

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, TaoYuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	D-Link Corporation
Applicant Address	No.289, Sinhu 3rd Rd., Neihu District, Taipei City 114, Taiwan, R.O.C.
FCC ID	KA2IR865LA1
Manufacturer's company	Alpha Networks Inc.
Manufacturer Address	No.8 Li-shing 7th Rd., Science-based Industrial Park, Hsinchu, Taiwan, R.O.C.

Product Name	Wireless AC 1750 Dual Band Cloud Router
Brand Name	D-Link
Model Name	DIR-865L
Test Rule Part(s)	47 CFR FCC Part 15 Subpart E § 15.407
Test Freq. Range	5150 ~ 5250MHz
Received Date	May 18, 2012
Final Test Date	May 29, 2012
Submission Type	Original Equipment
Operating Mode	Master

Statement

Test result included is for the IEEE 802.11n and IEEE 802.11a (5150 \sim 5250MHz) of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2009 and 47 CFR FCC Part 15 Subpart E. The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1. CE	ERTIFICATE OF COMPLIANCE	1
2. SUI	IMMARY OF THE TEST RESULT	
3. GE	ENERAL INFORMATION	3
3.1		
3.2	2. Accessories	6
3.3	3. Table for Filed Antenna	
3.4	4. Table for Carrier Frequencies	8
3.5	5. Table for Test Modes	9
3.6	6. Table for Testing Locations	10
3.7	7. Table for Supporting Units	10
3.8	8. Table for Parameters of Test Software Setting	11
3.9	9. Test Configurations	12
4. TES	ST RESULT	14
4.1		
4.2	2. 99% Occupied Bandwidth Measurement	18
4.3	3. Maximum Conducted Output Power Measurement	26
4.4	4. Power Spectral Density Measurement	39
4.5	5. Peak Excursion Measurement	44
4.6	6. Radiated Emissions Measurement	49
4.7	7. Band Edge Emissions Measurement	64
4.8	8. Frequency Stability Measurement	72
4.9	9. Antenna Requirements	74
5. LIST	ST OF MEASURING EQUIPMENTS	75
6. TES	ST LOCATION	77
7. TAF	F CERTIFICATE OF ACCREDITATION	78
	NDIX A. TEST PHOTOS	
APPE	NDIX B. MAXIMUM PERMISSIBLE EXPOSURE	BI ~ B3
ADDEN	INDIX C. COLLOCATION PEPOPT	C1 ~ C3

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR251806AA	Rev. 01	Initial issue of report	Jun. 06, 2012

Certificate No.: CB10105153

1. CERTIFICATE OF COMPLIANCE

Product Name :

Wireless AC 1750 Dual Band Cloud Router

Brand Name :

D-Link

Model Name :

DIR-865L

Applicant:

D-Link Corporation

Test Rule Part(s) :

47 CFR FCC Part 15 Subpart E § 15.407

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on May 18, 2012 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

SPORTON INTERNATIONAL INC.

Report Format Version: 01 FCC ID: KA2IR865LA1

Page No.

: 1 of 78

Issued Date : Jun. 06, 2012

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart E						
Part	Rule Section	Result	Under Limit				
4.1	15.207	AC Power Line Conducted Emissions	Complies	19.20 dB			
4.2	15.407(a)	26dB Spectrum Bandwidth	Complies	-			
4.3	15.407(a)	Maximum Conducted Output Power	Complies	0.04 dB			
4.4	15.407(a)	Power Spectral Density	Complies	0.99 dB			
4.5	15.407(a)	Peak Excursion	Complies	6.89 dB			
4.6	15.407(b)	Radiated Emissions	Complies	8.41 dB			
4.7	15.407(b)	Band Edge Emissions	Complies	0.11 dB			
4.8	15.407(g)	Frequency Stability	Complies	-			
4.9	15.203	Antenna Requirements	Complies	-			

Test Items	Uncertainty	Remark
AC Power Line Conducted Emissions	±2.3dB	Confidence levels of 95%
Maximum Conducted Output Power	±0.5dB	Confidence levels of 95%
Power Spectral Density	±0.5dB	Confidence levels of 95%
Peak Excursion	±0.5dB	Confidence levels of 95%
26dB Spectrum Bandwidth / Frequency Stability	±8.5×10 ⁻⁸	Confidence levels of 95%
Radiated Emissions (9kHz~30MHz)	±0.8dB	Confidence levels of 95%
Radiated Emissions (30MHz~1000MHz)	±1.9dB	Confidence levels of 95%
Radiated / Band Edge Emissions (1GHz~18GHz)	±1.9dB	Confidence levels of 95%
Radiated Emissions (18GHz~40GHz)	±1.9dB	Confidence levels of 95%
Temperature	±0.7°C	Confidence levels of 95%
Humidity	±3.2%	Confidence levels of 95%
DC / AC Power Source	±1.4%	Confidence levels of 95%

 Report Format Version: 01
 Page No.
 : 2 of 78

 FCC ID: KA2IR865LA1
 Issued Date
 : Jun. 06, 2012

3. GENERAL INFORMATION

3.1. Product Details

IEEE 802.11n

Items	Description
Product Type	WLAN (3TX, 3RX)
Radio Type	Intentional Transceiver
Power Type	From Power Adapter
Modulation	see the below table for IEEE 802.11n
	see the below table for IEEE 802.11ac
Data Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM) For 802.11n
	OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM) For 802.11ac
Data Rate (Mbps)	see the below table for IEEE 802.11n
	see the below table for IEEE 802.11ac
Frequency Range	5150 ~ 5250MHz
Channel Number	4 for 20MHz bandwidth ; 2 for 40MHz bandwidth
	1 for 80MHz bandwidth
Channel Band Width (99%)	11n MCS0 (HT 20MHz): 17.92 MHz ; 11n MCS0 (HT40 MHz): 36.16 MHz;
	11ac MCS0 (VHT 80MHz): 75.52 MHz
Conducted Output Power	11n MCS0 (HT20 MHz): 16.86 dBm; 11n MCS0 (HT40 MHz): 16.88 dBm;
	11ac MCS0 (VHT 80MHz): 16.88 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

 Report Format Version: 01
 Page No.
 : 3 of 78

 FCC ID: KA2IR865LA1
 Issued Date
 : Jun. 06, 2012

: 4 of 78

IEEE 802.11a

Items	Description
Product Type	WLAN (3TX, 3RX)
Radio Type	Intentional Transceiver
Power Type	From Power Adapter
Modulation	OFDM for IEEE 802.11a
Data Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	OFDM (6/9/12/18/24/36/48/54)
Frequency Range	5150 ~ 5250MHz
Channel Number	11a: 4
Channel Band Width (99%)	11a: 16.96 MHz
Conducted Output Power	11a: 13.45 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

: 5 of 78

Antenna & Band width

Antenna	Three (TX)					
Band width Mode	20 MHz	40 MHz	80MHz			
IEEE 802.11a	V	X	X			
IEEE 802.11n	V	V	Х			
IEEE 802.11ac	V	V	V			

IEEE 802.11n spec

1400					NG	ND0	ME	DD0	Datarate(Mbps)				
MCS	Nss	Modulation	R	NBPSC	NC	BPS	NL	NDBPS	800nsGI		400	400nsGI	
Index					20MHz	40MHz	20MHz	40MHz	20MHz	40MHz	20MHz	40MHz	
0	1	BPSK	1/2	1	52	108	26	54	6.5	13.5	7.200	15	
1	1	QPSK	1/2	2	104	216	52	108	13.0	27.0	14.400	30	
2	1	QPSK	3/4	2	104	216	78	162	19.5	40.5	21.700	45	
3	1	16-QAM	1/2	4	208	432	104	216	26.0	54.0	28.900	60	
4	1	16-QAM	3/4	4	208	432	156	324	39.0	81.0	43.300	90	
5	1	64-QAM	2/3	6	312	648	208	432	52.0	108.0	57.800	120	
6	1	64-QAM	3/4	6	312	648	234	486	58.5	121.5	65.000	135	
7	1	64-QAM	5/6	6	312	648	260	540	65.0	135.0	72.200	150	
8	2	BPSK	1/2	1	104	216	52	108	13.0	27.0	14.444	30	
9	2	QPSK	1/2	2	208	432	104	216	26.0	54.0	28.889	60	
10	2	QPSK	3/4	2	208	432	156	324	39.0	81.0	43.333	90	
11	2	16-QAM	1/2	4	416	864	208	432	52.0	108.0	57.778	120	
12	2	16-QAM	3/4	4	416	864	312	648	78.0	162.0	86.667	180	
13	2	64-QAM	2/3	6	624	1296	416	864	104.0	216.0	115.556	240	
14	2	64-QAM	3/4	6	624	1296	468	972	117.0	243.0	130.000	270	
15	2	64-QAM	5/6	6	624	1296	520	1080	130.0	270.0	144.444	300	

Symbol	Explanation
NSS	Number of spatial streams
R	Code rate
NBPSC	Number of coded bits per single carrier
NCBPS	Number of coded bits per symbol
NDBPS	Number of data bits per symbol
GI	guard interval

IEEE 802. 11a, 11n and11ac Spec.

Worst Modulation Used for Conformance Testing								
IEEE 802.11	Number of Transmit Chains (N _{TX})	Data Rate / MCS	Worst Data Rate / MCS	Worst Modulation Mode				
Protocol								
а	3	6-54 Mbps	6Mbps	11A5.2G-20M				
n (HT20)	3	MCS 0-15	MCS 0	11N5.2G-20M				
n (HT40)	3	MCS 0-15	MCS 0	11N5.2G-40M				
ac (VHT20)	3	MCS 0-9	MCS 0-Nss1	11AC5.2G-20M				
ac (VHT40)	3	MCS 0-9	MCS 0-Nss1	11AC5.2G-40M				
ac (VHT80)	3	MCS 0-9	MCS 0-Nss1	11AC5.2G-80M				

Note 1: IEEE Std. 802.11-2007 modulation consists of IEEE Std. 802.11a-1999.

Note 2: IEEE Std. 802.11n-2009 modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT support HT20 and HT40. Worst modulation mode of Guard Interval (GI) is 400ns.

Note 3: draft IEEE Std. 802.11ac-2012 modulation consists of VHT20, VHT40, VHT80 and VHT160. Then EUT support VHT80. (VHT: Very High Throughput).

3.2. Accessories

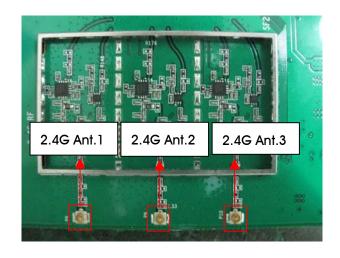
Power	Brand	Model	Rating
A al anata # 1	Asian Payras Davisas Inc	WA 24C10D	INPUT: 100-240V ~ 50-60Hz, 1.0A
Adapter 1	Asian Power Devices Inc.	WA-36C12R	OUTPUT: 12.0V – 3.0A

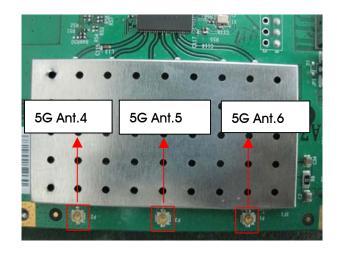
Report Format Version: 01 Page No. : 6 of 78

FCC ID: KA2IR865LA1 Issued Date : Jun. 06, 2012

3.3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain	(dBi)
1	Wha Yu Group	-	PCB Antenna	I-PEX	2.4G	3.0
2	Wha Yu Group	-	PCB Antenna	I-PEX	2.4G	3.0
3	Wha Yu Group	-	PCB Antenna	I-PEX	2.4G	3.0
4	Wha Yu Group	-	PCB Antenna	I-PEX	5G	4.5
5	Wha Yu Group	-	PCB Antenna	I-PEX	5G	4.5
6	Wha Yu Group	-	PCB Antenna	I-PEX	5G	4.5


Note: The EUT has three antennas


For IEEE 802.11a / n mode (3TX/3RX):

Ant. 4, Ant. 5 and Ant. 6 could transmit/receive simultaneously.

