

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

R	Release Control Record 4					
1	(Certificate of Conformity	5			
2	5	Summary of Test Results	6			
	2.1 2.2	Measurement Uncertainty Modification Record	6 6			
3	(General Information	7			
	3.1	General Description of FLIT	7			
	3.2	Description of Test Modes	9			
	3.2.1	Test Mode Applicability and Tested Channel Detail	10			
	3.3	Duty Cycle of Test Signal	12			
	3.4	Description of Support Units	13			
	3.4.1	Configuration of System under Test	13			
	5.5		14			
4		lest Types and Results	15			
	4.1	Radiated Emission and Bandedge Measurement	15			
	4.1.1	Limits of Radiated Emission and Bandedge Measurement	15			
	4.1.2	Test Instruments	16			
	4.1.3	Test Procedures Deviation from Test Standard	1/			
	4.1.5	Test Setup	18			
	4.1.6	EUT Operating Conditions	. 19			
	4.1.7	Test Results	20			
	4.2	Conducted Emission Measurement	46			
	4.2.1	Limits of Conducted Emission Measurement	46			
	4.2.2	Test Discondures	46			
	4.2.3	Iest Procedures	47			
	4.2.4	Test Setun	47 47			
	4.2.6	EUT Operating Conditions	. 47			
	4.2.7	Test Results	48			
	4.3	6dB Bandwidth Measurement	50			
	4.3.1	Limits of 6dB Bandwidth Measurement	50			
	4.3.2	Test Setup	50			
	4.3.3	Test Instruments	50 50			
	4.3.4	Deviation fromTest Standard	50 50			
	4.3.6	EUT Operating Conditions	.50			
	4.3.7	Test Result	51			
	4.4	Conducted Output Power Measurement	53			
	4.4.1	Limits of Conducted Output Power Measurement	53			
	4.4.2	Test Setup	53			
	4.4.3	Test Instruments	53			
	4.4.4	Deviation from Test Standard	53			
	4.4.6	EUT Operating Conditions	. 53			
	4.4.7	Test Results	.54			
	4.5	Power Spectral Density Measurement	56			
	4.5.1	Limits of Power Spectral Density Measurement	56			
	4.5.2	Test Setup	56			
	4.5.3	lest Instruments	56			
	4.5.4	Iest Procedure	56			
	4.0.0	EVIATION NON TEST Standard	56			
	4.0.0		00			

4.5.7 Test Results	
4.6 Conducted Out of Band Emission Measurement	
4.6.1 Limits of Conducted Out of Band Emission Measurement	
4.6.2 Test Setup	59
4.6.3 Test Instruments	59
4.6.4 Test Procedure	59
4.6.5 Deviation from Test Standard	59
4.6.6 EUT Operating Condition	59
4.6.7 Test Results	59
5 Pictures of Test Arrangements	68
Annex A - Band Edge Measurement	
Annual dia dia famina dia mandri dia mandri dia materia.	04
Appendix – Information of the Testing Laboratories	81

Release Control Record

Issue No.	Description	Date Issued
RFBDUI-WTW-P20110877	Original Release	Jun. 29, 2021

1 Certificate of Conformity

Product:	AX1500 Wi-Fi 6 AI Mesh Router, AX1500 Wi-Fi 6 AI Mesh System,
	AX1500 Mesh Router, AX1500 Mesh System
Brand:	D-Link
Test Model:	M15
Sample Status:	Engineering Sample
Applicant:	D-Link Corporation
Test Date:	Mar. 09 ~ May 20, 2021
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10:2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

Pettie Chen

Pettie Chen / Senior Specialist

, Date: Jun. 29, 2021

Approved by :

Sma Chen

Date: Jun. 29, 2021

Bruce Chen / Senior Project Engineer

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)								
FCC Clause	Test Item	Result	Remarks					
15.207	AC Power Conducted Emission	cted Emission Pass Meet the requirement at 0 43152MHz						
15.205 / 15.209 / 15.247(d)	15.205 / 15.209 / 15.247(d) Radiated Emissions and Band Edge Measurement		Meet the requirement of limit. Minimum passing margin is -1.0dB at 2390.00MHz.					
15.247(d)	Antenna Port Emission	Pass	Meet the requirement of limit.					
15.247(a)(2)	6dB bandwidth	Pass	Meet the requirement of limit.					
15.247(b)	Conducted power	Pass	Meet the requirement of limit.					
15.247(e)	Power Spectral Density	Pass	Meet the requirement of limit.					
15.203	Antenna Requirement	Pass	For Antenna 2G1, 5G1: Antenna connector is CCT MHF not a standard connector. For Antenna 2G2, 5G2: Antenna connector is KS-MHF not a standard connector.					

Note:

- 1. For 2.4G band compliance with rule 15.247(d) of the band-edge items, the test plots were recorded in Annex A. Test Procedures refer to report 4.1.3.
- 2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.79 dB
	9kHz ~ 30MHz	2.44 dB
Radiated Emissions up to 1 GHz	30MHz ~ 200MHz	2.0153 dB
	200MHz ~1000MHz	2.0224 dB
Padiated Emissions above 1 CHz	1GHz ~ 18GHz	1.0121 dB
Radiated Emissions above 1 GHz	18GHz ~ 40GHz	1.1508 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	AX1500 Wi-Fi 6 AI Mesh Router, AX1500 Wi-Fi 6 AI Mesh System,
	AX1500 Mesh Router, AX1500 Mesh System
Brand	D-Link
Test Model	M15
Sample Status	Engineering Sample
Power Supply Rating	12Vdc from Adapter
Medulation Trues	CCK, DQPSK, DBPSK for DSSS
Modulation Type	256QAM, 64QAM, 16QAM, QPSK, BPSK for OFDM
Modulation Technology	DSSS, OFDM
	802.11b:11/5.5/2/1Mbps
Transfer Rate	802.11g: 54/48/36/24/18/12/9/6Mbps
	802.11n (HT20/40): up to 300Mbps
Operating Frequency	2412 ~ 2462MHz
Number of Observal	802.11b, 802.11g, 802.11n (HT20): 11
Number of Channel	802.11n (HT40): 7
Outrast Desugar	CDD Mode: 523.649mW
Output Power	Beamforming Mode: 212.939mW
Antenna Type	Refer to note
Antenna Connector	Refer to note
Accessory Device	Adapter
Oshla Oumrlind	1.0m CAT5E 24AWG CCA WHITE CABLE
Cable Supplied	(Brand: Nienyi, Model: NY4710 REV.0)

Note:

1. The following product names and model are provided to this EUT.

Product	Model	Description
AX1500 Wi-Fi 6 AI Mesh Router		
AX1500 Wi-Fi 6 AI Mesh System	M15	For marketing purpose
AX1500 Mesh Router		For marketing purpose.
AX1500 Mesh System		

2. The EUT incorporates a MIMO function. Physically, the EUT provides 2 completed transmitters and 2 receivers.

Modulation Mode	CDD Mode	Beamforming Mode	TX Function
802.11b	Support	Not Support	2TX
802.11g	Support	Not Support	2TX
802.11n (HT20)	Support	Support	2TX
802.11n (HT40)	Support	Support	2TX

* For 802.11n, CDD mode and Beamforming mode are presented in power output test item. For other test items, CDD mode is the worst case for final tests after pretesting.

* Scanning Radio is RX only.

Product	Brand	Model	Description
Adapter 1	Amigo	AMS159A-1201000F (US+UK)	I/P: 100-240 Vac, 50/60 Hz, 0.5 A
Adaptor 2	Amigo	AMS159A-1201000F (EU+UK)	I/P: 100-240 Vac, 50/60 Hz, 0.5 A
	, unigo		O/P: 12 Vdc, 1 A
Adaptar 2	Amigo	AMS159A-1201000EU (US)	I/P: 100-240 Vac, 50/60 Hz, 0.5 A
Adapter 5	Anigo	AMO 103A-12010001 0 (00)	O/P: 12 Vdc, 1 A
A denten 4	Amigo	AMS150A 1201000ES (ALL)	I/P: 100-240 Vac, 50/60 Hz, 0.5 A
Adapter 4	Aniigo	ANIS 139A-120 10001 3 (AU)	O/P: 12 Vdc, 1 A
A day to a F	Amigo	AMS150A 1201000EV/(EU)	I/P: 100-240 Vac, 50/60 Hz, 0.5 A
Adapter 5		ANIS 139A-120 1000FV (EU)	O/P: 12 Vdc, 1 A
	Amigo	AMS105 1201000EV (IN)	I/P: 100-240 Vac, 50/60 Hz, 0.5 A
Adapter 6	Anigo	AMS193-1201000F1 (IN)	O/P: 12 Vdc, 1 A
	Amigo	AMS105 1201000EK (KD)	I/P: 100-240 Vac, 50/60 Hz, 0.5 A
Adapter /	Amigo	AMIS 195-120 1000FK (KR)	O/P: 12 Vdc, 1 A
Adapter	Amigo	AMS150A 1201000EX (BB)	I/P: 100-240 Vac, 50/60 Hz, 0.5 A
Adapter 8		AWIS 139A-120 1000FA (BR)	O/P: 12 Vdc, 1 A
	Amigo	AMS150A 1201000EB (UK)	I/P: 100-240 Vac, 50/60 Hz, 0.5 A
Adapter 9	Amgo	ANIS 139A-120 1000FB (UK)	O/P: 12 Vdc, 1 A

3. The EUT consumes power from the following adapters.

*All adapters only different in plug. Therefore, use US type (adapter 3) as a representative for test.

4. The following antennas were provided to the EUT.

Antenna Type						PIFA				
Anter	nna Connector			2G1, 5	G1: CCT	MHF, 2G	2, 5G2: k	(S-MHF		
Brand						WHA YU	ļ			
Antenna						Gain (dB	i)			
Ne	P/N	2400	2450	2500	5150	5250	5350	5725	5750	5825
INO.		MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
2G1	C1958-510011-A	2.29	2.31	2.27	-				-	-
2G2	C1958-510012-A	2.51	2.56	2.43	-				-	-
5G1	C1958-510013-A	-	-	-	2.19	2.37	2.44	2.24	2.36	2.23
5G2	C1958-510014-A	-	-	-	2.51	2.33	2.64	2.77	2.56	2.62

* The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

5. WLAN 2.4GHz & WLAN 5GHz technology can transmit at same time.

6. Spurious emission of the simultaneous operation (WLAN 2.4GHz and WLAN 5GHz) has been evaluated and no non-compliance was found.

3.2 Description of Test Modes

11 channels are provided for 802.11b, 802.11g, 802.11n (HT20):

Channel	Frequency	Channel	Frequency					
1	2412MHz	7	2442MHz					
2	2417MHz	8	2447MHz					
3	2422MHz	9	2452MHz					
4	2427MHz	10	2457MHz					
5	2432MHz	11	2462MHz					
6	2437MHz							
7 channels are provided for	channels are provided for 802.11n (HT40):							
Channel	Frequency	Channel	Frequency					

onannoi	rioquonoy	onannoi	rioquonoy
3	2422MHz	7	2442MHz
4	2427MHz	8	2447MHz
5	2432MHz	9	2452MHz
6	2437MHz		

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configu	ire	Applicable	e to			Description		
Mode	RE≥1G	RE<1G	PLC	APCM		Description		
-	\checkmark	\checkmark	\checkmark	\checkmark	-			
Where R	E≥1G: Radiated E easurement	mission above 1	GHz & Ba	andedge	RE<1G: Radiated	Emission below 1G	Hz	
P	LC: Power Line Co	onducted Emission	on		APCM: Antenna P	ort Conducted Meas	surement	
Note: 1. The EUT 2. Radiated Radiated E Pre-Sc betwee archite Follow	had been pre-tes demission test (be mission Test an has been c en available mo cture). ing channel(s)	ted on the position low 1GHz) and p (Above 1GHz) onducted to co odulations, da was (were) se	oned of ea ower line <u>z):</u> letermin ta rates	ach 3 axis. Th conducted er e the wors and anten for the fina	e worst case was fo nission test items c t-case mode fro na ports (if EUT I test as listed b	ound when positione hosen the worst ma om all possible c with antenna d elow.	ed on X-plan iximum powe combination liversity	e. r. 1S
EUT Configure Mode	Mode	Available Chan	nel Teste	ed Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)	Remark
-	802.11b	1 to 11		1, 6, 11	DSSS	DBPSK	1.0	
-	802.11g	1 to 11		1, 6, 11	OFDM	BPSK	6.0	
-	802.11n (HT20)	1 to 11		1, 6, 11	OFDM	BPSK	6.5	-
-	802.11n (HT40)	3 to 9		3, 6, 9	OFDM	BPSK	13.5	

Radiated Emission Test (Below 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)	Remark
-	802.11b	1 to 11	6	DSSS	DBPSK	1.0	-

Power Line Conducted Emission Test:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)	Remark
-	802.11b	1 to 11	6	DSSS	DBPSK	1.0	-

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)	Remark
-	802.11b	1 to 11	1, 6, 11	DSSS	DBPSK	1.0	
-	802.11g	1 to 11	1, 6, 11	OFDM	BPSK	6.0	
-	802.11n (HT20)	1 to 11	1, 6, 11	OFDM	BPSK	6.5	-
-	802.11n (HT40)	3 to 9	3, 6, 9	OFDM	BPSK	13.5	

Test Condition:

Applicable to	Environmental Conditions	Input Power	Tested by
RE≥1G	23 deg. C, 67% RH	120Vac, 60Hz	Karl Lee, Charies Hsiao, Hary Hsueh
RE<1G	23 deg. C, 67% RH	120Vac, 60Hz	Karl Lee
PLC	23 deg. C, 66% RH	120Vac, 60Hz	Cookie Ku
АРСМ	25 deg. C, 60% RH	120Vac, 60Hz	Vicent Huang

3.3 Duty Cycle of Test Signal

Duty cycle = 100%

3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Notebook	DELL	LATITUDE	F9MQBW1	FCC DoC Approved	-

Note:

1. All power cords of the above support units are non-shielded (1.8m).

2. Item A acted as a communication partner to transfer data.

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	LAN	1	1.5	N	0	RJ45, Cat5e (provided by lab)
2.	LAN	1	1.0	N	0	RJ45, Cat5e (Accessory)

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test standard: FCC Part 15, Subpart C (15.247) ANSI C63.10:2013

All test items have been performed and recorded as per the above standards.

References Test Guidance: KDB 558074 D01 15.247 Meas Guidance v05r02 KDB 662911 D01 Multiple Transmitter Output v02r01

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 30dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver Agilent Technologies	N9038A	MY52260177	Aug. 24, 2020	Aug. 23, 2021
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261	Apr. 16, 2020 Apr. 12, 2021	Apr. 17, 2021 Apr. 11, 2022
HORN Antenna ETS-Lindgren	3117	00143293	Nov. 22, 2020	Nov. 21, 2021
BILOG Antenna SCHWARZBECK	VULB 9168	9168-616	Nov. 09, 2020	Nov. 08, 2021
HORN Antenna SCHWARZBECK	BBHA 9170	9170-480	Nov. 22, 2020	Nov. 21, 2021
Fixed Attenuator Mini-Circuits	MDCS18N-10	MDCS18N-10-01	Apr. 14, 2020 Apr. 13, 2021	Apr. 13, 2021 Apr. 12, 2022
Loop Antenna	EM-6879	269	Sep. 17, 2020	Sep. 16, 2021
MXG Vector signal generator Agilent	N5182B	MY53050430	Nov. 25, 2020	Nov. 24, 2021
Preamplifier Agilent	310N	187226	Jun. 17, 2020	Jun. 16, 2021
Preamplifier Agilent	83017A	MY39501357	Jun. 17, 2020	Jun. 16, 2021
Preamplifier EMCI	EMC 184045	980116	Oct. 07, 2020	Oct. 06, 2021
Power Meter Anritsu	ML2495A	1012010	Sep. 01, 2020	Aug. 31, 2021
Power Sensor Anritsu	MA2411B	1315050	Sep. 01, 2020	Aug. 31, 2021
RF signal cable ETS-LINDGREN	5D-FB	Cable-CH1-01(RFC- SMS-100-SMS- 120+RFC-SMS-100- SMS-400)	Jun. 17, 2020	Jun. 16, 2021
RF signal cable ETS-LINDGREN	8D-FB	Cable-CH1-02(RFC- SMS-100-SMS-24)	Jun. 17, 2020	Jun. 17, 2021
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
Software BV ADT	E3 8.130425b	NA	NA	NA
Antenna Tower MF	NA	NA	NA	NA
Turn Table MF	NA	NA	NA	NA
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Xindian Chamber 1.

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasipeak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz. (802.11b: RBW = 1MHz, VBW = 10Hz; 802.11g: RBW = 10Hz, VBW = 10Hz; 802.11n (HT20): RBW = 1MHz, VBW = 10Hz; 802.11n (HT40): RBW = 1MHz, VBW = 10Hz)
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard

No deviation.

4.1.5 Test Setup

For Radiated emission below 30MHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Connected EUT with a notebook system via a RJ45 cable and placed on a testing table.
- b. The notebook ran a test program (provided by manufacturer) to enable EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Above 1GHz Data: 802.11b

- 4. Over limit = Level Limit value
- 5. The emission levels of other frequencies were very low against the limit.

