form version. : 140305 FCC ID: KA2WM221B1 Page 7 of 33

4.3 General LTE SAR Test and Reporting Considerations

		Sun	nmarize	d neces	sary items	s addres	sed in KDE	3 94122	25 D05 v02ı	03		
FC	C ID			KA2WM	221B1							
Equ	uipment Name			4G LTE USB Adapter								
	erating Frequennsmission band	cy Range of eacl	n LTE	LTE Band 5: 824 MHz ~ 849 MHz LTE Band 7: 2500 MHz ~ 2570 MHz								
Channel Bandwidth LTE Band 5: 1.4MHz, 3MHz, 5MHz, 10MHz LTE Band 7: 5MHz, 10MHz, 15MHz, 20MHz												
				QPSK, a	and 16QAI	M						
imp	E transmitter and blementation (standard) transmitter and standard standard transmitter and stan	andalone or shari	ng	transmit	ting and r	receiving		other v	vireless inte			M/WCDMA) for DMA) share the
LTE	E Voice / Data re	equirements		Data on	y							
				,	3GPP TS Table (6.2.3-1: M			duction (MP	at water and the		3 MPR (dB)
LTE	E MPR permane	ntly built-in by de	esign			1.4	3.0	5	10	15	20	
ı						MHz	MHz	MHz	MHz	MHz	MHz	
					QPSK	>5	>4	>8	> 12	> 16	> 18	≤1
ı					6 QAM 6 QAM	≤5 >5	≤ 4 > 4	≤ 8 > 8	≤ 12 > 12	≤ 16 > 16	≤ 18 > 18	≤ 1 ≤ 2
Pov		RB configuration			erly configement; the	refore, s			lator was ach RB allo			AR and power
				No	ucu iii tiic	SAR rep						configuration are
		Transm	ission (I				oort.	encies	in each LTI	E band		configuration are
		Transm	ission (I		channel r		oort.	encies	in each LTI	E band		configuration are
	Bandwidtl	Transm h 1.4 MHz		H, M, L)	channel r	numbers	and frequent	encies width 5			Bandwidtl	n 10 MHz
	Bandwidtl Ch. #			H, M, L)	channel r	numbers LTE Band	and frequent	width 5			Bandwidtl h. #	
L		h 1.4 MHz	Ch	H, M, L) Bandwid	channel r I th 3 MHz	numbers LTE Band MHz)	and frequents d 5 Band	width 5	MHz	C		n 10 MHz
L	Ch. #	h 1.4 MHz Freq. (MHz)	Ch	H, M, L) Bandwid	channel r I th 3 MHz Freq. (N	numbers LTE Band MHz)	and frequent d 5 Band Ch. #	width 5	MHz req. (MHz)	C 20	h. #	n 10 MHz Freq. (MHz)
L M	Ch. # 20407	h 1.4 MHz Freq. (MHz) 824.7	Cr 204 208	H, M, L) Bandwid 1. # 415	channel r I th 3 MHz Freq. (N 825.	MHz)	and frequence of the state of t	width 5	MHz req. (MHz) 826.5	Cl 200	h. # 9450	n 10 MHz Freq. (MHz) 829
	Ch. # 20407 20525	h 1.4 MHz Freq. (MHz) 824.7 836.5	Cr 204 208	H, M, L) Bandwid 1. # 415 525	channel r th 3 MHz Freq. (N 825. 836.	MHz)	and frequent of 5 Band Ch. # 20425 20525	width 5	MHz req. (MHz) 826.5 836.5	Cl 200	h. # 9450 9525	n 10 MHz Freq. (MHz) 829 836.5
	Ch. # 20407 20525 20643	h 1.4 MHz Freq. (MHz) 824.7 836.5	204 205 206	H, M, L) Bandwid a. # 415 525 635	channel r th 3 MHz Freq. (N 825. 836.	numbers LTE Band MHz) 5 5 5	and frequent d 5 Band Ch. # 20425 20525 20625	width 5	MHz freq. (MHz) 826.5 836.5 846.5	20 20 20	h. # 1450 1525 1600	n 10 MHz Freq. (MHz) 829 836.5
	Ch. # 20407 20525 20643	h 1.4 MHz Freq. (MHz) 824.7 836.5 848.3	204 205 200 200	H, M, L) Bandwid a. # 415 525 635	channel r I th 3 MHz Freq. (N 825. 836. 847.	MHz) 5 5 LTE Band	and frequent d 5 Band Ch. # 20425 20525 20625	width 5	MHz freq. (MHz) 826.5 836.5 846.5	20 20 20	h. # 1450 1525 1600	n 10 MHz Freq. (MHz) 829 836.5 844
	Ch. # 20407 20525 20643 Bandwid	h 1.4 MHz Freq. (MHz) 824.7 836.5 848.3	204 209 200 E	Bandwidd 1. # 415 525 635	channel r th 3 MHz Freq. (N 825. 836. 847.	MHz) 5 5 LTE Band MHz) MHz	and frequent of 5 Band Ch. # 20425 20525 20625 d 7 Band	width 5	MHz freq. (MHz) 826.5 836.5 846.5	20 20 20 C	h. # 9450 9525 9600 Bandwidtl	n 10 MHz Freq. (MHz) 829 836.5 844
Н	Ch. # 20407 20525 20643 Bandwid Ch. #	h 1.4 MHz Freq. (MHz) 824.7 836.5 848.3 th 5 MHz Freq. (MHz)	204 205 200 E Cr 200	H, M, L) Bandwid 1. # 415 525 6335 Bandwidt 1. #	channel r th 3 MHz Freq. (N 825. 836. 847. th 10 MHz	MHz) 5 5 LTE Band MHz) 5 MHz) 5 5 5 LTE Band	and frequent d 5 Band Ch. # 20425 20525 20625 d 7 Band Ch. #	width 5	MHz freq. (MHz) 826.5 836.5 846.5	20 20 20 20 20	h. # 1450 1525 1600 Bandwidtl h. #	n 10 MHz Freq. (MHz) 829 836.5 844 n 20 MHz Freq. (MHz)