For IEEE 802.11ac mode (3TX/3RX):

Ant. 4, Ant. 5 and Ant. 6 could transmit/receive simultaneously.

3.4. Table for Carrier Frequencies

The EUT has three bandwidth system.

For 20MHz bandwidth systems, use Channel 36, 40, 44, 48.

For 40MHz bandwidth systems, use Channel 38, 46.

For 80MHz bandwidth systems, use Channel 42.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	36	5180 MHz	44	5220 MHz
5150~5250 MHz	38	5190 MHz	46	5230 MHz
Band 1	40	5200 MHz	48	5240 MHz
	42	5210 MHz	-	-

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	•	Data Rate	Channel	Antenna
AC Power Conducted Emission	СТХ		Auto	-	-
Max. Conducted Output Power	11n 20MHz	Band 1	6.5Mbps	36/40/48	4/5/6/4+5+6
	11n 40MHz	Band 1	13.5Mbps	38/46	4/5/6/4+5+6
	11ac 20MHz	Band 1	MCS0	36/40/48	4/5/6/4+5+6
	11ac 40MHz	Band 1	MCS0	38/46	4/5/6/4+5+6
	11ac 80MHz	Band 1	MCS0	42	4/5/6/4+5+6
	11a	Band 1	6Mbps	36/40/48	4/5/6/4+5+6
Power Spectral Density	11n 20MHz	Band 1	6.5Mbps	36/40/48	4/5/6/4+5+6
	11n 40MHz	Band 1	13.5Mbps	38/46	4/5/6/4+5+6
	11ac 20MHz	Band 1	MCS0	36/40/48	4/5/6/4+5+6
	11ac 40MHz	Band 1	MCS0	38/46	4/5/6/4+5+6
	11ac 80MHz	Band 1	MCS0	42	4/5/6/4+5+6
	11a	Band 1	6Mbps	36/40/48	4/5/6/4+5+6
26dB Spectrum Bandwidth	11n 20MHz	Band 1	6.5Mbps	36/40/48	4+5+6
99% Occupied Bandwidth	11n 40MHz	Band 1	13.5Mbps	38/46	4+5+6
Measurement	11ac 80MHz	Band 1	MCS0	42	4+5+6
Peak Excursion	11a	Band 1	6Mbps	36/40/48	4+5+6
Radiated Emission Below 1GHz	СТХ		Auto	-	-
Radiated Emission Above 1GHz	11n 20MHz	Band 1	6.5Mbps	36/40/48	4+5+6
	11n 40MHz	Band 1	13.5Mbps	38/46	4+5+6
	11ac 20MHz	Band 1	MCS0	36/40/48	4+5+6
	11ac 40MHz	Band 1	MCS0	38/46	4+5+6
	11ac 80MHz	Band 1	MCS0	42	4+5+6
	11a	Band 1	6Mbps	36/40/48	4+5+6
Band Edge Emission	11n 20MHz	Band 1	6.5Mbps	36/40/48	4+5+6
	11n 40MHz	Band 1	13.5Mbps	38/46	4+5+6
	11ac 20MHz	Band 1	MCS0	36/40/48	4+5+6
	11ac 40MHz	Band 1	MCS0	38/46	4+5+6
	11ac 80MHz	Band 1	MCS0	42	4+5+6
	11a	Band 1	6Mbps	36/40/48	4+5+6
Frequency Stability	Un-modulation		-	40	N/A

The following test modes were performed for all tests:

For Conducted Emission test:

Test Mode: Upstanding EUT + Adapter 1

For Radiated Emission test:

Test Mode: Upstanding EUT + Adapter 1

<For MPE and Co-location Test>:

The EUT could be applied with 2.4GHz WLAN function and 5GHz WLAN function; therefore Maximum Permissible Exposure (Please refer to Appendix B) and Co-location (please refer to Appendix C) tests are added for simultaneously transmit between 2.4GHz WLAN function and 5GHz WLAN function.

3.6. Table for Testing Locations

Test Site No.	Site Category	Location	FCC Reg. No.	IC File No.
03CH01-CB	SAC	Hsin Chu	262045	IC 4086D
CO01-CB	Conduction	Hsin Chu	262045	IC 4086D
TH01-CB	OVEN Room	Hsin Chu	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC); Fully Anechoic Chamber (FAC).

Please refer section 6 for Test Site Address.

3.7. Table for Supporting Units

Support Unit	Brand	Model	FCC ID
Notebook	DELL	M1330	E2K4965AGNM

Report Format Version: 01 Page No. : 10 of 78

FCC ID: KA2IR865LA1 Issued Date : Jun. 06, 2012

3.8. Table for Parameters of Test Software Setting

During testing, Channel & Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Power Parameters of IEEE 802.11n MCS0 HT20MHz

Test Software Version	Mtool 0.0.0.9		
Frequency	5180 MHz	5200 MHz	5240 MHz
MCS0 20MHz	40.00	36.00	41.00

Power Parameters of IEEE 802.11n MCS0 HT40MHz

Test Software Version	Mtool 0.0.0.9	
Frequency	5190 MHz	5230 MHz
MCS0 40MHz	40.00	40.00

Power Parameters of IEEE 802.11a

Test Software Version	Mtool 0.0.0.9		
Frequency	5180 MHz	5200 MHz	5240 MHz
11a	30.00	30.00	29.00

Power Parameters of IEEE 802.11ac MCS0 VHT 20MHz

Test Software Version	Mtool 0.0.0.9		
Frequency	5180 MHz	5200 MHz	5240 MHz
MCS0 20MHz	40.00	36.00	41.00

Power Parameters of IEEE 802.11ac MCS0 VHT 40MHz

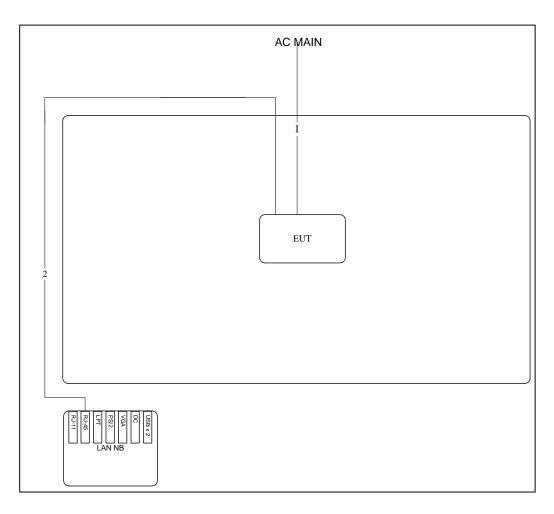
Test Software Version	Mtool 0.0.0.9	
Frequency	5190 MHz	5230 MHz
MCSO 40MHz	40.00	40.00

Power Parameters of IEEE 802.11ac MCS0 VHT 80MHz

Test Software Version	Mtool 0.0.0.9
Frequency	5210 MHz
MCS0 80MHz	42.00

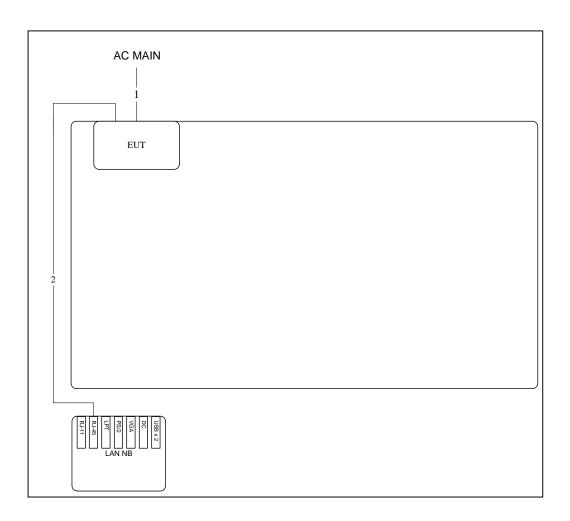
During the test, "Mtool 0.0.0.9" under WIN XP was executed the test program to control the EUT continuously transmit RF signal.

Report Format Version: 01 Page No. : 11 of 78


FCC ID: KA2IR865LA1 Issued Date : Jun. 06, 2012

3.9. Test Configurations

3.9.1. Radiation Emissions Test Configuration


Item	Connection	Shield	Length	
1	Power cable	No	1.75M	
2	RJ-45 cable	No	10M	

Issued Date : Jun. 06, 2012

3.9.2. AC Power Line Conduction Emissions Test Configuration

Item	Connection	Shield	Length
1	Power cable	No	1.75M
2	RJ-45 cable	No	10M

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

For this product that is designed to connect to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

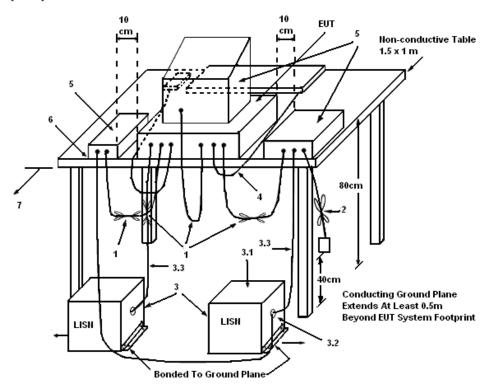
Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

4.1.3. Test Procedures


- Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far
 from the conducting wall of the shielding room and at least 80 centimeters from any other
 grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 KHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

Report Format Version: 01 Page No. : 14 of 78

FCC ID: KA2IR865LA1 Issued Date : Jun. 06, 2012

4.1.4. Test Setup Layout

LEGEND:

- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.
- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

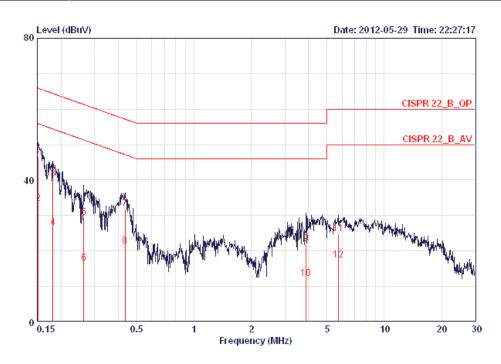
4.1.5. Test Deviation

There is no deviation with the original standard.

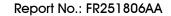
4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.