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Remarks:

- 1. Level(dBuV/m) = Read Level(dBuV) + Factor(dB/m)
- 2. Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Over limit = Level Limit value
- 5. The emission levels of other frequencies were very low against the limit.

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

	Level (dBuV	/m)							Date	: 2021-03-0
120	4									
105.0									_	
90.0										
75.0									FCC_CLAS	S-B_2.4G
60.0										
00.0		<u>80</u>						FC	C_CLASS-B	_2.4G_AV
45.0			-							
30.0			-							
15.0			-							
0	1000									
	1000	58	800.	10	600. Eroguo	15	400.	2	0200.	250
	1000	58	:00.	10	600. Freque	15 ncy (MHz)	400.	2	0200.	250
te	: 966	58 5 chamb	00. er 1	10	600. Freque	15 ncy (MHz)	400.	2	0200.	250
te	: 966 ion: FCC	58 5 chamb C_CLASS	er 1 -B_2.4	10 G 3m Ho	Freque	15 ncy(MHz) al	400.	2	0200.	250
te ondit: mark	: 966 ion: FCC : 11E	58 5 chamb 5_CLASS 3_TX_CH	er 1 -B_2.4	10 G 3m Ho	600. Freque	15 ncy(MHz) al	400.	2	0200.	250
te ndit mark sted	: 966 ion: FCC : 11E by: Cha	58 5 chamb 5_CLASS 3_TX_CH arles H	er 1 -B_2.4 06 siao	10 G Зт Но	600. Freque prizont	15 ncy(MHz) al	400.	2	0200.	250
te ndit: mark sted te	: 966 ion: FCC : 11E by: Cha : 1M	58 5 chamb C_CLASS 3_TX_CH arles H	er 1 -B_2.4 06 Isiao	10 G 3m He	600. Freque	15 ncy(MHz) al	400.	2	0200.	250
te mdit: mark sted te wer	: 966 ion: FCC : 11E by: Cha : 1M : 57/	58 5 chamb 5_CLASS 3_TX_CH arles H /57	er 1 -B_2.4 06 siao	10 G Зт Но	600. Freque	15 ncy(MHz) al	400.	2	0200.	250
te mark sted ite wer /VB	: 966 ion: FCC : 11E by: Cha : 1M : 57/ : 1 M	58 5 chamb 5_CLASS 3_TX_CH arles H 757 7 77 7 7 7 7 7 7 7 7 7 7	00. er 1 -B_2.4 06 siao 0 Hz	10 G Зт На	600. Freque prizont	15 ncy(MHz) al	400.	2	0200.	250
te mark sted te wer VB	: 960 ion: FCC : 11E by: Cha : 1M : 57/ : 1 M Freq	58 5 chamb 5_CLASS 3_TX_CH arles H /57 /Hz / 1 Level	er 1 -B_2.4 06 siao 0 Hz Read Level	10 G 3m Ho Factor	600. Freque prizont Limit Line	15 ncy(MHz) al Over Limit	400. APos	2 TPos	0200. Remark	250
te mark ested te wer 8/VB	: 966 ion: FCC : 11E by: Cha : 1M : 57/ : 1 M Freq MHz	58 5 chamb 5_CLASS 3_TX_CH arles H /57 /Hz / 1 Level dBuV/m	er 1 -B_2.4 06 siao 0 Hz Read Level 	G 3m Ho Factor dB/m	Freque Freque Drizont Limit Line dBuV/m	15 ncy(MHz) al Over Limit dB	APos	2 TPos deg	Remark	250
te mark sted te wer s/VB -	: 960 ion: FCC : 11E by: Cha : 1M : 57/ : 1 M Freq MHz 2390.00	58 5 chamb 5_CLASS 3_TX_CH arles H 757 7Hz / 1 Level dBuV/m 45.71	00. er 1 -B_2.4 06 siao 0 Hz Read Level dBuV 41.21	G 3m Ho Factor dB/m 4.50	Freque Freque Drizont Limit Line dBuV/m 54.00	15 ncy (MHz) al Over Limit dB -8.29	400. APos 	TPos deg 265	Remark	250
te ndit: mark sted te wer /VB - 1 2	: 960 ion: FCC : 11E by: Cha : 1M : 57/ : 1 M Freq MHz 2390.00 2390.00	58 5 chamb C_CLASS 3_TX_CH arles H /57 /Hz / 1 Level dBuV/m 45.71 53.11	er 1 -B_2.4 06 siao 0 Hz Read Level dBuV 41.21 48.61	10 G 3m Ho Factor dB/m 4.50 4.50	Limit Limit dBuV/m 54.00 74.00	15 ncy (MHz) al Over Limit dB -8.29 -20.89	APos 	2 TPos deg 265 265	Remark Average Peak	250
te mark sted te /VB - 1 2 3	: 960 ion: FCC : 11E by: Cha : 1M : 57/ : 1 M Freq MHz 2390.00 2390.00 2437.00	58 5 chamb 5_CLASS 3_TX_CH arles H /57 /Hz / 1 Level dBuV/m 45.71 53.11 110.84	er 1 -B_2.4 06 siao 0 Hz Read Level dBuV 41.21 48.61 106.25	10 G 3m Ho Factor dB/m 4.50 4.50 4.59	Limit Limit Line dBuV/m 54.00 74.00	15 ncy (MHz) al Over Limit dB -8.29 -20.89	APos cm 167 167 167	2 TPos deg 265 265 265	Remark Average Peak Average	250
te mark sted te /VB - 1 2 3 4	: 960 ion: FCC : 11E by: Cha : 1M : 57/ : 1 M Freq MHz 2390.00 2390.00 2437.00 2437.00	58 5 chamb 5_CLASS 3_TX_CH arles H /57 /Hz / 1 Level dBuV/m 45.71 53.11 110.84 113.83	er 1 -B_2.4 06 siao 0 Hz Read Level dBuV 41.21 48.61 106.25 109.24	Factor G 3m Ho Factor dB/m 4.50 4.50 4.59 4.59 4.59	Limit Limit Line dBuV/m 54.00 74.00	15 ncy (MHz) al Over Limit -8.29 -20.89	APos cm 167 167 167 167	2 TPos deg 265 265 265 265 265	Remark Average Peak Average Peak	250
te mark sted te wwer 3/VB 1 2 3 4 5 pp	: 966 ion: FCC : 11E by: Cha : 1M : 57/ : 1 M Freq MHz 2390.00 2437.00 2437.00 2433.50	58 5 chamb 5 CLASS 3 TX_CH arles H 757 MHz / 1 Level dBuV/m 45.71 110.84 113.83 47.88	er 1 -B_2.4 06 siao 0 Hz Read Level dBuV 41.21 48.61 106.25 109.24 43.22	Factor G 3m Ho Factor dB/m 4.50 4.59 4.59 4.66	600. Freque Drizont Limit Line dBuV/m 54.00 74.00 54.00	15 ncy (MHz) al Over Limit dB -8.29 -20.89 -6.12	APos cm 167 167 167 167 167	2 TPos deg 265 265 265 265 265 265	Remark Average Peak Average Peak Average Average	250
ite ondit: emark ested ate ower 3/VB - 1 2 3 4 5 pp 6 pk	: 966 ion: FCC : 11E by: Cha : 1M : 57/ : 1 M Freq 2390.00 2437.00 2437.00 2483.50	58 5 chamb 5 CLASS 3 TX_CH arles H 757 7 4Hz / 1 Level dBuV/m 45.71 110.84 113.83 47.88 54.66	er 1 -B_2.4 06 siao 0 Hz Read Level dBuV 41.21 48.61 106.25 109.24 43.22 50.00	Factor G 3m Ho Factor dB/m 4.50 4.59 4.59 4.66 4.66	600. Freque Drizont Limit Line dBuV/m 54.00 74.00 54.00 74.00	15 ncy (MHz) al Over Limit dB -8.29 -20.89 -6.12 -19.34	APos cm 167 167 167 167 167 167	2 TPos deg 265 265 265 265 265 265 265	Remark Average Peak Average Peak Average Peak Peak	250
te mark ested ate ower 3/VB 1 2 3 4 5 pp 6 pk 7	: 966 ion: FCC : 11E by: Cha : 1M : 57/ : 1 M Freq 2390.00 2437.00 2437.00 2433.50 2483.50 4874.00	58 5 chamb 5 cLASS 3 TX_CH arles H 757 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	<pre>er 1 -B_2.4 06 siao 0 Hz Read Level dBuV 41.21 48.61 106.25 109.24 43.22 50.00 30.99</pre>	Factor Factor dB/m 4.50 4.59 4.66 4.66 10.21	Conizont Limit Limit Line dBuV/m 54.00 74.00 54.00 74.00 54.00	15 ncy (MHz) al Over Limit dB -8.29 -20.89 -20.89 -6.12 -19.34 -12.80	APos cm 167 167 167 167 167 167 188	2 TPos deg 265 265 265 265 265 265 265 265 265 208	Remark Average Peak Average Peak Average Peak Average Peak Average	250
ite ondit: emark ested ate ower 3/VB - 1 2 3 4 5 pp 6 pk 7 8	: 966 ion: FCC : 11E by: Cha : 1M : 57/ : 1 M Freq 2390.00 2437.00 2437.00 2433.50 2483.50 4874.00	58 5 chamb 5 CLASS 3 TX_CH arles H 757 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	<pre>er 1 -B_2.4 06 siao 0 Hz Read Level dBuV 41.21 48.61 106.25 109.24 43.22 50.00 30.99 39.46</pre>	Factor Factor dB/m 4.50 4.59 4.59 4.66 10.21 10.21	600. Freque Drizont Limit Line dBuV/m 54.00 74.00 54.00 74.00 54.00 74.00 74.00	15 ncy (MHz) Cover Limit -8.29 -20.89 -20.89 -6.12 -19.34 -12.80 -24.33	APos cm 167 167 167 167 167 167 188 188	2 TPos deg 265 265 265 265 265 265 265 265 208 208	Remark Average Peak Average Peak Average Peak Average Peak Average Peak	250
te mark sted ite wer VB 1 2 3 4 5 pp 6 pk 7 8 9	: 966 ion: FCC : 11E by: Cha : 1M : 57/ : 1 M Freq MHz 2390.00 2437.00 2437.00 2437.00 2433.50 2483.50 4874.00 4874.00 5000.00	58 5 chamb 5 cLASS 3 TX_CH arles H 757 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	er 1 -B_2.4 06 siao 0 Hz Read Level dBuV 41.21 48.61 106.25 109.24 43.22 50.00 30.99 39.46 36.43	Factor Factor dB/m 4.50 4.59 4.59 4.66 10.21 10.21 10.59	600. Freque Drizont Limit Line dBuV/m 54.00 74.00 54.00 74.00 54.00 74.00 54.00	15 ncy (MHz) Cover Limit dB -8.29 -20.89 -6.12 -19.34 -12.80 -24.33 -6.98	APos cm 167 167 167 167 167 167 167 167 188 188 188 197	2 TPos deg 265 265 265 265 265 265 208 208 208 125	Remark Average Peak Average Peak Average Peak Average Peak Average Peak Average	250

Remarks:

1. Level(dBuV/m) = Read Level(dBuV) + Factor(dB/m)

- 2. Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Over limit = Level Limit value
- 5. The emission levels of other frequencies were very low against the limit.

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Remarks:

- 1. Level(dBuV/m) = Read Level(dBuV) + Factor(dB/m)
- 2. Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Over limit = Level Limit value
- 5. The emission levels of other frequencies were very low against the limit.

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Remarks:

- 1. Level(dBuV/m) = Read Level(dBuV) + Factor(dB/m)
- 2. Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Over limit = Level Limit value
- 5. The emission levels of other frequencies were very low against the limit.

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

120	Level (dBuV	<i>(((()</i>))	-	1				1		
	1									
105.0										
90.0		-								
75.0									FCC_CLAS	S-B_2.4G
60.0		10			-			FC	C_CLASS-B	_2.4G_AV
45.0										
30.0					1					
15.0										
0 ite	1000	58 5 chamb	00. er 1	10	600. Freque	15 ncy (MHz)	400.	2	0200.	250
0 ite ondit: emark ested ate ower	: 966 ion: FCC : 11E by: Cha : 1M : 44/	58 57 58 57 57 57 57 57 57 57 57 57 57 57 57 57	er 1 -B_2.4 11 siao	10 G 3m Ve	600. Freque	15 ency (MHz) L	400.	2	0200.	250
ite ondit emark ested ate ower B/VB	: 966 ion: FCC : 11E by: Cha : 1M : 44 : 1 M	5 chamb C_CLASS 3_TX_CH arles H /44 /Hz / 1	er 1 -B_2.4 11 siao 0 Hz Read	10 G 3m Ve	600. Freque ertica]	15 ency (MHz)	400. APos	2 TPos	0200.	250
0 ite ondit: emark ested ate ower 3/VB	: 966 ion: FCC : 11E by: Cha : 1M : 44/ : 1 M Freq	5 chamb C_CLASS 3_TX_CH arles H /44 /Hz / 1 Level	er 1 -B_2.4 11 Isiao 0 Hz Read Level	10 G 3m Ve Factor	600. Freque ertica] Limit Line	15 ency (MHz) L Over Limit	400. APos	2 TPos	0200. Remark	250
0 ite ondit: emark ested ate ower B/VB -	: 966 ion: FCC : 11E by: Cha : 1M : 44, : 1 M Freq MHz	5 chamb C_CLASS 3_TX_CH arles H /44 /4Hz / 1 Level dBuV/m	er 1 -B_2.4 11 siao 0 Hz Read Level dBuV	G 3m Vo Factor dB/m	600. Freque ertical Limit Line dBuV/m	15 ency (MHz) U U Limit dB	400. APos	2 TPos deg	0200. Remark	250
0 ite ondit: emark ested ate ower B/VB -	1000 : 960 ion: FCC : 11E by: Cha : 1M : 44/ : 1 M Freq MHz 2462.00	58 5 chamb C_CLASS 3_TX_CH arles H (44 4Hz / 1 Level dBuV/m 110.22	000. er 1 -B_2.4 11 siao 0 Hz Read Level dBuV 105.60	G 3m Vo Factor dB/m 4.62	Construction Entitient Limit Line dBuV/m	15 ency (MHz) U U Limit dB	400. APos cm 127	2 TPos deg 92	0200. Remark Average	250
0 ite ondit: emark ested ate ower 3/VB - 1 2	1000 : 960 ion: FCC : 11E by: Cha : 1M : 44/ : 1 M Freq MHz 2462.00 2462.00	58 56 chamb 52_CLASS 3_TX_CH arles H (44 (44 (44 (44 (44 (44 (44)) (44 (44)) (44 (44	000. er 1 -B_2.4 11 siao 0 Hz Read Level dBuV 105.60 108.58	10 G 3m Vo Factor dB/m 4.62 4.62	Contractions of the second sec	15 mcy(MHz) U Limit dB	400. APos cm 127 127	2 TPos deg 92 92	0200. Remark Average Peak	250
0 ite ondit: emark ested ate ower 3/VB - 1 2 3	1000 : 966 ion: FCC : 11E by: Cha : 1M : 44/ : 1 M Freq MHz 2462.00 2462.00 2483.50	58 56 chamb C_CLASS 3_TX_CH arles H (44 (44 (44 (44 (44 (44 (44 (44)) (44 (44	000. er 1 -B_2.4 11 siao 0 Hz Read Level dBuV 105.60 108.58 45.58	10 G 3m Vo Factor dB/m 4.62 4.62 4.66	Limit Limit dBuV/m 54.00	15 mcy(MHz) U Limit dB 	400. APos cm 127 127 178	2 TPos deg 92 92 360	0200. Remark Average Peak Average	250
0 ite ondit: emark ested ate ower 3/VB - 1 2 3 4	1000 : 966 ion: FCC : 11E by: Cha : 1M : 44/ : 1 M Freq MHz 2462.00 2462.00 2483.50 2483.50	58 56 chamb C_CLASS 3_TX_CH arles H (44 (44 (44 (44 (44 (44 (44 (44)) (44 (44	000. er 1 -B_2.4 11 siao 0 Hz Read Level dBuV 105.60 108.58 45.58 52.11	10 G 3m Vo Factor dB/m 4.62 4.62 4.66 4.66	Limit Limit Line dBuV/m 54.00 74.00	15 mcy (MHz) U U U U U U U U U U U U U U U U U U U	400. APos cm 127 127 178 178	2 TPos deg 92 92 360 360	Remark Average Peak Average Peak	250
0 ite ondit: emark ested ate ower 3/VB - 1 2 3 4 5 pp	1000 : 966 ion: FCC : 11E by: Cha : 1M : 44, : 1 M Freq MHz 2462.00 2462.00 2483.50 2483.50 2487.84	58 58 58 59 50 50 50 50 50 50 50 50 50 50 50 50 50	000. er 1 -B_2.4 11 siao 0 Hz Read Level 0 Hz 0 Hz 105.60 108.58 45.58 52.11 48.30	Factor G 3m Va Factor dB/m 4.62 4.62 4.66 4.66 4.68	600. Freque ertica] Limit Line dBuV/m 54.00 74.00 54.00	15 ency (MHz) Over Limit dB 	400. APos cm 127 127 178 178 178 178	2 TPos deg 92 360 360 360	0200. 0200. Average Peak Average Peak Average	250
0 ite ondit: emark ested ate ower 3/VB - 1 2 3 4 5 pp 6 pk	1000 : 966 ion: FCC : 11E by: Cha : 44, : 1 M Freq MHz 2462.00 2462.00 2483.50 2483.50 2487.84 2487.84	58 59 59 50 50 50 50 50 50 50 50 50 50 50 50 50	er 1 -B_2.4 11 Isiao 0 Hz Read Level dBuV 105.60 108.58 45.58 52.11 48.30 54.10	Factor G 3m Va Factor dB/m 4.62 4.62 4.66 4.66 4.68 4.68 4.68	600. Freque ertical Limit Line dBuV/m 54.00 74.00 54.00 74.00	15 ency (MHz) Over Limit dB -3.76 -17.23 -1.02 -15.22	400. APos cm 127 127 178 178 178 178 178	2 TPos deg 92 360 360 360 360	Remark Average Peak Average Peak Average Peak	250
0 ite ondit: emark ested ate ower B/VB - 1 2 3 4 5 pp 6 pk 7	1000 : 966 ion: FCC : 11E by: Cha : 1M : 44, : 1 M Freq MHz 2462.00 2462.00 2483.50 2483.50 2483.50 2487.84 2487.84 4944.00	58 56 chamb 52_CLASS 3_TX_CH arles H /44 /44 / 1 Level dBuV/m 110.22 113.20 50.24 56.77 52.98 58.78 41.60	er 1 -B_2.4 11 siao 0 Hz Read Level dBuV 105.60 108.58 45.58 52.11 48.30 54.10 31.25	Factor G 3m Vo Factor dB/m 4.62 4.62 4.66 4.66 4.68 4.68 4.68 10.35	600. Freque ertical Limit Line dBuV/m 54.00 74.00 54.00 74.00 54.00	15 ency (MHz) Over Limit dB -3.76 -17.23 -1.02 -15.22 -12.40	400. 400. APos 127 127 178 178 178 178 178 178 178 127	2 TPos deg 92 360 360 360 360 360 77	Remark Average Peak Average Peak Average Peak Average Peak Average	250
0 ite ondit: emark ested ate ower B/VB - 1 2 3 4 5 pp 6 pk 7 8	1000 : 966 ion: FCC : 11E by: Cha : 1M : 44/ : 1 M Freq MHz 2462.00 2462.00 2483.50 2483.50 2483.50 2487.84 2487.84 4944.00 4944.00	58 5 chamb 5 chamb 5 cLASS 3 TX_CH arles H /44 /4Hz / 1 Level dBuV/m 110.22 113.20 50.24 56.77 52.98 58.78 41.60 47.82	er 1 -B_2.4 11 siao 0 Hz Read Level dBuV 105.60 108.58 45.58 52.11 48.30 54.10 31.25 37.47	Factor G 3m Vo Factor dB/m 4.62 4.62 4.66 4.66 4.68 4.68 10.35 10.35	600. Freque ertical Limit Line dBuV/m 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	15 mcy (MHz) Over Limit dB -3.76 -17.23 -1.02 -15.22 -12.40 -26.18	400. 400. APos cm 127 127 127 178 178 178 178 178 127 127	2 TPos deg 92 360 360 360 360 77 77	Remark Average Peak Average Peak Average Peak Average Peak Average Peak	250
0 ite ondit: emark ested ate ower B/VB - 1 2 3 4 5 pp 6 pk 7 8 9	1000 : 960 ion: FCC : 11E by: Cha : 1M : 44/ : 1 M Freq MHz 2462.00 2462.00 2462.00 2463.50 2483.50 2483.50 2483.50 2487.84 2487.84 4944.00 5000.00	58 56 chamb 52_CLASS 3_TX_CH arles H /44 /44 /4Hz / 1 Level dBuV/m 110.22 113.20 50.24 56.77 52.98 58.78 41.60 47.82 50.42	er 1 -B_2.4 11 siao 0 Hz Read Level dBuV 105.60 108.58 45.58 52.11 48.30 54.10 31.25 37.47 39.83	Factor G 3m Vo Factor dB/m 4.62 4.62 4.66 4.66 4.68 4.68 10.35 10.35 10.59	600. Freque ertical Limit Line dBuV/m 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	15 mcy (MHz) Over Limit dB -3.76 -17.23 -1.02 -15.22 -12.40 -26.18 -3.58	400. 400. APos cm 127 127 127 127 128 178 178 178 127 127 127 211	2 TPos deg 92 92 360 360 360 360 77 77 48	Remark Average Peak Average Peak Average Peak Average Peak Average Peak Average	250

