

Appendix B. Maximum Permissible Exposure

FCC ID: KA2IR885LA1 Page No. : B1 of B4

1. Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby that distance of at least 0.2 m is normally maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Power Density (S) Strength (H) (A/m) (mW/ cm²)		Averaging Time E ² , H ² or S (minutes)	
0.3-3.0	614	1.63	(100)*	6	
3.0-30	1842 / f	4.89 / f	(900 / f)*	6	
30-300	61.4	0.163	1.0	6	
300-1500			F/300	6	
1500-100,000			5	6	

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

1.2. MPE Calculation Method

E (V/m) =
$$\frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

E = Electric field (V/m)

P = Average RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.26m, as well as the gain of the used antenna, the RF power density can be obtained.

FCC ID: KA2IR885LA1 Page No. : B2 of B4

1.3. Calculated Result and Limit

Exposure Environment: General Population / Uncontrolled Exposure

For 5GHz Band (NII):

Antenna Type: Dipole Antenna

Conducted Power for IEEE 802.11ac VHT20: 28.11 dBm

Distance (m)	Test Freq. (MHz)	Directional Gain (dBi)	Antenna Gain (numeric)	The maximum combined Average Output Power		Power Density (S) (mW/cm²)	Limit of Power Density (S)	Test Result
				(dBm)	(mW)		(mW/cm²)	
0.26	5200	7.82	6.0542	28.1131	647.6080	0.461781	1	Complies

Note:
$$Directional Gain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^{2}}{N_{ANT}} \right] = 7.82 \text{ dBi}$$

For 5GHz Band (DTS):

Antenna Type: Dipole Antenna

Conducted Power for IEEE 802.11ac VHT20: 28.17 dBm

Distan	ce Test Fre		(=din	comi Average	oximum oined o Output wer	Power Density (S) (mW/cm²)	Limit of Power Density (S)	Test Result
				(dBm)	(mW)		(mW/cm²)	
0.26	5745	7.82	6.0542	28.1750	656.8979	0.468405	1	Complies

Note:
$$Directional Gain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^{2}}{N_{ANT}} \right] = 7.82 \text{ dBi}$$

FCC ID: KA2IR885LA1 Page No. : B3 of B4

For 2.4GHz Band:

Antenna Type: PCB Antenna

Conducted Power for IEEE 802.11ac VHT20: 28.66 dBm

Distance (m)	Test Freq. (MHz)	Directional Gain (dBi)	Antenna Gain (numeric)	The maximum combined Average Output Power		Power Density (S) (mW/cm²)	Limit of Power Density (\$) (mW/cm²)	Test Result
				(dBm)	(mW)		(ITIW/CITI)	
0.26	2437	7.32	5.3959	28.6584	734.2358	0.466616	1	Complies

Note:
$$Directional Gain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 7.32 \text{ dBi}$$

Conclusion:

Both of the WLAN 2.4GHz Band and WLAN 5GHz Band can transmit simultaneously, the formula of calculated the MPE is:

CPD = Calculation power density

LPD = Limit of power density

Therefore, the worst-case situation is 0.466616 / 1 + 0.468405 / 1 = 0.935021, which is less than "1". This confirmed that the device complies.

FCC ID: KA2IR885LA1 Page No. : B4 of B4