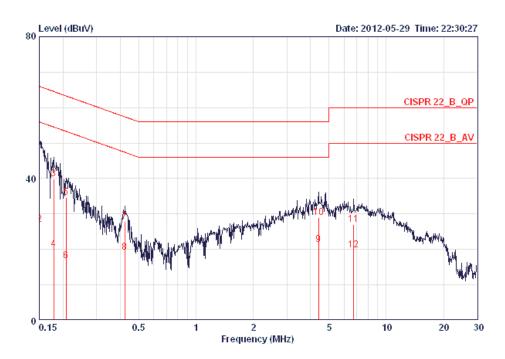
 Report Format Version: 01
 Page No. : 15 of 78


 FCC ID: KA2IR865LA1
 Issued Date : Jun. 06, 2012

4.1.7. Results of AC Power Line Conducted Emissions Measurement


Temperature	23°C	Humidity	65%
Test Engineer	Simon Yang	Phase	Line
Configuration	СТХ		

	Freq	Level	Over Limit	Limit Line dBuV	Read Level	Factor dB	Cable Loss dB	Remark
1 @	0.15160	46.71	-19.20	65.91	46.45	0.06	0.20	QP
2	0.15160	33.38	-22.53	55.91	33.12	0.06	0.20	AVERAGE
3	0.18152	40.34	-24.07	64.42	40.09	0.05	0.20	QP
4	0.18152	26.52	-27.89	54.42	26.27	0.05	0.20	AVERAGE
5	0.26303	29.50	-31.83	61.34	29.27	0.03	0.20	QP
6	0.26303	16.59	-34.74	51.34	16.36	0.03	0.20	AVERAGE
7	0.43511	31.79	-25.37	57.15	31.57	0.02	0.20	QP
8	0.43511	21.36	-25.80	47.15	21.14	0.02	0.20	AVERAGE
9	3.881	22.00	-34.00	56.00	21.60	0.10	0.30	QP
10	3.881	12.21	-33.79	46.00	11.81	0.10	0.30	AVERAGE
11	5.713	24.84	-35.16	60.00	24.41	0.13	0.30	QP
12	5.713	17.39	-32.61	50.00	16.96	0.13	0.30	AVERAGE


 Report Format Version: 01
 Page No.
 : 16 of 78

 FCC ID: KA2IR865LA1
 Issued Date
 : Jun. 06, 2012

Temperature	23°C	Humidity	65%
Test Engineer	Simon Yang	Phase	Neutral
Configuration	CTX		

			0ver	Limit	Read	LISN	Cable	
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1 @	0.15000	46.12	-19.88	66.00	45.86	0.06	0.20	QP
2	0.15000	27.02	-28.98	56.00	26.76	0.06	0.20	AVERAGE
3	0.17866	39.84	-24.70	64.55	39.59	0.05	0.20	QP
4	0.17866	19.97	-34.57	54.55	19.72	0.05	0.20	AVERAGE
5	0.20723	34.56	-28.76	63.32	34.31	0.05	0.20	QP
6	0.20723	16.86	-36.46	53.32	16.61	0.05	0.20	AVERAGE
7	0.42150	27.91	-29.51	57.42	27.66	0.05	0.20	QP
8	0.42150	19.17	-28.25	47.42	18.92	0.05	0.20	AVERAGE
9	4.407	21.32	-24.68	46.00	20.88	0.14	0.30	AVERAGE
10	4.407	28.95	-27.05	56.00	28.51	0.14	0.30	QP
11	6.733	27.01	-32.99	60.00	26.48	0.19	0.34	QP
12	6.733	19.94	-30.06	50.00	19.41	0.19	0.34	AVERAGE

Note:

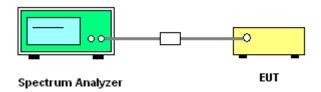
Level = Read Level + LISN Factor + Cable Loss.

4.2. 99% Occupied Bandwidth Measurement

4.2.1. Limit

No restriction limits. But resolution bandwidth within band edge measurement is 1% of the 99% occupied bandwidth.

4.2.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 26dB Bandwidth
RB	300 kHz
VB	1000 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.2.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. The resolution bandwidth of 300 kHz and the video bandwidth of 1000 kHz were used.
- 3. Measured the spectrum width with power higher than 26dB below carrier.

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: 01
 Page No. : 18 of 78

 FCC ID: KA2IR865LA1
 Issued Date : Jun. 06, 2012

4.2.7. Test Result of 99% Occupied Bandwidth

Temperature	25℃	Humidity	63%
Test Engineer	Benson Peng	Configurations	IEEE 802.11n / ac

Configuration IEEE 802.11n MCS0 HT 20MHz / Ant. 4 + Ant. 5 + Ant. 6

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
36	5180 MHz	20.00	17.76
40	5200 MHz	20.16	17.92
48	5240 MHz	20.00	17.92

Configuration IEEE 802.11n MCS0 HT 40MHz / Ant. 4 + Ant. 5 + Ant. 6

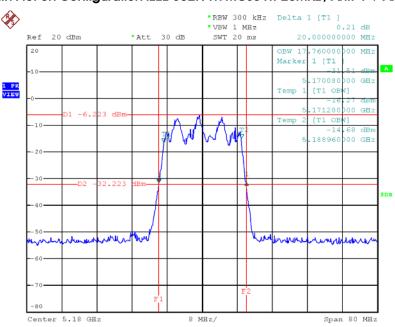
Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
38	5190 MHz	38.40	36.16
46	5230 MHz	38.72	36.16

Configuration IEEE 802.11ac MCS0 VHT 80MHz / Ant. 4 + Ant. 5 + Ant. 6

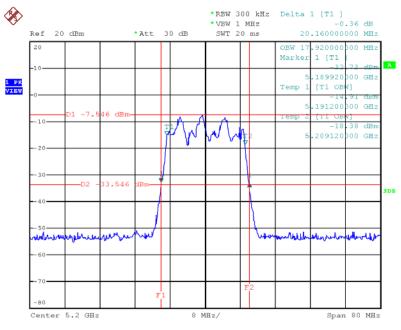
Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
42	5210 MHz	78.72	75.52

Report Format Version: 01 Page No. : 19 of 78
FCC ID: KA2IR865LA1 Issued Date : Jun. 06, 2012

Temperature	nperature 25°C		63%	
Test Engineer	Benson Peng	Configurations	IEEE 802.11a	


Configuration IEEE 802.11a / Ant. 4 + Ant. 5 + Ant. 6

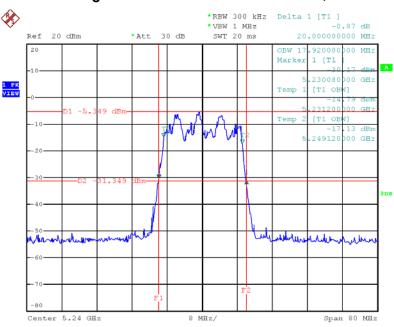
Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	
36	5180 MHz	19.36	16.64	
40	5200 MHz	19.68	16.96	
48	5240 MHz	19.36	16.64	



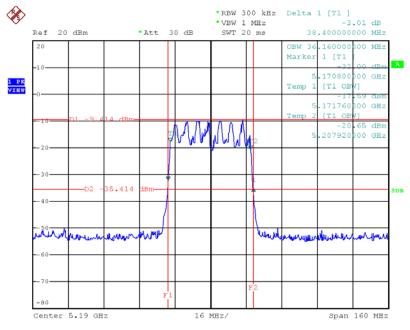
26 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT 20MHz / Ant. 4 + Ant. 5 + Ant. 6 / 5180 MHz

Date: 26.MAY.2012 13:15:49

26 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT 20MHz / Ant. 4 + Ant. 5 + Ant. 6 / 5200 MHz


Date: 26.MAY.2012 13:16:45

Report Format Version: 01 Page No. : 21 of 78
FCC ID: KA2IR865LA1 Issued Date : Jun. 06, 2012

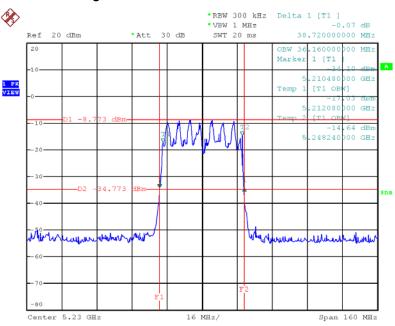


26 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT 20MHz / Ant. 4 + Ant. 5 + Ant. 6 / 5240 MHz

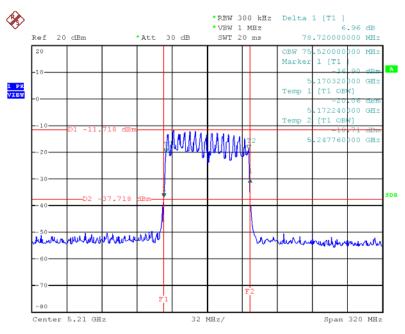
Date: 26.MAY.2012 13:17:34

26 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT 40MHz / Ant. 4 + Ant. 5 + Ant. 6 / 5190 MHz

Date: 26.MAY.2012 13:18:31


 Report Format Version: 01
 Page No. : 22 of 78

 FCC ID: KA2IR865LA1
 Issued Date : Jun. 06, 2012

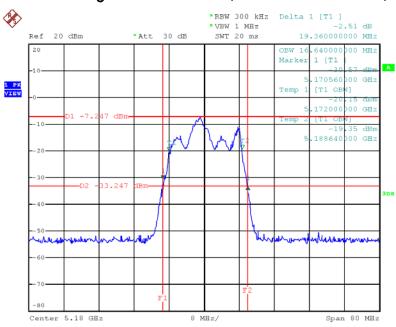


26 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT 40MHz / Ant. 4 + Ant. 5 + Ant. 6 / 5230 MHz

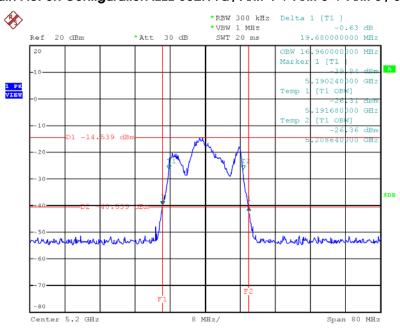
Date: 26.MAY.2012 13:19:13

26 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0 VHT80MHz / Ant. 4 + Ant. 5 + Ant. 6 / 5210 MHz

Date: 26.MAY.2012 13:25:22


 Report Format Version: 01
 Page No. : 23 of 78

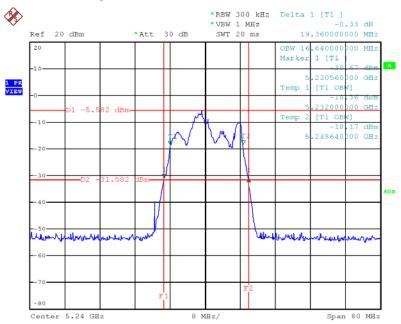
 FCC ID: KA2IR865LA1
 Issued Date : Jun. 06, 2012



26 dB Bandwidth Plot on Configuration IEEE 802.11a / Ant. 4 + Ant. 5 + Ant. 6 / 5180 MHz

Date: 26.MAY.2012 08:38:52

26 dB Bandwidth Plot on Configuration IEEE 802.11a / Ant. 4 + Ant. 5 + Ant. 6 / 5200 MHz


Date: 26.MAY.2012 08:43:05

Report Format Version: 01 Page No. : 24 of 78
FCC ID: KA2IR865LA1 Issued Date : Jun. 06, 2012

26 dB Bandwidth Plot on Configuration IEEE 802.11a / Ant. 4 + Ant. 5 + Ant. 6 / 5240 MHz

Date: 26.MAY.2012 08:41:44

 Report Format Version: 01
 Page No. : 25 of 78

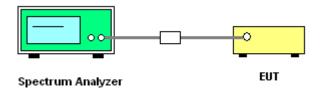
 FCC ID: KA2IR865LA1
 Issued Date : Jun. 06, 2012

4.3. Maximum Conducted Output Power Measurement

4.3.1. Limit

For the band 5.15~5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW (17dBm) or 4 dBm + 10log B, where B is the 26 dB emissions bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.3.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RB	1000 kHz
VB	3000 kHz
Detector	RMS
Trace	Average Sweep count 100
Sweep Time	Auto

4.3.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. Test was performed in accordance with FCC Public Notice DA 02-2138, August 30, 2002.