Remarks:

1. Level(dBuV/m) = Read Level(dBuV) + Factor(dB/m)

2. Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Over limit = Level – Limit value

802.11g

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Remarks:

1. Level(dBuV/m) = Read Level(dBuV) + Factor(dB/m)

2. Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Over limit = Level – Limit value

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

1. Level(dBuV/m) = Read Level(dBuV) + Factor(dB/m)

- 3. The other emission levels were very low against the limit.
- 4. Over limit = Level Limit value
- 5. The emission levels of other frequencies were very low against the limit.

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

120	Level (dBuV	/m)							Dutt	. 2021-03-0
120	4									
105.0										
90.0										
75.0									FCC_CLAS	S-B_2.4G
60.0	25									
00.0		10						FC	C_CLASS-B	_2.4G_AV
45.0										
30.0										
15.0										
0										
1	1000	58	00.	10	600.	15	400.	2	0200.	250
	1000	58	00.	10	600. Freque	15 ncy (MHz)	400.	2	0200.	250
ite	: 966	58 chamb	er 1	10	600. Freque	15 ncy (MHz)	400.	2	0200.	250
ite ondit:	: 966 ion: FCC	58 chamb CLASS	er 1 -B_2.4	10 G 3m He	600. Freque	15 ncy(MHz) al	400.	2	0200.	250
ite ondit: emark	: 966 ion: FCC : 110	58 chamb CLASS TX_CH	er 1 -B_2.40 06	10 G 3m He	600. Freque orizont	15 ncy(MHz) al	400.	2	0200.	250
ite ondit: emark ested	: 966 ion: FCC : 110 by: Har	58 chamb CLASS G_TX_CH TY Hsu	er 1 -B_2.4 06 eh	10 G 3m He	600. Freque	15 ncy(MHz) al	400.	2	0200.	250
ite ondit: emark ested ate	: 966 ion: FCC : 110 by: Har : 6M	58 chamb CLASS G_TX_CH Ty Hsu	er 1 -B_2.4 06 eh	10 G 3m H	600. Freque	15 ncy(MHz)	400.	2	0200.	250
ite ondit: emark ested ate ower B/VB	: 966 ion: FCC : 110 by: Har : 6M : 60/ : 1 M	58 CCLASS CLASS TX_CH Ty Hsu 60 Hz / 1	er 1 -B_2.44 06 eh 0 Hz	10 G 3m Ha	600. Freque	15 ncy(MHz) al	400.	2	0200.	250
ite ondit: emark ested ate ower B/VB	: 966 ion: FCC : 110 by: Har : 6M : 60/ : 1 M	58 CLASS G_TX_CH Try Hsu 60 1Hz / 1	er 1 -B_2.4 06 eh 0 Hz Read	10 G 3m He	600. Freque prizont	15 ncy(MHz) al	400. APos	2 TPos	0200.	250
ite ondit: emark ested ate ower B/VB	: 966 ion: FCC : 110 by: Har : 6M : 60/ : 1 M Freq	58 C_CLASS G_TX_CH Try Hsu 60 1Hz / 1 Level	er 1 -B_2.4 06 eh 0 Hz Read Level	10 G 3m He Factor	600. Freque orizont Limit Line	15 ncy(MHz) al Over Limit	400. APos	2 TPos	0200. Remark	250
ite ondit: emark ested ate ower B/VB –	: 966 ion: FCC : 110 by: Har : 6M : 60/ : 1 M Freq MHz	58 C_CLASS G_TX_CH Try Hsu 60 Hz / 1 Level dBuV/m	er 1 -B_2.4 06 eh 0 Hz Read Level dBuV	10 G 3m Ho Factor dB/m	GOO. Freque Drizont Limit Line dBuV/m	15 ncy (MHz) al Over Limit dB	APos	2 TPos deg	Remark	250
ite ondit: emark ested ate ower B/VB -	: 966 ion: FCC : 110 by: Har : 6M : 60/ : 1 M Freq MHz 2390.00	58 5 chamb C_CLASS 5_TX_CH Try Hsu 60 1Hz / 1 Level dBuV/m 46.31	er 1 -B_2.4 06 eh 0 Hz Read Level dBuV 41.81	G 3m Ho Factor dB/m 4.50	600. Freque Drizont Limit Line dBuV/m 54.00	15 ncy (MHz) al Over Limit dB -7.69	400. APos 	TPos deg 259	Remark Average	
ite ondit: emark ested ate ower B/VB - 1 2 pk	: 966 ion: FCC : 110 by: Har : 6M : 60/ : 1 M Freq MHz 2390.00	58 5 chamb 5 CLASS 5 TX_CH 5 TY Hsu 60 1Hz / 1 Level dBuV/m 46.31 60.79	er 1 -B_2.4 06 eh 0 Hz Read Level dBuV 41.81 56.29	10 G 3m Ho Factor dB/m 4.50 4.50	Goo. Freque Drizont Limit Line dBuV/m 54.00 74.00	15 ncy (MHz) al Over Limit dB -7.69 -13.21	400. APos 	2 TPos deg 259 259	Remark Average Peak	
ite ondit: emark ested ate ower B/VB 	: 966 ion: FCC : 110 by: Har : 6M : 60/ : 1 M Freq MHz 2390.00 2437.00	58 5 chamb 5 CLASS 6 TX_CH 5 TY_Hsu 760 1Hz / 1 Level dBuV/m 46.31 60.79 108.85	er 1 -B_2.40 06 eh 0 Hz Read Level dBuV 41.81 56.29 104.26	10 G 3m Ho Factor dB/m 4.50 4.59	Limit Limit Line dBuV/m 54.00 74.00	15 ncy (MHz) al Over Limit dB -7.69 -13.21	400. APos cm 290 290 290	2 TPos deg 259 259	Remark Average Peak Average Deak	
ite ondit: emark ested ate ower B/VB - 1 2 pk 3 4 5	: 966 ion: FCC : 116 by: Har : 6M : 60/ : 1 M Freq MHz 2390.00 2437.00 2437.00	58 5 chamb 5 CLASS 5 TX_CH 5 TX_CH 760 1Hz / 1 60 1Hz / 1 46.31 60.79 108.85 115.23	er 1 -B_2.4 06 eh 0 Hz Read Level dBuV 41.81 56.29 104.26 110.64	Factor G 3m Ho Factor dB/m 4.50 4.59 4.59 4.59	Limit Limit Line dBuV/m 54.00 74.00	15 ncy (MHz) al Over Limit dB -7.69 -13.21	400. APos cm 290 290 290 290	2 TPos deg 259 259 259 259	Remark Average Peak Average Peak	
ite ondit: emark ested ate ower B/VB - 1 2 pk 3 4 5 6	: 966 ion: FCC : 110 by: Har : 6M : 60/ : 1 M Freq 2390.00 2390.00 2437.00 2437.00 2483.50	58 5 chamb 5 CLASS 5 TX_CH 5 TX_CH 760 1Hz / 1 60 1Hz / 1 46.31 60.79 108.85 115.23 45.42 60 64	er 1 -B_2.4 06 eh 0 Hz Read Level dBuV 41.81 56.29 104.26 110.64 40.76	Factor G 3m Ho Factor dB/m 4.50 4.59 4.59 4.59 4.66 4.66	600. Freque orizont Limit Line dBuV/m 54.00 74.00 54.00	15 ncy (MHz) al Over Limit dB -7.69 -13.21 -8.58 13.26	400. APos cm 290 290 290 290 290	2 TPos deg 259 259 259 259 259	Remark Average Peak Average Peak Average Peak	
ite ondit: emark ested ate ower B/VB 	: 966 ion: FCC : 110 by: Har : 6M : 60/ : 1 M Freq 2390.00 2390.00 2437.00 2437.00 2433.50 2483.50	58 5 chamb 5 CLASS 5 TX_CH 5 TX_CH 760 1Hz / 1 60 1Hz / 1 46.31 60.79 108.85 115.23 45.42 60.64 41 29	er 1 -B_2.4 06 eh 0 Hz Read Level dBuV 41.81 56.29 104.26 110.64 40.76 55.98	Factor G 3m Ho Factor dB/m 4.50 4.59 4.59 4.66 4.66 10.21	600. Freque Drizont Limit Line dBuV/m 54.00 74.00 54.00 74.00 54.00	15 ncy (MHz) al Over Limit dB -7.69 -13.21 -8.58 -13.36 12.72	400. APos cm 290 290 290 290 290 290 290 290	2 TPos deg 259 259 259 259 259 259 259 259 259	Remark Average Peak Average Peak Average Peak Average	
ite ondit: emark ested ate ower B/VB 1 2 pk 3 4 5 6 7 8	: 966 ion: FCC : 110 by: Har : 6M : 60/ : 1 M Freq MHz 2390.00 2390.00 2437.00 2437.00 2433.50 2483.50 4874.00	58 5 chamb 5 CLASS 5 TX_CH 5 TX_CH 760 1Hz / 1 60 1Hz / 1 46.31 60.79 108.85 115.23 45.42 60.64 41.28 47 50	er 1 -B_2.4 06 eh 0 Hz Read Level dBuV 41.81 56.29 104.26 110.64 40.76 55.98 31.07 37 29	Factor G 3m Ho Factor dB/m 4.50 4.50 4.59 4.66 10.21 10.21 10.21	600. Freque Drizont Limit Line dBuV/m 54.00 74.00 54.00 74.00 54.00 74.00	15 ncy (MHz) al Over Limit dB -7.69 -13.21 -8.58 -13.36 -12.72 -26 50	400. APos cm 290 290 290 290 290 290 290 290 124 124	2 TPos deg 259 259 259 259 259 259 259 259 259 259	Remark Average Peak Average Peak Average Peak Average Peak	
ite ondit: emark ested ate ower B/VB 1 2 pk 3 4 5 6 7 8 9 pp	: 966 ion: FCC : 110 by: Har : 6M : 60/ : 1 M Freq MHz 2390.00 2390.00 2437.00 2437.00 2433.50 2483.50 4874.00 5000.00	58 5 chamb 5 CLASS 5 TX_CH 5 TX_CH 760 1Hz / 1 60 1Hz / 1 46.31 60.79 108.85 115.23 45.42 60.64 41.28 47.50 60.64	er 1 -B_2.4 06 eh 0 Hz Read Level dBuV 41.81 56.29 104.26 110.64 40.76 55.98 31.07 37.29 36.31	Factor Factor dB/m 4.50 4.50 4.59 4.59 4.66 10.21 10.55	600. Freque Drizont Limit Line dBuV/m 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	15 ncy (MHz) al Over Limit dB -7.69 -13.21 -8.58 -13.36 -12.72 -26.50 -7 10	400. APos cm 290 290 290 290 290 290 290 290 124 124 197	259 259 259 259 259 259 259 259 259 259	Remark Average Peak Average Peak Average Peak Average Peak Average	

Remarks:

1. Level(dBuV/m) = Read Level(dBuV) + Factor(dB/m)

- 3. The other emission levels were very low against the limit.
- 4. Over limit = Level Limit value
- 5. The emission levels of other frequencies were very low against the limit.