Report No. : FA431502

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Apr. 25, 2014

FCC ID : KA2WM221B1 Page 8 of 33 Form version. : 140305

5. RF Exposure Limits

5.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Report No. : FA431502

5.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

6. Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

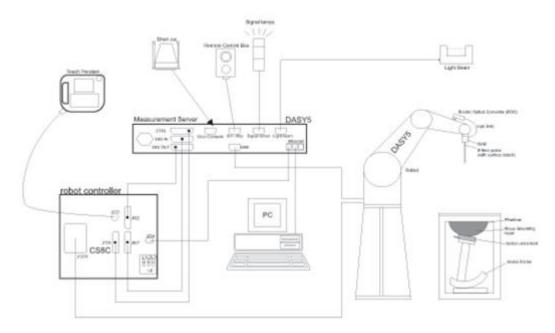
$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

Page 10 of 33

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

FCC ID: KA2WM221B1


Issued Date: Apr. 25, 2014 Form version.: 140305

Report No. : FA431502

7. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing,
 AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.

Page 11 of 33

The phantom, the device holder and other accessories according to the targeted measurement.

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

FCC ID: KA2WM221B1

Issued Date : Apr. 25, 2014

Report No. : FA431502

Form version. : 140305

8. Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

Report No. : FA431502

- (b) Read the WWAN RF power level from the base station simulator.
- (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band
- (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power

<SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

8.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

8.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Report No. : FA431502

8.3 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz v01r01.

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of measurement plane orientation the measurement resolution in x or y dimension of the test of measurement point on the test	on, is smaller than the above, must be \leq the corresponding device with at least one

SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 / FAX: 886-3-328-4978

8.4 Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Report No. : FA431502

Zoom scan parameters extracted from FCC KDB 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz v01r01.

			< 3 GHz	> 3 GHz
Maximum zoom scan s	spatial reso	lution: Δx _{Zoom} , Δy _{Zoom}	$\leq 2 \text{ GHz: } \leq 8 \text{ mm}$ $2 - 3 \text{ GHz: } \leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	grid	Δz _{Zoom} (n>1): between subsequent points	≤ 1.5·Δz	Zoom(n-1)
Minimum zoom scan volume	X V 7		≥ 30 mm	$3 - 4 \text{ GHz: } \ge 28 \text{ mm}$ $4 - 5 \text{ GHz: } \ge 25 \text{ mm}$ $5 - 6 \text{ GHz: } \ge 22 \text{ mm}$
			•	•

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

8.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

8.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Apr. 25, 2014

FCC ID : KA2WM221B1 Page 14 of 33 Form version. : 140305

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9. Test Equipment List

Manufacturer	Name of Equipment	Type/Medal	Serial Number	Calib	ration
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date
SPEAG	835MHz System Validation Kit	D835V2	4d162	Nov. 11, 2013	Nov. 10, 2014
SPEAG	1900MHz System Validation Kit	D1900V2	5d142	Jun. 10, 2013	Jun. 09, 2014
SPEAG	2600MHz System Validation Kit	D2600V2	1070	Nov. 13, 2013	Nov. 12, 2014
SPEAG	Data Acquisition Electronics	DAE4	1399	Nov. 07, 2013	Nov. 06, 2014
SPEAG	Dosimetric E-Field Probe	EX3DV4	3955	Nov. 12, 2013	Nov. 11, 2014
WonDer	Thermometer	WD-5015	TM225	Dec. 02, 2013	Dec. 01, 2014
Anritsu	Radio Communication Analyzer	MT8820C	6201074414	Feb. 11, 2014	Feb. 10, 2015
SPEAG	Device Holder	N/A	N/A	NCR	NCR
Agilent	Signal Generator	E4438C	MY49070755	Oct. 08, 2013	Oct. 07, 2014
SPEAG	Dielectric Probe Kit	DAK-3.5	1126	Jul. 23, 2013	Jul. 22, 2014
Agilent	ENA Network Analyzer	E5071C	MY46316648	Feb. 07, 2014	Feb. 06, 2015
Anritsu	Power Meter	ML2495A	1349001	Dec. 04, 2013	Dec. 03, 2014
Anritsu	Power Sensor	MA2411B	1306099	Dec. 03, 2013	Dec. 02, 2014
R&S	Spectrum Analyzer	FSP 7	101131	Jul. 09, 2013	Jul. 08, 2014
Agilent	Dual Directional Coupler	778D	50422	*C	BT
Woken	Attenuator	WK0602-XX	N/A	*C	ВТ
PE	Attenuator	PE7005-10	N/A	*C	ВТ
PE	Attenuator	PE7005- 3	N/A	*CBT	
AR	Power Amplifier	5S1G4M2	0328767	*CBT	
Mini-Circuits	Power Amplifier	ZVE-3W	162601250	*C	ВТ
Mini-Circuits	Power Amplifier	ZHL-42W+	13440021344	*C	ВТ

Report No.: FA431502

General Note:

- 1. The calibration certificate of DASY can be referred to appendix C of this report.
- 2. *CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing an amplifier, coupler and attenuator were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurement.

