

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	D-Link Corporation		
Applicant Address	No.289, Sinhu 3rd Rd., Neihu District, Taipei City 114, Taiwan, R.O.C.		
FCC ID	KA2IR890LA1		

Product Name	AC3200 Ultra Wi-Fi Router	
Brand Name	D-Link	
Model No.	DIR-890L	
Test Rule Part(s)	47 CFR FCC Part 15 Subpart E § 15.407	
Test Freq. Range	5150 ~ 5250MHz	
Received Date	Oct. 12, 2014	
Final Test Date	Nov. 20, 2014	
Submission Type	Original Equipment	

Statement

Test result included is for the IEEE 802.11n and IEEE 802.11a/ac of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2013, 47 CFR FCC Part 15 Subpart E, KDB789033 D02 v01, KDB662911 D01 v02r01, KDB644545 D03 v01.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1.	CERTII	FICATE OF COMPLIANCE	1
2.	SUMM	IARY OF THE TEST RESULT	2
3.	GENE	RAL INFORMATION	3
	3.1.	Product Details	3
	3.2.	Accessories	5
	3.3.	Table for Filed Antenna	6
	3.4.	Table for Carrier Frequencies	7
	3.5.	Table for Test Modes	8
	3.6.	Table for Testing Locations	10
	3.7.	Table for Supporting Units	10
	3.8.	Table for Parameters of Test Software Setting	11
	3.9.	EUT Operation during Test	12
	3.10.	Duty Cycle	12
	3.11.	Test Configurations	13
4.	test r	ESULT 1	6
	4.1.	AC Power Line Conducted Emissions Measurement	16
	4.2.	26dB Bandwidth and 99% Occupied Bandwidth Measurement	20
	4.3.	Maximum Conducted Output Power Measurement	
	4.4.	Power Spectral Density Measurement	
	4.5.	Radiated Emissions Measurement	
	4.6.	Band Edge Emissions Measurement	
	4.7.	Frequency Stability Measurement	
	4.8.	Antenna Requirements	62
5.	list o	F MEASURING EQUIPMENTS	53
6.	MEAS	UREMENT UNCERTAINTY	55
AF	PENDI	X A. TEST PHOTOS	45
AF	PENDI	X B. MAXIMUM PERMISSIBLE EXPOSURE	33
AF	PENDI	X C. RADIATED EMISSION CO-LOCATION REPORT	:3

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE	
FR4N0736AB	Rev. 01	Initial issue of report	Nov. 24, 20114	
L				

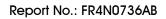
Report No.: FR4N0736AB

Certificate No.: CB10311204

1. CERTIFICATE OF COMPLIANCE

Produc	t Name		AC3200 Ultra Wi-Fi Router
Brand	d Name	÷	D-Link
Mo	del No.	*	DIR-890L
Ap	oplicant	. Q (D-Link Corporation
Test Rul	e Part(s)	3	47 CFR FCC Part 15 Subpart E § 15.407

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Oct. 12, 2014 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.


an

Sam Chen SPORTON INTERNATIONAL INC.

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart E				
Part	Part Rule Section Description of Test		Result	Under Limit	
4.1	15.207	AC Power Line Conducted Emissions	Complies	9.07 dB	
4.2	15.407(a)	26dB Spectrum Bandwidth and 99% Occupied Bandwidth	Complies	-	
4.3	15.407(a)	Naximum Conducted Output Power Complies		2.85 dB	
4.4	15.407(a)	Power Spectral Density Complies 3.66 c		3.66 dB	
4.5	15.407(b)	Radiated Emissions	Complies	3.34 dB	
4.6	15.407(b)	b) Band Edge Emissions		0.01 dB	
4.7	15.407(g)	Frequency Stability Complies		-	
4.8	15.203	Antenna Requirements Complies -		-	

3. GENERAL INFORMATION

3.1. Product Details

IEEE 802.11n/ac

Items	Description	
Product Type	WLAN (3TX, 3RX)	
Radio Type	Intentional Transceiver	
Power Type	From power adapter	
Modulation	see the below table for IEEE 802.11n/ac	
Data Modulation	For 802.11n: OFDM (BPSK / QPSK / 16QAM / 64QAM)	
	For 802.11ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)	
Data Rate (Mbps)	see the below table for IEEE 802.11n/ac	
Frequency Range	5150 ~ 5250MHz	
Channel Number	4 for 20MHz bandwidth ; 2 for 40MHz bandwidth	
	1 for 80MHz bandwidth	
Channel Band Width (99%)	802.11ac MCS0/Nss1 (VHT20): 19.36 MHz ;	
	802.11ac MCS0/Nss1 (VHT40): 39.36 MHz ;	
	802.11ac MCS0/Nss1 (VHT80): 75.52 MHz	
Maximum Conducted Output Power	802.11ac MCS0/Nss1 (VHT20): 25.38 dBm ;	
	802.11ac MCS0/Nss1 (VHT40): 25.17 dBm ;	
	802.11ac MCS0/Nss1 (VHT80): 20.01 dBm	
Carrier Frequencies	Please refer to section 3.4	
Antenna	Please refer to section 3.3	

IEEE 802.11a

Items	Description	
Product Type	WLAN (3TX, 3RX)	
Radio Type	Intentional Transceiver	
Power Type	From power adapter	
Modulation	OFDM for IEEE 802.11a	
Data Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)	
Data Rate (Mbps)	OFDM (6/9/12/18/24/36/48/54)	
Frequency Range	5150 ~ 5250MHz	
Channel Number	4	
Channel Band Width (99%)	21.92 MHz	
Maximum Conducted Output Power	25.08 dBm	
Carrier Frequencies	Please refer to section 3.4	
Antenna	Please refer to section 3.3	

Items	Description		
Communication Mode	🛛 IP Based (Load Based)	Frame Based	
Beamforming Function	With beamforming	Without beamforming	
Operating Mode	Outdoor access point		
	🛛 Indoor access point		
	Fixed point-to-point access points		
	Mobile and portable client devices		

Note: The product has beamforming function for 802.11n/ac 2.4GHz/5GHz.

Antenna and Band width

Antenna	Three (TX)		
Band width Mode	20 MHz	40 MHz	80 MHz
IEEE 802.11a	V	Х	Х
IEEE 802.11n	V	V	Х
IEEE 802.11ac	V	V	V

IEEE 11n/ac Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS		
802.11n (HT20)	3	MCS 0-23		
802.11n (HT40)	3	MCS 0-23		
802.11ac (VHT20)	3	MCS 0-9/Nss1-3		
802.11ac (VHT40)	3	MCS 0-9/Nss1-3		
802.11ac (VHT80)	3	MCS 0-9/Nss1-3		
Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput).				
Then EUT support HT20 and HT40.				
Note 2: IEEE Std. 802.11 ac modulation consists of VHT20, VHT40, VHT80 and VHT160 (VHT: Very High				
Throughput). Then EUT support VHT20, VHT40 and VHT80.				
Note 3: Modulation modes consist of below configuration:				
HT20/HT40: IEEE 802.11n, VHT20/VHT40/VHT80: IEEE 802.11ac				

3.2. Accessories

Power	Brand	Model	Rating	
Adaptor 1	APD	DA-60N12	Input:100-240V~1.5A 50/60Hz	
Adapter 1	AFD	DA-OUNT2	Output:12V-5A	
Adaptor 2	151	NU60-H120500-I1	Input:100-240V~50/60Hz 1.4A	
Adapter 2	LEI	NUOU-H I 20500-I I	Output:12V-5.0A	
Others				
Power cable*2, Non-Shielded, 1.8m				

3.3. Table for Filed Antenna

					Ga	ain (dBi)		
Ant.	Brand	Brand Model Name	P/N Antenna Type	Connector	2.4GHz	5GHz		
						2.4962	B1	B4
1	Hong Lin	DIR-890L	290-20166	PCB Antenna	I-PEX	1.5	3	2
2	Hong Lin	DIR-890L	290-20164	PCB Antenna	I-PEX	1.5	3	2
3	Hong Lin	DIR-890L	290-20147	PCB Antenna	I-PEX	1.5	3	2
4	Hong Lin	DIR-890L	290-20165	PCB Antenna	I-PEX	1.5	3	2

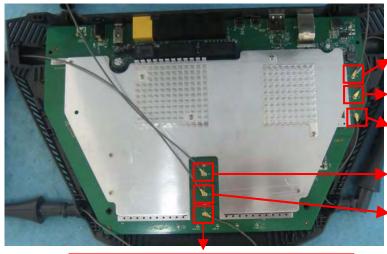
Note:

<For 2.4GHz Band>

For IEEE 802.11b/g/n/ac mode (3TX/3RX):

Chain 4, Chain 5 and Chain 6 could transmit/receive simultaneously.