4.3.4. Test Setup Layout

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: 01 Page No. : 26 of 78

FCC ID: KA2IR865LA1 Issued Date : Jun. 06, 2012

4.3.7. Test Result of Maximum Conducted Output Power

Temperature	25 ℃	Humidity	63%
Test Engineer	Benson Peng	Configurations	IEEE 802.11n / ac

Configuration IEEE 802.11n MCS0 HT20MHz / Ant. 4 + Ant. 5 + Ant. 6

Channel	Frequency		Conducte ower (dBn		Total Conducted Output Power	Max. Limit (dBm)	Result
		Ant.4	Ant.5	Ant.6	(dBm)	(abiii)	
36	5180 MHz	11.71	11.86	11.30	16.40	17.00	Complies
40	5200 MHz	10.82	10.71	10.17	15.35	17.00	Complies
48	5240 MHz	12.21	12.34	11.68	16.86	17.00	Complies

Configuration IEEE 802.11n MCS0 HT40MHz / Ant. 4 + Ant. 5 + Ant. 6

Channel	Frequency	Conducted Power (dBm)			Total Conducted Output Power	Max. Limit (dBm)	Result
		Ant.4	Ant.5	Ant.6	(dBm)	(42)	
38	5190 MHz	12.12	12.29	11.37	16.72	17.00	Complies
46	5230 MHz	12.28	12.34	11.66	16.88	17.00	Complies

Configuration IEEE 802.11ac MCS0 VHT 20MHz / Ant. 4 + Ant. 5 + Ant. 6

Channel Frequency		Conducted Power (dBm)			Total Conducted Output Power	Max. Limit (dBm)	Result
		Ant.4	Ant.5	Ant.6	(dBm)	(GBIII)	
36	5180 MHz	11.66	11.71	11.31	16.33	17.00	Complies
40	5200 MHz	10.67	10.72	10.05	15.26	16.98	Complies
48	5240 MHz	12.28	12.43	11.82	16.96	17.00	Complies

Configuration IEEE 802.11ac MCS0 VHT 40MHz / Ant. 4 + Ant. 5 + Ant. 6

Channel Frequency		Conducted Power (dBm)			Total Conducted Output Power	Max. Limit	Result
		Ant.4	Ant.5	Ant.6	(dBm)	(авті)	
38	5190 MHz	12.19	12.22	11.39	16.72	17.00	Complies
46	5230 MHz	12.20	12.42	11.71	16.89	17.00	Complies

 Report Format Version: 01
 Page No. : 27 of 78

 FCC ID: KA2IR865LA1
 Issued Date : Jun. 06, 2012

Configuration IEEE 802.11ac MCS0 VHT 80MHz / Ant. 4 + Ant. 5 + Ant. 6

Channel Frequency		Conducted Power (dBm)			Total Conducted Output Power	Max. Limit	Result
		Ant.4	Ant.5	Ant.6	(dBm)	(GBIII)	
42	5210 MHz	12.20	12.32	11.80	16.88	17.00	Complies

 Report Format Version: 01
 Page No. : 28 of 78

 FCC ID: KA2IR865LA1
 Issued Date : Jun. 06, 2012

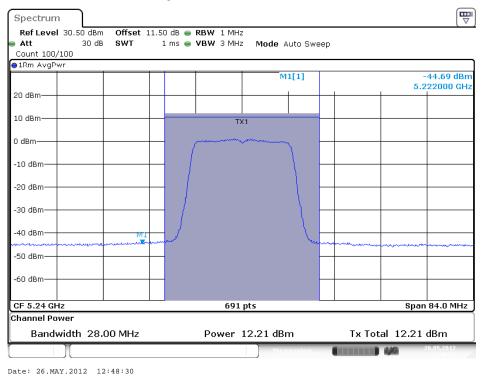
Temperature	25℃	Humidity	63%
Test Engineer	Benson Peng	Configurations	IEEE 802.11a

Configuration IEEE 802.11a / Ant. 4 + Ant. 5 + Ant. 6

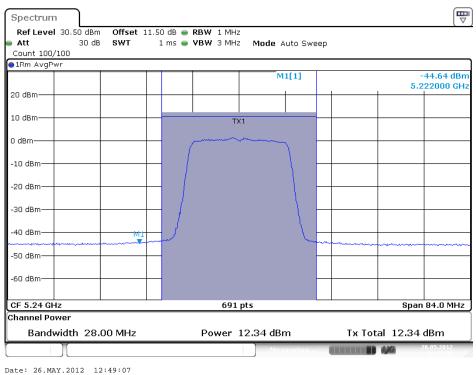
Channel Frequency		Conducted Power (dBm)			Total Conducted Output Power	Max. Limit (dBm)	Result
		Ant.4	Ant.5	Ant.6	(dBm)	(GBIII)	
36	5180 MHz	8.71	8.69	8.22	13.32	13.60	Complies
40	5200 MHz	8.91	8.88	8.21	13.45	13.67	Complies
48	5240 MHz	8.72	8.71	8.18	13.32	13.60	Complies

NOTE: Directional gain = $4.5 \, dBi + 10log(2) = 9.27dBi > 6dBi, so the conducted power limit = (17 or <math>4+10log \, B)$ -Directional gain-6

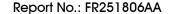
Note: All the test values were listed in the report.


For plots, only the channel with maximum results was shown.

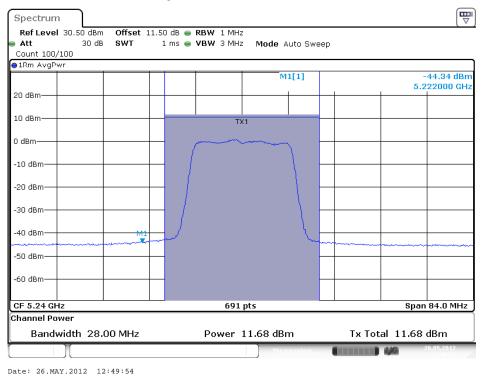
Page No. : 29 of 78
Issued Date : Jun. 06, 2012



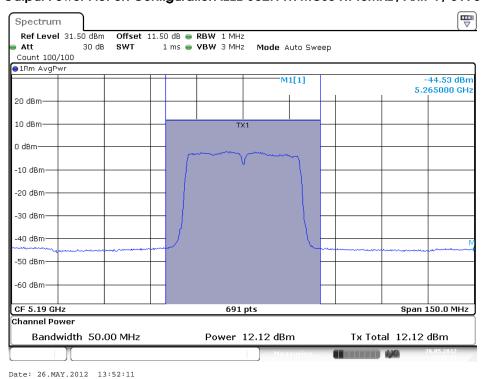
Conducted Output Power Plot on Configuration IEEE 802.11n MCS0 HT20MHz / Ant. 4 / 5240 MHz



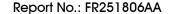
Conducted Output Power Plot on Configuration IEEE 802.11n MCS0 HT20MHz / Ant. 5 / 5240 MHz


 Report Format Version: 01
 Page No.
 : 30 of 78

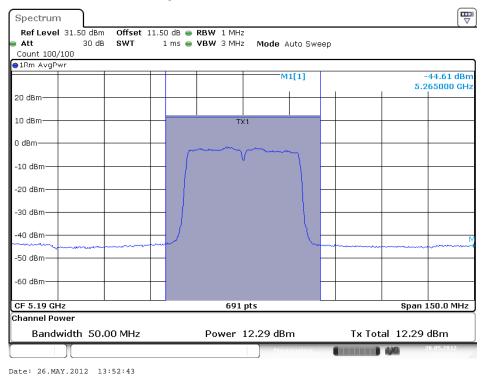
 FCC ID: KA2IR865LA1
 Issued Date
 : Jun. 06, 2012

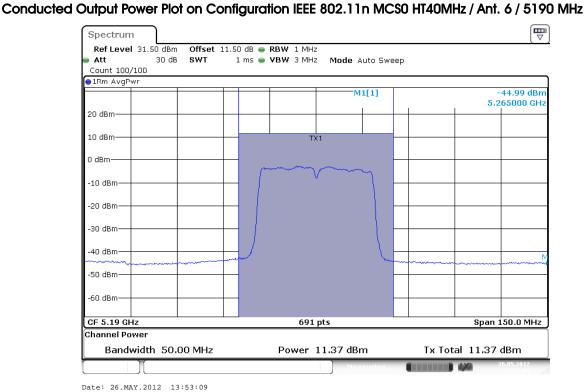


Conducted Output Power Plot on Configuration IEEE 802.11n MCS0 HT20MHz / Ant. 6 / 5240 MHz

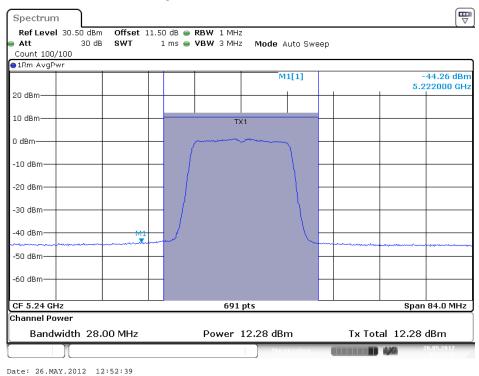


Conducted Output Power Plot on Configuration IEEE 802.11n MCS0 HT40MHz / Ant. 4 / 5190 MHz

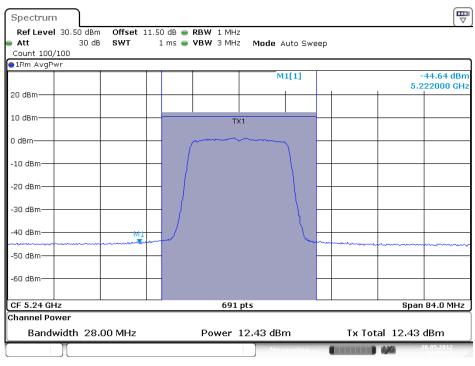

 Report Format Version: 01
 Page No. : 31 of 78


 FCC ID: KA2IR865LA1
 Issued Date : Jun. 06, 2012

Conducted Output Power Plot on Configuration IEEE 802.11n MCS0 HT40MHz / Ant. 5 / 5190 MHz



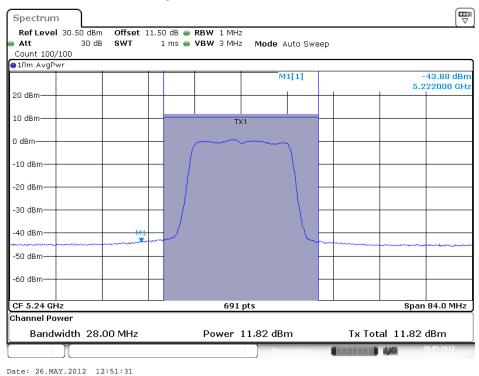
Report Format Version: 01 Page No. : 32 of 78 FCC ID: KA2IR865LA1 Issued Date : Jun. 06, 2012



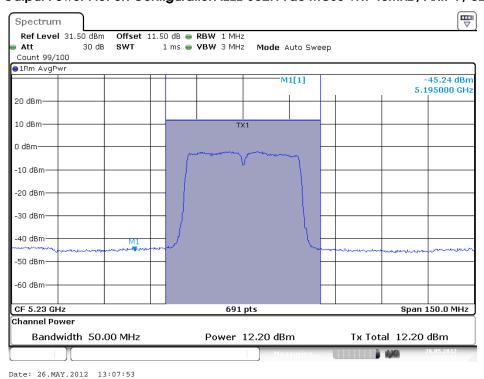
Conducted Output Power Plot on Configuration IEEE 802.11ac MCS0 VHT 20MHz / Ant. 4 / 5240 MHz

Conducted Output Power Plot on Configuration IEEE 802.11ac MCS0 VHT 20MHz / Ant. 5 / 5240 MHz