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

120	Level (dBuv	/m)				-			Dutt	LULI-U
1au	3									
105.0			-		_	_	_			
105.0										
00.0										
90.0										
										S.B. 240
75.0									TCC_CLA.	5-0_2.4
10000	3									
60.0		10						FC	C CLASS-B	2.4G A
	ľ	a								
45.0		+		-		-	-			
30.0									_	
15.0										
0	000							-		-
	1000	58	00.	10)600. Eroquo	15 DCV (MHz)	400.	2	0200.	2
	1000	58	:00.	10	600. Freque	15 ncy (MHz)	400.	2	0200.	2
Site	: 966	58 5 chamb	00. er 1	10)600. Freque	15 ncy (MHz)	400.	2	20200.	2
Site Condit:	: 966	58 chamb CLASS	er 1 -B_2.4	10 G 3m V	600. Freque	15 ncy (MHz)	400.	2	20200.	2
Site Condit: Remark	: 966 ion: FCC : 110	58 chamb C_CLASS G_TX_CH	er 1 -B_2.40	10 G 3m V	0600. Freque ertical	15 ncy (MHz)	400.	2	20200.	2
Site Condit: Remark Tested	: 966 ion: FCC : 110 by: Har	58 chamb C_CLASS G_TX_CH ry Hsu	er 1 -B_2.4 06 eh	10 G 3m V	0600. Freque ertical	15 ncy (MHz)	400.	2	0200.	2
Site Condit: Remark Tested Rate	: 966 ion: FCC : 110 by: Har : 6M	58 chamb CCLASS G_TX_CH Ty Hsu	er 1 -B_2.4 06 eh	10 G 3m V	9600. Freque ertical	15 ncy (MHz)	400.	2	0200.	2
Site Condit: Remark Tested Rate Power	: 966 ion: FCC : 110 by: Har : 6M : 60/	58 chamb C_CLASS G_TX_CH Try Hsu 760	er 1 -B_2.4 06 eh	10 G 3m V	9600. Freque ertica]	15 ncy (MHz)	400.	2	0200.	2
Site Condit: Remark Tested Rate Power RB/VB	: 966 ion: FCC : 110 by: Har : 6M : 60/ : 1 M	58 C_CLASS G_TX_CH Ty Hsu 60 1Hz / 1	er 1 -B_2.4 06 eh 0 Hz	10 G 3m V	9600. Freque ertica]	15 ncy (MHz)	400.	2	0200.	2
Site Condit: Remark Tested Rate Power RB/VB	: 966 ion: FCC : 110 by: Har : 6M : 60/ : 1 M	58 C_CLASS G_TX_CH Try Hsu 760 1Hz / 1	er 1 -B_2.4 06 eh 0 Hz Read	10 G 3m V	600. Freque ertical Limit	15 ncy (MHz)	400. APos	TPos	0200.	2
Site Condit: Remark Tested Rate Power RB/VB	: 966 ion: FCC : 110 by: Har : 6M : 60/ : 1 M Freq	58 C_CLASS G_TX_CH Try Hsu 760 1Hz / 1 Level	er 1 -B_2.4 06 eh 0 Hz Read Level	G 3m Vo Factor	6000. Freque ertical Limit Line	15 ncy (MHz) Over Limit	400. APos	TPos	Remark	2
Site Condit: Remark Tested Rate Power RB/VB	: 966 ion: FCC : 110 by: Har : 6M : 60/ : 1 M Freq	58 5 chamb 5 CLASS 5 TX_CH 5 TY Hsu 60 1Hz / 1 Level dBuV/m	er 1 -B_2.4 06 eh 0 Hz Read Level 	G 3m V Factor dB/m	Freque Freque ertical Limit Line dBuV/m	15 ncy(MHz) Over Limit dB	400. APos 	TPos	Remark	2
Site Condit: Remark Tested Rate Power RB/VB -	: 966 ion: FCC : 110 by: Har : 6M : 60/ : 1 M Freq MHz	58 5 chamb 5_CLASS 5_TX_CH bry Hsu 760 1Hz / 1 Level dBuV/m 50 20	er 1 -B_2.4 06 eh 0 Hz Read Level dBuV 45 79	G 3m V Factor dB/m	Ertical Limit Limit dBuV/m	Over Limit dB	400. APos 	TPos deg	Remark	
Site Condit: Remark Tested Rate Power RB/VB - 1 2	: 966 ion: FCC : 110 by: Har : 6M : 60/ : 1 M Freq MHz 2390.00 2390.00	58 5 chamb 5 CLASS 5 TX_CH 760 1Hz / 1 Level dBuV/m 50.29 64.50	er 1 -B_2.4 06 eh 0 Hz Read Level dBuV 45.79 60.00	G 3m V Factor dB/m 4.50 4.50	Freque ertical Limit Line dBuV/m 54.00 74.00	0ver Limit -3.71 -9.50	400. APos 	TPos deg 84 84	Remark Average Peak	
Site Condit: Remark Tested Rate Power RB/VB 	: 966 ion: FCC : 110 by: Har : 6M : 60/ : 1 M Freq MHz 2390.00 2390.00 2437.00	58 5 chamb 5 CLASS 5 TX_CH 5 TX_CH 760 1Hz / 1 Level 60 4BuV/m 50.29 64.50 111.31	er 1 -B_2.4 06 eh 0 Hz Read Level dBuV 45.79 60.00 106.72	Factor dB/m 4.50 4.59 4.59	Freque Freque ertical Limit Line dBuV/m 54.00 74.00	0ver Limit -3.71 -9.50	400. APos 	2 TPos deg 84 84 90	Remark Average Peak Average	
Site Condit: Remark Tested Rate Power RB/VB 	: 966 ion: FCC : 110 by: Har : 6M : 60/ : 1 M Freq 2390.00 2390.00 2437.00	58 5 chamb 5 CLASS 5 TX_CH 50 1Hz / 1 Level 4BuV/m 50.29 64.50 111.31 118.01	er 1 -B_2.4 06 eh 0 Hz Read Level dBuV 45.79 60.00 106.72 113.42	Factor G 3m V Factor dB/m 4.50 4.50 4.59 4.59 4.59	Deoto. Freque ertical Limit Line dBuV/m 54.00 74.00	0ver Limit -3.71 -9.50	400. APos 	2 TPos deg 84 84 90 90	Remark Average Peak Average Peak	
Site Condit: Remark Tested Rate Power RB/VB 	: 966 ion: FCC : 110 by: Har : 6M : 60/ : 1 M Freq 2390.00 2390.00 2437.00 2437.00 2483.50	58 5 chamb 5 CLASS 5 TX_CH 5 TX_CH 760 1Hz / 1 Level 60 1Hz / 1 60 1Hz / 1 12 60 111.31 118.01 52.96	er 1 -B_2.44 06 eh 0 Hz Read Level dBuV 45.79 60.00 106.72 113.42 48.30	Factor G 3m V Factor dB/m 4.50 4.50 4.59 4.59 4.66	0600. Freque ertical Limit Line dBuV/m 54.00 74.00 54.00	0ver Limit -3.71 -9.50 -1.04	400. APos 	2 TPos deg 84 84 90 90 358	Remark Average Peak Average Peak Average	
Site Condit: Remark Tested Rate Power RB/VB 1 2 3 4 5 pp 6 pk	: 966 ion: FCC : 110 by: Har : 6M : 60/ : 1 M Freq 2390.00 2390.00 2437.00 2437.00 2483.50	58 5 chamb 5 CLASS 5 TX_CH 5 TY Hsu 60 1Hz / 1 Level 60 1Hz / 1 Level 60.29 64.50 111.31 118.01 52.96 66.78	er 1 -B_2.44 06 eh 0 Hz Read Level dBuV 45.79 60.00 106.72 113.42 48.30 62.12	Factor G 3m V Factor dB/m 4.50 4.59 4.59 4.66 4.66	0600. Freque ertical Limit Line dBuV/m 54.00 74.00 54.00 74.00	0ver Limit -3.71 -9.50 -1.04 -7.22	400. APos cm 176 176 127 127 137 137	TPos deg 84 90 358 358	Remark Average Peak Average Peak Average Peak Average Peak	
Site Condit: Remark Tested Rate Power RB/VB 1 2 3 4 5 pp 6 pk 7	: 966 ion: FCC : 110 by: Har : 6M : 60/ : 1 M Freq MHz 2390.00 2437.00 2437.00 2433.50 2483.50 4874.00	58 54 55 54 54 55 56 57 56 57 50 50 50 50 50 50 50 50 50 50 50 50 50	er 1 -B_2.4 06 eh 0 Hz Read Level dBuV 45.79 60.00 106.72 113.42 48.30 62.12 31.42	Factor G 3m V Factor dB/m 4.50 4.59 4.59 4.66 10.21	0600. Freque ertical Limit Line dBuV/m 54.00 74.00 54.00 74.00 54.00	0ver Limit -3.71 -9.50 -1.04 -7.22 -12.37	APos cm 176 176 127 127 137 137 137 174	2 TPos deg 84 84 90 358 358 84	Remark Average Peak Average Peak Average Peak Average	
Site Condit: Remark Tested Rate Power RB/VB 	: 966 ion: FCC : 110 by: Har : 6M : 60/ : 1 M Freq 2390.00 2437.00 2437.00 2437.00 2433.50 2483.50 4874.00 4874.00	58 5 chamb 5 CLASS 5 TX_CH 5 TX_CH 760 1Hz / 1 Level 60 1Hz / 1 18.01 50.29 64.50 111.31 118.01 52.96 66.78 41.63 48.07	er 1 -B_2.4 06 eh 0 Hz Read Level dBuV 45.79 60.00 106.72 113.42 48.30 62.12 31.42 37.86	Factor G 3m V Factor dB/m 4.50 4.59 4.59 4.66 10.21 10.21	0600. Freque ertical Limit Line dBuV/m 54.00 74.00 54.00 74.00 54.00 74.00	0ver Limit -3.71 -9.50 -1.04 -7.22 -12.37 -25.93	400. APos cm 176 176 127 127 137 137 137 174 174	2 TPos deg 84 84 90 90 358 358 84 84	Remark Average Peak Average Peak Average Peak Average Peak	

1. Level(dBuV/m) = Read Level(dBuV) + Factor(dB/m)

- 3. The other emission levels were very low against the limit.
- 4. Over limit = Level Limit value
- 5. The emission levels of other frequencies were very low against the limit.

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

120	Level (dBuV	/m)							Dutt	
		2									
105.0		Ĩ.		_		-	-			_	
Marka Divers											
90.0											
75.0										FCC CLAS	S-B 2.4G
75.0											
00.0		4									
60.0									FC	C_CLASS-B	_2.4G_AV
12.00		3	e e								
45.0		+	1	_							
30.0		+		_						-	
15.0	-	-									
0											
0,	1000	066		5800.	10	600. Freque	15 ncy (MHz)	400.	2	0200.	250
0, te ondit: mark ested ite	1000 : ion: : by: :	966 FCC 110 Cha 6M	cham C_CLAS G_TX_C arles	5800. 55800. 55-B_2.4 H11 Hsiao	10 G 3m He	1600. Freque	15 ncy(MHz)	400.	2	0200.	250
0 ite ondit: emark ested ate ower	1000 : ion: : by: :	966 FCC 110 Cha 6M 41/	5 chan C_CLAS 5_TX_C arles (41	5800. 5800. S-B_2.4 H11 Hsiao	10 G 3m H4	600. Freque	15 ncy(MHz)	400.	2	0200.	250
0 ite ondit: emark ested ate ower 3/VB	1000 : ion: : by: : :	966 FCC 110 Cha 6M 41/ 1 M	6 cham C_CLAS G_TX_C arles /41 NHz /	5800. 55-B_2.4 H11 Hsiao 10 Hz Read	10 G 3m Ho	600. Freque	15 ncy (MHz) al	400. APos	2 TPos	0200.	250
0, ite ondit: emark ested ate ower 3/VB	1000 : ion: : by: : :	966 FCC 110 Cha 6M 41/ 1 M	5 cham C_CLAS G_TX_C arles 741 1Hz / Leve	5800. 55-B_2.4 H11 Hsiao 10 Hz Read 1 Level	10 G 3m Ho Factor	600. Freque Drizont Limit Line	15 ncy (MHz) al Over Limit	400. APos	2 TPos	0200. Remark	250
0, ite ondit: emark ested ate ower 3/VB	1000 : ion: : by: : : F	966 FCC 110 Cha 6M 41/ 1 M req	G cham C_CLAS G_TX_C arles 741 MHz / Leve	5800. 55800. 55-B_2.4 H11 Hsiao 10 Hz Read 1 Level	10 G 3m Ho Factor	1600. Freque prizont Limit Line	15 ncy (MHz) al Over Limit	400. APos	2 TPos	0200. Remark	250
0, ite ondit: emark ested ate ower 3/VB	1000 : ion: : by: : : F	966 FCC 110 Cha 6M 41/ 1 M req MHz	5 chan C_CLAS G_TX_C arles 741 HHz / Leve dBuV/	5800. 55800. S-B_2.4 H11 Hsiao 10 Hz Read 1 Level m dBuV	10 G 3m Ho Factor dB/m	600. Freque Drizont Limit Line dBuV/m	15 ncy (MHz) al Over Limit dB	400. APos	2 TPos deg	0200. Remark	250
0, ite ondit: emark ested ate ower 3/VB 	1000 : ion: : by: : : : F	966 FCC 110 Cha 6M 41/ 1 M req MHz	G cham C_CLAS G_TX_C arles (41 HHz / Leve dBuV/	5800. 55800. 55-B_2.4 H11 Hsiao 10 Hz Read 1 Level m dBuV	G 3m Ho Factor dB/m	600. Freque Drizont Limit Line dBuV/m	15 ncy (MHz) al Over Limit dB	400. APos	2 TPos deg	Remark	250
0, endit: emark ested over 0/VB 	1000 : ion: : by: : : : F 2462 2462	966 FCC Cha 6M 41/ 1 M req MHz .00	G cham C_CLAS G_TX_C Garles (41 IHz / Leve dBuV/ 101.1 108.0	5800. 55800. 55-B_2.4 H11 Hsiao 10 Hz Read 1 Level m dBuV 6 96.54 9 103.47	10 G 3m Ho Factor dB/m 4.62 4.62	1600. Freque Drizont Limit Line dBuV/m	15 ncy (MHz) al Over Limit dB	400. APos cm 290 290	TPos deg 259 259	0200. Remark Average Peak	250
0, endit: emark ested ate ower 3/VB 1 2 3 pp	1000 : ion: : by: : : : F 2462 2462 2462 2462	966 FCC 110 Cha 6M 41/ 1 M req MHz .00 .00	5 cham C_CLAS 5_TX_C arles (41 1Hz / Leve dBuV/ 101.1 108.0 49.5	5800. 5800. 5-B_2.4 H11 Hsiao 10 Hz Read 1 Level m dBuV 6 96.54 9 103.47 6 44.90	10 G 3m Ho Factor dB/m 4.62 4.62 4.66	1600. Freque Drizont Limit Line dBuV/m 54.00	15 ncy (MHz) al Over Limit dB	400. APos cm 290 290 290	2 TPos deg 259 259 259	0200. Remark Average Peak Average	250
0, ite mark ested ite wer 3/VB - 1 2 3 pp 4 pk	1000 : ion: : by: : : : F 2462 2462 2462 2483 2483	966 FCC 110 Cha 6M 41/ 1 M req .00 .00 .50	6 cham C_CLAS G_TX_C arles (41 HHz / Leve dBuV/ 101.1 108.0 49.5 61.1	5800. 5800. 5-B_2.4 H11 Hsiao 10 Hz Read 1 Level m dBuV 6 96.54 9 103.47 6 44.90 3 56.47	10 G 3m Ho Factor dB/m 4.62 4.62 4.66 4.66	1600. Freque Drizont Limit Line dBuV/m 54.00 74.00	15 ncy (MHz) al Over Limit dB 	400. APos cm 290 290 290 290 290	2 TPos deg 259 259 259 259 259	Remark Average Peak Average Peak	250
0, ite mark ested ate wwer 3/VB 1 2 3 pp 4 pk 5	1000 : ion: : by: : : : : F 2462 2462 2462 2463 2483 2483 4924	966 FCC 110 Cha 6M 41/ 1 M req .00 .00 .50 .50 .00	6 cham C_CLAS G_TX_C arles /41 Hz / Leve dBuV/ 101.1 108.0 49.5 61.1 41.4	5800. 5800. 5-B_2.4 H11 Hsiao 10 Hz Read 1 Level dBuV 6 96.54 9 103.47 6 44.90 3 56.47 7 31.22	10 G 3m Ho Factor dB/m 4.62 4.62 4.66 4.66 10.25	600. Freque Drizont Limit Line dBuV/m 54.00 74.00 54.00	15 ncy (MHz) al Over Limit dB -4.44 -12.87 -12.53	400. 400. APos cm 290 290 290 290 290 186	259 259 259 259 259 259 259	0200. Remark Average Peak Average Peak Average	250
0, ite ondit: emark ested ate ower 3/VB 1 2 3 pp 4 pk 5 6	1000 : ion: : by: : : : : F 2462 2462 2462 2483 2483 2483 2483 4924 4924	966 FCC 110 Cha 6M 41/ 1 M req .00 .00 .50 .50 .00	6 cham C_CLAS 6_TX_C 6_TX_C 6_TX_C 6 101.1 108.0 49.5 61.1 41.4 48.2	5800. 5800. 55-B_2.4 H11 Hsiao 10 Hz Read 1 Level dBuV 6 96.54 9 103.47 6 44.90 3 56.47 7 31.22 5 38.00	10 G 3m Ho Factor dB/m 4.62 4.66 4.66 10.25 10.25	600. Freque Drizont Limit Line dBuV/m 54.00 74.00 54.00 74.00	15 ncy (MHz) al Over Limit dB -4.44 -12.87 -12.53 -25.75	400. 400. APos cm 290 290 290 290 186 186 186	259 259 259 259 196 196	Remark Average Peak Average Peak Average Peak	250

Remarks:

1. Level(dBuV/m) = Read Level(dBuV) + Factor(dB/m)

- 2. Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Over limit = Level Limit value
- 5. The emission levels of other frequencies were very low against the limit.

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

- 3. The other emission levels were very low against the limit.
- 4. Over limit = Level Limit value
- 5. The emission levels of other frequencies were very low against the limit.

802.11n (HT20)

A D T

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

- 1. Level(dBuV/m) = Read Level(dBuV) + Factor(dB/m)
- 2. Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Over limit = Level Limit value
- 5. The emission levels of other frequencies were very low against the limit.

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Remarks:

1. Level(dBuV/m) = Read Level(dBuV) + Factor(dB/m)

2. Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Over limit = Level – Limit value

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

1. Level(dBuV/m) = Read Level(dBuV) + Factor(dB/m)

- 2. Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Over limit = Level Limit value
- 5. The emission levels of other frequencies were very low against the limit.