<For 5GHz Band 1>


For IEEE 802.11a/n/ac mode (3TX/3RX):

Chain 4, Chain 5 and Chain 6 could transmit/receive simultaneously.

<For 5GHz Band 4>

For IEEE 802.11a/n/ac mode (3TX/3RX):

Chain 1, Chain 2 and Chain 3 could transmit/receive simultaneously.

_	
_	Chain 3 (Connect to Ant 1 for 5G B4)
,	Chain 2 (Connect to Ant 1 for 5G B4)
,	Chain 1 (Connect to Ant 2 for 5G B4)
	Chain 6 (Connect to Ant 4 for 2.4G / 5G B1)
	Chain 5 (Connect to Ant 4 for 2.4G / 5G B1)

Chain 4 (Connect to Ant 3 for 2.4G / 5G B1)

3.4. Table for Carrier Frequencies

There are three bandwidth systems.

For 20MHz bandwidth systems, use Channel 36, 40, 44, 48.

For 40MHz bandwidth systems, use Channel 38, 46.

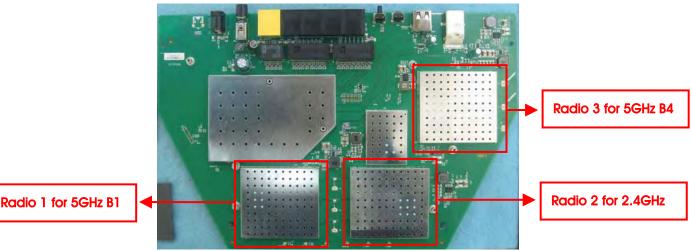
For 80MHz bandwidth systems, use Channel 42.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	36	5180 MHz	44	5220 MHz
5150~5250 MHz	38	5190 MHz	46	5230 MHz
Band 1	40	5200 MHz	48	5240 MHz
	42	5210 MHz	-	-

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Moc	le	Data Rate	Channel	Chain
AC Power Conducted Emission	CTX		-	-	-
Max. Conducted Output Power	11ac VHT20	Band 1	MCS0/Nss1	36/40/48	4+5+6
	11ac VHT40	Band 1	MCS0/Nss1	38/46	4+5+6
	11ac VHT80	Band 1	MCS0/Nss1	42	4+5+6
	11a/BPSK	Band 1	6Mbps	36/40/48	4+5+6
Power Spectral Density	11ac VHT20	Band 1	MCS0/Nss1	36/40/48	4+5+6
	11ac VHT40	Band 1	MCS0/Nss1	38/46	4+5+6
	11ac VHT80	Band 1	MCS0/Nss1	42	4+5+6
	11a/BPSK	Band 1	6Mbps	36/40/48	4+5+6
26dB Spectrum Bandwidth	11ac VHT20	Band 1	MCS0/Nss1	36/40/48	4+5+6
99% Occupied Bandwidth	11ac VHT40	Band 1	MCS0/Nss1	38/46	4+5+6
Measurement	11ac VHT80	Band 1	MCS0/Nss1	42	4+5+6
	11a/BPSK	Band 1	6Mbps	36/40/48	4+5+6
Radiated Emission Below 1GHz	СТХ		-	-	-
Radiated Emission Above 1GHz	11ac VHT20	Band 1	MCS0/Nss1	36/40/48	4+5+6
	11ac VHT40	Band 1	MCS0/Nss1	38/46	4+5+6
	11ac VHT80	Band 1	MCS0/Nss1	42	4+5+6
	11a/BPSK	Band 1	6Mbps	36/40/48	4+5+6
Band Edge Emission	11ac VHT20	Band 1	MCS0/Nss1	36/40/48	4+5+6
	11ac VHT40	Band 1	MCS0/Nss1	38/46	4+5+6
	11ac VHT80	Band 1	MCS0/Nss1	42	4+5+6
	11a/BPSK	Band 1	6Mbps	36/40/48	4+5+6
Frequency Stability	Un-modulation	1	-	40	4+5+6


Note1: VHT20/VHT40 covers HT20/HT40, due to same modulation.

Note2: There are two modes of EUT, one is beamforming mode, and the other is non-beamforming mode for 802.11n/ac, after evaluating, beamforming mode has been evaluated to be the worst case, so it was selected to test and record in this test report.

The following test modes were performed for all tests:

The EUT has three radios, Radio 1 support WLAN 5GHz B1, Radio 2 support WLAN 2.4GHz and Radio 3 supports WLAN 5GHz B4 function.

For Conducted Emission test:

Mode 1. CTX- EUT laying: 5GHz B1 (Radio 1) + Adapter 1

Mode 2. CTX- EUT laying: 2.4GHz (Radio 2) + Adapter 1

Mode 3. CTX- EUT laying: 5GHz B4 (Radio 3) + Adapter 1

Mode 1 has been evaluated to be the worst case among Mode $1 \sim 3$, thus measurement for Mode 4 will follow this same test mode.

Mode 4. CTX- EUT laying: 5GHz B1 (Radio 1) + Adapter 2

Mode 1 is the worst case, so it was selected to record in this test report.

For Radiated Emission below 1GHz test:

Mode 1. CTX- EUT laying: 5GHz B1 (Radio 1) + Adapter 1

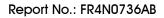
Mode 2. CTX- EUT laying: 2.4GHz (Radio 2) + Adapter 1

Mode 3. CTX- EUT laying: 5GHz B4 (Radio 3) + Adapter 1

Mode 1 has been evaluated to be the worst case among Mode $1 \sim 3$, thus measurement for Mode 4 will follow this same test mode.

Mode 4. CTX-EUT Standing: 5GHz B1 (Radio 1) + Adapter 1

Mode 1 has been evaluated to be the worst case among Mode $1 \sim 4$, thus measurement for Mode 5 will follow this same test mode.


Mode 5. CTX- EUT laying: 5GHz B1 (Radio 1) + Adapter 2

Mode 1 is the worst case, so it was selected to record in this test report.

For Radiated Emission above 1GHz test:

The EUT for Radiated emission above 1GHz test was performed at laying and standing and the worst case was found from laying. So the measurement will follow this same test configuration.

Mode 1. CTX- EUT laying

For Co-location MPE and Radiated Emission Co-location Test:

The EUT could be applied with WLAN 5GHz Band1 (radio1), 2.4GHz (radio2) and 5GHz Band 4 (radio3) function; therefore Co-location Maximum Permissible Exposure (Please refer to Appendix B) and Radiated Emission Co-location (please refer to Appendix C) tests are added for simultaneously transmit among WLAN 5GHz Band1 (radio1), 2.4GHz (radio2) and 5GHz Band 4 (radio3) function.

3.6. Table for Testing Locations

Test Site Location						
Address:	No.	8, Lane 724, Bo-a	i St., Jhubei City,	Hsinchu County 3	02, Taiwan, R.O.C	C.
TEL:	886	5-3-656-9065				
FAX:	886-3-656-9085					
Test Site N	о.	Site Category	Location	FCC Reg. No.	IC File No.	VCCI Reg. No
03CH01-C	CB	SAC	Hsin Chu	262045	IC 4086D	-
CO01-C	В	Conduction	Hsin Chu	262045	IC 4086D	-
TH01-CB	}	OVEN Room	Hsin Chu	-	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

3.7. Table for Supporting Units

For Test Site No: CO01-CB and TH01-CB

Support Unit	Brand	Model	FCC ID
Notebook	DELL	E6430	DoC

For Test Site No: 03CH01-CB<For Non-Beamforming Mode>

Support Unit	Brand	Model	FCC ID
Notebook	DELL	M1330	E2K4965AGNM

For Test Site No: 03CH01-CB<For Beamforming Mode>

Support Unit	Brand	Model	FCC ID
Notebook	DELL	M1330	E2K4965AGNM
Notebook	DELL	M1340	E2K4965AGNM
WLAN ac Dongle	Netgear	A6200	PY31220200

3.8. Table for Parameters of Test Software Setting

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product. **<For Beamforming Mode>**

Power Parameters of IEEE 802.11ac MCS0/Nss1 VHT20

Test Software Version		DOS	
Frequency	5180 MHz	5200 MHz	5240 MHz
MCSO/Nss1 VHT20	82	100	100

Power Parameters of IEEE 802.11ac MCS0/Nss1 VHT40

Test Software Version	DO	DS
Frequency	5190 MHz	5230 MHz
MCS0/Nss1 VHT40	67	100

Power Parameters of IEEE 802.11ac MCS0/Nss1 VHT80

Test Software Version	DOS
Frequency	5210 MHz
MCS0/Nss1 VHT80	63

<For Non-Beamforming Mode>

Power Parameters of IEEE 802.11a

Test Software Version		Mtool 2.0.2.1	
Frequency	5180 MHz	5200 MHz	5240 MHz
802.11a	77	86	88

3.9. EUT Operation during Test

For non-beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

For beamforming mode:

For Conducted Mode:

The EUT was programmed to be in continuously transmitting mode.