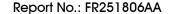
Date: 26.MAY.2012 12:52:12


 Report Format Version: 01
 Page No. : 33 of 78

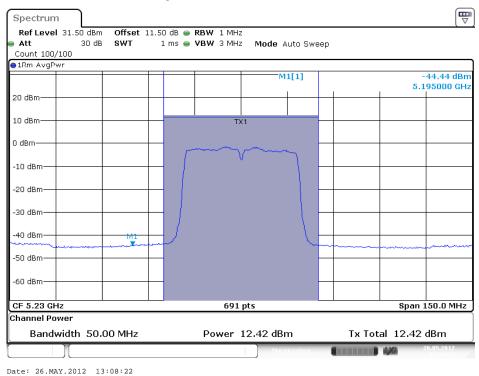
 FCC ID: KA2IR865LA1
 Issued Date : Jun. 06, 2012



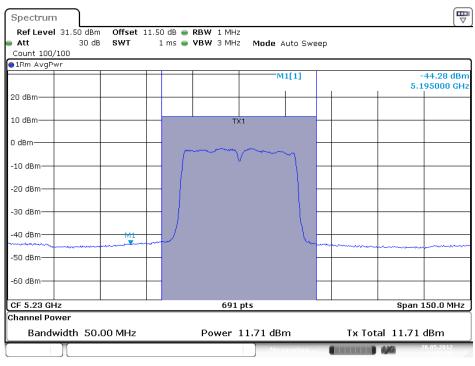
Conducted Output Power Plot on Configuration IEEE 802.11ac MCS0 VHT 20MHz / Ant. 6 / 5240 MHz



Conducted Output Power Plot on Configuration IEEE 802.11ac MCS0 VHT 40MHz / Ant. 4 / 5230 MHz


 Report Format Version: 01
 Page No. : 34 of 78

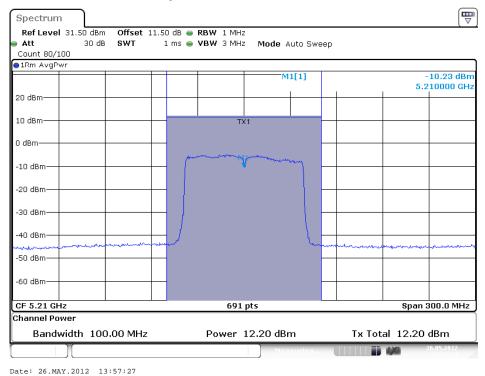
 FCC ID: KA2IR865LA1
 Issued Date : Jun. 06, 2012



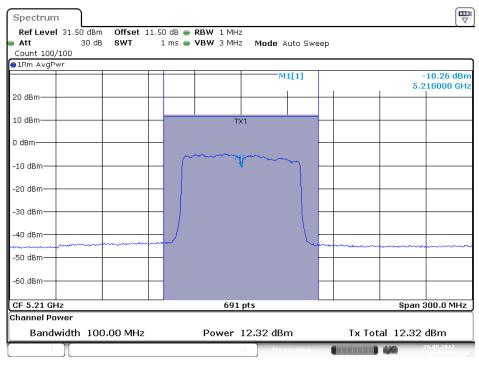
Conducted Output Power Plot on Configuration IEEE 802.11ac MCS0 VHT 40MHz / Ant. 5 / 5230 MHz

Conducted Output Power Plot on Configuration IEEE 802.11ac MCS0 VHT 40MHz / Ant. 6 / 5230 MHz

Date: 26.MAY.2012 13:08:49


 Report Format Version: 01
 Page No.
 : 35 of 78

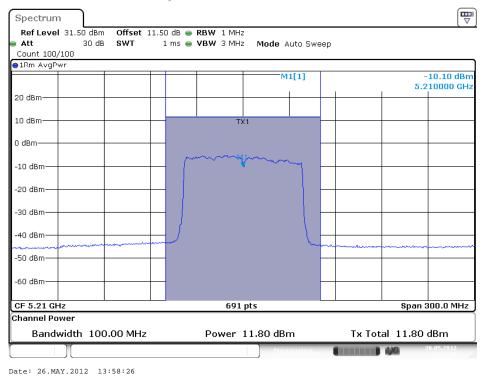
 FCC ID: KA2IR865LA1
 Issued Date
 : Jun. 06, 2012



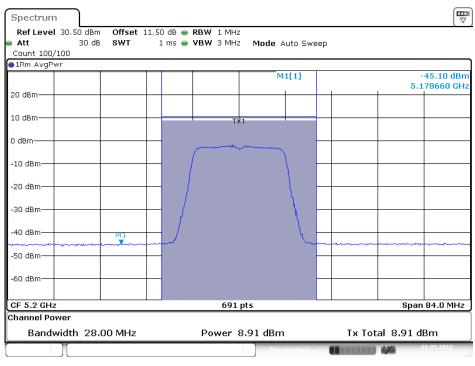
Conducted Output Power Plot on Configuration IEEE 802.11ac MCS0 VHT 80MHz / Ant. 4 / 5210 MHz

Conducted Output Power Plot on Configuration IEEE 802.11ac MCS0 VHT 80MHz / Ant. 5 / 5210 MHz

Date: 26.MAY.2012 13:57:52


 Report Format Version: 01
 Page No. : 36 of 78

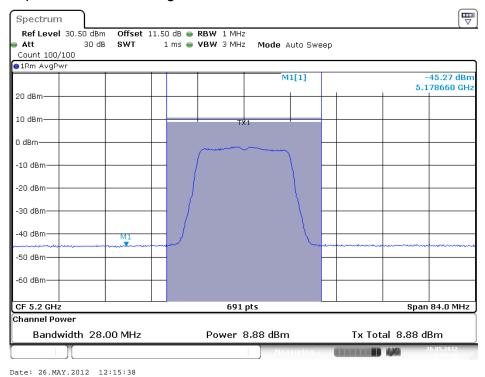
 FCC ID: KA2IR865LA1
 Issued Date : Jun. 06, 2012

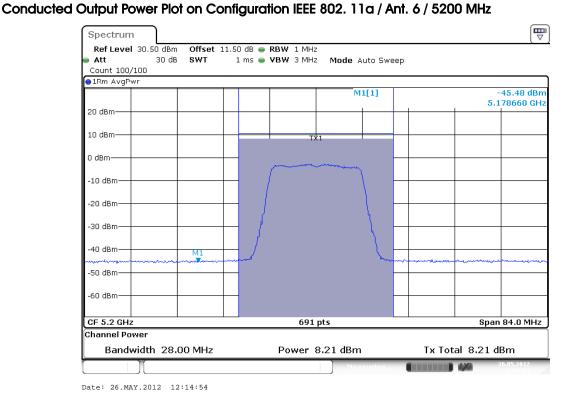


Conducted Output Power Plot on Configuration IEEE 802.11ac MCS0 VHT 80MHz / Ant. 6 / 5210 MHz

Conducted Output Power Plot on Configuration IEEE 802.11a / Ant. 4 / 5200 MHz

Date: 26.MAY.2012 12:16:15


 Report Format Version: 01
 Page No. : 37 of 78


 FCC ID: KA2IR865LA1
 Issued Date : Jun. 06, 2012

Conducted Output Power Plot on Configuration IEEE 802. 11a / Ant. 5 / 5200 MHz

 Report Format Version: 01
 Page No. : 38 of 78

 FCC ID: KA2IR865LA1
 Issued Date : Jun. 06, 2012

4.4. Power Spectral Density Measurement

4.4.1. Limit

The power spectral density is defined as the highest level of power in dBm per MHz generated by the transmitter within the power envelope. The following table is power spectral density limits and decrease power density limit rule refer to section 4.3.1.

Frequency Range	Power Spectral Density limit (dBm/MHz)	
5.15~5.25 GHz	4	

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RB	1000 kHz
VB	3000 kHz
Detector	RMS
Trace	AVERAGE
Sweep Time	Auto
Trace Average	100 times

4.4.3. Test Procedures

- 1. The test procedure is the same as section 4.6.3.
- 2. Trace A, Set RBW = 1 MHz, VBW = 3 MHz, Span > 26 dB bandwidth, Max. hold.
- 3. Delta Mark trace A Maximum frequency and trace B same frequency.
- 4. Repeat the above procedure until measurements for all frequencies were complete.
- 5. Procedures refer KDB 662911: Measure and sum the spectra across the outputs. The first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the Nth output to obtain the value for the first frequency bin of the summed spectrum. The summed spectrum value for each of the other frequency bins is computed in the same way. This will likely require transferring the measured spectra to a computer, where the bin-by-bin summing can be performed

4.4.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.6.4.

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: 01
 Page No.
 : 39 of 78

 FCC ID: KA2IR865LA1
 Issued Date
 : Jun. 06, 2012

4.4.7. Test Result of Power Spectral Density

Temperature	25°C	Humidity	63%
Test Engineer	Benson Peng	Configurations	IEEE 802.11n / ac
Test Date	May 26, 2012		

Configuration IEEE 802.11n MCS0 HT20MHz

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
36	5180 MHz	2.06	4.00	Complies
40	5200 MHz	1.44	4.00	Complies
48	5240 MHz	3.01	4.00	Complies

Configuration IEEE 802.11n MCS0 HT40MHz

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
38	5190 MHz	-0.21	4.00	Complies
46	5230 MHz	-0.03	4.00	Complies

Configuration IEEE 802.11ac MCS0 VHT 80MHz

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
42	5210 MHz	-2.70	4.00	Complies

 Report Format Version: 01
 Page No.
 : 40 of 78

 FCC ID: KA2IR865LA1
 Issued Date
 : Jun. 06, 2012

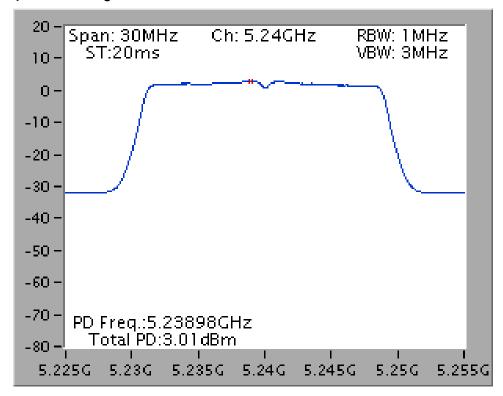
: 41 of 78

Temperature	25 ℃	Humidity	63%
Test Engineer	Benson Peng	Configurations	IEEE 802.11a
Test Date	May 26, 2012		

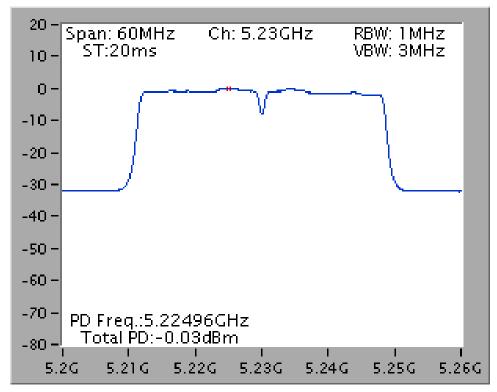
Configuration IEEE 802.11a

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
36	5180 MHz	-0.72	0.73	Complies
40	5200 MHz	-0.34	0.73	Complies
48	5240 MHz	-0.46	0.73	Complies

Note: Directional gain = G_{ANT} + 10 log(N) dBi =9.27dBi > 6dBi , so the power density limit =4-(9.27-6)=0.73dBm.

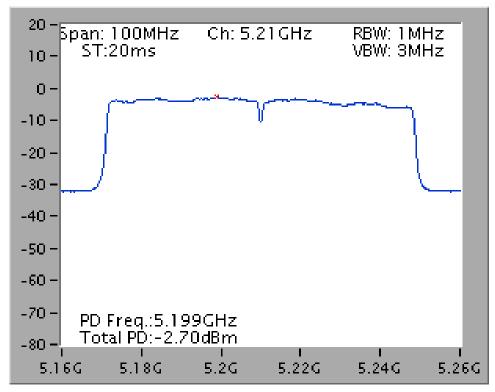

Note: All the test values were listed in the report.