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

120	Level (dBuV	/m)			1	_	-	1		
	3									
105.0										
90.0					·					
75.0	6								FCC_CLAS	S-B_2.4G
60.0	5	10						FC	C_CLASS-B	_2.4G_AV
45.0										
30.0										
15.0										
0										
	1000	58	00.	10	600. Freque	15 ncy (MHz)	400.	2	0200.	250
te ondit emark ested ate ower 3/VB	: 966 ion: FCC : 11N by: Cha : MCS : 60/ : 1 N	58 5 chamb 5 CLASS 1_HT20_ arles H 50 760 1Hz / 1	00. er 1 -B_2.44 TX_CH00 siao 0 Hz	10 G 3m Ve 6	600. Freque	15 ncy (MHz)	400.	2	0200.	250
ite ondit mark sted ate ower }/VB	1000 : 966 ion: FCC : 11N by: Cha : MCS : 60/ : 1 M	58 5 chamb 5 CLASS 1_HT20_ arles H 50 760 1Hz / 1	00. er 1 -B_2.40 TX_CH0 siao 0 Hz Read	10 G 3m Ve 6	600. Freque ertical Limit	15 ncy (MHz) Over	400. APos	2 TPos	0200.	250
ite ondit emark ested ate ower 3/VB	1000 : 960 ion: FCC : 11N by: Cha : MCS : 60/ : 1 M Freq	58 5 chamb 5 CLASS 1_HT20_ arles H 50 760 1Hz / 1 Level	er 1 -B_2.4 TX_CHO siao 0 Hz Read Level	10 G 3m Ve 6 Factor	600. Freque ertical Limit Line	15 ncy (MHz) Over Limit	400. APos	2 TPos	0200. Remark	250
ite ondit emark ested ate ower 3/VB	1000 : 966 ion: FCC : 11N by: Cha : MCS : 60/ : 1 M Freq MHz	58 5 chamb C_CLASS I_HT20_ arles H 50 760 IHz / 1 Level dBuV/m	er 1 -B_2.40 TX_CHO siao 0 Hz Read Level dBuV	10 G 3m Ve 6 Factor dB/m	600. Freque ertical Limit Line dBuV/m	15 ncy(MHz) Over Limit dB	APos	2 TPos deg	Remark	250
ite ondit emark ested ate ower 3/VB -	1000 : 966 ion: FCC : 11N by: Cha : MCS : 60/ : 1 N Freq MHz 2390.00	58 5 chamb C_CLASS I_HT20_ arles H 50 760 NHz / 1 Level dBuV/m 50.69	er 1 -B_2.4 TX_CHØ siao 0 Hz Read Level dBuV 46.19	10 G 3m Ve 6 Factor dB/m 4.50	Ertical Limit Limit dBuV/m 54.00	15 ncy (MHz) Over Limit dB -3.31	400. APos 	TPos deg 84	Remark	250
ite ondit: emark ested ate ower 3/VB - 1 2	1000 : 966 ion: FCC : 11N by: Cha : MCS : 60/ : 1 N Freq MHz 2390.00 2390.00	58 5 chamb 5 CLASS 1_HT20_ arles H 50 60 1Hz / 1 Level dBuV/m 50.69 66.69	00. er 1 -B_2.40 TX_CH0 siao 0 Hz Read Level dBuV 46.19 62.19	10 G 3m Ve 6 Factor dB/m 4.50 4.50	Entical Limit Limit dBuV/m 54.00 74.00	15 ncy (MHz) Over Limit dB -3.31 -7.31	400. APos 	TPos deg 84 84	Remark Average Peak	250
te ondit emark ested over 3/VB - 1 2 3	1000 : 966 ion: FCC : 11N by: Cha : MCS : 60/ : 1 N Freq MHz 2390.00 2390.00 2437.00	58 5 chamb C_CLASS I_HT20_ arles H 50 760 MHz / 1 Level dBuV/m 50.69 66.69 110.28	00. er 1 -B_2.4 TX_CHØ siao 0 Hz Read Level dBuV 46.19 62.19 105.69	10 G 3m Ve 6 Factor dB/m 4.50 4.50 4.59	Entical Limit Limit dBuV/m 54.00 74.00	15 ncy (MHz) Over Limit dB -3.31 -7.31	APos cm 176 176 264	TPos deg 84 84 0	Remark Average Peak Average	250
ite ondit emark ested ate ower 3/VB - 1 2 3 4	1000 : 966 ion: FCC : 11N by: Cha : MCS : 60/ : 1 N Freq MHz 2390.00 2390.00 2437.00	58 5 chamb C_CLASS I_HT20_ arles H 50 760 760 760 760 760 760 760 760 760 76	00. er 1 -B_2.4 TX_CHØ siao 0 Hz Read Level dBuV 46.19 62.19 105.69 113.05	10 G 3m Ve 6 Factor dB/m 4.50 4.50 4.59 4.59	Limit Limit Line dBuV/m 54.00 74.00	15 ncy (MHz) Over Limit dB -3.31 -7.31	APos cm 176 176 264 264	2 TPos deg 84 84 0 0	Remark Average Peak Average Peak	250
ite ondit emark ested ate ower 3/VB - 1 2 3 4 5 pp	1000 : 966 ion: FCC : 11N by: Cha : 60/ : 1 N Freq MHz 2390.00 2390.00 2437.00 2437.00 2483.50	58 5 chamb C_CLASS I_HT20_ arles H 50 760 760 760 760 760 760 760 760 760 76	00. er 1 -B_2.40 TX_CH0 siao 0 Hz Read Level dBuV 46.19 62.19 105.69 113.05 48.27	10 G 3m Ve 6 Factor dB/m 4.50 4.59 4.59 4.66	600. Freque ertical Limit Line dBuV/m 54.00 74.00 54.00	15 ncy (MHz) Over Limit dB -3.31 -7.31 -7.31 -1.07	APos cm 176 176 264 264 137	2 TPos deg 84 84 0 358	Remark Average Peak Average Peak Average	250
ite ondit emark ested ate ower 3/VB - 1 2 3 4 5 pp 6 pk	1000 : 966 ion: FCC : 11N by: Cha : MCS : 60/ : 1 N Freq MHz 2390.00 2437.00 2437.00 2433.50	58 5 chamb 5 cLASS 1_HT20_ arles H 50 60 HZ / 1 Level dBuV/m 50.69 66.69 110.28 117.64 52.93 68.95	00. er 1 -B_2.40 TX_CH0 siao 0 Hz Read Level dBuV 46.19 62.19 105.69 113.05 48.27 64.29	10 G 3m Ve 6 Factor dB/m 4.50 4.59 4.59 4.66 4.66	600. Freque ertical Limit Line dBuV/m 54.00 74.00 54.00 74.00	15 ncy (MHz) Over Limit dB -3.31 -7.31 -7.31 -7.31 -7.31 -7.31 -7.31 -7.31	APos cm 176 176 264 264 137 137	2 TPos deg 84 84 0 358 358	Remark Average Peak Average Peak Average Peak	
ite ondit emark ested ate ower B/VB - 1 2 3 4 5 pp 6 pk 7	1000 : 966 ion: FCC : 11N by: Cha : MCS : 60/ : 1 N Freq MHz 2390.00 2437.00 2437.00 2433.50 2483.50 4874.00	58 5 chamb C_CLASS I_HT20_ arles H 50 60 HHz / 1 Level dBuV/m 50.69 66.69 110.28 117.64 52.93 68.95 41.62	00. er 1 -B_2.40 TX_CH0 siao 0 Hz Read Level dBuV 46.19 62.19 105.69 113.05 48.27 64.29 31.41	10 G 3m Ve 6 Factor dB/m 4.50 4.59 4.59 4.66 4.66 10.21	600. Freque ertical Limit Line dBuV/m 54.00 74.00 54.00 74.00 54.00 54.00	15 ncy (MHz) Over Limit dB -3.31 -7.32 -7.31 -7.31 -7.31 -7.31 -7.31 -7.31 -7.31 -7.32 -7.31 -7.31 -7.31 -7.32 -7.32 -7.32 -7.32 -7.32 -7.32 -7.32 -7.31 -7.32 -7.	APos cm 176 176 264 264 137 137 148	2 TPos deg 84 84 0 358 358 138	Remark Average Peak Average Peak Average Peak Average Peak Average	250
ite ondit emark ested ate ower B/VB 	1000 : 966 ion: FCC : 11N by: Cha : MCS : 60/ : 1 N Freq MHz 2390.00 2437.00 2437.00 2437.00 2433.50 2483.50 4874.00 4874.00	58 5 chamb C_CLASS L_HT20_ arles H 50 60 Hz / 1 Level dBuV/m 50.69 66.69 110.28 117.64 52.93 68.95 41.62 48.14	00. er 1 -B_2.40 TX_CH0 siao 0 Hz Read Level dBuV 46.19 62.19 105.69 113.05 48.27 64.29 31.41 37.93	10 G 3m Ve 6 Factor dB/m 4.50 4.59 4.59 4.66 10.21 10.21	600. Freque ertical Limit Line dBuV/m 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	15 ncy (MHz) Over Limit dB -3.31 -7.31 -1.07 -5.05 -12.38 -25.86	APos cm 176 176 264 264 137 137 148 148	2 TPos deg 84 84 0 358 358 138 138	Remark Average Peak Average Peak Average Peak Average Peak	250
ite ondit emark ested ate ower B/VB 1 2 3 4 5 pp 6 pk 7 8 9	1000 : 966 ion: FCC : 11N by: Cha : MCS : 60/ : 1 N Freq MHz 2390.00 2437.00 2437.00 2437.00 2433.50 2483.50 4874.00 4874.00 5000.00	58 5 chamb C_CLASS N_HT20_ arles H 50 60 MHz / 1 Level dBuV/m 50.69 66.69 110.28 117.64 52.93 68.95 41.62 48.14 50.84	00. er 1 -B_2.40 TX_CH0 siao 0 Hz Read Level dBuV 46.19 62.19 105.69 113.05 48.27 64.29 31.41 37.93 40.25	10 G 3m Ve 6 Factor dB/m 4.50 4.59 4.59 4.66 10.21 10.21 10.59	600. Freque ertical Limit Line dBuV/m 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	15 ncy (MHz) Over Limit dB -3.31 -7.31	APos cm 176 176 264 264 137 137 148 148 148 211	2 TPos deg 84 84 0 0 358 358 138 138 138 48	Remark Average Peak Average Peak Average Peak Average Peak Average Peak Average	250

Remarks:

1. Level(dBuV/m) = Read Level(dBuV) + Factor(dB/m)

2. Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Over limit = Level – Limit value

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

1. Level(dBuV/m) = Read Level(dBuV) + Factor(dB/m)

- 2. Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Over limit = Level Limit value
- 5. The emission levels of other frequencies were very low against the limit.

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Remarks:

- 1. Level(dBuV/m) = Read Level(dBuV) + Factor(dB/m)
- 2. Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Over limit = Level Limit value
- 5. The emission levels of other frequencies were very low against the limit.

802.11n (HT40)

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

120	Level (ubuv	/m)							Date	LOLIOUS
120										
105.0	4									
	3									
90.0	1									
75.0									FCC_CLAS	S-B_2.4G
60.0	6	10		-				FC	C_CLASS-B	_2.4G_AV
45.0		e e								
45.0	ľ	1								
30.0										
15.0										
15.0										
0	1000	58	00.	10	600	15	400	2	0200	250
					000.	1.5	400.	-	0200.	200
					Freque	ncy (MHz)	400.		0200.	200
te	: 966	chamb	er 1		Freque	ncy (MHz)	400.		.0200.	250
ite	: 966 ion: FCC	chambo CLASS	er 1 -B_2.4	G 3m He	Freque	ncy(MHz)	400.			250
ite ondit: mark	: 966 ion: FCC : 11N	chambo _CLASS	er 1 -B_2.4 TX_CH0	G 3m Ho 3	Freque	ncy(MHz)	400.			250
ite ondit: amark asted	: 966 ion: FCC : 11N by: Cha	chambo _CLASS I_HT40_ arles H	er 1 -B_2.44 TX_CH0 siao	G 3m Ho 3	Freque	ncy(MHz)	400.			250
ite ondit: emark ested ite	: 966 ion: FCC : 11N by: Cha : MCS	chambo _CLASS I_HT40_ Irles H 50	er 1 -B_2.4 TX_CH0 siao	G 3m He	Freque	ncy(MHz)	400.			250
ite ondit: amark asted ate ower	: 966 ion: FCC : 11N by: Cha : MCS : 35/	5 chambo C_CLASS I_HT40_ mrles H 50 /35	er 1 -B_2.4 TX_CH0 siao	G 3m H(3	Freque	ncy (MHz)	400.			231
ite ondit: emark ested ate ower 3/VB	: 966 ion: FCC : 11N by: Cha : MCS : 35/ : 1 M	5 chambo CLASS I_HT40_ arles H 50 '35 IHz / 10	er 1 -B_2.44 TX_CH0 siao 0 Hz	G 3m Ho 3	Freque	ncy (MHz)	400.			231
ite ondit: emark ested ate ower 3/VB	: 966 ion: FCC : 11M by: Cha : MCS : 35/ : 1 M	5 chambo C_CLASS I_HT40_ irles H 50 /35 IHz / 10	er 1 -B_2.4 TX_CHØ siao 0 Hz Read	G 3m He	Freque Drizont	ncy (MHz) al	APos	TPos		234
ite ondit: amark asted ate ower 3/VB	: 966 ion: FCC : 11N by: Cha : MCS : 35/ : 1 M Freq	chambo _CLASS I_HT40_ arles H 0 '35 IHz / 10 Level	er 1 -B_2.44 TX_CHØ siao 0 Hz Read Level	G 3m Hd 3 Factor	Freque prizont Limit Line	orcy (MHz) al Over Limit	APos	TPos	Remark	234
ite ondit: amark asted ate wer 3/VB -	: 966 ion: FCC : 11N by: Cha : MCS : 35/ : 1 M Freq MHz	6 chambo C_CLASS I_HT40_ Irles H 60 '35 IHz / 10 Level dBuV/m	er 1 -B_2.44 TX_CHØ siao 0 Hz Read Level 	G 3m Ho 3 Factor dB/m	Freque Drizont Limit Line dBuV/m	Over Limit dB	APos	TPos	Remark	
ite ondit: mark sted wer 3/VB 	: 966 ion: FCC : 11N by: Cha : MCS : 35/ : 1 M Freq MHz 2390.00	6 chambo C_CLASS I_HT40_ arles H 60 '35 IHz / 10 Level dBuV/m 44.41	er 1 -B_2.44 TX_CHØ siao 0 Hz Read Level dBuV 39.91	G 3m Hd 3 Factor dB/m 4.50	Freque Drizont Limit Line dBuV/m 54.00	Over Limit -9.59	APos 	TPos deg 282	Remark 	
ite ondit: emark ested ate ower 3/VB - 1 2 pk	: 966 ion: FCC : 11N by: Cha : MCS : 35/ : 1 M Freq MHz 2390.00 2390.00	5 chambo C_CLASS I_HT40_ arles H 60 '35 IHz / 10 Level dBuV/m 44.41 58.59	er 1 -B_2.44 TX_CHØ siao 0 Hz Read Level 	G 3m Hd 3 Factor dB/m 4.50 4.50	Freque Drizont Limit Line dBuV/m 54.00 74.00	Over Limit -9.59 -15.41	APos 	TPos deg 282 282	Remark Average Peak	
ite ondit: ested ate ower 3/VB - 1 2 pk 3	: 966 ion: FCC : 11N by: Cha : MCS : 35/ : 1 M Freq MHz 2390.00 2390.00 2422.00	6 chambo C_CLASS I_HT40_ 1arles H 60 35 1Hz / 10 Level dBuV/m 44.41 58.59 95.33	er 1 -B_2.44 TX_CHØ siao 0 Hz Read Level dBuV 39.91 54.09 90.77	G 3m Hd 3 Factor dB/m 4.50 4.50 4.50	Freque Drizont Limit Line dBuV/m 54.00 74.00	Over Limit -9.59 -15.41	APos 	TPos deg 282 282 282 282	Remark Average Peak Average	
ite ondit: emark ested ate ower 3/VB - 1 2 pk 3 4	: 966 ion: FCC : 11N by: Cha : MCS : 35/ : 1 M Freq MHz 2390.00 2422.00 2422.00	6 chambo C_CLASS I_HT40_ irles H: 60 /35 NHz / 10 Level dBuV/m 44.41 58.59 95.33 102.00	er 1 -B_2.44 TX_CHØ siao 0 Hz Read Level dBuV 39.91 54.09 90.77 97.44	G 3m Ho 3 Factor dB/m 4.50 4.50 4.56 4.56	Limit Limit Line dBuV/m 54.00 74.00	Over Limit -9.59 -15.41	APos cm 236 236 236 236	TPos deg 282 282 282 282 282	Remark Average Peak Average Peak	
ite ondit: emark ested ate ower 3/VB - 1 2 pk 3 4 5	: 966 ion: FCC : 11N by: Cha : MCS : 35/ : 1 M Freq MHz 2390.00 2390.00 2422.00 2422.00 2483.50	6 chambo C_CLASS I_HT40_ irles H: 60 35 Hz / 10 Level dBuV/m 44.41 58.59 95.33 102.00 41.43	er 1 -B_2.44 TX_CHØ siao 0 Hz Read Level dBuV 39.91 54.09 90.77 97.44 36.77	G 3m Ho 3 Factor dB/m 4.50 4.50 4.56 4.56 4.66	Limit Limit Line dBuV/m 54.00 74.00 54.00	Over Limit -9.59 -15.41 -12.57	APos cm 236 236 236 236 236 236	TPos deg 282 282 282 282 282 282 282	Remark Average Peak Average Peak Average	
ite ondit: mark sted ate ower 3/VB 	: 966 ion: FCC : 11N by: Cha : MCS : 35/ : 1 M Freq MHz 2390.00 2490.00 2422.00 2422.00 2483.50	6 chambo C_CLASS I_HT40_ irles H: 60 35 1Hz / 10 Level dBuV/m 44.41 58.59 95.33 102.00 41.43 52.81	er 1 -B_2.4 TX_CHØ siao 0 Hz Read Level dBuV 39.91 54.09 90.77 97.44 36.77 48.15	G 3m Ho 3 Factor dB/m 4.50 4.56 4.56 4.66 4.66	Freque Drizont Limit Line dBuV/m 54.00 74.00 74.00 74.00	Over Limit -9.59 -15.41 -12.57 -21.19	APos cm 236 236 236 236 236 236 236	TPos deg 282 282 282 282 282 282 282 282 282	Remark Average Peak Average Peak Average Peak	
ite ondit: emark ested ate ower 3/VB 	: 966 ion: FCC : 11N by: Cha : MCS : 35/ : 1 M Freq MHz 2390.00 2490.00 2422.00 2422.00 2483.50 2483.50 4844.00	6 chambo C_CLASS I_HT40_ irles H: 60 (35 1Hz / 10 Level dBuV/m 44.41 58.59 95.33 102.00 41.43 52.81 41.71	er 1 -B_2.40 TX_CHØ siao 0 Hz Read Level dBuV 39.91 54.09 90.77 97.44 36.77 48.15 31.48	G 3m Ho 3 Factor dB/m 4.50 4.56 4.56 4.66 4.66 10.23	Freque Drizont Limit Line dBuV/m 54.00 74.00 54.00 74.00 54.00 54.00	Over Limit -9.59 -15.41 -12.57 -21.19 -12.29	APos cm 236 236 236 236 236 236 119	TPos deg 282 282 282 282 282 282 282 282 282 28	Remark Average Peak Average Peak Average Peak Average	
ite ondit: mark sted ate ower 3/VB 	: 966 ion: FCC : 11N by: Cha : MCS : 35/ : 1 M Freq MHz 2390.00 2490.00 2490.00 2422.00 2483.50 2483.50 2483.50 4844.00	6 chambo C_CLASS I_HT40_ irles H 60 35 Hz / 10 Level dBuV/m 44.41 58.59 95.33 102.00 41.43 52.81 41.71 48.75	er 1 -B_2.4 TX_CHØ siao 0 Hz Read Level dBuV 39.91 54.09 90.77 97.44 36.77 48.15 31.48 38.52	G 3m Ho 3 Factor dB/m 4.50 4.56 4.56 4.66 10.23 10.23	Limit Limit Line dBuV/m 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	Over Limit -9.59 -15.41 -12.57 -21.19 -12.29 -25.25	APos cm 236 236 236 236 236 236 119 119	TPos deg 282 282 282 282 282 282 282 282 282 28	Remark Average Peak Average Peak Average Peak Average Peak	
ite ondit: mark sted wer 3/VB - 1 2 pk 3 4 5 6 7 8 9 pp	: 966 ion: FCC : 11N by: Cha : MCS : 35/ : 1 M Freq MHz 2390.00 2490.00 2422.00 2483.50 2483.50 4844.00 4844.00 5000.00	6 chambo C_CLASS I_HT40_ mles H 60 35 Hz / 10 Level dBuV/m 44.41 58.59 95.33 102.00 41.43 52.81 41.71 48.75 46.77	er 1 -B_2.40 TX_CH0 siao 0 Hz Read Level 0 Hz dBuV 39.91 54.09 90.77 97.44 36.77 48.15 31.48 38.52 36.18	G 3m Ho 3 Factor dB/m 4.50 4.56 4.56 4.66 10.23 10.23 10.59	Freque Drizont Limit Line dBuV/m 54.00 74.00 54.00 74.00 54.00 74.00 54.00	Over Limit -9.59 -15.41 -12.57 -21.19 -12.29 -25.25 -7.23	APos cm 236 236 236 236 236 236 236 236 119 119 119 197	TPos deg 282 282 282 282 282 282 282 163 163 125	Remark Average Peak Average Peak Average Peak Average Peak Average	