10. System Verification

10.1 Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Report No.: FA431502

Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity (σ)	Permittivity (εr)		
For Head										
750	41.1	57.0	0.2	1.4	0.2	0	0.89	41.9		
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5		
900	40.3	57.9	0.2	1.4	0.2	0	0.97	41.5		
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.40	40.0		
2450	55.0	0	0	0	0	45.0	1.80	39.2		
2600	54.8	0	0	0.1	0	45.1	1.96	39.0		
				For Body						
750	51.7	47.2	0	0.9	0.1	0	0.96	55.5		
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2		
900	50.8	48.2	0	0.9	0.1	0	1.05	55.0		
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3		
2450	68.6	0	0	0	0	31.4	1.95	52.7		
2600	68.1	0	0	0.1	0	31.8	2.16	52.5		

Simulating Liquid for 5GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	64~78%
Mineral oil	11~18%
Emulsifiers	9~15%
Additives and Salt	2~3%

<Tissue Dielectric Parameter Check Results>

1110000 B	1133dc Dicicetrio i didirecter Oricon (C3dit3)										
Frequency (MHz)	Tissue Type	Liquid Temp. (°C)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date	
835	Body	22.4	0.997	55.120	0.97	55.20	2.78	-0.14	±5	2014/4/10	
1900	Body	22.5	1.516	53.631	1.52	53.30	-0.26	0.62	±5	2014/4/10	
2600	Body	22.3	2.165	53.823	2.16	52.50	0.23	2.52	±5	2014/4/11	

Table 8.2.1 Measuring Results for Simulating Liquid

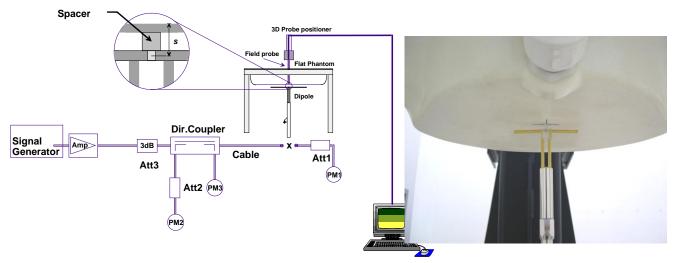
FCC ID : KA2WM221B1 Page 16 of 33 Form version. : 140305

10.2 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below tablet shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured SAR (W/kg)	Targeted SAR (W/kg)	Normalized SAR (W/kg)	Deviation (%)
2014/4/10	835	Body	250	D835V2-4d162	3955	1399	2.42	9.28	9.68	4.31
2014/4/10	1900	Body	250	D1900V2-5d142	3955	1399	9.78	40.80	39.12	-4.12
2014/4/11	2600	Body	250	D2600V2-1070	3955	1399	13.00	55.70	52	-6.64

Table 8.3.1 Target and Measurement SAR after Normalized



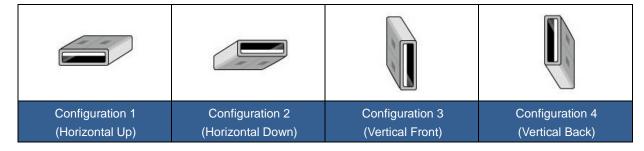

Fig 8.3.1 System Performance Check Setup

Fig 8.3.2 Setup Photo

Report No. : FA431502

11. RF Exposure Positions

This EUT was tested in four different USB configurations. They are "direct laptop plug-in for configuration 1 and 3", "USB cable plug-in for configuration 2 and 4", and "USB cable plug-in for Tip Mode (the tip of the EUT)" shown as below. Both direct laptop plug-in and USB cable plug-in test configurations are tested with 5 cm separation between the particular dongle orientation and the flat phantom. Please refer to Appendix D for the test setup photos.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Apr. 25, 2014 Form version.: 140305 FCC ID: KA2WM221B1 Page 17 of 33

12. Conducted RF Output Power (Unit: dBm)

<GSM Conducted Power>

General Note:

1. Per KDB 447498 D01v05r02, the maximum output power channel is used for SAR testing and for further SAR test reduction.

Report No. : FA431502

2. For Body SAR testing was following KDB 941225 D03v01, the GPRS 4Tx slots modes was selected to be tested, according to the highest source-based time-averaged output power.

Band GSM850	Burst Average Power (dBm)			Tune-up	Frame-A	Average Powe	er (dBm)	Tune-up
TX Channel	128	189	251	Limit	128	189	251	Limit
Frequency (MHz)	824.2	836.4	848.8	(dBm)	824.2	836.4	848.8	(dBm)
GPRS (GMSK, 1 Tx slot)	32.00	31.96	31.84	33.00	23.00	22.96	22.84	24.00
GPRS (GMSK, 2 Tx slots)	28.53	28.51	28.38	30.00	22.53	22.51	22.38	24.00
GPRS (GMSK, 3 Tx slots)	27.26	27.16	27.04	28.50	23.00	22.90	22.78	24.24
GPRS (GMSK, 4 Tx slots)	26.02	25.93	25.81	27.50	23.02	22.93	22.81	24.50
EDGE (8PSK, 1 Tx slot)	26.06	25.99	25.95	26.50	17.06	16.99	16.95	17.50
EDGE (8PSK, 2 Tx slots)	26.04	25.90	25.82	26.50	20.04	19.90	19.82	20.50
EDGE (8PSK, 3 Tx slots)	25.90	25.86	25.78	26.50	21.64	21.60	21.52	22.24
EDGE (8PSK, 4 Tx slots)	25.81	25.68	25.67	26.50	22.81	22.68	22.67	23.50

Band GSM1900	Burst Average Power (dBm)			Tune-up Frame-Average Power (dBm)			er (dBm)	Tune-up
TX Channel	512	661	810	Limit	512	661	810	Limit
Frequency (MHz)	1850.2	1880	1909.8	(dBm)	1850.2	1880	1909.8	(dBm)
GPRS (GMSK, 1 Tx slot)	28.84	28.76	28.74	30.00	19.84	19.76	19.74	21.00
GPRS (GMSK, 2 Tx slots)	26.29	26.20	26.13	27.00	20.29	20.20	20.13	21.00
GPRS (GMSK, 3 Tx slots)	24.80	24.68	24.63	25.50	20.54	20.42	20.37	21.24
GPRS (GMSK, 4 Tx slots)	23.97	23.81	23.81	24.50	20.97	20.81	20.81	21.50
EDGE (8PSK, 1 Tx slot)	24.55	24.41	24.38	25.00	15.55	15.41	15.38	16.00
EDGE (8PSK, 2 Tx slots)	24.50	24.34	24.31	25.00	18.50	18.34	18.31	19.00
EDGE (8PSK, 3 Tx slots)	24.46	24.33	24.30	25.00	20.20	20.07	20.04	20.74
EDGE (8PSK, 4 Tx slots)	23.96	23.80	23.75	24.00	20.96	20.80	20.75	21.00

<WCDMA Conducted Power>

The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification.