For plots, only the channel with maximum results was shown.

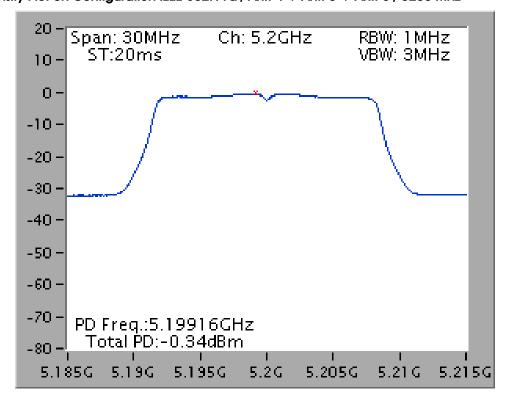


Power Density Plot on Configuration IEEE 802.11n MCS0 HT20MHz / Ant. 4 + Ant. 5 + Ant. 6 / 5240 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40MHz / Ant. 4 + Ant. 5 + Ant. 6 / 5230 MHz



Page No. : 42 of 78 Issued Date : Jun. 06, 2012



Power Density Plot on Configuration IEEE 802.11ac MCS0 VHT 80MHz / Ant. 4 + Ant. 5 + Ant. 6 / 5210 MHz

Power Density Plot on Configuration IEEE 802.11a / Ant. 4 + Ant. 5 + Ant. 6 / 5200 MHz

4.5. Peak Excursion Measurement

4.5.1. Limit

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the maximum conducted output power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emissions bandwidth whichever is less.

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RB	1000 kHz (Peak Trace) / 1000 kHz (Average Trace)
VB	3000 kHz (Peak Trace) / 300 kHz (Average Trace)
Detector	Peak (Peak Trace) / Sample (Average Trace)
Trace	Max Hold
Sweep Time	60s

4.5.3. Test Procedures

- 1. The test procedure is the same as section 4.6.3.
- 2. Trace A, Set RBW = 1 MHz, VBW = 3 MHz, Span > 26 dB bandwidth, Max. hold.
- 3. Delta Mark trace A Maximum frequency and trace B same frequency.
- 4. Repeat the above procedure until measurements for all frequencies were complete.

4.5.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.6.4.

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: 01
 Page No. : 44 of 78

 FCC ID: KA2IR865LA1
 Issued Date : Jun. 06, 2012

4.5.7. Test Result of Peak Excursion

Temperature	25 ℃	Humidity	63%
Test Engineer	Benson Peng	Configurations	IEEE 802.11n / ac

Configuration IEEE 802.11n MCS0 HT20MHz / Ant. 4 + Ant. 5 + Ant. 6

Channel	Frequency	Peak Excursion (dB)	Max. Limit (dB)	Result
36	5180 MHz	4.18	13	Complies
40	5200 MHz	5.06	13	Complies
48	5240 MHz	5.38	13	Complies

Configuration IEEE 802.11n MCS0 HT40MHz / Ant. 4 + Ant. 5 + Ant. 6

Channel	Frequency	Peak Excursion (dB)	Max. Limit (dB)	Result
38	5190 MHz	4.31	13	Complies
46	5230 MHz	5.39	13	Complies

Configuration IEEE 802.11ac MCS0 VHT80MHz / Ant. 4 + Ant. 5 + Ant. 6

Channel	Frequency	Peak Excursion (dB)	Max. Limit (dB)	Result
42	5210 MHz	6.11	13	Complies

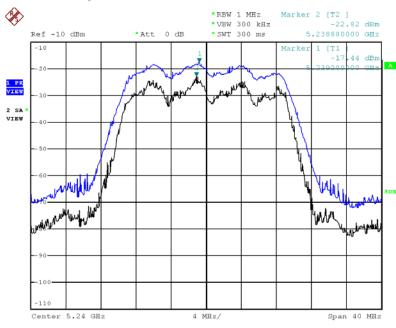
 Report Format Version: 01
 Page No.
 : 45 of 78

 FCC ID: KA2IR865LA1
 Issued Date
 : Jun. 06, 2012

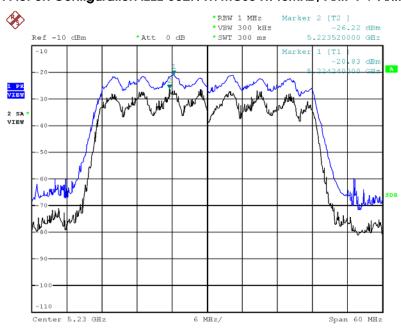
Temperature	25°C	Humidity	63%
Test Engineer	Benson Peng	Configurations	IEEE 802.11a

Configuration IEEE 802.11a / Ant. 4 + Ant. 5 + Ant. 6

Channel	Frequency	Peak Excursion (dB)	Max. Limit (dB)	Result
36	5180 MHz	5.39	13	Complies
40	5200 MHz	4.70	13	Complies
48	5240 MHz	5.64	13	Complies


Note: All the test values were listed in the report.

For plots, only the channel with maximum results was shown.

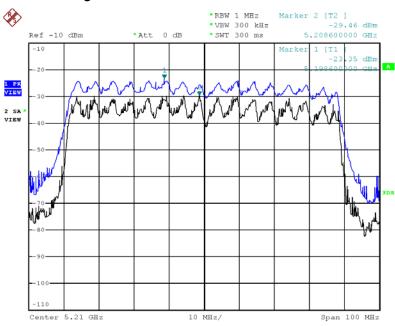


Peak Excursion Plot on Configuration IEEE 802.11n MCS0 HT20MHz / Ant. 4 + Ant. 5 + Ant. 6 / 5240

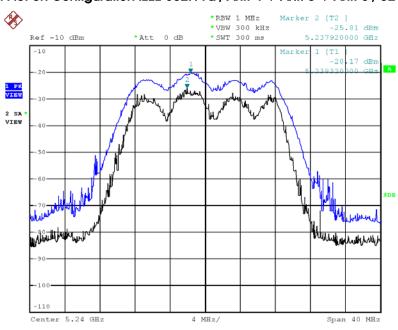
Date: 26.MAY.2012 16:06:01

Peak Excursion Plot on Configuration IEEE 802.11n MCS0 HT40MHz / Ant. 4 + Ant. 5 + Ant. 6 / 5230

Date: 26.MAY.2012 16:09:15


 Report Format Version: 01
 Page No. : 47 of 78

 FCC ID: KA2IR865LA1
 Issued Date : Jun. 06, 2012



Peak Excursion Plot on Configuration IEEE 802.11ac MCS0 VHT 80MHz / Ant. 4 + Ant. 5 + Ant. 6 / 5210

Date: 26.MAY.2012 16:16:02

Peak Excursion Plot on Configuration IEEE 802.11a / Ant. 4 + Ant. 5 + Ant. 6 / 5240

Date: 26.MAY.2012 16:04:26

 Report Format Version: 01
 Page No. : 48 of 78

 FCC ID: KA2IR865LA1
 Issued Date : Jun. 06, 2012

4.6. Radiated Emissions Measurement

4.6.1. Limit

For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m). For transmitters operating in the In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance		
(MHz)	(micorvolts/meter)	(meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	40 GHz
RB / VB (Emission in restricted band)	1MHz / 3MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1MHz / 3MHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

Report Format Version: 01 Page No. : 49 of 78

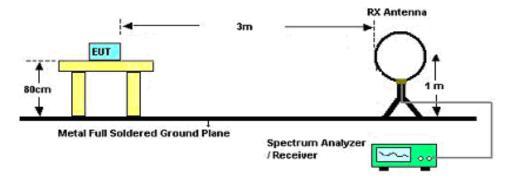
FCC ID: KA2IR865LA1 Issued Date : Jun. 06, 2012

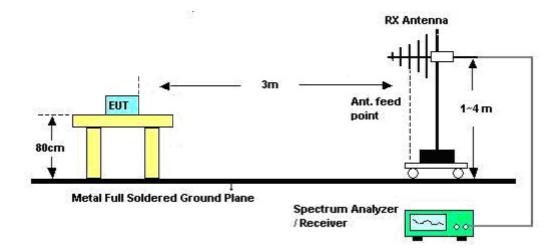
4.6.3. Test Procedures

Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8
meter above ground. The phase center of the receiving antenna mounted on the top of a
height-variable antenna tower was placed 3 meters far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

 Report Format Version: 01
 Page No.
 : 50 of 78


 FCC ID: KA2IR865LA1
 Issued Date
 : Jun. 06, 2012



4.6.4. Test Setup Layout

For radiated emissions below 1GHz

For radiated emissions above 1GHz

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: 01 Page No. : 51 of 78

FCC ID: KA2IR865LA1 Issued Date : Jun. 06, 2012

4.6.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	22°C	Humidity	61%
Test Engineer	Wen Chao	Configurations	CTX
Test Date	May 28, 2012		

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

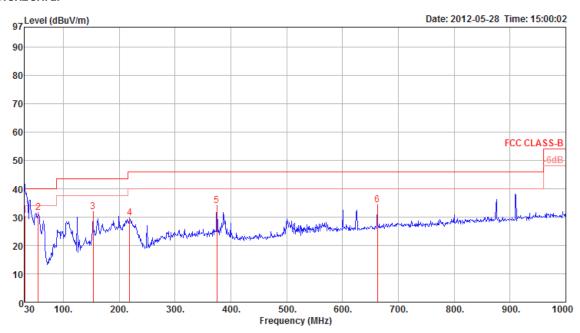
The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

 $\label{eq:limit_limit} \mbox{Limit line} = \mbox{specific limits (dBuV)} + \mbox{distance extrapolation factor}.$

 Report Format Version: 01
 Page No. : 52 of 78

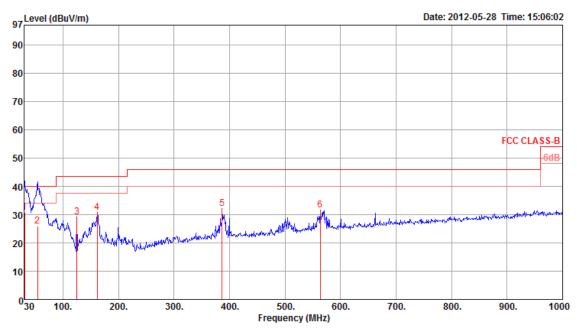
 FCC ID: KA2IR865LA1
 Issued Date : Jun. 06, 2012



4.6.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	22°C	Humidity	61%
Test Engineer	Robert Chang	Configurations	СТХ

Horizontal



	Freq	Level	Limit Line	Over Limit	Read Level					Pol/Phase	A/Pos	T/Pos	
_	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	dB	dBuV	dB	dB	dB/m			Cm	deg	
1 g	30.98 55.22	30.57 31.59	40.00	-9.43 -8.41	38.40 50.56	0.85	27.98 27.90	19.30 7.80		HORIZONTAL HORIZONTAL	100 400	265 N	
3 4 5	153.19 219.15 375.32	20110	46.00	-11.56 -16.30 -11.94	46.57	1.82 2.25 2.89	27.12	11.02	Peak Peak	HORIZONTAL HORIZONTAL HORIZONTAL	400 400 400	0	
6				-11.79						HORIZONTAL	400	ŏ	

Report Format Version: 01 Page No. : 53 of 78 FCC ID: KA2IR865LA1 Issued Date : Jun. 06, 2012