Remarks:

1. Level(dBuV/m) = Read Level(dBuV) + Factor(dB/m)

- 2. Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Over limit = Level Limit value
- 5. The emission levels of other frequencies were very low against the limit.

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

120	Level (dBuV	//m)							Date	2021-03-1
120										
	4									
105.0	3				-					
90.0			-							
75.0								-	FCC_CLAS	S-B_2.4G
15.0	2									
60.0	6	10		-				FC	CLASS-B	2.4G_AV
		8								
45.0		1				-			-	
30.0										
15.0										
15.0										
0	1000	58	800.	10	600.	15	400.	2	0200.	250
					-					
					Freque	ncy (MHz)				
•	0.54				Freque	ncy (MHz)				
ite	: 966	5 chamb	er 1	6 7 - 1 /	Freque	ncy (MHz)				
ite ondit:	: 960 ion: FCC	5 chamb C_CLASS	er 1 -B_2.4	G 3m Ve	Freque	ncy (MHz)				
ite ondit: emark	: 960 ion: FCC : 111	5 chamb C_CLASS N_HT40_	er 1 -B_2.4 TX_CH0	G 3m Ve 3	Freque ertical	ncy (MHz)				
ite ondit: emark ested	: 960 ion: FCC : 111 by: Cha	5 chamb C_CLASS N_HT40_ arles H	er 1 -B_2.4 TX_CH0 Isiao	G 3m Ve 3	Freque	ncy (MHz)				
ite ondit: emark ested ate	: 960 ion: FCC : 11M by: Cha : MCS	5 chamb C_CLASS N_HT40_ arles H 50 /35	er 1 -B_2.4 TX_CH0 Isiao	G 3m Ve 3	Freque ertical	ncy (MHz)				
ite ondit: emark ested ate ower B/VB	: 960 ion: FCC : 11M by: Cha : MCS : 35/ : 1 M	5 chamb C_CLASS N_HT40_ arles H 50 /35	er 1 -B_2.4 TX_CH0 Isiao	G 3m Ve 3	Freque ertical	ncy (MHz)				
ite ondit: emark ested ate ower B/VB	: 960 ion: FCC : 11M by: Cha : MCS : 35/ : 1 M	5 chamb C_CLASS N_HT40_ arles H 50 /35 MHz / 1	er 1 -B_2.4 TX_CHO Isiao 0 Hz Read	G 3m Vo 3	Freque ertical	Over	ΔΡος	TPos		
ite ondit: emark ested ate ower B/VB	: 960 ion: FCC : 11 by: Cha : MCS : 35 : 1 M	5 chamb C_CLASS N_HT40_ arles H 50 /35 MHz / 1 Level	er 1 -B_2.4 TX_CH0 siao 0 Hz Read Level	G 3m Vo 3 Factor	Freque ertical Limit Line	Over Limit	APos	TPos	Remark	
ite ondit: emark ested ate ower B/VB	: 960 ion: FCC : 11N by: Cha : MCS : 35/ : 1 N Freq	5 chamb C_CLASS N_HT40_ arles H 50 /35 MHz / 1 Level	er 1 -B_2.4 TX_CHØ Isiao 0 Hz Read Level	G 3m Vo 3 Factor	Freque ertical Limit Line	Over Limit	APos	TPos	Remark	
ite ondit: emark ested ate ower B/VB	: 960 ion: FCC : 11M by: Cha : MCS : 35/ : 1 M Freq MHz	5 chamb C_CLASS N_HT40_ arles H 50 /35 /Hz / 1 Level dBuV/m	er 1 -B_2.40 TX_CH0 siao 0 Hz Read Level dBuV	G 3m Vo 3 Factor dB/m	Freque ertical Limit Line dBuV/m	Over Limit dB	APos 	TPos	Remark	
ite ondit: emark ested ate ower B/VB -	: 960 ion: FCC : 11M by: Cha : MCS : 35/ : 1 M Freq MHz	5 chamb C_CLASS N_HT40 arles H 50 /35 /4Hz / 1 Level dBuV/m	er 1 -B_2.44 TX_CH0 Isiao 0 Hz Read Level 	G 3m Vo 3 Factor dB/m	Freque ertical Limit Line dBuV/m	Over Limit dB	APos cm	TPos	Remark	_
ite ondit: emark ested ate ower B/VB 	: 960 ion: FCO : 11M by: Cha : MCS : 35/ : 1 M Freq MHz 2390.00	5 chamb C_CLASS N_HT40_ arles H 50 /35 /4Hz / 1 Level dBuV/m 52.73	er 1 -B_2.44 TX_CH0 Isiao 0 Hz Read Level dBuV 48.23	G 3m Vo 3 Factor dB/m 4.50	Freque Ertical Limit Line dBuV/m 54.00	Over Limit 	APos cm 161	TPos deg 102	Remark 	
ite ondit: emark ested ate ower B/VB 	: 960 ion: FCC : 11M by: Cha : MCS : 35/ : 1 M Freq MHz 2390.00 2390.00	5 chamb C_CLASS N_HT40 arles H 50 /35 MHz / 1 Level dBuV/m 52.73 67.14	er 1 -B_2.4 TX_CH0 siao 0 Hz Read Level dBuV 48.23 62.64 0 20	G 3m Vo 3 Factor dB/m 4.50 4.50	Limit Limit dBuV/m 54.00 74.00	Over Limit 	APos 	TPos deg 102	Remark Average Peak	
ite ondit: emark ested ate ower B/VB - 1 pp 2 pk 3	: 960 ion: FCC : 11M by: Cha : MCS : 35/ : 1 M Freq MHz 2390.00 2390.00 2422.00	5 chamb C_CLASS N_HT40 arles H 50 /35 MHz / 1 Level dBuV/m 52.73 67.14 99.85	er 1 -B_2.4 TX_CH0 siao 0 Hz Read Level dBuV 48.23 62.64 95.29 101 55	G 3m Vo 3 Factor dB/m 4.50 4.50 4.50	Freque ertical Limit Line dBuV/m 54.00 74.00	Over Limit 	APos cm 161 161 145	TPos deg 102 99	Remark Average Peak Average	
ite ondit: emark ested ate ower B/VB 	: 960 ion: FCO : 111 by: Cha : MCS : 35/ : 1 M Freq MHz 2390.00 2390.00 2422.00 2422.00	5 chamb C_CLASS V_HT40_ arles H 50 /35 MHz / 1 Level dBuV/m 52.73 67.14 99.85 106.14	er 1 -B_2.4 TX_CHØ siao 0 Hz Read Level dBuV 48.23 62.64 95.29 101.58 40.65	G 3m Vo 3 Factor dB/m 4.50 4.50 4.56 4.56	Freque ertical Limit Line dBuV/m 54.00 74.00	Over Limit 	APos cm 161 161 145 145	TPos deg 102 102 99 99	Remark Average Peak Average Peak	
ite ondit: emark ested ate ower B/VB 	: 960 ion: FCO : 111 by: Cha : MCS : 35, : 1 M Freq MHz 2390.00 2390.00 2422.00 2422.00 2483.50 2483.50	5 chamb C_CLASS N_HT40 arles H 50 /35 /Hz / 1 Level dBuV/m 52.73 67.14 99.85 106.14 45.31	er 1 -B_2.4 TX_CH0 Isiao 0 Hz Read Level dBuV 48.23 62.64 95.29 101.58 40.65 49.37	G 3m Vo 3 Factor dB/m 4.50 4.50 4.56 4.56 4.66	Freque ertical Limit Line dBuV/m 54.00 74.00 54.00 74.00	Over Limit dB -1.27 -6.86 -8.69	APos cm 161 161 145 145 145	TPos deg 102 102 99 99	Remark Average Peak Average Peak Average Peak	
ite ondit: emark ested ate ower B/VB 	: 960 ion: FCO : 11M by: Cha : 35/ : 1 M Freq 2390.00 2390.00 2422.00 2422.00 2483.50 2483.50	5 chamb C_CLASS N_HT40 arles H 50 /35 /4Hz / 1 Level dBuV/m 52.73 67.14 99.85 106.14 45.31 54.03 41.88	er 1 -B_2.4 TX_CH0 Isiao 0 Hz Read Level dBuV 48.23 62.64 95.29 101.58 40.65 49.37 31.65	G 3m Va 3 Factor dB/m 4.50 4.50 4.56 4.66 4.66 10 23	Freque ertical Limit Line dBuV/m 54.00 74.00 74.00 54.00 74.00 54.00	Over Limit dB -1.27 -6.86 -8.69 -19.97 -12 12	APos cm 161 161 145 145 145 145 145	TPos deg 102 102 99 99 99	Remark Average Peak Average Peak Average Peak Average	
ite ondit: emark ested ate ower B/VB 	: 960 ion: FCO : 11M by: Cha : MCS : 35/ : 1 M Freq MHz 2390.00 2490.00 2422.00 2422.00 2423.50 2483.50 4844.00 4844.00	5 chamb C_CLASS N_HT40 arles H 50 /35 /4Hz / 1 Level dBuV/m 52.73 67.14 99.85 106.14 45.31 54.03 41.88 48.25	er 1 -B_2.4 TX_CH0 Isiao 0 Hz Read Level dBuV 48.23 62.64 95.29 101.58 40.65 49.37 31.65 38.02	G 3m Va 3 Factor dB/m 4.50 4.50 4.56 4.66 4.66 10.23 10.23	Freque ertical Limit Line dBuV/m 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	Over Limit dB -1.27 -6.86 -8.69 -19.97 -12.12 -25.75	APos cm 161 161 145 145 145 145 138 138	TPos deg 102 102 99 99 99 99 99	Remark Average Peak Average Peak Average Peak Average Peak	
ite ondit: emark ested ate ower B/VB 	: 960 ion: FCC : 11M by: Cha : MCS : 35/ : 1 M Freq 2390.00 2390.00 2422.00 2422.00 2422.00 2483.50 2483.50 4844.00 5000.00	5 chamb C_CLASS N_HT40 arles H 50 /35 /4Hz / 1 Level dBuV/m 52.73 67.14 99.85 106.14 45.31 54.03 41.88 48.25 50.74	er 1 -B_2.4 TX_CH0 Isiao 0 Hz Read Level dBuV 48.23 62.64 95.29 101.58 40.65 49.37 31.65 38.02 40.15	G 3m Va 3 Factor dB/m 4.50 4.50 4.56 4.56 4.66 10.23 10.23 10.59	Freque ertical Limit Line dBuV/m 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	Over Limit dB -1.27 -6.86 -8.69 -19.97 -12.12 -25.75 -3.26	APos cm 161 161 145 145 145 145 145 138 138 211	TPos deg 102 102 99 99 99 99 99 195 195 48	Remark Average Peak Average Peak Average Peak Average Peak Average	

Remarks:

1. Level(dBuV/m) = Read Level(dBuV) + Factor(dB/m)

- 3. The other emission levels were very low against the limit.
- 4. Over limit = Level Limit value
- 5. The emission levels of other frequencies were very low against the limit.

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

- 1. Level(dBuV/m) = Read Level(dBuV) + Factor(dB/m)
- 2. Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Over limit = Level Limit value
- 5. The emission levels of other frequencies were very low against the limit.

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

1. Level(dBuV/m) = Read Level(dBuV) + Factor(dB/m)

- 2. Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Over limit = Level Limit value
- 5. The emission levels of other frequencies were very low against the limit.