Report No. : FA431502

A summary of these settings are illustrated below:

HSDPA Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- The RF path losses were compensated into the measurements. b.
- A call was established between EUT and Base Station with following setting:
 - Set Gain Factors (β_c and β_d) and parameters were set according to each
 - Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121
 - Set RMC 12.2Kbps + HSDPA mode.
 - Set Cell Power = -86 dBm
 - Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
 - vi. Select HSDPA Uplink Parameters
 - vii. Set Delta ACK, Delta NACK and Delta CQI = 8
 - viii. Set Ack-Nack Repetition Factor to 3
 - ix. Set CQI Feedback Cycle (k) to 4 ms
 - Set CQI Repetition Factor to 2 Χ.
 - Power Ctrl Mode = All Up bits
- The transmitted maximum output power was recorded.

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βc	βd	βa	β₀/βd	Внѕ	CM (dB)	MPR (dB)
			(SF)		(Note1,	(Note 3)	(Note 3)
					Note 2)		
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15	15/15	64	12/15	24/15	1.0	0.0
	(Note 4)	(Note 4)		(Note 4)			
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

 Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c . Note 1:

For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Note 2: Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle_{ACK} and \triangle_{NACK} = 30/15 with β_{hs} = 30/15 * β_c , and \triangle_{CQI} = 24/15

with $\beta_{hs} = 24/15 * \beta_c$.

CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HS-Note 3: DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 4: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d = 15/15

Setup Configuration

SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Apr. 25, 2014 Form version.: 140305

Page 19 of 33

HSUPA Setup Configuration:

SPORTON INTERNATIONAL INC.

- a. The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting *:
 - i. Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
 - ii. Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121

Report No. : FA431502

- iii. Set Cell Power = -86 dBm
- iv. Set Channel Type = 12.2k + HSPA
- v. Set UE Target Power
- vi. Power Ctrl Mode= Alternating bits
- vii. Set and observe the E-TFCI
- viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- d. The transmitted maximum output power was recorded.

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βς	βa	β _d (SF)	βε/βα	βнs (Note1)	βес	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81

- Note 1: $\Delta_{\rm ACK}$, $\Delta_{\rm NACK}$ and $\Delta_{\rm CQI}$ = 30/15 with β_{hs} = 30/15 * β_c .
- Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.
- Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15.
- Note 4: For subtest 5 the β_d/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15.
- Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to
- TS25.306 Table 5.1g. Note 6: β_{ed} can not be set directly, it is set by Absolute Grant Value.

Setup Configuration

DC-HSDPA 3GPP release 8 Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration below
- The RF path losses were compensated into the measurements.
- A call was established between EUT and Base Station with following setting: C.
 - Set RMC 12.2Kbps + HSDPA mode.
 - Set Cell Power = -25 dBm
 - Set HS-DSCH Configuration Type to FRC (H-set 12, QPSK) iii.
 - Select HSDPA Uplink Parameters iv.
 - Set Gain Factors (\$\beta_c\$ and \$\beta_d\$) and parameters were set according to each Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121

Report No. : FA431502

- a). Subtest 1: $\beta_c/\beta_d=2/15$ b). Subtest 2: $\beta_c/\beta_d=12/15$
- c). Subtest 3: $\beta_0/\beta_d=15/8$
- d). Subtest 4: $\beta_c/\beta_d=15/4$ Set Delta ACK, Delta NACK and Delta CQI = 8
- Set Ack-Nack Repetition Factor to 3
- Set CQI Feedback Cycle (k) to 4 ms
- Set CQI Repetition Factor to 2 ix.
- Power Ctrl Mode = All Up bits
- The transmitted maximum output power was recorded.

The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. A summary of these settings are illustrated below:

C.8.1.12 Fixed Reference Channel Definition H-Set 12

Table C.8.1.12: Fixed Reference Channel H-Set 12

	Parameter	Unit	Value					
Nominal	Avg. Inf. Bit Rate	kbps	60					
Inter-TTI	Distance	TTľs	1					
Number	of HARQ Processes	Proces	6					
		ses	0					
Informati	on Bit Payload ($N_{\it INF}$)	Bits	120					
Number	Code Blocks	Blocks	1					
Binary Cl	hannel Bits Per TTI	Bits	960					
Total Ava	ailable SML's in UE	SML's	19200					
Number	of SML's per HARQ Proc.	SML's	3200					
Coding R	late		0.15					
Number	of Physical Channel Codes	Codes	1					
Modulatio	on		QPSK					
Note 1:	The RMC is intended to be used for	or DC-HSD	PA					
	mode and both cells shall transmit	with identi	cal					
	parameters as listed in the table.							
Note 2: Maximum number of transmission is limited to 1, i.e.,								
	retransmission is not allowed. The		cy and					
constellation version 0 shall be used.								

Figure C.8.19: Coding rate for Fixed reference Channel H-Set 12 (QPSK)

Setup Configuration

FCC ID: KA2WM221B1 Page 21 of 33

< WCDMA Conducted Power>

General Note:

Per KDB 941225 D02v02r02, RMC 12.2kbps setting is used to evaluate SAR. If HSDPA/HSUPA/DC-HSDPA output power is < 0.25dB higher than RMC, or reported SAR with RMC 12.2kbps setting is ≤ 1.2 W/kg, HSDPA/HSUPA/DC-HSDPA SAR evaluation can be excluded...

