

FCC RF EXPOSURE REPORT

FCC ID:KA2IRX1860B1

Project No.	:	2104H029					
Equipment	:	1) AX1800 Mesh Wi-Fi 6 Router					
		2) AX1500 Mesh Wi-Fi 6 Router					
Brand Name	:	D-Link					
Test Model	:	DIR-X1860					
Series Model	:	DIR-X1550	DIR-X1550				
Applicant	:	D-Link Corporation					
Address	:	14420 Myford Road Suite 100	rvine California United States				
Manufacturer	:	D-Link Corporation					
Address	:	14420 Myford Road Suite 100	rvine California United States				
Date of Receipt	:	Apr. 12, 2021					
Date of Test	:	Apr. 12, 2021~May. 26, 2021					
Issued Date	:	Jun. 17, 2021					
Report Version	:	R00					
Test Sample	:	Engineering Sample No.: SH202	10412101-18 fro radiated;				
		SH20210412101-19 for conducte	d; SH20210412101-5 adapter.				
Standard(s)	:	FCC Part 2.1091					
		FCC Title 47 Part 2.1091					
		KDB 447498 D01 General RF exp	oosure guidance v06				

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Maker Qi

Prepared by : Maker Qi

Ussac Soy

Approved by : Issac Song

Certificate # 5123.03

Add: No. 29, Jintang Road, Tangzhen Industry Park, Pudong New Area, Shanghai 201210,China TEL: +86-021-61765666 Web: www.newbtl.com

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue.	Jun. 17, 2021

1. MPE CALCULATION METHOD

Calculation Method of RF Safety Distance:

$$S = \frac{PG}{4\pi r^2} = \frac{EIRP}{4\pi r^2}$$

where:

- S = power density
- P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator R = distance to the center of radiation of the antenna

Table for Filed Antenna

For 2.4G

Ant.	Brand	Model Name	Antenna Type	Connector	Gain(dBi)
1	N/A	N/A	Dipole	N/A	5
2	N/A	N/A	Dipole	N/A	5

Note:

1. This EUT supports Beamforming and CDD, all antennas have the same gain, any transmit signals are correlated with each other, so

1) Beamforming:

Directional gain = 10log[(10^{G1/20}+10^{G2/20+...+}10^{GN/20})²/N_{ANT}]dBi,

that is Directional gain= $10\log[(10^{G1/20}+10^{G2/20+...+}10^{GN/20})^2/N_{ANT}]dBi = 8.01;$

So output power limit is 30-8.01+6=27.99, the power spectral density limit is 8-8.01+6=5.99.

2) CDD:

For power spectral density measurements, For power spectral density measurements, the Directional gain= G_{ANT} +Array Gain, that is Directional gain=5+10log(2/1) =8.01;

So power spectral density limit is 8-8.01+6=5.99.

For power meansurements, Directional gain =G_{ANT MAX}.+Array Gain, Array Gain=0dB(N_{ANT}≤4), so the Directional gain=5.

2. The antenna gain and beamforming gain are provided by the manufacturer.

Operating Mode TX Mode	Ant. 1	Ant. 2	Ant. 1+2
IEEE 802.11b	\checkmark	~	×
IEEE 802.11g	~	~	×
IEEE 802.11n(HT20)	~	~	~
IEEE 802.11n(HT40)	\checkmark	\checkmark	\checkmark
IEEE 802.11ax(HE20)	\checkmark	\checkmark	\checkmark
IEEE 802.11ax(HE40)	~	~	~

For 5G

Ant.	Brand	Model Name	Antenna Type	Connector	Gain(dBi)
1	N/A	N/A	Dipole	N/A	5
2	N/A	N/A	Dipole	N/A	5

Note:

1. This EUT supports Beamforming and CDD, all antennas have unequal gains, any transmit signals are correlated with each other, so

1) Beamforming:

Directional gain = $10\log[(10^{G1/20}+10^{G2/20}+...+10^{GN/20})^2/N_{ANT}]dBi$, that is Directional gain= $10\log[(10^{G1/20}+10^{G2/20}+...+10^{GN/20})^2/N_{ANT}]dBi$ =8.01; Then, the UNII-1, UNII-3 output power limit is 30-8.01+6=27.99, the UNII-2A,UNII-2C output power limit is 23.98-8.01+6=21.97. The UNII-1 power spectral density limit is 17-8.01+6=14.99,UNII-2A,UNII-2C power spectral density limit is 11-8.01+6=8.99, the UNII-3 power spectral density limit is 30-8.01+6=27.99.

2) CDD:

For power spectral density measurements, the Directional gain= G_{ANT} +Array Gain, that is Directional gain=5+10log(2/1) =8.01;

Then, the UNII-1 power spectral density limited is 17-8.01+6=14.99, UNII-2A,UNII-2C power spectral density limit is 11-8.01+6=8.99, the UNII-3 power spectral density limit is 30-8.01+6=27.99. For power meansurements, Directional gain= $G_{ANT MAX}$ +Array Gain.Array Gain=0dB(N_{ANT}≤4), so the Directional gain=5.

2. The antenna gain and beamforming gain are provided by the manufacturer.

Operating Mode TX Mode	Ant. 1	Ant. 2	Ant. 1+2
IEEE 802.11a	\checkmark	~	×
IEEE 802.11n(HT20)	~	~	~
IEEE 802.11n(HT40)	~	~	~
IEEE 802.11ac(VHT20)	✓	~	~
IEEE 802.11ac(VHT40)	✓	~	~
IEEE 802.11ac(VHT80)	\checkmark	\checkmark	~
IEEE 802.11ax(HE20)	\checkmark	\checkmark	~
IEEE 802.11ax(HE40)	\checkmark	~	\checkmark
IEEE 802.11ax(HE80)	\checkmark	\checkmark	\checkmark

2. TEST RESULTS

For 2.4GHz:

Beamforming

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. tune up Power (dBm)	Max. tune up Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
8.01	6.32410	23	199.5262	0.20746	1	Complies

CDD:

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. tune up Power (dBm)	Max. tune up Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
5.00	3.1623	23.5	223.8721	0.11640	1	Complies

For 5GHz :

Beamforming

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. tune up Power (dBm)	Max. tune up Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
8.01	6.3241	28	630.9573	0.65606	1	Complies

CDD:

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. tune up Power (dBm)	Max. tune up Power Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
5.00	3.1623	28	630.9573	0.32810	1	Complies

For the max simultaneous transmission MPE:

2.4G+5G

Power Density (S) (mW/cm ²) 2.4GHz	Power Density (S) (mW/cm ²) 5GHz	Total	Limit of Power Density (S) (mW/cm ²)	Test Result
0.20746	0.65606	0.86352	1	Complies

Note: The calculated distance is 22 cm.

Output power including tune up tolerance.

End of Test Report