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

400	Level (dBuV	/m)							Date	2021-03-1
120										
105.0	4	1								
	3									
90.0									-	
75.0									FCC_CLAS	S-B_2.4G
1000000										
60.0										
60.0	Ş							FC	C_CLASS-E	_2.4G_AV
		10								
45.0		1								
30.0			-				-	-		
15.0										
15.0										
0				-						
0	1000	58	00.	10	600.	15	400.	2	0200.	250
U,	1000	58	00.	10	600. Freque	15 ncy (MHz)	400.	2	0200.	250
U,	1000	58	00.	10	600. Freque	15 ncy (MHz)	400.	2	20200.	250
te	: 966	58 chamb	00. er 1	10 C 3m H	600. Freque	15 ncy (MHz)	5400.	2	20200.	250
te	: 966 ion: FCC	58 chamb CLASS	00. er 1 -B_2.40	10 G 3m Ho	600. Freque orizont	15 ncy(MHz) al	6400.	2	20200.	250
te ondit: mark	: 966 ion: FCC : 11N	58 5 chamb C_CLASS V_HT40_ arles H	00. er 1 -B_2.40 TX_CH09	10 G 3m Ho 9	600. Freque orizont	15 ncy(MHz) al	6400.	2	20200.	250
te ondit: mark sted	: 966 ion: FCC : 11N by: Cha	58 5 chamb 5 CLASS 1_HT40_ arles H	00. er 1 -B_2.40 TX_CH09 siao	10 G 3m Ho 9	600. Freque	15 ncy(MHz) al	5400.	2	20200.	250
te ndit: mark sted te	: 966 ion: FCC : 11M by: Cha : MCS : 36/	58 5 chamb C_CLASS N_HT40_ arles H 50 (36	00. er 1 -B_2.40 TX_CH09 siao	10 G 3m Ho 9	600. Freque orizont	15 ncy(MHz) al	400.	2	0200.	250
te emdit: emark ested ate ower 8/VB	: 966 ion: FCC : 11N by: Cha : MCS : 36/ : 1 N	58 5 chamb C_CLASS V_HT40_ arles H 50 /36 /Hz / 1	00. er 1 -B_2.40 TX_CH09 siao 0 Hz	10 G 3m Ho 9	600. Freque orizont	15 ncy(MHz) al	400.	2	0200.	250
te ondit: mark sted ote ower 8/VB	: 966 ion: FCC : 11N by: Cha : MCS : 36/ : 1 N	58 5 chamb 5 CLASS N_HT40_ arles H 50 /36 /Hz / 1	00. er 1 -B_2.40 TX_CH09 siao 0 Hz Read	10 G 3m Ho 9	600. Freque prizont Limit	15 ncy(MHz) al	APos	TPos	20200.	250
te mdit: mark sted te wer %/VB	: 966 ion: FCC : 11N by: Cha : MCS : 36/ : 1 M	58 5 chamb C_CLASS N_HT40_ arles H 50 /36 /Hz / 1 Level	oo. er 1 -B_2.40 TX_CHOS siao 0 Hz Read Level	10 G 3m Ho 9 Factor	600. Freque orizont Limit Line	15 ncy(MHz) al Over Limit	APos	TPos	Remark	250
te mark sted te wer 8/VB	1000 : 966 ion: FCC : 11N by: Cha : MCS : 36/ : 1 M Freq	58 C_CLASS N_HT40_ arles H 50 /36 MHz / 1 Level	oo. er 1 -B_2.40 TX_CHOS siao 0 Hz Read Level	10 G 3m Ho 9 Factor	600. Freque orizont Limit Line	15 ncy (MHz) al Over Limit	400. APos	TPos	Remark	250
te mdit: mark sted ate wer 3/VB	1000 : 966 ion: FCC : 11N by: Cha : MCS : 36/ : 1 N Freq MHz	58 C_CLASS V_HT40_ arles H 30 (36 MHz / 1 Level dBuV/m	oo. er 1 -B_2.40 TX_CHO siao 0 Hz Read Level dBuV	10 G 3m Ho 9 Factor dB/m	600. Freque Drizont Limit Line dBuV/m	15 ncy(MHz) al Over Limit dB	APos	TPos	Remark	250
ite ondit: emark ested ate ower 3/VB	1000 : 966 ion: FCC : 11N by: Cha : MCS : 36/ : 1 M Freq MHz	58 C_CLASS V_HT40_ arles H 30 /36 /Hz / 1 Level dBuV/m	oo. er 1 -B_2.40 TX_CHO siao 0 Hz Read Level 	10 G 3m Ho 9 Factor dB/m	600. Freque Drizont Limit Line dBuV/m	15 ncy (MHz) al Over Limit dB	APos	TPos	Remark	250
te ondit: mark ested ote ower 3/VB -	1000 : 966 ion: FCC : 11N by: Cha : MCS : 36/ : 1 M Freq MHz 2390.00	58 5 chamb C_CLASS N_HT40_ arles H 50 (36 MHz / 1 Level dBuV/m 41.88	00. er 1 -B_2.40 TX_CH09 siao 0 Hz Read Level dBuV 37.38	Factor dB/m 4.50	600. Freque Drizont Limit Line dBuV/m 54.00	15 ncy (MHz) al Over Limit dB -12.12	APos 	TPos deg	Remark Average	
te ondit: mark ested ate ower 3/VB -	1000 : 966 ion: FCC : 11N by: Cha : MCS : 36/ : 1 N Freq MHz 2390.00 2390.00	58 5 chamb 5 CLASS 1 HT40 3 arles H 50 736 1 Hz / 1 Level 4 BuV/m 41.88 52.79	00. er 1 -B_2.40 TX_CH09 siao 0 Hz Read Level dBuV 37.38 48.29	10 G 3m Ho 9 Factor dB/m 4.50 4.50	600. Freque Drizont Limit Line dBuV/m 54.00 74.00	15 ncy (MHz) cal Over Limit dB -12.12 -21.21	APos	2 TPos deg 259 259	Remark Average Peak	
te mark ested ite wer B/VB 	1000 : 966 ion: FCC : 11N by: Cha : MCS : 36/ : 1 M Freq MHz 2390.00 2390.00 2452.00	58 5 chamb 5 CLASS 1 HT40 3 arles H 50 736 1 Hz / 1 Level dBuV/m 41.88 52.79 94.47	00. er 1 -B_2.40 TX_CH09 siao 0 Hz Read Level dBuV 37.38 48.29 89.87 96.71	Factor G 3m Ho 9 Factor dB/m 4.50 4.50 4.60 4.60	600. Freque orizont Limit Line dBuV/m 54.00 74.00	15 ncy (MHz) al Over Limit dB -12.12 -21.21	APos 	2 TPos deg 259 259 259	Remark Average Peak Average	
te mark ested over 3/VB 1 2 3 4 5	1000 : 966 ion: FCC : 11N by: Cha : MCS : 36/ : 1 M Freq MHz 2390.00 2390.00 2452.00 2452.00 2452.00	58 5 chamb C_CLASS N_HT40_ arles H 50 736 MHz / 1 Level dBuV/m 41.88 52.79 94.47 101.31 42 59	00. er 1 -B_2.40 TX_CH09 siao 0 Hz Read Level dBuV 37.38 48.29 89.87 96.71 37 93	10 G 3m Ho 9 Factor dB/m 4.50 4.60 4.60 4.60	Goo. Freque Drizont Limit Line dBuV/m 54.00 74.00	15 ncy (MHz) al Over Limit dB -12.12 -21.21	APos 	2 TPos deg 259 259 259 259 259	Remark Average Peak Average Peak Average	
te mark sted wer 3/VB 1 2 3 4 5 6 pk	1000 : 966 ion: FCC : 11N by: Cha : MCS : 36/ : 1 N Freq MHz 2390.00 2390.00 2452.00 2452.00 2452.00 2453.50 2483.50	58 5 chamb C_CLASS V_HT40 arles H 50 (36 MHz / 1 Level dBuV/m 41.88 52.79 94.47 101.31 42.59 54 14	00. er 1 -B_2.40 TX_CH09 siao 0 Hz Read Level dBuV 37.38 48.29 89.87 96.71 37.93 49.48	10 G 3m Ho 9 Factor dB/m 4.50 4.60 4.60 4.66 4.66	600. Freque Drizont Limit Line dBuV/m 54.00 74.00 54.00 74.00	15 ncy (MHz) al Over Limit dB -12.12 -21.21 -11.41 -19.86	APos cm 290 290 290 290 290 290	259 259 259 259 259 259 259	Remark Average Peak Average Peak Average Peak	
te mark sted te wer 3/VB 1 2 3 4 5 6 pk 7	1000 : 966 ion: FCC : 11N by: Cha : MCS : 36/ : 1 N Freq MHz 2390.00 2390.00 2452.00 2452.00 2452.00 2453.50 2483.50 4904.00	58 5 chamb C_CLASS V_HT40_ arles H 50 (36 MHz / 1 Level dBuV/m 41.88 52.79 94.47 101.31 42.59 54.14 41.55	00. er 1 -B_2.40 TX_CH09 siao 0 Hz Read Level dBuV 37.38 48.29 89.87 96.71 37.93 49.48 31.41	10 G 3m Ho 9 Factor dB/m 4.50 4.60 4.60 4.66 4.66 10.14	600. Freque Drizont Limit Line dBuV/m 54.00 74.00 54.00 74.00 54.00 54.00	15 ncy (MHz) al Over Limit dB -12.12 -21.21 -11.41 -19.86 -12.45	APos cm 290 290 290 290 290 290 290 290 290	259 259 259 259 259 259 259 259 259 259	Remark Average Peak Average Peak Average Peak Average Peak	
te mark sted te wer 3/VB 1 2 3 4 5 6 pk 7 8	1000 : 966 ion: FCC : 11N by: Cha : MCS : 36/ : 1 M Freq MHz 2390.00 2390.00 2452.00 2452.00 2452.00 2453.50 2483.50 4904.00	58 5 chamb C_CLASS V_HT40_ arles H 50 736 736 736 736 742 / 1 Level dBuV/m 41.88 52.79 94.47 101.31 42.59 54.14 41.55 48.18	00. er 1 -B_2.40 TX_CH09 siao 0 Hz Read Level dBuV 37.38 48.29 89.87 96.71 37.93 49.48 31.41 38.04	10 G 3m Ho 9 Factor dB/m 4.50 4.60 4.60 4.66 4.66 10.14 10.14	600. Freque Drizont Limit Line dBuV/m 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	15 ncy (MHz) al Over Limit dB -12.12 -21.21 -11.41 -19.86 -12.45 -25.82	APos cm 290 290 290 290 290 290 290 290 290 290	259 259 259 259 259 259 259 259 259 259	Remark Average Peak Average Peak Average Peak Average Peak Average Peak	
ite ondit: smark sted ite wer 3/VB 1 2 3 4 5 6 pk 7 8 9 pp	1000 : 966 ion: FCC : 11N by: Cha : MCS : 36/ : 1 M Freq MHz 2390.00 2390.00 2452.00 2452.00 2452.00 2453.50 2483.50 4904.00 5000.00	58 5 chamb C_CLASS V_HT40_ arles H 50 736 747 746 747 747 747 747 747 747 747 74	00. er 1 -B_2.40 TX_CH09 siao 0 Hz Read Level 0 Hz 89.87 96.71 37.38 48.29 89.87 96.71 37.93 49.48 31.41 38.04 36.09	10 G 3m Ho 9 Factor dB/m 4.50 4.60 4.60 4.60 4.66 10.14 10.14 10.59	600. Freque Drizont Limit Line dBuV/m 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	15 ncy (MHz) al Over Limit dB -12.12 -21.21 -11.41 -19.86 -12.45 -25.82 -7.32	APos cm 290 290 290 290 290 290 290 290 290 128 128 128 197	TPos deg 259 259 259 259 259 259 259 259 259 8 8 8	Remark Average Peak Average Peak Average Peak Average Peak Average Peak	

Remarks:

- 1. Level(dBuV/m) = Read Level(dBuV) + Factor(dB/m)
- 2. Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Over limit = Level Limit value
- 5. The emission levels of other frequencies were very low against the limit.

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

400	Level (dBuV	/m)							Date	: 2021-03-1
120										
	4									
105.0	3	1								
90.0		1				-	-		-	
75.0									FCC_CLAS	S-B_2.4G
									and the desired	
c0.0	II I									
60.0	2	10						FC	C_CLASS-B	_2.4G_AV
		g								
45.0		+						1	_	
30.0				-		_				
15.0										
15.0										
0	1000			-			-			
		25	00.	10	600.	15	400.	2	0200.	250
	1000	56	00.	10	600. Freque	15 ncy (MHz)	400.	2	0200.	250
	1000	96	:00.	10	600. Freque	15 ncy (MHz)	400.	2	0200.	250
ite	: 966	58 chamb	00. er 1	10	600. Freque	15 ncy (MHz)	400.	2	0200.	250
ite ondit:	: 966 ion: FCC	58 5 chamb 5 CLASS	er 1 -B_2.4	10 G 3m Ve	600. Freque ertical	15 ncy (MHz)	400.	2	0200.	250
ite ondit: emark	: 966 ion: FCC : 11N	5 chamb CLASS J_HT40_	er 1 -B_2.4 TX_CH0	10 G 3m Ve 9	600. Freque ertical	15 ncy (MHz)	400.	2	0200.	250
ite ondit: emark ested	: 966 ion: FCC : 11N by: Cha	5 chamb C_CLASS V_HT40_ arles H	er 1 -B_2.4 TX_CH0 siao	10 G 3m Ve 9	600. Freque ertical	15 ncy (MHz)	400.	2	0200.	250
ite ondit: emark ested ate	: 966 ion: FCC : 11N by: Cha : MCS	5 chamb C_CLASS N_HT40_ arles H 50	er 1 -B_2.4 TX_CH0 siao	10 G 3m Ve 9	600. Freque ertical	15 ncy (MHz)	400.	2	0200.	250
ite ondit: emark ested ate ower	: 966 ion: FCC : 11N by: Cha : MCS : 36/	5 chamb C_CLASS V_HT40_ arles H 50 (36	er 1 -B_2.44 TX_CH0 siao	10 G 3m Ve 9	600. Freque ertical	15 ncy (MHz)	400.	2	0200.	250
ite ondit: emark ested ate ower B/VB	: 960 ion: FCC : 11M by: Cha : MCS : 36/ : 1 M	5 chamb C_CLASS N_HT40_ arles H 50 (36 (Hz / 1	er 1 -B_2.44 TX_CH0 siao 0 Hz Read	10 G 3m Ve 9	600. Freque ertical	15 ncy (MHz)	400. APos	TPos	0200.	250
ite ondit: emark ested ate ower B/VB	: 966 ion: FCC : 11N by: Cha : MCS : 36/ : 1 M	5 chamb C_CLASS N_HT40_ arles H 50 /36 /Hz / 1	er 1 -B_2.4 TX_CH0 siao 0 Hz Read	10 G 3m Ve 9	600. Freque ertical Limit	15 ncy(MHz) Over limit	APos	2 TPos	0200. Remark	250
ite ondit: emark ested ate ower B/VB	: 966 ion: FCC : 11N by: Cha : MCS : 36/ : 1 M Freq	5 chamb C_CLASS N_HT40_ arles H 50 /36 /Hz / 1 Level	er 1 -B_2.4 TX_CH0 siao 0 Hz Read Level	10 G 3m Ve 9 Factor	600. Freque ertical Limit Line	15 ncy (MHz) Over Limit	APos	TPos	0200. Remark	250
ite ondit: emark ested ate ower B/VB	: 966 ion: FCC : 11N by: Cha : MCS : 36/ : 1 M Freq MHz	5 chamb C_CLASS V_HT40 arles H 30 /36 /Hz / 1 Level dBuV/m	er 1 -B_2.4 TX_CH0 siao 0 Hz Read Level 	G 3m Ve 9 Factor 	600. Freque ertical Limit Line dBuV/m	15 ncy (MHz) Over Limit 	400. APos 	2 TPos	Remark	250
ite ondit: emark ested ate ower B/VB -	: 960 ion: FCC : 11N by: Cha : MCS : 36/ : 1 M Freq MHz	5 chamb C_CLASS N_HT40_ arles H 50 (36 MHz / 1 Level dBuV/m	er 1 -B_2.44 TX_CH0 siao 0 Hz Read Level dBuV	G 3m Ve 9 Factor dB/m	600. Freque ertical Limit Line dBuV/m	Over Limit	400. APos 	TPos deg	Remark	250
ite ondit: emark ested ate ower B/VB -	: 966 ion: FCC : 11N by: Cha : MCS : 36/ : 1 M Freq MHz 2390.00	5 chamb C_CLASS N_HT40_ arles H 50 (36 (36 (46) Hz / 1 Level dBuV/m 44.39	er 1 -B_2.44 TX_CH0 siao 0 Hz Read Level dBuV 39.89	10 G 3m Ve 9 Factor dB/m 4.50	600. Freque ertical Limit Line dBuV/m 54.00	Over Limit -9.61	400. APos 	TPos deg 90	Remark	
ite ondit emark ested ate ower B/VB -	: 966 ion: FCC : 11N by: Cha : MCS : 36/ : 1 M Freq MHz 2390.00 2390.00	5 chamb C_CLASS N_HT40_ arles H 30 /36 /Hz / 1 Level dBuV/m 44.39 53.35	er 1 -B_2.4 TX_CH0 siao 0 Hz Read Level 	10 G 3m Ve 9 Factor dB/m 4.50 4.50	600. Freque ertical Limit Line dBuV/m 54.00 74.00	0ver Limit -9.61 -20.65	APos 	TPos deg 90 90	Remark Average Peak	
ite ondit emark ested ate bwer B/VB - 1 2 3	: 966 ion: FCC : 11N by: Cha : MCS : 36/ : 1 M Freq MHz 2390.00 2390.00 2452.00	5 chamb C_CLASS N_HT40_ arles H 60 /36 MHz / 1 Level dBuV/m 44.39 53.35 99.64	er 1 -B_2.4 TX_CH0 siao 0 Hz Read Level dBuV 39.89 48.85 95.04	10 G 3m Ve 9 Factor dB/m 4.50 4.60	600. Freque ertical Limit Line dBuV/m 54.00 74.00	0ver Limit -9.61 -20.65	APos 	2 TPos deg 90 90 90	Remark Average Peak Average	
ite ondit emark ested ate ower B/VB - 1 2 3 4	: 966 ion: FCC : 11N by: Cha : MCS : 36/ : 1 M Freq MHz 2390.00 2452.00 2452.00	5 chamb C_CLASS N_HT40_ arles H 60 (36 MHz / 1 Level dBuV/m 44.39 53.35 99.64 106.50	er 1 -B_2.4 TX_CH0 siao 0 Hz Read Level dBuV 39.89 48.85 95.04 101.90	10 G 3m Ve 9 Factor dB/m 4.50 4.60 4.60	600. Freque ertical Limit Line dBuV/m 54.00 74.00	0ver Limit -9.61 -20.65	APos 	2 TPos deg 90 90 90	Remark Average Peak Average Peak	
ite ondit emark ested ate ower B/VB 1 2 3 4 5 pp	: 966 ion: FCC : 11N by: Cha : MCS : 36/ : 1 M Freq 2390.00 2452.00 2452.00 2452.00	5 chamb C_CLASS N_HT40_ arles H 50 (36 MHz / 1 Level dBuV/m 44.39 53.35 99.64 106.50 52.46	er 1 -B_2.4 TX_CH0 siao 0 Hz Read Level dBuV 39.89 48.85 95.04 101.90 47.80	Factor Factor dB/m 4.50 4.60 4.60 4.60	600. Freque ertical Limit Line dBuV/m 54.00 74.00 54.00	0ver Limit -9.61 -20.65 -1.54	APos cm 127 127 127 127 127	2 TPos deg 90 90 90 221	Remark Average Peak Average Peak Average	
ite ondit emark ested ate ower B/VB - 1 2 3 4 5 pp 6 pk	: 966 ion: FCC : 11N by: Cha : MCS : 36/ : 1 M Freq MHz 2390.00 2452.00 2452.00 2483.50	5 chamb C_CLASS LHT40_ arles H 50 (36 MHz / 1 Level dBuV/m 44.39 53.35 99.64 106.50 52.46 64.68	er 1 -B_2.4 TX_CH0 siao 0 Hz Read Level dBuV 39.89 48.85 95.04 101.90 47.80 60.02	10 G 3m Ve 9 Factor dB/m 4.50 4.60 4.60 4.66 4.66	600. Freque ertical Limit Line dBuV/m 54.00 74.00 54.00	0ver Limit -9.61 -20.65 -1.54 -9.32	APos cm 127 127 127 127 127 135 135	2 TPos deg 90 90 90 221 221	Remark Average Peak Average Peak Average Peak	
ite ondit: emark ested ate ower B/VB 	: 966 ion: FCC : 11M by: Cha : MCS : 36/ : 1 M Freq MHz 2390.00 2390.00 2452.00 2452.00 2452.00 2453.50 4904.00	5 chamb C_CLASS N_HT40_ arles H 50 (36 (36 (41.39) 53.35 99.64 106.50 52.46 64.68 41.65 45.57	er 1 -B_2.4 TX_CH0 siao 0 Hz Read Level dBuV 39.89 48.85 95.04 101.90 47.80 60.02 31.51	Factor Factor dB/m 4.50 4.60 4.60 4.66 10.14 10.14	600. Freque ertical Limit Line dBuV/m 54.00 74.00 54.00 74.00 54.00	0ver Limit -9.61 -20.65 -1.54 -9.32 -12.35 25 40	APos cm 127 127 127 127 127 135 135 135 127	2 TPos 90 90 90 221 221 7	Remark Average Peak Average Peak Average Peak Average Peak	
ite ondit: emark ested ate ower B/VB 	: 966 ion: FCC : 11N by: Cha : MCS : 36/ : 1 N Freq MHz 2390.00 2452.00 2452.00 2452.00 2452.00 2453.50 4904.00 4904.00	5 chamb C_CLASS M_HT40_ arles H 50 (36 (36 (41.39 53.35 99.64 106.50 52.46 64.68 41.65 48.51 50 20 20 20 20 20 20 20 20 20 2	er 1 -B_2.4 TX_CH0 siao 0 Hz Read Level 0 Hz 39.89 48.85 95.04 101.90 47.80 60.02 31.51 38.37	Factor Factor dB/m 4.50 4.60 4.60 4.66 10.14 10.14 10.14	600. Freque ertical Limit Line dBuV/m 54.00 74.00 54.00 74.00 54.00 74.00	0ver Limit -9.61 -20.65 -1.54 -9.32 -12.35 -25.49	APos cm 127 127 127 127 127 135 135 127 127 214	2 TPos deg 90 90 90 221 221 7 7	Remark Average Peak Average Peak Average Peak Average Peak	