For Radiated Mode:

During the test, the following programs under WIN XP were executed.

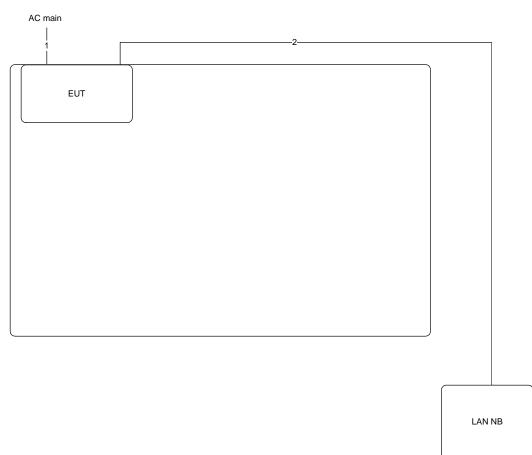
The program was executed as follows:

- 1. During the test, the EUT operation to normal function.
- 2. Executed command fixed test channel under DOS.
- 3. Executed "Lantest.exe " to link with the remote workstation to receive and transmit packet by WLAN dongle and transmit duty cycle no less 98%

3.10. Duty Cycle

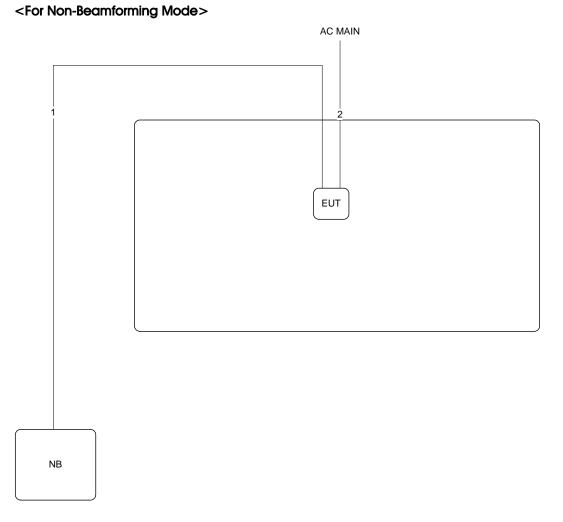
For non-beamforming mode:

Mode	On Time	On+Off Time	Duty Cycle	Duty Factor	1/T Minimum VBW
	(ms)	(ms)	(%)	(dB)	(kHz)
802.11a	2.050	2.090	98.09%	0.08	0.01

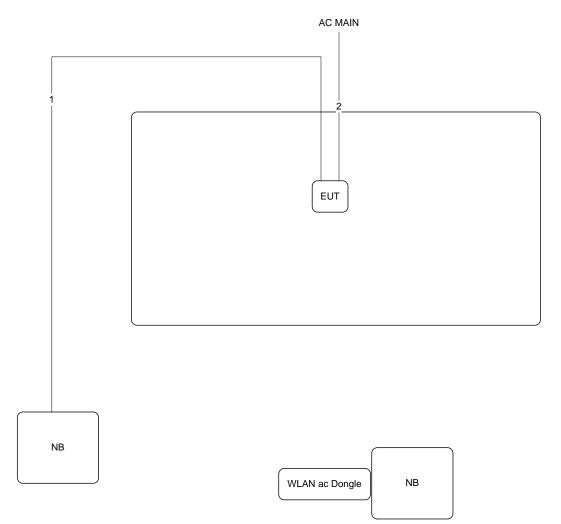

For beamforming mode:

Mode	On Time	On+Off Time	Duty Cycle	Duty Factor	1/T Minimum VBW
WIDDE	(ms)	(ms)	(%)	(dB)	(kHz)
802.11ac MCS0/Nss1 VHT20	3.797	4.116	92.25%	0.35	0.26
802.11ac MCS0/Nss1 VHT40	3.650	4.225	86.39%	0.64	0.27
802.11ac MCS0/Nss1 VHT80	2.550	3.513	72.60%	1.39	0.39

3.11. Test Configurations


3.11.1.AC Power Line Conduction Emissions Test Configuration

ltem	Connection	Shielded	Length (m)
1	Power cable	No	3m
2	RJ-45 cable	No	10m


3.11.2. Radiation Emissions Test Configuration

ltem	Connection	Length (m)		
1	RJ-45 cable	No	10m	
2	Power cable	No	3m	

<For Beamforming Mode>

ltem	Connection	Shielded	Length (m)
1	RJ-45 cable	No	10m
2	Power cable	No	3m

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

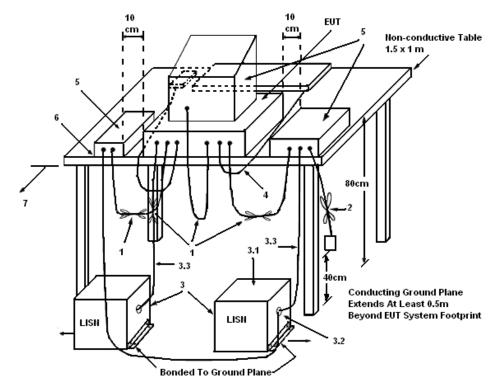
For this product that is designed to connect to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


4.1.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 kHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

4.1.4. Test Setup Layout

LEGEND:

(1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

(2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

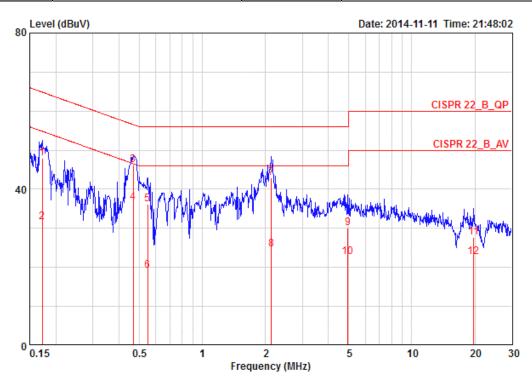
(3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.

- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.

(7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

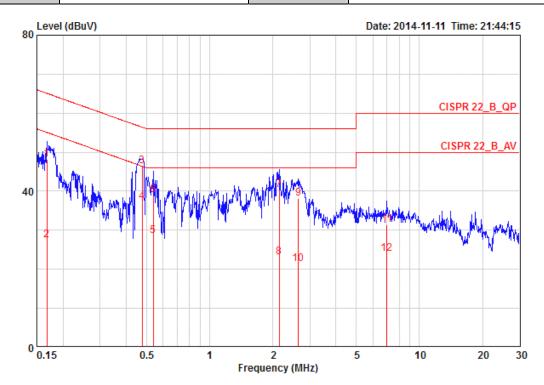
4.1.5. Test Deviation

There is no deviation with the original standard.


4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.

4.1.7. Results of AC Power Line Conducted Emissions Measurement


Temperature	25 °C	Humidity	54%
Test Engineer	Sollo Luo	Phase	Line
Configuration	СТХ	Test Mode	Mode 1

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor		Remark	Pol/Phase
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.17215	48.06	-16.79	64.86	37.94	9.96	0.16	QP	LINE
2	0.17215	31.58	-23.27	54.86	21.46	9.96	0.16	AVERAGE	LINE
3	0.46861	46.12	-10.42	56.54	35.98	9.96	0.18	QP	LINE
4 0	0.46861	36.61	-9.93	46.54	26.47	9.96	0.18	AVERAGE	LINE
5	0.54934	36.14	-19.86	56.00	25.99	9.97	0.19	QP	LINE
6	0.54934	19.17	-26.83	46.00	9.02	9.97	0.19	AVERAGE	LINE
7	2.133	43.00	-13.00	56.00	32.71	10.03	0.25	QP	LINE
8	2.133	24.59	-21.41	46.00	14.30	10.03	0.25	AVERAGE	LINE
9	4.952	30.10	-25.90	56.00	19.68	10.10	0.32	QP	LINE
10	4.952	22.64	-23.36	46.00	12.22	10.10	0.32	AVERAGE	LINE
11	19.740	27.65	-32.35	60.00	16.73	10.42	0.51	QP	LINE
12	19.740	22.76	-27.24	50.00	11.84	10.42	0.51	AVERAGE	LINE

Temperature	25 °C	Humidity	54%
Test Engineer	Sollo Luo	Phase	Neutral
Configuration	CTX	Test Mode	Mode 1