Report No.: FA431502

	Band	1		WCDMA V	
	TX Char	nnel	4132	4182	4233
	Frequency	(MHz)	826.4	836.4	846.6
MPR(dB)	3GPP Rel 99	RMC 12.2Kbps	21.56	21.61	21.82
0	3GPP Rel 6	HSDPA Subtest-1	20.71	20.84	20.93
0	3GPP Rel 6	HSDPA Subtest-2	20.56	20.65	20.72
0.5	3GPP Rel 6	HSDPA Subtest-3	20.32	20.34	20.39
0.5	3GPP Rel 6	HSDPA Subtest-4	20.12	20.16	20.27
0	3GPP Rel 8	DC-HSDPA Subtest-1	20.73	20.81	20.84
0	3GPP Rel 8	DC-HSDPA Subtest-2	20.56	20.73	20.79
0.5	3GPP Rel 8	DC-HSDPA Subtest-3	20.22	20.25	20.29
0.5	3GPP Rel 8	DC-HSDPA Subtest-4	20.05	20.09	20.28
0	3GPP Rel 6	HSUPA Subtest-1	20.51	20.60	20.72
2	3GPP Rel 6	HSUPA Subtest-2	19.68	19.86	19.92
1	3GPP Rel 6	HSUPA Subtest-3	19.52	19.68	19.95
2	3GPP Rel 6	HSUPA Subtest-4	20.13	20.29	20.50
0	3GPP Rel 6	HSUPA Subtest-5	20.55	20.78	21.10

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Apr. 25, 2014 FCC ID: KA2WM221B1 Form version. : 140305 Page 22 of 33

<LTE Conducted Power>

General Note:

 Anritsu MT8820C base station simulator was used to setup the connection with EUT; the frequency band, channel bandwidth, RB allocation configuration, modulation type are set in the base station simulator to configure EUT transmitting at maximum power and at different configurations which are requested to be reported to FCC, for conducted power measurement and SAR testing.

Report No. : FA431502

- 2. Per KDB 941225 D05v02r03, when a properly configured base station simulator is used for the SAR and power measurements, spectrum plots for each RB allocation and offset configuration is not required.
- 3. Per KDB 941225 D05v02r03, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 4. Per KDB 941225 D05v02r03, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 5. Per KDB 941225 D05v02r03, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- 6. Per KDB 941225 D05v02r03, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r03, 16QAM SAR testing is not required.
- 7. Per KDB 941225 D05v02r03, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r03, smaller bandwidth SAR testing is not required.

SPORTON INTERNATIONAL INC.TEL: 886-3-327-3456 / FAX: 886-3-328-4978

<LTE Band 5>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune up Limit	MPR
	Cha	nnel		20450	20525	20600	(dBm)	(dB)
	Frequenc	cy (MHz)		829	836.5	844		
10	QPSK	1	0	22.41	22.35	22.56		
10	QPSK	1	24	22.38	22.37	22.54	23	0
10	QPSK	1	49	22.42	22.24	22.23		
10	QPSK	25	0	21.40	21.84	21.94		
10	QPSK	25	12	21.39	21.77	21.88	22	0-1
10	QPSK	25	24	21.30	21.70	21.95	22	0-1
10	QPSK	50	0	21.13	21.25	21.24		
10	16QAM	1	0	21.39	21.31	21.49		
10	16QAM	1	24	21.35	21.39	21.53	22	0-1
10	16QAM	1	49	21.43	21.34	21.46		
10	16QAM	25	0	20.34	20.70	20.91		
10	16QAM	25	12	20.31	20.69	20.89	21	0-2
10	16QAM	25	24	20.30	20.72	20.88] 21	0-2
10	16QAM	50	0	20.16	20.17	20.15		
	Cha	nnel		20425	20525	20625	Tune up Limit	MPR
	Frequenc	cy (MHz)		826.5	836.5	846.5	(dBm)	(dB)
5	QPSK	1	0	21.77	21.76	21.77		
5	QPSK	1	12	21.74	21.72	21.89	23	0
5	QPSK	1	24	21.73	21.85	21.50		
5	QPSK	12	0	20.90	21.36	21.20		
5	QPSK	12	6	20.74	21.18	21.20	22	1
5	QPSK	12	11	20.77	21.18	21.19	22	1
5	QPSK	25	0	20.66	20.81	20.94		
5	16QAM	1	0	20.80	20.73	20.81		
5	16QAM	1	12	20.88	20.83	20.86	22	1
5	16QAM	1	24	20.81	20.89	20.85		
5	16QAM	12	0	19.81	20.22	20.20		
5	16QAM	12	6	19.78	20.15	20.23	24	0
5	16QAM	12	11	19.85	20.18	20.24	21	2
5	16QAM	25	0	19.65	19.72	19.90		

Report No. : FA431502

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Apr. 25, 2014 Form version. : 140305 FCC ID: KA2WM221B1 Page 24 of 33

	Cha	nnel		20415	20525	20635	Tune up Limit	MPR	
	Frequen	cy (MHz)		825.5	836.5	847.5	(dBm)	(dB)	
3	QPSK	1	0	21.76	21.80	21.80			
3	QPSK	1	7	21.69	21.59	21.99	23	0	
3	QPSK	1	14	21.71	21.71	21.85			
3	QPSK	8	0	20.88	21.12	21.36			
3	QPSK	8	4	20.91	21.11	21.30	20	0.4	
3	QPSK	8	7	20.88	21.10	21.30	22	0-1	
3	QPSK	15	0	20.65	20.82	20.91			
3	16QAM	1	0	20.69	20.87	20.86			
3	16QAM	1	7	20.69	20.70	21.00	22	0-1	
3	16QAM	1	14	20.76	20.88	20.99			
3	16QAM	8	0	19.87	20.17	20.29			
3	16QAM	8	4	19.88	20.10	20.29	0.4	0.0	
3	16QAM	8	7	19.81	20.10	20.30	21	0-2	
3	16QAM	15	0	19.67	19.85	19.94			
	Cha	nnel		20407	20525	20643	Tune up Limit	Target MPR	
	Frequen	cy (MHz)		824.7	836.5	848.3	(dBm)	(dB)	
1.4	QPSK	1	0	22.50	22.50	22.43			
1.4	QPSK	1	2	22.46	22.45	22.46			
1.4	QPSK	1	5	22.47	22.39	22.39	23	0	
1.4	QPSK	3	0	22.42	22.44	22.48	23	0	
1.4	QPSK	3	1	22.45	22.40	22.44			
1.4	QPSK	3	2	22.48	22.49	22.39			
1.4	QPSK	6	0	21.46	21.52	21.47	22	0-1	
1.4	16QAM	1	0	21.49	21.44	21.41			
1.4	16QAM	1	2	21.50	21.42	21.46			
1.4	16QAM	1	5	21.50	21.53	21.41	22	0-1	
1.4	16QAM	3	0	21.48	21.50	21.58	22	0-1	
1.4	16QAM	3	1	21.46	21.50	21.57			
1.4	16QAM	3	2	21.57	21.47	21.54			
1.4	16QAM	6	0	20.53	20.57	20.53	21	0-2	