Remarks:

1. Level(dBuV/m) = Read Level(dBuV) + Factor(dB/m)

2. Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Over limit = Level Limit value

Below 1GHz worst-case data: 802.11b_Ch 6

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

1. Level = Read Level + Factor

Margin value = level – Limit value.

Remarks:

1. Level = Read Level + Factor

Margin value = level – Limit value.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)					
Frequency (MHZ)	Quasi-peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ	ESR3	102783	Dec. 21, 2020	Dec. 20, 2021
RF signal cable (with 10dB PAD) Woken	5D-FB	Cable-cond2-01	Sep. 04, 2020	Sep. 03, 2021
V-LISN SCHWARZBECK (EUT)	NNBL 8226-2	8226-142	Jul. 31, 2020	Jul. 30, 2021
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100312	Aug. 18, 2020	Aug. 17, 2021
Software ADT	BV ADT_Cond_ V7.3.7.4	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Shielded Room 2 (Conduction 2).

3. The VCCI Site Registration No. is C-12047.

4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7 Test Results

Worst-case data:

802.11b

Frequency Range	150kHz ~ 30MHz	Detector Function &	Quasi-Peak (QP) /
. , ,		Resolution Bandwidth	Average (AV), 9kHz
Input Power	120\/ac_60Hz	Environmental	23℃ 66%RH
input i owei		Conditions	200,00000
Tested by	Cookie Ku	Test Date	2021/6/4

	Phase Of Power : Line (L)												
No	Frequency	Correction Factor	ction Reading Value tor (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)				
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.			
1	0.15391	0.11	28.74	12.09	28.85	12.20	65.79	55.79	-36.94	-43.59			
2	0.39242	0.14	31.81	14.51	31.95	14.65	58.01	48.01	-26.06	-33.36			
3	1.27217	0.19	17.02	8.48	17.21	8.67	56.00	46.00	-38.79	-37.33			
4	3.78630	0.26	13.25	3.72	13.51	3.98	56.00	46.00	-42.49	-42.02			
5	10.12441	0.36	19.63	8.40	19.99	8.76	60.00	50.00	-40.01	-41.24			
6	22.87492	0.43	32.72	19.15	33.15	19.58	60.00	50.00	-26.85	-30.42			

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

	Phase Of Power : Neutral (N)											
No	Frequency	Correction Factor	Readin (dB	g Value suV)	Emission Level (dBuV)		Limit (dBuV)		Margin (dB)			
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.		
1	0.16173	0.12	27.36	19.84	27.48	19.96	65.37	55.37	-37.89	-35.41		
2	0.43152	0.15	36.24	30.65	36.39	30.80	57.22	47.22	-20.83	-16.42		
3	1.70227	0.22	21.27	14.75	21.49	14.97	56.00	46.00	-34.51	-31.03		
4	4.68560	0.33	21.03	12.79	21.36	13.12	56.00	46.00	-34.64	-32.88		
5	10.66399	0.47	21.18	12.90	21.65	13.37	60.00	50.00	-38.35	-36.63		
6	21.59244	0.66	26.72	16.95	27.38	17.61	60.00	50.00	-32.62	-32.39		

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

4.3 6dB Bandwidth Measurement

4.3.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100kHz.
- b. Set the video bandwidth (VBW) \ge 3 x RBW, Detector = peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.3.5 Deviation fromTest Standard

No deviation.

4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Result

802.11b

Channel	Frequency	6dB Bandv	vidth (MHz)	Minimum Limit	Pass / Fail	
	(MHz)	Chain 0	Chain 1	(MHz)		
1	2412	10.12	10.13	0.5	Pass	
6	2437	10.17	10.17	0.5	Pass	
11	2462	10.17	10.15	0.5	Pass	

802.11g

Channel	Frequency	6dB Bandv	vidth (MHz)	Minimum Limit	Doog / Egil
	(MHz)	Chain 0	Chain 1	(MHz)	Fass/Fail
1	2412	16.61	16.62	0.5	Pass
6	2437	16.57	16.56	0.5	Pass
11	2462	16.60	16.60	0.5	Pass

802.11n (HT20)

Channel	Frequency	6dB Bandv	vidth (MHz)	Minimum Limit	Pass / Fail	
	(MHz)	Chain 0	Chain 1	(MHz)		
1	2412	17.76	17.81	0.5	Pass	
6	2437	17.89	17.80	0.5	Pass	
11	2462	17.76	17.80	0.5	Pass	

802.11n (HT40)

Channel	Frequency	6dB Bandv	vidth (MHz)	Minimum Limit	Pass / Fail	
	(MHz)	Chain 0	Chain 1	(MHz)		
3	2422	36.52	36.52	0.5	Pass	
6	2437	36.52	36.51	0.5	Pass	
9	2452	36.51	36.55	0.5	Pass	

4.4 Conducted Output Power Measurement

4.4.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

Per KDB 662911 D01 Multiple Transmitter Output Method of conducted output power measurement on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths \geq 40 MHz for any N_{ANT};

Array Gain = 5 log(N_{ANT}/N_{SS}) dB or 3 dB, whichever is less for 20-MHz channel widths with N_{ANT} \geq 5.

For power measurements on all other devices: Array Gain = $10 \log(N_{ANT}/N_{SS}) dB$.

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

Same as item 4.3.6.

4.4.7 Test Results

CDD Mode

802.11b

Channel	Frequency (MHz)	Average Power (dBm)		Total Power	Total Power	Limit	Pass /
		Chain 0	Chain 1	(mW)	(dBm)	(dBm)	Fail
1	2412	19.61	19.55	181.568	22.59	30	Pass
6	2437	24.21	24.15	523.649	27.19	30	Pass
11	2462	20.05	19.85	197.763	22.96	30	Pass

802.11g

Channel	Frequency (MHz)	Average Power (dBm)		Total Power	Total Power	Limit	Pass /
		Chain 0	Chain 1	(mW)	(dBm)	(dBm)	Fail
1	2412	14.15	13.84	50.212	17.01	30	Pass
6	2437	23.46	23.16	428.834	26.32	30	Pass
11	2462	15.61	15.41	71.145	18.52	30	Pass

802.11n (HT20)

Channel	Frequency	Average Power (dBm)		Total Power	Total Power	Limit	Pass /
Channer	(MHz)	Chain 0	Chain 1	(mW)	(dBm)	(dBm)	Fail
1	2412	14.91	14.55	59.484	17.74	30	Pass
6	2437	23.42	23.14	425.849	26.29	30	Pass
11	2462	15.20	14.89	63.945	18.06	30	Pass

802.11n (HT40)

Channel	Frequency	Average Power (dBm)		Total Power	Total Power	Limit	Pass /
	(MHz)	Chain 0	Chain 1	(mW)	(dBm)	(dBm)	Fail
3	2422	13.87	13.77	48.201	16.83	30	Pass
6	2437	15.72	14.93	68.442	18.35	30	Pass
9	2452	14.22	13.75	50.138	17.00	30	Pass

Beamforming Mode

802.11n (HT20)

Channel	Frequency (MHz)	Average Power (dBm)		Total Power	Total Power	Limit	Pass /
		Chain 0	Chain 1	(mW)	(dBm)	(dBm)	Fail
1	2412	11.90	11.54	29.744	14.73	30	Pass
6	2437	20.41	20.13	212.939	23.28	30	Pass
11	2462	12.19	11.88	31.975	15.05	30	Pass

Note: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})^2/2] = 5.45$ dBi < 6dBi, so the limit no need to reduced.

802.11n (HT40)

Channel	Frequency	Average Power (dBm)		Total Power	Total Power	Limit	Pass /
	(MHz)	Chain 0	Chain 1	(mW)	(dBm)	(dBm)	Fail
3	2422	10.86	10.76	24.102	13.82	30	Pass
6	2437	12.71	11.92	34.223	15.34	30	Pass
9	2452	11.21	10.74	25.071	13.99	30	Pass

Note: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})^2/2] = 5.45$ dBi < 6dBi, so the limit no need to reduced.

4.5 **Power Spectral Density Measurement**

4.5.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm in any 3 kHz.

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

For Average Power (Duty cycle \geq 98%)

- a. Set instrument center frequency to DTS channel center frequency.
- b. Set span to at least 1.5 times the OBW.
- c. Set RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d. Set VBW $\geq 3 \times RBW$.
- e. Detector = power averaging (RMS) or sample detector (when RMS not available).
- f. Ensure that the number of measurement points in the sweep $\ge 2 \times \text{span/RBW}$.
- g. Sweep time = auto couple.
- h. Employ trace averaging (RMS) mode over a minimum of 100 traces.
- i. Use the peak marker function to determine the maximum amplitude level.

4.5.5 Deviation from Test Standard

No deviation.

4.5.6 EUT Operating Condition

Same as item 4.3.6

4.5.7 **Test Results**

802.11b

TX chain	Channel	Freq. (MHz)	PSD (dBm/3kHz)	10 log (N=2) dB	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
	1	2412	-12.81	3.01	-9.80	8.00	Pass
0	6	2437	-8.78	3.01	-5.77	8.00	Pass
	11	2462	-12.86	3.01	-9.85	8.00	Pass
	1	2412	-12.76	3.01	-9.75	8.00	Pass
1	6	2437	-8.63	3.01	-5.62	8.00	Pass
	11	2462	-12.95	3.01	-9.94	8.00	Pass

Note:

1. Method E) 2) c) of power density measurement of KDB 662911 is using for calculating total power density. 2. Directional Gain = $10 \log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})^2/2] = 5.45$ dBi < 6dBi, so the limit no need to

reduced.

802.11g

TX chain	Channel	Freq. (MHz)	PSD (dBm/3kHz)	10 log (N=2) dB	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
0	1	2412	-19.30	3.01	-16.29	8.00	Pass
	6	2437	-10.07	3.01	-7.06	8.00	Pass
	11	2462	-17.32	3.01	-14.31	8.00	Pass
1	1	2412	-19.41	3.01	-16.4	8.00	Pass
	6	2437	-10.48	3.01	-7.47	8.00	Pass
	11	2462	-17.55	3.01	-14.54	8.00	Pass

Note:

1. Method E) 2) c) of power density measurement of KDB 662911 is using for calculating total power density. 2. Directional Gain = $10 \log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})^2/2] = 5.45$ dBi < 6dBi, so the limit no need to reduced.

802.11n (HT20)

TX chain	Channel	Freq. (MHz)	PSD (dBm/3kHz)	10 log (N=2) dB	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
0	1	2412	-19.62	3.01	-16.61	8.00	Pass
	6	2437	-10.41	3.01	-7.40	8.00	Pass
	11	2462	-18.29	3.01	-15.28	8.00	Pass
1	1	2412	-18.20	3.01	-15.19	8.00	Pass
	6	2437	-9.74	3.01	-6.73	8.00	Pass
	11	2462	-16.50	3.01	-13.49	8.00	Pass

Note:

1. Method E) 2) c) of power density measurement of KDB 662911 is using for calculating total power density. 2. Directional Gain = $10 \log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})^2/2] = 5.45$ dBi < 6dBi, so the limit no need to reduced.

802.11n (HT40)

TX chain	Channel	Freq. (MHz)	PSD (dBm/3kHz)	10 log (N=2) dB	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
0	3	2422	-23.05	3.01	-20.04	8.00	Pass
	6	2437	-20.95	3.01	-17.94	8.00	Pass
	9	2452	-22.05	3.01	-19.04	8.00	Pass
1	3	2422	-22.53	3.01	-19.52	8.00	Pass
	6	2437	-20.50	3.01	-17.49	8.00	Pass
	9	2452	-22.42	3.01	-19.41	8.00	Pass

Note:

1. Method E) 2) c) of power density measurement of KDB 662911 is using for calculating total power density. 2. Directional Gain = $10 \log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})^2/2] = 5.45$ dBi < 6dBi, so the limit no need to

reduced.

4.6 Conducted Out of Band Emission Measurement

4.6.1 Limits of Conducted Out of Band Emission Measurement

Below -30dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

MEASUREMENT PROCEDURE REF

- a. Set the RBW = 100 kHz.
- b. Set the VBW \geq 300 kHz.
- c. Detector = peak.
- d. Sweep time = auto couple.
- e. Trace mode = max hold.
- f. Allow trace to fully stabilize.
- g. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- a. Set RBW = 100 kHz.
- b. Set VBW \ge 300 kHz.
- c. Detector = peak.
- d. Sweep = auto couple.
- e. Trace Mode = max hold.
- f. Allow trace to fully stabilize.
- g. Use the peak marker function to determine the maximum amplitude level.

4.6.5 Deviation from Test Standard

No deviation.

4.6.6 EUT Operating Condition

Same as item 4.3.6

4.6.7 Test Results

The conducted emission test is performed on each TX port of operating mode without summing or adding 10log (N) since the limit is relative emission limit.

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 30dB offset below D1. It shows compliance with the requirement.

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).