	Freq MHz	Level dBuV	Over Limit dB	Limit Line dBuV	Read Level dBuV	LISN Factor dB		Remark	Pol/Phase
1	0.16765	48.26	-16.81	65.08	38.15	9.95	0.16	QP	NEUTRAL
2	0.16765	27.55	-27.52	55.08	17.44	9.95	0.16	AVERAGE	NEUTRAL
3 @	0.47612	46.49	-9.91	56.41	36.36	9.95	0.18	QP	NEUTRAL
4 0	0.47612	37.33	-9.07	46.41	27.20	9.95	0.18	AVERAGE	NEUTRAL
5	0.53782	28.49	-17.51	46.00	18.35	9.96	0.19	AVERAGE	NEUTRAL
6	0.53782	38.93	-17.07	56.00	28.79	9.96	0.19	QP	NEUTRAL
7	2.144	40.32	-15.68	56.00	30.05	10.01	0.25	QP	NEUTRAL
8	2.144	23.17	-22.83	46.00	12.90	10.01	0.25	AVERAGE	NEUTRAL
9	2.650	38.07	-17.93	56.00	27.77	10.03	0.27	QP	NEUTRAL
10	2.650	21.35	-24.65	46.00	11.05	10.03	0.27	AVERAGE	NEUTRAL
11	6.988	31.43	-28.57	60.00	20.94	10.14	0.35	QP	NEUTRAL
12	6.988	23.92	-26.08	50.00	13.43	10.14	0.35	AVERAGE	NEUTRAL

Note:

Level = Read Level + LISN Factor + Cable Loss

4.2. 26dB Bandwidth and 99% Occupied Bandwidth Measurement

4.2.1. Limit

No restriction limits.

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

26dB Bandwidth					
Spectrum Parameters	Setting				
Attenuation	Auto				
Span Frequency	> 26dB Bandwidth				
RBW	Approximately 1% of the emission bandwidth				
VBW	VBW > RBW				
Detector	Peak				
Trace	Max Hold				
Sweep Time	Auto				
99% Оссирі	ed Bandwidth				
Spectrum Parameters	Setting				
Span	1.5 times to 5.0 times the OBW				
RBW	1 % to 5 % of the OBW				
VBW	≥ 3 x RBW				
Detector	Peak				
Trace	Max Hold				

4.2.3. Test Procedures

For Radiated 26dB Bandwidth and 99% Occupied Bandwidth Measurement:

- 1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
- Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

4.2.4. Test Setup Layout

For Radiated 26dB Bandwidth and 99% Occupied Bandwidth Measurement:

This test setup layout is the same as that shown in section 4.5.4.

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.2.7. Test Result of 26dB Bandwidth and 99% Occupied Bandwidth

Temperature	21°C	Humidity	53%
Test Engineer	YC Chen	Configurations	IEEE 802.11ac

<For Beamforming Mode>

Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 4 + Chain 5 + Chain 6

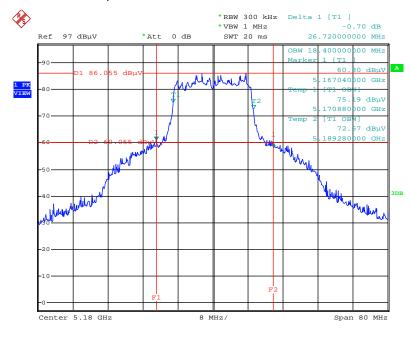
Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
36	5180 MHz	26.72	18.40
40	5200 MHz	33.12	19.04
48	5240 MHz	32.96	19.36

Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
38	5190 MHz	44.80	37.44
46	5230 MHz	74.24	39.36

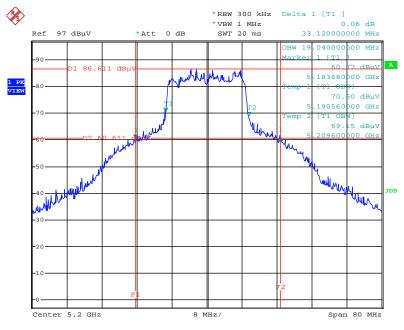
Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	
42	5210 MHz	81.28	75.52	

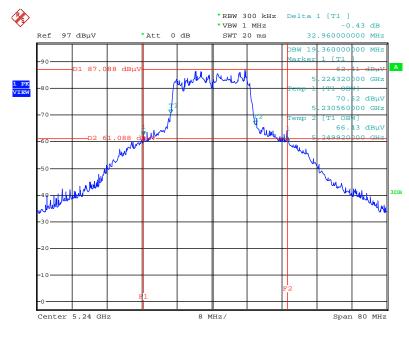

Temperature 21°C		Humidity	53%
Test Engineer	YC Chen	Configurations	IEEE 802.11a

<For Non-Beamforming Mode>

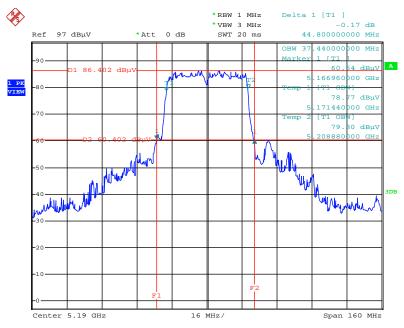
Configuration IEEE 802.11a / Chain 4 + Chain 5 + Chain 6


Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
36	5180 MHz	24.34	17.60
40	5200 MHz	32.80	21.92
48	5240 MHz	32.48	20.96

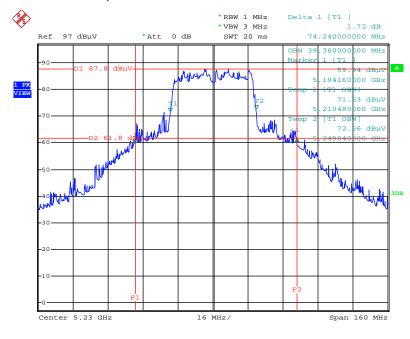
26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 4 + Chain 5 + Chain 6 / 5180 MHz


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 4 + Chain 5 + Chain 6 / 5200 MHz

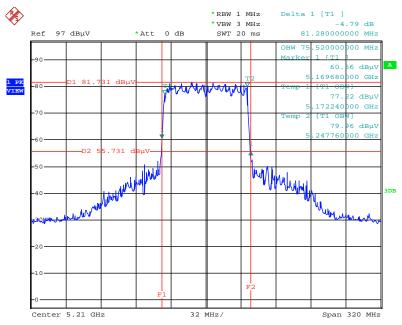
Date: 20.NOV.2014 00:26:28


Date: 20.NOV.2014 00:25:50

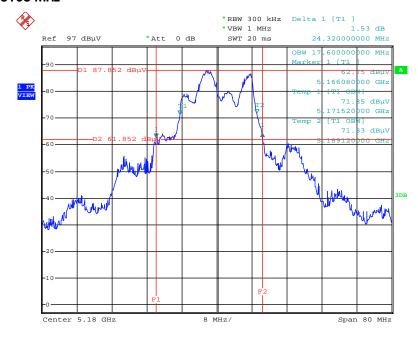
26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 4 + Chain 5 + Chain 6 / 5240 MHz


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 4 + Chain 5 + Chain 6 / 5190 MHz

Date: 18.NOV.2014 19:59:26

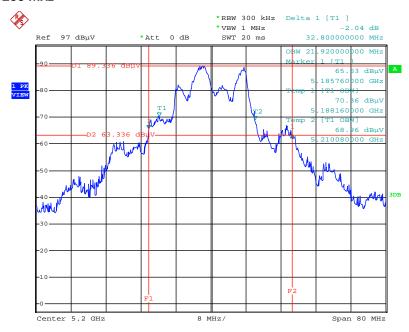

Date: 20.NOV.2014 00:26:59

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 4 + Chain 5 + Chain 6 / 5230 MHz

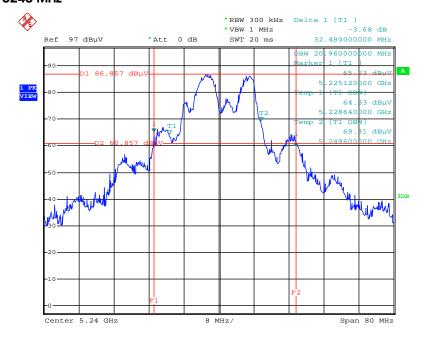

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 4 + Chain 5 + Chain 6 / 5210 MHz

Date: 17.0CT.2014 19:18:54

Date: 20.NOV.2014 00:33:02



26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 4 + Chain 5 + Chain 6 / 5180 MHz


Date: 17.0CT.2014 19:12:04

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 4 + Chain 5 + Chain 6 / 5200 MHz

Date: 17.0CT.2014 19:12:52

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 4 + Chain 5 + Chain 6 / 5240 MHz

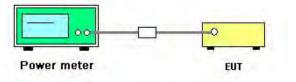
Date: 20.NOV.2014 00:20:42

4.3. Maximum Conducted Output Power Measurement

4.3.1. Limit

	Frequency Band	Limit						
5.1	5~5.25 GHz							
Op	Operating Mode							
	Outdoor access point	The maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm) provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).						
	Indoor access point	The maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm) provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.						
	Fixed point-to-point access points	The maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm). Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.						
	Mobile and portable client devices	The maximum conducted output power over the frequency band of operation shall not exceed 250 mW (24dBm) provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.						