Vertical

Fre	q Level	Limit Line	Over Limit				Antenna Factor		Pol/Phase	A/Pos	T/Pos
М	z dBuV/m	$\overline{dBuV/m}$	dB	dBu∀	——dB	——dB	dB/m			Cm	deg
2 54.2 3 125.0 4 p 161.9 5 386.9	6 29.23 2 30.80	40.00 43.50 43.50 46.00	-13.78	44.69 42.34 45.78 40.44	1.12 1.65 1.89 2.94	27.98 27.90 27.66 27.41 27.35	7.98 12.90 10.54 16.19	QP Peak Peak Peak	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL	100 162 100 100 100	104 57 0 0

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Report Format Version: 01 Page No. : 54 of 78

FCC ID: KA2IR865LA1 Issued Date : Jun. 06, 2012

4.6.9. Results for Radiated Emissions (1GHz~40GHz)

Temperature	22°C	Humidity	61%
Test Engineer	Wen Chao	Configurations	IEEE 802.11n MCS0 HT20MHz Ch 36 / Ant. 4 + Ant. 5 + Ant. 6
Test Date	May 25, 2012		

Horizontal

	Freq	Level		0∨er Limit					Remark	A/Pos	T/Pos P	ol/Phase
	MHz	dBu∀/m	dBu√/m	dB	dBu∀	dB	dB/m	dB			deg	
	15540.18									100	166 H	ORIZONTAL
2	15540.40	51.97	74.00	-22.03	43.50	6.13	37.65	35.31	Peak	100	166 H	ORIZONTAL

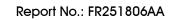
Vertical

	Freq	Level						Preamp Factor	Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	15539.88	51.12	74.00	-22.88	42.61	6.13	37.69	35.31	Peak	100	209	VERTICAL
2	15540.46	38.43	54.00	-15.57	29.92	6.13	37.69	35.31	Average	100	209	VERTICAL

 Report Format Version: 01
 Page No.
 : 55 of 78

 FCC ID: KA2IR865LA1
 Issued Date
 : Jun. 06, 2012

Temperature	22°C	Humidity	61%
Test Engineer	Wen Chao	Configurations	IEEE 802.11n MCS0 HT20MHz Ch 40 / Ant. 4 + Ant. 5 + Ant. 6
Test Date	May 25, 2012		


	Freq	Level	Limit Line	0∨er Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	15599.78	51.94	74.00	-22.06	43.55	6.13	37.60	35.34	Peak	100	294	HORIZONTAL
2	15600.12	38.44	54.00	-15.56	30.05	6.13	37.60	35.34	Average	100	294	HORIZONTAL

Vertical

	Freq	Level		0∨er Limit					Remark	A/Pos	T/Pos Pol/Phase
	MHz	dBu√/m	dBu√/m	dB	dBu∀	dB	dB/m	dB			deg
1	15600.23	38.54	54.00	-15.46	30.15	6.13	37.60	35.34	Average	100	232 VERTICAL
2	15600.24	51.16	74.00	-22.84	42.77	6.13	37.60	35.34	Peak	100	232 VERTICAL

 Report Format Version: 01
 Page No.
 : 56 of 78

 FCC ID: KA2IR865LA1
 Issued Date
 : Jun. 06, 2012

Temperature	22°C	Humidity	61%
Test Engineer	Wen Chao	Configurations	IEEE 802.11n MCS0 HT20MHz Ch 48 / Ant. 4 + Ant. 5 + Ant. 6
Test Date	May 25, 2012		

	Freq	Level		0∨er Limit					Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	15719.50	51.25	74.00	-22.75	43.02	6.14	37.48	35.39	Peak	100	219	HORIZONTAL
2	15720.05	38.45	54.00	-15.55	30.22	6.14	37.48	35.39	Average	100	219	HORIZONTAL

Vertical

			Limit	over	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	15719.71	51.16	74.00	-22.84	42.93	6.14	37.48	35.39	Peak	100	173	VERTICAL
2	15720.32	38.36	54.00	-15.64	30.13	6.14	37.48	35.39	Average	100	173	VERTICAL

 Report Format Version: 01
 Page No.
 : 57 of 78

 FCC ID: KA2IR865LA1
 Issued Date
 : Jun. 06, 2012

Temperature	22°C	Humidity	61%
Test Engineer	Wen Chao	Configurations	IEEE 802.11n MCS0 HT40MHz Ch 38 / Ant. 4 + Ant. 5 + Ant. 6
Test Date	May 25, 2012		

	Freq	Level					Antenna Factor		Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	15569.93	50.84	74.00	-23.16	42.41	6.13	37.63	35.33	Peak	100	315	HORIZONTAL
2	15570.48	38.14	54.00	-15.86	29.71	6.13	37.63	35.33	Average	100	315	HORIZONTAL

Vertical

Freq	Level		0∨er Limit					Remark	A/Pos	T/Pos	Pol/Phase
MHz	dBu√/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
15569.57 15569.57									100		VERTICAL VERTICAL

 Report Format Version: 01
 Page No. : 58 of 78

 FCC ID: KA2IR865LA1
 Issued Date : Jun. 06, 2012

Temperature	22°C	Humidity	61%
Test Engineer	Wen Chao	Configurations	IEEE 802.11n MCS0 HT40MHz Ch 46 / Ant. 4 + Ant. 5 + Ant. 6
Test Date	May 25, 2012		

Freq	Level	Limit Line	0∨er Limit					A/Pos	T/Pos	Pol/Phase
MHz	dBu√/m	dBu√/m	dB	dBu∀	dB	dB/m	dB		deg	
15689.56 15689.85								 100 100		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level		0∨er Limit					Remark	A/Pos	T/Pos Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg
1	15689.91	37.87	54.00	-16.13	29.59	6.14	37.51	35.37	Average	100	140 VERTICAL
2	15690.25	50.83	74.00	-23.17	42.55	6.14	37.51	35.37	Peak	100	140 VERTICAL

 Report Format Version: 01
 Page No.
 : 59 of 78

 FCC ID: KA2IR865LA1
 Issued Date
 : Jun. 06, 2012

Temperature	22°C	Humidity	61%
Test Engineer	Wen Chao	Configurations	IEEE 802.11ac MCS0 VHT80MHz Ch 42 / Ant. 4 + Ant. 5 + Ant. 6
Test Date	May 25, 2012		

	Freq	Level		0∨er Limit					Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
	15629.71									100		HORIZONTAL
2	15630.47	50.96	74.00	-23.04	42.61	6.14	37.56	35.35	Peak	100	272	HORIZONTAL

Vertical

Freq	Level		0∨er Limit					Remark	A/Pos	T/Pos	Pol/Phase
MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
15629.73 15630.31									100 100		VERTICAL VERTICAL

Temperature	22°C	Humidity	61%
Test Engineer	Wen Chao	Configurations	IEEE 802.11a Ch 36 / Ant. 4 + Ant. 5 + Ant. 6
Test Date	May 25, 2012		

Freq	Level	Limit Line	0∨er Limit					A/Pos	T/Pos	Pol/Phase
MHz	dBu√/m	dBu√/m	dB	dBu∀	dB	dB/m	dB	cm	deg	
15539.74 15540.32								 100 100		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level		0∨er Limit					Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	$\overline{dBu \lor /m}$	dB	dBu∀	dB	dB/m	dB			deg	
1	15540.08									100		VERTICAL
2	15540.13	52.36	74.00	-21.64	43.85	6.13	37.69	35.31	Peak	100	259	VERTICAL

Temperature	22°C	Humidity	61%
Test Engineer	Wen Chao	Configurations	IEEE 802.11a Ch 40 / Ant. 4 + Ant. 5 + Ant. 6
Test Date	May 25, 2012		

Freq	Level		0∨er Limit					Remark	A/Pos	T/Pos	Pol/Phase
MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
15599.51 15600.22								_	100 100		HORIZONTAL HORIZONTAL

Vertical

Freq	Level					Antenna Factor		Remark	A/Pos	T/Pos Pol/Pi	nase
MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
15599.74 15600.28									100	237 VERTI	_

 Report Format Version: 01
 Page No. : 62 of 78

 FCC ID: KA2IR865LA1
 Issued Date : Jun. 06, 2012

Temperature	22°C	Humidity	61%
Test Engineer	Wen Chao	Configurations	IEEE 802.11a Ch 48 / Ant. 4 + Ant. 5 + Ant. 6
Test Date	May 25, 2012		

Freq	Level	Limit Line	0∨er Limit					A/Pos	T/Pos	Pol/Phase
MHz	dBu√/m	dBu√/m	dB	dBu∨	dB	dB/m	dB	cm	deg	
15720.21 15720.32								 100 100		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level			Read Level				Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	$\overline{dBu \forall /m}$	dB	dBu∀	dB	dB/m	dB			deg	
1	15719.60	50.92	74.00	-23.08	42.69	6.14	37.48	35.39	Peak	100	293	VERTICAL
2	15719.75	38.52	54.00	-15.48	30.29	6.14	37.48	35.39	Average	100	293	VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Report Format Version: 01 Page No. : 63 of 78
FCC ID: KA2IR865LA1 Issued Date : Jun. 06, 2012

4.7. Band Edge Emissions Measurement

4.7.1. Limit

For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m). In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

t Distance
ers)
)
_

4.7.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RB / VB (Emission in restricted band)	1MHz / 3MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1 MHz / 3MHz for Peak

4.7.3. Test Procedures

- 1. The test procedure is the same as section 4.6.3, only the frequency range investigated is limited to 100MHz around bandedges.
- In case the emission is fail due to the used RB/VB is too wide, marker-delta method of FCC Public Notice DA00-705 will be followed.

Report Format Version: 01 Page No. : 64 of 78

FCC ID: KA2IR865LA1 Issued Date : Jun. 06, 2012

4.7.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.6.4.

4.7.5. Test Deviation

There is no deviation with the original standard.

4.7.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: 01 Page No. : 65 of 78 FCC ID: KA2IR865LA1 Issued Date : Jun. 06, 2012

4.7.7. Test Result of Band Edge and Fundamental Emissions

Temperature	22°C	Humidity	61%		
Tost Engineer	Wen Chao	Configurations	IEEE 802.11n MCS0 20MHz Ch 36, 40, 48		
Test Engineer	wen Chao	Configurations	/Ant. 4 + Ant. 5 + Ant. 6		
Test Date	May 25, 2012				

Channel 36

	_			0ver						A/Pos		
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark		Pol/Pha	se
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	5100.00	53.18	54.00	-0.82	16.18	3.42	33.58	0.00	Average	102	280 VERTICA	L
2	5100.00	63.64	74.00	-10.36	26.64	3.42	33.58	0.00	Peak	102	280 VERTICA	L
3	5180.00				64.39	3.44	33.73	0.00	Average	102	280 VERTICA	L
4	5180.00				73.77	3.44	33.73	0.00	Peak	102	280 VERTICA	L

Item 3, 4 are the fundamental frequency at 5180 MHz.

Channel 40

	Freq	Level		0∨er Limit					Remark	A/Pos	T/Pos Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg
1	5114.00	63.60	74.00	-10.40	26.57	3.42	33.61	0.00	Peak	103	277 VERTICAL
2	5120.00	53.52	54.00	-0.48	16.48	3.43	33.61	0.00	Average	103	277 VERTICAL
3	5198.00				63.50	3.45	33.76	0.00	Average	103	277 VERTICAL
4	5200.00				73.38	3.45	33.76	0.00	Peak	103	277 VERTICAL

Item 3, 4 are the fundamental frequency at 5200 MHz.