Report No.: FA431502

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Apr. 25, 2014 Form version. : 140305 FCC ID: KA2WM221B1 Page 25 of 33

<LTE Band 7>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune up Limit	MPR
	Cha	nnel		20850	21100	21350	(dBm)	(dB)
	Frequen	cy (MHz)		2510	2535	2560		
20	QPSK	1	0	20.87	21.00	21.06		
20	QPSK	1	49	20.68	20.90	20.58	22.5	0
20	QPSK	1	99	20.63	20.71	20.79		
20	QPSK	50	0	19.69	20.03	19.93		
20	QPSK	50	24	19.89	19.84	19.92	21.5	0-1
20	QPSK	50	49	19.92	19.83	19.96	21.5	0-1
20	QPSK	100	0	19.92	19.86	19.89		
20	16QAM	1	0	19.65	20.08	19.88		
20	16QAM	1	49	19.98	20.01	19.99	21.5	0-1
20	16QAM	1	99	20.04	20.03	20.36		
20	16QAM	50	0	18.62	18.97	18.94		
20	16QAM	50	24	18.75	18.85	19.04	20.5	0-2
20	16QAM	50	49	18.92	18.94	18.93	20.5	0-2
20	16QAM	100	0	18.80	18.78	18.92		
	Cha	nnel		20825	21100	21375	Tune up Limit	MPR
	Frequenc	cy (MHz)		2507.5	2535	2562.5	(dBm)	(dB)
15	QPSK	1	0	20.62	20.81	20.74		
15	QPSK	1	37	20.63	20.60	20.64	22.5	0
15	QPSK	1	74	20.56	20.73	20.51		
15	QPSK	36	0	19.58	19.57	19.56		
15	QPSK	36	18	19.74	19.66	19.63	21.5	0-1
15	QPSK	36	37	19.82	19.56	19.63	21.5	0-1
15	QPSK	75	0	19.68	19.57	19.62		
15	16QAM	1	0	19.53	19.73	19.58		
15	16QAM	1	37	19.68	19.62	19.74	21.5	0-1
15	16QAM	1	74	19.89	19.59	19.99		
15	16QAM	36	0	18.61	18.65	18.94		
15	16QAM	36	18	18.62	18.56	18.60	20.5	0.0
15	16QAM	36	37	18.80	18.59	18.63	20.5	0-2
15	16QAM	75	0	18.69	18.58	18.58		

Report No. : FA431502

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Apr. 25, 2014 Form version. : 140305 FCC ID: KA2WM221B1 Page 26 of 33

	Cha	nnel		20800	21100	21400	Tune up Limit	MPR	
	Frequenc	cy (MHz)		2505	2535	2565	(dBm)	(dB)	
10	QPSK	1	0	20.60	20.82	20.83			
10	QPSK	1	24	20.76	20.58	20.75	22.5	0	
10	QPSK	1	49	21.02	20.93	21.01			
10	QPSK	25	0	19.73	19.69	19.60			
10	QPSK	25	12	19.86	19.64	19.67	21.5	0-1	
10	QPSK	25	24	19.82	19.64	19.81	21.5	0-1	
10	QPSK	50	0	19.62	19.74	19.58			
10	16QAM	1	0	19.59	19.83	19.78			
10	16QAM	1	24	19.89	19.78	19.77	21.5	0-1	
10	16QAM	1	49	19.96	19.87	20.09			
10	16QAM	25	0	18.73	18.77	18.64			
10	16QAM	25	12	18.81	18.67	18.60	20.5	0-2	
10	16QAM	25	24	18.73	18.67	18.76	20.5	0-2	
10	16QAM	50	0	18.67	18.62	18.56			
	Cha	nnel		20775	21100	21425	Tune up Limit	MPR	
	Frequenc	cy (MHz)		2502.5	2535	2567.5	(dBm)	(dB)	
5	QPSK	1	0	20.54	20.62	20.73			
5	QPSK	1	12	20.67	20.71	20.90	22.5	0	
5	QPSK	1	24	20.76	20.85	21.02			
5	QPSK	12	0	19.67	19.59	19.79			
5	QPSK	12	6	19.71	19.68	19.86	21.5	0-1	
5	QPSK	12	11	19.70	19.66	20.02	21.5	0-1	
5	QPSK	25	0	19.70	19.65	19.82			
5	16QAM	1	0	19.56	19.65	19.66			
5	16QAM	1	12	19.75	19.61	19.88	21.5	0-1	
5	16QAM	1	24	19.77	19.71	20.05			
5	16QAM	12	0	18.61	18.65	18.69			
5	16QAM	12	6	18.76	18.58	18.79	20.5	0-2	
5	16QAM	12	11	18.72	18.76	19.02	20.5	0-2	
5	16QAM	25	0	18.60	18.62	18.76			

Report No.: FA431502

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Apr. 25, 2014 Form version. : 140305 FCC ID: KA2WM221B1 Page 27 of 33

13. Antenna Location

Front View

Report No. : FA431502

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

FCC ID: KA2WM221B1

Issued Date : Apr. 25, 2014
Page 28 of 33
Form version. : 140305

14. SAR Test Results

General Note:

- 1. Per KDB 447498 D01v05r02, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Report No. : FA431502

- b. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
- 2. Per KDB 447498 D01v05r02, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz.
 - · ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 3. Per KDB 941225 D02v02r02, RMC 12.2kbps setting is used to evaluate SAR. If HSDPA/HSUPA/DC-HSDPA output power is < 0.25dB higher than RMC, or reported SAR with RMC 12.2kbps setting is ≤ 1.2W/kg, HSDPA/HSUPA/DC-HSDPA SAR evaluation can be excluded..
- 4. Per KDB 941225 D05v02r03, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 5. Per KDB 941225 D05v02r03, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 6. Per KDB 941225 D05v02r03, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- 7. Per KDB 941225 D05v02r03, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r03, 16QAM SAR testing is not required.
- 8. Per KDB 941225 D05v02r03, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r03, smaller bandwidth SAR testing is not required.
- Per KDB 865664 D01v01r03, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.

14.1 Body SAR

<GSM SAR>

Plot No.	Band	Mode	Test Position	Gap (cm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
01	GSM850	GPRS (4 Tx slots)	Horizontal Up	0.5cm	128	824.2	26.02	27.5	1.406	-0.14	0.706	0.993
	GSM850	GPRS (4 Tx slots)	Horizontal Up	0.5cm	189	836.4	25.93	27.5	1.435	-0.11	0.512	0.735
	GSM850	GPRS (4 Tx slots)	Horizontal Up	0.5cm	251	848.8	25.81	27.5	1.476	-0.03	0.390	0.576
	GSM850	GPRS (4 Tx slots)	Horizontal Down	0.5cm	128	824.2	26.02	27.5	1.406	-0.03	0.556	0.782
	GSM850	GPRS (4 Tx slots)	Vertical Front	0.5cm	128	824.2	26.02	27.5	1.406	-0.03	0.267	0.375
	GSM850	GPRS (4 Tx slots)	Vertical Back	0.5cm	128	824.2	26.02	27.5	1.406	-0.08	0.424	0.596
	GSM850	GPRS (4 Tx slots)	Tip Mode	0.5cm	128	824.2	26.02	27.5	1.406	0.06	0.051	0.072
	GSM1900	GPRS (4 Tx slots)	Horizontal Up	0.5cm	512	1850.2	23.97	24.5	1.130	-0.01	0.273	0.308
02	GSM1900	GPRS (4 Tx slots)	Horizontal Down	0.5cm	512	1850.2	23.97	24.5	1.130	-0.06	0.314	<mark>0.355</mark>
	GSM1900	GPRS (4 Tx slots)	Vertical Front	0.5cm	512	1850.2	23.97	24.5	1.130	0.07	0.199	0.225
	GSM1900	GPRS (4 Tx slots)	Vertical Back	0.5cm	512	1850.2	23.97	24.5	1.130	0.14	0.112	0.127
	GSM1900	GPRS (4 Tx slots)	Tip Mode	0.5cm	512	1850.2	23.97	24.5	1.130	0.02	0.063	0.071

SPORTON INTERNATIONAL INC.

FCC ID : KA2WM221B1 Page 29 of 33 Form version. : 140305

<WCDMA SAR>

Plot No.	Band	Mode	Test Position	Gap (cm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
03	WCDMA V	RMC 12.2Kbps	Horizontal Up	0.5cm	4233	846.6	21.82	23	1.312	-0.05	0.471	<mark>0.618</mark>
	WCDMA V	RMC 12.2Kbps	Horizontal Down	0.5cm	4233	846.6	21.82	23	1.312	-0.07	0.397	0.521
	WCDMA V	RMC 12.2Kbps	Vertical Front	0.5cm	4233	846.6	21.82	23	1.312	-0.15	0.153	0.201
	WCDMA V	RMC 12.2Kbps	Vertical Back	0.5cm	4233	846.6	21.82	23	1.312	-0.05	0.295	0.387
	WCDMA V	RMC 12.2Kbps	Tip Mode	0.5cm	4233	846.6	21.82	23	1.312	0	0.032	0.042

Report No. : FA431502

<LTE SAR>

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (cm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	LTE Band 5	10M	QPSK	1	0	Horizontal Up	0.5cm	20600	844	22.56	23	1.107	-0.19	0.242	0.268
04	LTE Band 5	10M	QPSK	25	24	Horizontal Up	0.5cm	20600	844	21.95	23	1.274	-0.08	0.369	0.470
	LTE Band 5	10M	QPSK	1	0	Horizontal Down	0.5cm	20600	844	22.56	23	1.107	-0.19	0.232	0.257
	LTE Band 5	10M	QPSK	25	24	Horizontal Down	0.5cm	20600	844	21.95	23	1.274	0.04	0.337	0.429
	LTE Band 5	10M	QPSK	1	0	Vertical Front	0.5cm	20600	844	22.56	23	1.107	-0.11	0.135	0.149
	LTE Band 5	10M	QPSK	25	24	Vertical Front	0.5cm	20600	844	21.95	23	1.274	0	0.130	0.166
	LTE Band 5	10M	QPSK	1	0	Vertical Back	0.5cm	20600	844	22.56	23	1.107	-0.13	0.160	0.177
	LTE Band 5	10M	QPSK	25	24	Vertical Back	0.5cm	20600	844	21.95	23	1.274	0.03	0.238	0.303
	LTE Band 5	10M	QPSK	1	0	Tip Mode	0.5cm	20600	844	22.56	23	1.107	0.13	0.017	0.019
	LTE Band 5	10M	QPSK	25	24	Tip Mode	0.5cm	20600	844	21.95	23	1.274	-0.13	0.024	0.031
	LTE Band 7	20M	QPSK	1	0	Horizontal Up	0.5cm	21350	2560	21.06	22.5	1.393	-0.13	0.024	0.033
	LTE Band 7	20M	QPSK	50	0	Horizontal Up	0.5cm	21100	2535	20.03	21.5	1.403	0.05	0.027	0.038
	LTE Band 7	20M	QPSK	1	0	Horizontal Down	0.5cm	21350	2560	21.06	22.5	1.393	-0.18	0.084	0.117
05	LTE Band 7	20M	QPSK	50	0	Horizontal Down	0.5cm	21100	2535	20.03	21.5	1.403	-0.14	0.087	0.122
	LTE Band 7	20M	QPSK	1	0	Vertical Front	0.5cm	21350	2560	21.06	22.5	1.393	0	0.001	0.001
	LTE Band 7	20M	QPSK	1	0	Vertical Front	0.5cm	21100	2535	20.03	21.5	1.403	0.12	0.004	0.005
	LTE Band 7	20M	QPSK	1	0	Vertical Back	0.5cm	21350	2560	21.06	22.5	1.393	-0.12	0.016	0.022
	LTE Band 7	20M	QPSK	50	0	Vertical Back	0.5cm	21100	2535	20.03	21.5	1.403	0.16	0.019	0.027
	LTE Band 7	20M	QPSK	1	0	Tip Mode	0.5cm	21350	2560	21.06	22.5	1.393	-0.05	0.022	0.031
	LTE Band 7	20M	QPSK	50	0	Tip Mode	0.5cm	21100	2535	20.03	21.5	1.403	-0.04	0.027	0.038