4.3.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.

Power Meter Parameter	Setting
Detector	AVERAGE

4.3.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the power meter.
- Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter).
- 3. Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula.

4.3.4. Test Setup Layout

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.3.7. Test Result of Maximum Conducted Output Power

Temperature	21℃	Humidity	53%
Test Engineer	YC Chen	Configurations	IEEE 802.11ac
Test Date	Oct. 17, 2014		

<For Beamforming Mode>

Configuration IEEE 802.11ac MCS0/Nss1 VHT20

Result
Kesuli
Complies
Complies
Complies
С

Note:

Directional Gain = 10 - log $\left[\frac{\sum_{j=1}^{\infty} \left\{\sum_{k=1}^{\infty} g_{j,k}\right\}}{N_{eNT}}\right] = 7.77 \text{dBi} > 6 \text{dBi, so limit} = 30 - (7.77 - 6) = 28.23 \text{dBm}$

Configuration IEEE 802.11ac MCS0/Nss1 VHT40

		Conducted Power (dBm)			Max. Limit	Result	
Channel	Channel Frequency		Chain 5	Chain 6	Total	(dBm)	Kesuli
38	5190 MHz	15.34	16.52	16.63	20.97	28.23	Complies
46	5230 MHz	19.75	20.60	20.78	25.17	28.23	Complies
		T a	V- CN-	127		•	

Note:

Directional Gain = 10-log $\left| \frac{\sum_{i=1}^{\infty} \left\{ \sum_{k=1}^{\infty} g_{i,k} \right\}^{i}}{N_{evr}} \right| = 7.77 \text{dBi} > 6 \text{dBi, so limit} = 30-(7.77-6) = 28.23 \text{dBm}$

Configuration IEEE 802.11ac MCS0/Nss1 VHT80

Channel Frequency		Conducted Power (dBm)			Max. Limit	Result	
		Chain 4	Chain 5	Chain 6	Total	(dBm)	Kesuli
42	5210 MHz	14.19	15.68	15.67	20.01	28.23	Complies
$\frac{Directional Gain = 10 \cdot \log \left[\frac{\sum_{i=1}^{n} \frac{ \mathbf{x}_{i} ^{2}}{N_{aver}}\right]}{N_{aver}} = 7.77 \text{dBi} > 6 \text{dBi, so limit} = 30 \cdot (7.77 \cdot 6) = 28.23 \text{dBm}$							

Report Format Version: Rev. 01 FCC ID: KA2IR890LA1

Temperature	21°C	Humidity	53%
Test Engineer	YC Chen	Configurations	IEEE 802.11a
Test Date	Oct. 17, 2014		

<For Non-Beamforming Mode>

Configuration IEEE 802.11a

Channel Freque	Fraguanay	Conducted Power (dBm)			Max. Limit	Result	
	riequency	Chain 4	Chain 5	Chain 6	Total	(dBm)	Result
36	5180 MHz	18.92	18.95	18.01	23.42	30.00	Complies
40	5200 MHz	19.71	20.28	19.66	24.66	30.00	Complies
48	5240 MHz	20.34	20.55	20.03	25.08	30.00	Complies

4.4. Power Spectral Density Measurement

4.4.1. Limit

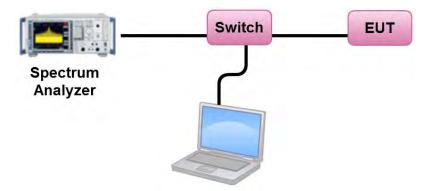
The following table is power spectral density limits and decrease power density limit rule refer to section

4.3.1.

Frequency Band		Limit			
5.15~5.25 GHz					
Ope	Operating Mode				
	Outdoor access point	17 dBm/MHz			
\boxtimes	Indoor access point	17 dBm/MHz			
	Fixed point-to-point access points	17 dBm/MHz			
	Mobile and portable client devices	11 dBm/MHz			

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.


Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RBW	1000 kHz
VBW	3000 kHz
Detector	RMS
Trace	AVERAGE
Sweep Time	Auto
Trace Average	100 times

4.4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected RF switch to the spectrum analyzer.
- 2. Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD).
- 3. Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the outputs.
- 4. When measuring first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3 and so on up to the Nth output to obtain the value for the first frequency bin of the summed spectrum. The summed spectrum value for each of the other frequency bins is computed in the same way.

4.4.4. Test Setup Layout

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.4.7. Test Result of Power Spectral Density

Temperature	21℃	Humidity	53%
Test Engineer	YC Chen	Configurations	IEEE 802.11ac
Test Date	Oct. 17, 2014		

<For Beamforming Mode>

Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
36	5180 MHz	9.06	15.23	Complies
40	5200 MHz	11.79	15.23	Complies
48	5240 MHz	11.62	15.23	Complies
	Town 12	F		

Note: $\sum_{n=1}^{100} \frac{\sum_{n=1}^{100} \sum_{n=1}^{100} \sum_{n=1$

Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
38	5190 MHz	2.31	15.23	Complies
46	5230 MHz	9.03	15.23	Complies

Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 4 + Chain 5 + Chain 6

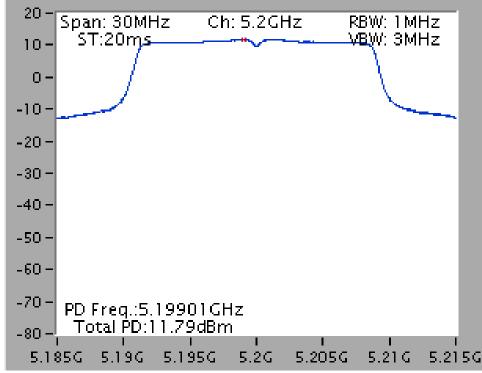
Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
42	5210 MHz	-1.89	15.23	Complies

Note: $\sum_{i=1}^{100} \sum_{i=1}^{100} \sum_{i=1}^$

Temperature	21℃	Humidity	53%
Test Engineer	YC Chen	Configurations	IEEE 802.11a
Test Date	Oct. 17, 2014		

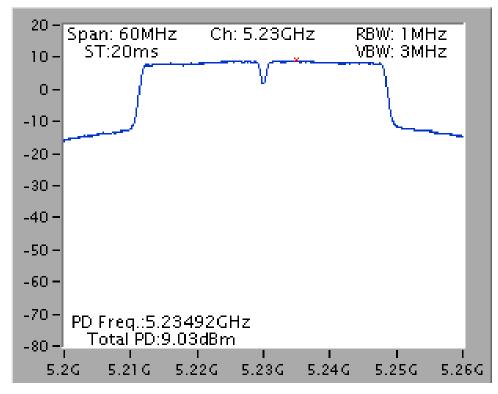
<For Non-Beamforming Mode>

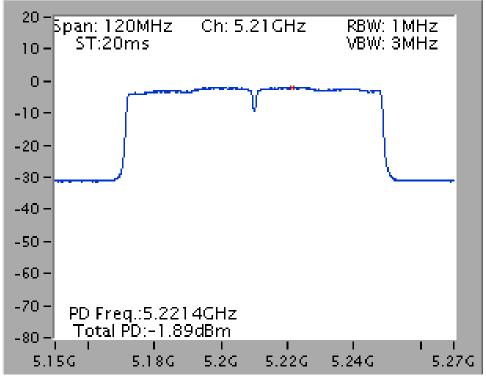
Configuration IEEE 802.11a / Chain 4 + Chain 5 + Chain 6


Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
36	5180 MHz	9.75	15.23	Complies
40	5200 MHz	11.22	15.23	Complies
48	5240 MHz	11.57	15.23	Complies
1.	[and Prove 12	7		

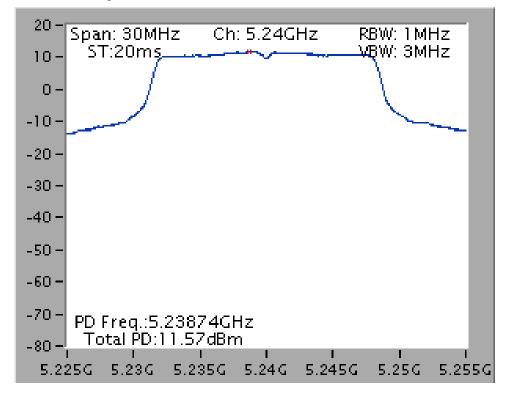
Note: $\frac{\sum_{i=1}^{n} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \right)}{\sum_{i=1}^{n} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n}$

Note: All the test values were listed in the report.


