

Appendix B. Maximum Permissible Exposure

FCC ID: KA2IR880LA1 Page No. : B1 of B4

1. Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)			Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E 2, H 2 or S (minutes)	
0.3-1.34	614	1.63	(100)*	30	
1.34-30	824/f	2.19/f	(180/f)*	30	
30-300	27.5	0.073	0.2	30	
300-1500			F/1500	30	
1500-100,000			1.0	30	

Note: f = frequency in MHz; *Plane-wave equivalent power density

1.2. MPE Calculation Method

E (V/m) =
$$\frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

E = Electric field (V/m)

P = Average RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.25m, as well as the gain of the used antenna, the RF power density can be obtained.

FCC ID: KA2IR880LA1 Page No. : B2 of B4

1.3. Calculated Result and Limit

Exposure Environment: General Population / Uncontrolled Exposure

For 5GHz UNII Band:

Antenna Type: Dipole Antenna

Conducted Power for IEEE 802.11ac MCS0, Nss1 20MHz: 28.14 dBm

Distance (m)	Directional Gain (dBi)	Antenna Gain (numeric)	The maximum combined Average Output Power		Power Density (S)	Limit of Power Density (S)	Test Result
			(dBm)	(mW)	(mW/cm²)	(mW/cm²)	
0.25	7.77	5.9858	28.1428	652.0422	0.497196	1	Complies

Note: Directional gain= $10 \cdot \log \left[\frac{\sum_{j=1}^{N_{xx}} \left\{ \sum_{k=1}^{N_{xxy}} g_{j,k} \right\}^2}{N_{xxy}} \right]$

For 5GHz ISM Band:

Antenna Type: Dipole Antenna

Conducted Power for IEEE 802.11ac MCS0, Nss1 20MHz: 28.22 dBm

Distance	Directional	Antenna Gain (numeric)	The maximum combined Average Output Power		Power Density (S)	Limit of Power	Test Result
(m) Gain (dBi)	Gain (dBi)		(dBm)	(mW)	(mW/cm²)	Density (S) (mW/cm²)	iesi kesuli
0.25	7.77	5.9858	28.2231	664.2109	0.506475	1	Complies

Note: Directional gain= $10 \cdot \log \left[\frac{\sum_{j=1}^{N_{\text{aNT}}} \left\{ \sum_{k=1}^{N_{\text{aNT}}} g_{j,k} \right\}^2}{N_{\text{aNT}}} \right]$

For 2.4GHz Band:

Antenna Type: Dipole Antenna

Conducted Power for IEEE 802.11n MCS0 20MHz: 29.02 dBm

Distance (m)	Directional Gain (dBi)	Antenna Gain (numeric)	The maximum combined Average Output Power		Power Density (S)	Limit of Power	Test Result
			(dBm)	(mW)	(mW/cm²)	Density (S) (mW/cm²)	iooi koodii
0.25	6.77	4.7547	29.0202	798.0263	0.483358	1	Complies

Note: Directional gain= $10 \cdot \log \left| \frac{\sum\limits_{j=1}^{N_{ex}} \left\{ \sum\limits_{k=1}^{N_{ext}} g_{j,k} \right\}^2}{N_{_{ANT}}} \right|$

FCC ID: KA2IR880LA1 Page No. : B3 of B4

CONCULSION:

Both of the WLAN 2.4GHz Band and WLAN 5GHz Band can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Therefore, the worst-case situation is 0.483358 / 1 + 0.506475 / 1 = 0.989833, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

Note: Maximum Permissible Exposure of 5GHz ISM Band and 2.4GHz Band are based on original test report.

FCC ID: KA2IR880LA1 Page No. : B4 of B4