Test Engineer: Ken Lee and Vic Yang

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Apr. 25, 2014 Form version. : 140305 FCC ID: KA2WM221B1 Page 30 of 33

15. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

Report No.: FA431502

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 15.1

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor ^(a)	1/k ^(b)	1/√3	1/√6	1/√2

- (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) κ is the coverage factor

Table 15.1. Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

FCC ID : KA2WM221B1 Page 31 of 33 Form version. : 140305

Error Description	Uncertainty Value (±%)	Probability Distribution	Divisor	Ci (1g)	Ci (10g)	Standard Uncertainty (1g)	Standard Uncertainty (10g)
Measurement System	•					<u>'</u>	
Probe Calibration	6.0	Normal	1	1	1	± 6.0 %	± 6.0 %
Axial Isotropy	4.7	Rectangular	√3	0.7	0.7	± 1.9 %	± 1.9 %
Hemispherical Isotropy	9.6	Rectangular	√3	0.7	0.7	± 3.9 %	± 3.9 %
Boundary Effects	1.0	Rectangular	√3	1	1	± 0.6 %	± 0.6 %
Linearity	4.7	Rectangular	√3	1	1	± 2.7 %	± 2.7 %
System Detection Limits	1.0	Rectangular	√3	1	1	± 0.6 %	± 0.6 %
Readout Electronics	0.3	Normal	1	1	1	± 0.3 %	± 0.3 %
Response Time	0.8	Rectangular	√3	1	1	± 0.5 %	± 0.5 %
Integration Time	2.6	Rectangular	√3	1	1	± 1.5 %	± 1.5 %
RF Ambient Noise	3.0	Rectangular	√3	1	1	± 1.7 %	± 1.7 %
RF Ambient Reflections	3.0	Rectangular	√3	1	1	± 1.7 %	± 1.7 %
Probe Positioner	0.4	Rectangular	√3	1	1	± 0.2 %	± 0.2 %
Probe Positioning	2.9	Rectangular	√3	1	1	± 1.7 %	± 1.7 %
Max. SAR Eval.	1.0	Rectangular	√3	1	1	± 0.6 %	± 0.6 %
Test Sample Related							
Device Positioning	2.9	Normal	1	1	1	± 2.9 %	± 2.9 %
Device Holder	3.6	Normal	1	1	1	± 3.6 %	± 3.6 %
Power Drift	5.0	Rectangular	√3	1	1	± 2.9 %	± 2.9 %
Phantom and Setup							
Phantom Uncertainty	4.0	Rectangular	√3	1	1	± 2.3 %	± 2.3 %
Liquid Conductivity (Target)	5.0	Rectangular	√3	0.64	0.43	± 1.8 %	± 1.2 %
Liquid Conductivity (Meas.)	2.5	Normal	1	0.64	0.43	± 1.6 %	± 1.1 %
Liquid Permittivity (Target)	5.0	Rectangular	√3	0.6	0.49	± 1.7 %	± 1.4 %
Liquid Permittivity (Meas.)	2.5	Normal	1	0.6	0.49	± 1.5 %	± 1.2 %
Combined Standard Uncertaint	у					± 11.0 %	± 10.8 %
Coverage Factor for 95 %						K=2	
Expanded Uncertainty						± 22.0 %	± 21.5 %

Report No. : FA431502

Table 15.2. Uncertainty Budget for frequency range 300 MHz to 3 GHz

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Apr. 25, 2014 Form version. : 140305 FCC ID: KA2WM221B1 Page 32 of 33

16. References

[1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"

Report No. : FA431502

- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 447498 D01 v05r02, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Feb 2014.
- [6] FCC KDB 447498 D02 v02, "SAR Measurement Procedures for USB Dongle Transmitters" Nov 2009.
- [7] FCC KDB 941225 D01 v02, "SAR Measurement Procedures for 3G Devices CDMA 2000 / Ev-Do / WCDMA / HSDPA / HSPA", October 2007
- [8] FCC KDB 941225 D02 v02r02, "SAR Guidance for HSPA, HSPA+, DC-HSDPA and 1x-Advanced", May 2013.
- [9] FCC KDB 941225 D03 v01, "Recommended SAR Test Reduction Procedures for GSM / GPRS / EDGE". December 2008
- [10] FCC KDB 941225 D05 v02r03, "SAR Evaluation Considerations for LTE Devices", Dec 2013
- [11] FCC KDB 865664 D01 v01r03, "SAR Measurement Requirements for 100 MHz to 6 GHz", Feb 2014.
- [12] FCC KDB 865664 D02 v01r01, "RF Exposure Compliance Reporting and Documentation Considerations" May 2013.