For plots, only the channel with worse result was shown.


Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 4 + Chain 5 + Chain 6 / 5200 MHz

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 4 + Chain 5 + Chain 6 / 5230 MHz



Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 4 + Chain 5 + Chain 6 / 5210 MHz

Power Density Plot on Configuration IEEE 802.11a / Chain 4 + Chain 5 + Chain 6 / 5240 MHz

4.5. Radiated Emissions Measurement

4.5.1. Limit

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

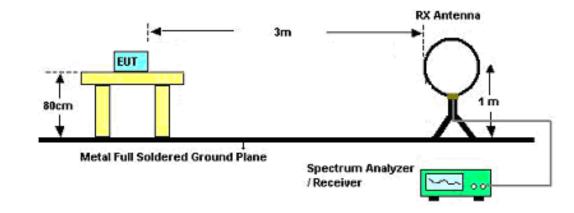
Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.5.2. Measuring Instruments and Setting

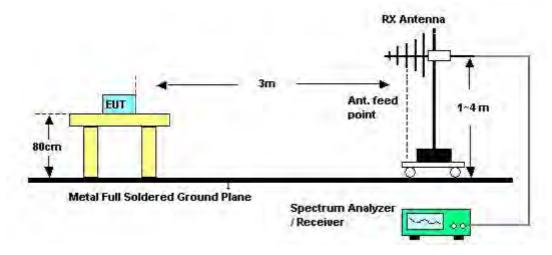
Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	40 GHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	1MHz / 3MHz for peak

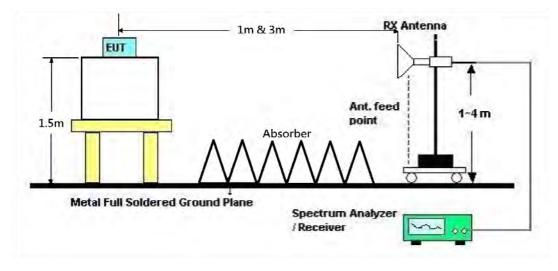
Receiver Parameter	Setting	
Attenuation	Auto	
Start ~ Stop Frequency	9kHz~150kHz / RBW 200Hz for QP	
Start ~ Stop Frequency	150kHz~30MHz / RBW 9kHz for QP	
Start ~ Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP	


4.5.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 1/T VBW for average reading in spectrum analyzer.
- 7. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 8. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 9. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.



4.5.4. Test Setup Layout


For Radiated Emissions: 9kHz \sim 30MHz

For Radiated Emissions: 30MHz~1GHz

For Radiated Emissions: Above 1GHz

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

For Non-beamforming mode:

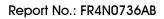
The EUT was programmed to be in continuously transmitting mode.

For beamforming mode:

The EUT was programmed to be in beamforming transmitting mode.

4.5.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	25°C	Humidity	67%
Test Engineer	Lucas Huang	Configurations	СТХ
Test Date	Oct. 22, 2014	Test Mode	Mode 1

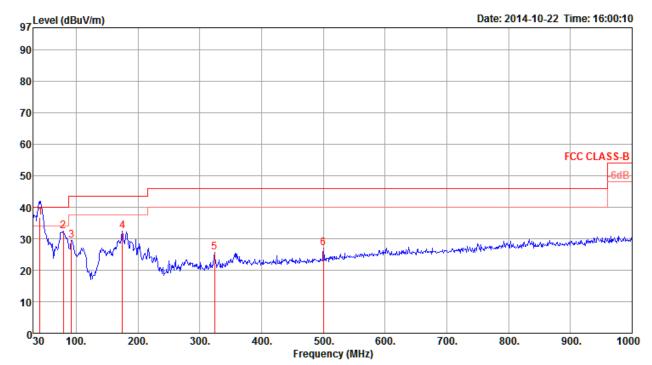

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.



4.5.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	25 ℃		Humidity	67%				
Test Engineer	Lucas Huang		Lucas Huang Configurations		Configurations	СТХ		
Test Mode	Mode 1							
lorizontal								
97 Level (dBuV/m)				Date: 2014-1	0-22 Time: 16:12:07			
90								
80								
70								
60								
					FCC CLASS-B			
50					-6dB			
40								
1 2	3 4	5 6						
30 M M	Manna	per monende	ab element of the second	prosent for the section of the secti	normatical international dates			
20	A A A A A A A A A A A A A A A A A A A							
10								
⁰ 30 100.	200. 300.		500. 600. quency (MHz)	700. 800.	900. 100			

	Freq	Level	Limit Line	Over Limit		CableA Loss				T/Pos	A/Pos	Pol/Phase
-	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		deg	Cm	
1 2 3 4 5 6	111.48 147.37 180.35 212.36 357.86 458.74	29.99 32.00 32.97 30.97 31.95 32.56	43.50 43.50 43.50	-13.51 -11.50 -10.53 -12.53 -14.05 -13.44	44.22 47.06 49.04 46.25 41.60 41.18	0.89 1.07 1.22 1.30 1.74 2.00	12.60 11.39 10.10 10.58 15.74 17.22	27.72 27.52 27.39 27.16 27.13 27.84	Peak Peak Peak Peak	0 0 0 0 0	100 100 100 100	HOR IZONTAL HOR IZONTAL HOR IZONTAL HOR IZONTAL HOR IZONTAL HOR IZONTAL

	Freq	Level	Limit Line	Over Limit		CableA Loss 1					A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		deg	Cm	
1	41.64	36.66	40.00	-3.34	51.44	0.51	12.68	27.97	OP	270	100	VERTICAL
2	79.47	32.36	40.00	-7.64	51.97	0.76	7.53			0		VERTICAL
3	92.08				46.77	0.79	9.80	27.86	Peak	0	400	VERTICAL
4	174.53	32.52	43.50	-10.98	48.49	1.17	10.26	27.40	Peak	0	400	VERTICAL
5	323.91	25.77	46.00	-20.23	36.32	1.66	14.72	26.93	Peak	0	400	VERTICAL
6	500.45	26.90	46.00	-19.10	34.93	2.10	17.80	27.93	Peak	0	400	VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.5.9. Results for Radiated Emissions (1GHz~40GHz)

<For Non-Beamforming Mode>

Temperature	25° C	Humidity	67%
Test Engineer		Configurations	IEEE 802.11a CH 36 /
Test Engineer	Lucas Huang	Configurations	Chain 4 + Chain 5 + Chain 6
Test Date	Oct. 13, 2014		
Horizontal			

Horizontal

	Freq	Level	Limit Line	Over Limit						T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		deg	Cm	
$^{1}_{2}$	15547.69 15547.76	41.65 55.67	54.00 74.00	-12.35 -18.33	29.85 43.89	7.86 7.86	38.66 38.66	34.72 34.74	Average Peak	169 169		HORIZONTAL HORIZONTAL

Freq	Level	Limit Line		Read Level				T/Pos		Pol/Phase
MHz	dBu∛/m	dBuV/m	dB	dBuV	dB	dB/m	dB	 deg	Cm	
15540.96 15544.90								256 256		VERTICAL VERTICAL

Temperature	25° ℃	Humidity	67%
Test Engineer		Configurations	IEEE 802.11a CH 40 /
Test Engineer	Lucas Huang	Configurations	Chain 4 + Chain 5 + Chain 6
Test Date	Oct. 13, 2014		
Horizontal			

Freq	Level		Over Limit					T/Pos	A/Pos	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	 deg	Cm	
15594.33 15609.39								216 216		HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line	Over Limit						T/Pos		Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		deg	Cm	
1 2	15606.38 15608.08	41.57 54.96	54.00 74.00	-12.43 -19.04	29.86 43.25	7.88 7.88	38.62 38.62	34.79 34.79	Average Peak	310 310		VERTICAL VERTICAL

Temperature	25 ℃	Humidity	67%
Test Engineer		Configurations	IEEE 802.11a CH 48 /
Test Engineer	Lucas Huang	Configurations	Chain 4 + Chain 5 + Chain 6
Test Date	Oct. 13, 2014		
Horizontal			

Limit Over Read CableAntenna Preamp Line Limit Level Loss Factor Factor T/Pos A/Pos Pol/Phase Loss Factor Factor Remark Freq Level MHz dBuV/m dBuV/m dB dBuV dB dB/m dB deg Cm 7.92 38.52 34.88 Average 7.92 38.52 34.88 Peak 100 HORIZONTAL $\frac{1}{2}$ 123 123 100 HORIZONTAL

Vertical

	Freq	Level	Limit Line		Read Level					T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		deg	Cm	
$^{1}_{2}$	15715.06 15719.55	40.73 55.46	54.00 74.00	-13.27 -18.54	29.17 43.90	7.92 7.92	38.52 38.52	34.88 34.88	Average Peak	262 262		VERTICAL VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log \text{Emission} \text{ level (uV/m)}$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

<For Beamforming Mode>

Temperature	25°C	Humidity	67%		
Text Engineer	Lucas Huang	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 36 / Chain 4 + Chain 5 + Chain 6		
Test Engineer		Configurations			
Test Date	Oct. 12, 2014				
Horizontal					
	Limit Over B	Read CableAntenna	Preamp A/Pos T/Pos		

	Freq	Level		Limit					Remark	A/Pos	I/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1 2	15539.08 15540.52									100 100		HORIZONTAL HORIZONTAL

Freq	Level	0∨er Limit						A/Pos	T/Pos Pol/Phase
MHz	dBu∀/m	 dB	dBu∨	dB	dB/m	dB		cm	deg
15539.01 15540.06							~	100 100	265 VERTICAL 265 VERTICAL

Tem	nperature	2	5℃		Hur	nidity		67%				
Tort	Engineer			IEEE 802.11ac MCS0/Nss1 VHT20 C					CH 40 /			
Chain 4 + Chain 5						n 5 + Cha	iin 6					
Test	Date	Oct. 12, 2014										
Horiz	ontal											
	Freq L	evel	Limit Line	Over Limit	Read Level			Preamp Factor		A/Pos	T/Pos	Pol/Phase
	MHz dB	u∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB			deg	
1 2		4.84 8.47		-9.16 -15.53	31.60 45.23	10.78 10.78	38.04 38.04		Average Peak	100 100		HORIZONTAL HORIZONTAL

	Freq	Level		0∨er Limit					A/Pos	T/Pos Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	 cm	deg
1 2	15599.68 15600.00								 100 100	56 VERTICAL 56 VERTICAL

Tem	nperature		25°C		н	umidity		67%				
Tod	Engineer			ana		onfigur	ations	ons IEEE 802.11ac MCS0/Nss1 VHT20 CH 48 / Chain 4 + Chain 5 + Chain 6				
1621	Engineer		Lucas Huo	ung		Configure		Chain	4 + Chair	n 5 + Cha	in 6	
Test	Date	Oct. 12, 2014										
Horiz	ontal											
	Freq	Leve	Limit el Line	Over Limit	Read Level			Preamp Factor		A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀	/m dBu∀/m	dB	dBu∨	dB	dB/m	dB			deg	
1	15719.45 15719.80	45.4 58.7		-8.58 -15.30	32.34 45.62		37.85 37.85		Average Reak	100 100		HORIZONTAL HORIZONTAL

	Freq	Level		0∨er Limit					A/Pos	T/Pos Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	 cm	deg
1 2	15719.66 15720.49								100 100	124 VERTICAL 124 VERTICAL

Tem	perature		25	0°C		-	Humidity		67%				
Test	Engineer				200		Configure	rtiona	IEEE 802.11 ac MCS0/Nss1 VHT40 CH 38 /				
iesi	Engineer		LU	cas Huc	ang		Configure		Chain	4 + Chain	5 + Cha	in 6	
Test	Date		00	ct. 12, 2	2014								
Horiz	ontal												
	Freq	Lev	/el	Limit Line	Over Limit	Rea Leve		Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBu\	//m	 dBu∀/m	dB	dBu	iv dB	dB/m	dB			deg	
1	15570.75	58.	58	74.00	-15.42	45.2	9 10.78	38.09	35.58	Peak	100	241	HORIZONTAL
2	15570.94	44.	66	54.00	-9.34	31.3	7 10.78	38.09	35.58	Average	100	241	HORIZONTAL

	Freq	Level		0∨er Limit					Remark	A/Pos	T/Pos Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg
1 2	15569.32 15569.47									100 100	352 VERTICAL 352 VERTICAL

Temperature	25°C		Humidity	67%			
Test Engineer	Lucas Hua	20	Configurations	ions IEEE 802.11ac MCS0/Nss1 VHT40 CH 4			
		ng	Configurations Chain 4 + Chain 5 + Chain 6				
Test Date	Oct. 12, 20	014					
Horizontal							
Freq L	Limit evel Line		d CableAntenna 21 Loss Factor		A/Pos	T/Pos	Pol/Phase

	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg
1	15689.33	44.98	54.00	-9.02	31.84	10.79	37.91	35.56 Average	100	123 HORIZONTAL
2	15689.81	58.40	74.00	-15.60	45.26	10.79	37.91	35.56 Peak	100	123 HORIZONTAL

	Freq	Level		0ver Limit					A/Pos	T/Pos Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	 cm	deg
1 2	15689.54 15690.92								100 100	186 VERTICAL 186 VERTICAL

Temperature	25°C	Humidity	67%
Tost Engineer		Configurations	IEEE 802.11ac MCS0/Nss1 VHT80 CH 42 /
Test Engineer	Lucas Huang	Configurations	Chain 4 + Chain 5 + Chain 6
Test Date	Oct. 12, 2014		
Horizontal			
	Limit Over F	ead CableAntenna	Preamp A/Pos T/Pos

Freq	Level			Level				Remark	A/POS	1/105	Pol/Phase
MHz	dBu∀/m	dBu\//m	dB	dBu∨	dB	dB/m	dB			deg	
15629.16 15630.07									100 100		HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line		Read Level				A/Pos	T/Pos Pol/Phase
	MHz	dBư∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	 cm	deg
1 2	15630.39 15630.68								100 100	308 VERTICAL 308 VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.6. Band Edge Emissions Measurement

4.6.1. Limit

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	1MHz / 3MHz for Peak

4.6.3. Test Procedures

1. The test procedure is the same as section 4.5.3, only the frequency range investigated is limited to 100MHz around bandedges.

4.6.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.5.4.

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

For Non-beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

For beamforming mode:

The EUT was programmed to be in beamforming transmitting mode.

4.6.7. Test Result of Band Edge and Fundamental Emissions

<For Non-Beamforming Mode>

Temperature	25℃	Humidity	67%
Test Engineer	Lucas Huang	Configurations	IEEE 802.11a CH 36, 40, 48 /
	Lucus Huang	Comguations	Chain 4 + Chain 5 + Chain 6
Test Date	Oct. 13, 2014		

Channel 36

	Freq	Level	Limit Line		Read Level					T/Pos	A/Pos	Pol/Phase
-	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		deg	Cm	
1 2 3 4	5149.36 5150.00 5179.04 5179.36	53.43 106.22			50.48	4.34 4.36	33.14 33.19	34.53	Average Average	267 267 267 267	124 124	VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5180 MHz.

Channel 40

	Freq	Level	Limit Line		Read Level				T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	 deg	Cm	
1 2 3 4	5120.83 5150.00 5201.28 5201.28	65.99 117.15			63.04 114.09	4.34 4.37	33.14 33.22	34.53 34.53	260 260 260 260	209 209	VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5200 MHz.

Channel 48

	Freq	Level	Limit Line		Read Level			Preamp Factor		T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		deg	Cm	
1 2 3 4 5 6	5118.75 5128.37 5239.04 5239.04 5355.77 5359.14	57.64 117.26	74.00	-16.36	54.73 114.13 105.46 53.34	4.33 4.39 4.39 4.47	33.11 33.27 33.27 33.46	34.53 34.53 34.53 34.53	Peak Average	266 266 266 266 266 266	210 210 210 210 210	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5240 MHz.

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

Average

Peak

<For Beamforming Mode>

5178.26 102.63

5179.13 113.20

		<u> </u>												
Temp	erature	25°	С		Humid	ity	67	67%						
Toot F	nginoor	lue			Config	uration		IEEE 802.11ac MCS0/Nss1 VHT20 CH 36, 40,						
	ngineer	Luc	Lucas Huang			juration		/ Chain	4 + Ch	l + Chain 5 + Chain 6				
Test D	ate	Oc	t. 16, 20	14										
Chann	el 36													
	Freq	Level	Limit Line	0∨er Limit				Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark		
_	MHz	dBu\∕/m	dBu√/m	dB	dBu√	dB	dB/m	dB	cm	deg				
1	5149.13	53.99	54.00	-0.01	50.39	5.99	33.02	35.41	177	261	VERTICAL	Average		
2	5149.42	72.87	74.00	-1.13	69.27	5.99	33.02	35.41	177	0.00	VERTICAL	Peak		

99.00

109.57

Item 3, 4 are the fundamental frequency at 5180 MHz.

Channel 40

3

4

	Freq	Level			Read Level				A/Pos	T/Pos	Pol/Phase	Remark
	MHz	dBu\∕/m	dBư√/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1 2 3 4	5117.58 5150.00 5195.95 5198.55	60.86 112.42	74.00			5.99 6.02	33.02 33.05		220 220 220 220	257 257	VERTICAL VERTICAL VERTICAL VERTICAL	Average Peak Peak Average

6.01 33.04 35.42 6.01 33.04 35.42

177

177

261 VERTICAL

261 VERTICAL

Item 3, 4 are the fundamental frequency at 5200 MHz.

Channel 48

	Freq	Level	Limit Line		Read Level			Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MHz	dBu∨/m	dBu∨/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	5123.52	44.78	54.00	-9.22	41.21	5.98	32.99	35.40	204	318	VERTICAL	Average
2	5143.92	57.37	74.00	-16.63	53.77	5.99	33.02	35.41	204	318	VERTICAL	Peak
з	5241.30	111.73			108.04	6.05	33.09	35.45	204	318	VERTICAL	Peak
4	5241.74	101.47			97.78	6.05	33.09	35.45	204	318	VERTICAL	Average
5	5351.30	57.27	74.00	-16.73	53.25	6.11	33.40	35.49	204	318	VERTICAL	Peak
6	5352.17	44.91	54.00	-9.09	40.89	6.11	33.40	35.49	204	318	VERTICAL	Average

Item 3, 4 are the fundamental frequency at 5240 MHz.

Tem	perature	25°(C		Humidi	ity	6	67%						
Teat	Engineer			~	Config	uration	IE	IEEE 802.11ac MCS0/Nss1 VHT40						
Test Engineer Lucas Huang Configurations CH 38, 46 / Chain 4 + Chain 5 + Chain								hain 6						
Test	Date	Oct	. 16, 20	4										
Chan	nel 38													
	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark		
	MHz	dBu\∕/m	dBu\∕/m	dB	dBu∀	dB	dB/m	dB	cm	deg				
1	5144.79	72.21	74.00	-1.79	68.61	5.99	33.02	35.41	185	261	VERTICAL	Peak		
2	5149.71	53.91	54.00	-0.09	50.31	5.99	33.02	35.41	185	261	VERTICAL	Average		
3	5187.40	95.73			92.09	6.02	33.05	35.43	185	261	VERTICAL	Average		
4	5193.18	106.14			102.50	6.02	33.05	35.43	185	261	VERTICAL	Peak		

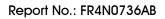
Item 3, 4 are the fundamental frequency at 5190 MHz.

Channel 46

	Freq	Level			Read Level			•	A/Pos	T/Pos	Pol/Phase	Remark
	MHz	dBu∨/m	dBư∨/m	dB	dBu√	dB	dB/m	dB	cm	deg		
1 2 3 4	5148.26 5149.57 5222.62 5224.79	59.91 108.06	74.00			5.99 6.04	33.02 33.08	35.41 35.41 35.44 35.44	255 255 255 255	306 306	VERTICAL VERTICAL VERTICAL VERTICAL	Average Peak Peak Average

Item 3, 4 are the fundamental frequency at 5230 MHz.

٦


Temperature		25°0	25 ℃		Humi	Humidity		67%				
Test Engineer			Lucas Huang		Conf	Configurations		IEEE 802.11ac MCS0/Nss1 VHT80				
		Luco			Con			CH 42 / Chain 4 + Chain 5 + Chain 6				
Test Date		Oct	. 16, 201	4								
Char	nel 42											
	Freq	Level	Limit Line	0∨er Limit	Read Level			Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MHz	dBu∨/m	dBu\∕/m	dB	dBu√	dB	dB/m	dB	cm	deg		
1	5137.84	67.95	74.00	-6.05	64.36	5.99	33.01	35.41	203	264	VERTICAL	Peak
2	5150.00	53.60	54.00	-0.40	50.00	5.99	33.02	35.41	203	264	VERTICAL	Average
3	5179.32	94.23			90.60	6.01	33.04	35.42	203	264	VERTICAL	Average
4	5181.06	106.37			102.75	6.01	33.04	35.43	203	264	VERTICAL	Peak

Item 3, 4 are the fundamental frequency at 5210 MHz.

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

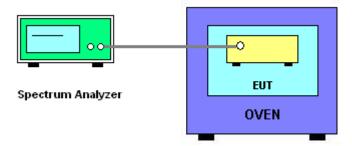
4.7. Frequency Stability Measurement

4.7.1. Limit

In-band emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

The transmitter center frequency tolerance shall be \pm 20 ppm maximum for the 5 GHz band (IEEE 802.11n specification).

4.7.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting		
Attenuation	Auto		
Span Frequency	Entire absence of modulation emissions bandwidth		
RBW	10 kHz		
VBW	10 kHz		
Sweep Time	Auto		

4.7.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ±20ppm (IEEE 802.11nspecification).
- 6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 7. Extreme temperature is $0^{\circ}C \sim 40^{\circ}C$.

4.7.4. Test Setup Layout

4.7.5. Test Deviation

There is no deviation with the original standard.

4.7.6. EUT Operation during Test

The EUT was programmed to be in continuously un-modulation transmitting mode.

4.7.7. Test Result of Frequency Stability

Temperature	21°C	Humidity	53%
Test Engineer	YC Chen	Test Date	Oct. 17, 2014

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)				
(V)	5200 MHz				
126.50	5199.9800				
110.00	5199.9900				
93.50	5200.0300				
Max. Deviation (MHz)	0.030000				
Max. Deviation (ppm)	5.77				

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)				
(°C)	5200 MHz				
0	5199.9900				
10	5200.0100				
20	5200.0500				
30	5200.0300				
40	5200.0100				
Max. Deviation (MHz)	0.050000				
Max. Deviation (ppm)	9.62				

4.8. Antenna Requirements

4.8.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.8.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Test Receiver	R&S	ESCS 30	100355	9kHz ~ 2.75GHz	Apr. 23, 2014	Conduction (CO01-CB)
LISN F.C.C.		FCC-LISN-50-16-2	04083	150kHz ~ 100MHz	Nov. 23, 2013	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127647	9kHz ~ 30MHz	Nov. 23, 2013	Conduction (CO01-CB)
COND Cable	Woken	Cable	01	150kHz ~ 30MHz	Dec. 04, 2013	Conduction (CO01-CB)
Software	Audix	E3	5.410e	-	N.C.R.	Conduction (CO01-CB)
BILOG ANTENNA	Schaffner	CBL6112D	22021	20 MHz ~ 2 GHz	May 26, 2014	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9 kHz - 30 MHz	Nov. 05, 2012*	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz~18GHz	Nov. 01, 2013	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Aug. 22, 2014	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Nov. 12, 2013	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Dec. 16, 2013	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26GHz ~ 40GHz	Oct. 23, 2013	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP40	100019	9kHz~40GHz	Dec. 02, 2013	Radiation (03CH01-CB)
EMI Test Receiver	Agilent	N9038A	MY52260123	9kHz ~ 8GHz	Dec. 12, 2013	Radiation (03CH01-CB)
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N.C.R.	Radiation (03CH01-CB)
Antenna Mast	INN CO	CO 2000	N/A	1 m - 4 m	N.C.R.	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz - 1 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-3	N/A	1 GHz - 40 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-4	N/A	1 GHz - 40 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
Signal analyzer	R&S	FSV40	100979	9kHz~40GHz	Nov. 29, 2013	Conducted (TH01-CB)
Temp. and Humidity Chamber	Ten Billion	TTH-D3SP	TBN-931011	-30~100 degree	Jun. 03, 2014	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-7	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-7	-	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-8	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-8	-	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-9	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
RF Cable-high	Woken	High Cable-9	-	1 GHz – 26.5 GHz	Nov. 15, 2014	
RF Cable-high	Woken	High Cable-10	-	1 GHz – 26.5 GHz	Nov. 17, 2013	(TH01-CB) Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-10	-	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-11	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-11	-	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
Power Sensor	Anritsu	MA2411B	1126203	300MHz~40GHz	Oct. 06, 2014	Conducted (TH01-CB)
Power Meter	Anritsu	ML2495A	1210004	300MHz~40GHz	Oct. 06, 2014	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

"*" Calibration Interval of instruments listed above is two years.

NCR means Non-Calibration required.

6. MEASUREMENT UNCERTAINTY

Test Items	Uncertainty	Remark
Conducted Emission (150kHz \sim 30MHz)	2.4 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1,000MHz)	3.6 dB	Confidence levels of 95%
Radiated Emission (1GHz \sim 18GHz)	3.7 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	3.5 dB	Confidence levels of 95%
Conducted Emission	1.7 dB	Confidence levels of 95%