Channel 48

	Freq	Level			Read Level				Remark	A/Pos	T/Pos Pol/Phase	e
	MHz	dBu√/m	dBu√/m	dB	dBu∨	dB	dB/m	dB		cm	deg	_
1 2	5150.00 5150.00								Average Peak	100 100	277 VERTICAL 277 VERTICAL	
3	5234.00 5240.00	30.32	74.00	-15.46	75.78 67.13	3.46	33.82	0.00	Peak Average	100	277 VERTICAL 277 VERTICAL 277 VERTICAL	

Item 3, 4 are the fundamental frequency at 5240 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

 Report Format Version: 01
 Page No.
 : 66 of 78

 FCC ID: KA2IR865LA1
 Issued Date
 : Jun. 06, 2012

Temperature	22°C	Humidity	61%			
Test Engineer	Wen Chao	Configurations	IEEE 802.11n MCS0 40MHz Ch 38, 46 /Ant. 4 + Ant. 5 + Ant. 6			
Test Date May 25, 2012						

			Limit	0∨er	Read	Cable	ntenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	5114.00	53.18	54.00	-0.82	16.15	3.42	33.61	0.00	Average	103	275	VERTICAL
2	5150.00	68.47	74.00	-5.53	31.37	3.43	33.67	0.00	Peak	103	275	VERTICAL
3	5184.00				63.15	3.44	33.73	0.00	Average	103	275	VERTICAL
4	5194.20				74.16	3.44	33.73	0.00	Peak	103	275	VERTICAL

Item 3, 4 are the fundamental frequency at 5190 MHz.

Channel 46

			Limit	0∨er	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu√/m	dBu∨/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	5143.40	53.66	54.00	-0.34	16.56	3.43	33.67	0.00	Average	103	278	VERTICAL
2	5143.40	63.78	74.00	-10.22	26.68	3.43	33.67	0.00	Peak	103	278	VERTICAL
3	5233.60				74.39	3.46	33.82	0.00	Peak	103	278	VERTICAL
4	5234.20				63.56	3.46	33.82	0.00	Average	103	278	VERTICAL

Item 3, 4 are the fundamental frequency at 5230 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

Temperature	22°C	Humidity	61%		
Tost Engineer	Wen Chao	Configurations	IEEE 802.11ac MCS0 VHT20MHz Ch 36,		
Test Engineer	wen Chao	Configurations	40, 48 /Ant. 4 + Ant. 5 + Ant. 6		
Test Date					

			Limit	over	Read	Cable	ntenna	Preamp		A/Pos	T/Pos
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark		Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg
1	5096.00	62.72	74.00	-11.28	25.72	3.42	33.58	0.00	Peak	100	250 VERTICAL
2	5098.00	53.63	54.00	-0.37	16.63	3.42	33.58	0.00	Average	100	250 VERTICAL
3	5174.00				64.43	3.44	33.70	0.00	Average	100	250 VERTICAL
4	5180.00				73.16	3.44	33.73	0.00	Peak	100	250 VERTICAL

Item 3, 4 are the fundamental frequency at 5180 MHz.

Channel 40

	Freq	Level		0∨er Limit						A/Pos	T/Pos Pol/Phase
			dBu∀/m		dBu∀	dB					deg
1	5114.00	62.54	74.00	-11.46	25.51	3.42	33.61	0.00	Peak	102	277 VERTICAL
2	5118.00	53.24	54.00	-0.76	16.21	3.42	33.61	0.00	Average	102	277 VERTICAL
3	5200.00				64.13	3.45	33.76	0.00	Average	102	277 VERTICAL
4	5200.00				72.62	3.45	33.76	0.00	Peak	102	277 VERTICAL

Item 3, 4 are the fundamental frequency at 5200 MHz.

Channel 48

			Limit	over	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	5150.00	51.94	54.00	-2.06	14.84	3.43	33.67	0.00	Average	100	279	VERTICAL
2	5150.00	58.12	74.00	-15.88	21.02	3.43	33.67	0.00	Peak	100	279	VERTICAL
3	5240.00				67.52	3.46	33.82	0.00	Avenage	100	279	VERTICAL
4	5240.00				77.00	3.46	33.82	0.00	Peak	100	279	VERTICAL

Item 3, 4 are the fundamental frequency at 5240 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

 Report Format Version: 01
 Page No. : 68 of 78

 FCC ID: KA2IR865LA1
 Issued Date : Jun. 06, 2012

Temperature	22°C	Humidity	61%
Test Engineer	Wen Chao	Configurations	IEEE 802.11ac MCS0 VHT40MHz
lesi Erigirieei	Wen Chao	Cornigulations	Ch 38, 46 / Ant. 4 + Ant. 5 + Ant. 6
Test Date	May 25, 2012		

	Freq	Level	Limit Line					Preamp Factor		A/Pos	T/Pos Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg
1 2 3 4	5114.60 5149.40 5194.20 5194.20				30.81 62.95	3.43 3.44		0.00 0.00	Average Peak Average Peak	102 102 102 102	277 VERTICAL 277 VERTICAL 277 VERTICAL 277 VERTICAL

Item 3, 4 are the fundamental frequency at 5190 MHz.

Channel 46

	Freq	Level		0∨er Limit					Remark	A/Pos	T/Pos Pol/Phase
			dBu∀/m		dBu∀	dB					deg
1	5144.00	53.27	54.00	-0.73	16.17	3.43	33.67	0.00	Average	100	277 VERTICAL
2	5144.00	63.57	74.00	-10.43	26.47	3.43	33.67	0.00	Peak	100	277 VERTICAL
3	5234.20				64.79	3.46	33.82	0.00	Average	100	277 VERTICAL
4	5234.20				74.59	3.46	33.82	0.00	Peak	100	277 VERTICAL

Item 3, 4 are the fundamental frequency at 5230 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

 Report Format Version: 01
 Page No. : 69 of 78

 FCC ID: KA2IR865LA1
 Issued Date : Jun. 06, 2012

Temperature	22°C	Humidity	61%
Test Engineer	Wen Chao	Configurations	IEEE 802.11ac MCS0 VHT80MHz Ch 42 / Ant. 4 +Ant. 5 + Ant. 6
Test Date	May 25, 2012		4277411.4 17411.0 17411.0

Channel 42

			Limit	0∨er	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark		Pol/P	hase
	MHz	dBu√/m	dBu√/m	dB	dBui√	dB	dB/m	dB			deg	
1	5144.00	68.44	74.00	-5.56	31.34	3.43	33.67	0.00	Peak	102	277 VERTI	CAL
2	5148.80	53.09	54.00	-0.91	15.99	3.43	33.67	0.00	Average	102	277 VERTI	CAL
3	5194.40				70.23	3.44	33.73	0.00	Peak	102	277 VERTI	CAL
4	5199.20				58.61	3.45	33.76	0.00	Average	102	277 VERTI	CAL

Item 3, 4 are the fundamental frequency at 5210 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

Temperature	22°C	Humidity	61%
Test Engineer	Wen Chao	Configurations	IEEE 802.11a Ch 36, 40, 48
loor Engineer	Well Glide	Comigaranorio	/ Ant. 4 +Ant. 5 + Ant. 6
Test Date	May 25, 2012		

	Freq	Level		0∨er Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	4964.00	53.89	54.00	-0.11	17.19	3.37	33.33	0.00	Average	100	281	VERTICAL
2	4964.00	59.07	74.00	-14.93	22.37	3.37	33.33	0.00	Peak	100	281	VERTICAL
3	5100.00	53.63	54.00	-0.37	16.63	3.42	33.58	0.00	Average	100	281	VERTICAL
4	5102.00	63.81	74.00	-10.19	26.81	3.42	33.58	0.00	Peak	100	281	VERTICAL
5	5178.00				64.21	3.44	33.73	0.00	Average	100	281	VERTICAL
6	5180.00				74.29	3.44	33.73	0.00	Peak	100	281	VERTICAL

Item 5, 6 are the fundamental frequency at 5180 MHz.

Channel 40

	Freq	Level			Read Level				Remark	A/Pos	T/Pos Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg
1 2 3 4	5118.00 5120.00 5198.00 5198.00				25.73 63.30	3.43 3.45		0.00 0.00	Average Peak Average Peak	100 100 100 100	276 VERTICAL 276 VERTICAL 276 VERTICAL 276 VERTICAL

Item 3, 4 are the fundamental frequency at 5200 MHz.

Channel 48

			Limit	over	Read	CableA	ntenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark		Pol/Phase	è
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	-
1	5022.00	52.20	54.00	-1.80	15.37	3.40	33.43	0.00	Average	100	279 VERTICAL	
2	5082.00	59.31	74.00	-14.69	22.35	3.41	33.55	0.00	Peak	100	279 VERTICAL	
3	5238.00				67.80	3.46	33.82	0.00	Average	100	279 VERTICAL	
4	5238.00				77.76	3.46	33.82	0.00	Peak	100	279 VERTICAL	

Item 3, 4 are the fundamental frequency at 5240 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

 Report Format Version: 01
 Page No. : 71 of 78

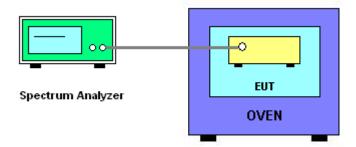
 FCC ID: KA2IR865LA1
 Issued Date : Jun. 06, 2012

4.8. Frequency Stability Measurement

4.8.1. Limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emissions is maintained within the band of operation under all conditions of normal operation as specified in the user's manual or ±20ppm (IEEE 802.11nspecification).

4.8.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Entire absence of modulation emissions bandwidth
RB	10 kHz
VB	10 kHz
Sweep Time	Auto

4.8.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is (fc-f)/fc \times 10⁶ ppm and the limit is less than \pm 20ppm (IEEE 802.11nspecification).
- 6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 7. Extreme temperature rule is -30°C~50°C.

4.8.4. Test Setup Layout

 Report Format Version: 01
 Page No. : 72 of 78

 FCC ID: KA2IR865LA1
 Issued Date : Jun. 06, 2012

4.8.5. Test Deviation

There is no deviation with the original standard.

4.8.6. EUT Operation during Test

The EUT was programmed to be in continuously un-modulation transmitting mode.

4.8.7. Test Result of Frequency Stability

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)				
(V)	5200				
126.50	5200.0066				
110.00	5200.0046				
93.50	5200.0023				
Max. Deviation (MHz)	0.006600				
Max. Deviation (ppm)	1.27				

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)				
(°C)	5200				
-30	5200.0112				
-20	5200.0103				
-10	5200.0088				
0	5200.0046				
10	5199.9963				
20	5199.9942				
30	5199.9938				
40	5199.9929				
50	5199.9912				
Max. Deviation (MHz)	0.011200				
Max. Deviation (ppm)	2.15				

Report Format Version: 01 Page No. : 73 of 78
FCC ID: KA2IR865LA1 Issued Date : Jun. 06, 2012

4.9. Antenna Requirements

4.9.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.9.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

 Report Format Version: 01
 Page No. : 74 of 78

 FCC ID: KA2IR865LA1
 Issued Date : Jun. 06, 2012

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Test Receiver	R&S	ESCS 30	100377	9kHz ~ 2.75GHz	Sep. 14, 2011	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	150kHz ~ 100MHz	Nov. 14, 2011	Conduction (CO01-CB)
V- LISN	Schwarzbeck	NSLK 8127	8127-478	9K ~ 30MHz	Nov. 30, 2011	Conduction (CO01-CB)
PULSE LIMITER	R&S	ESH3-Z2	100430	9K~30MHz	Feb. 03, 2012	Conduction (CO01-CB)
COND Cable	Woken	Cable	01	0.15MHz~30MHz	Dec. 4, 2011	Conduction (CO01-CB)
BILOG ANTENNA	Schaffner	CBL6112D	22021	20MHz ~ 2GHz	Jan. 11, 2012	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz~18GHz	Nov. 25, 2011	Radiation (03CH01-CB)
Horn Antenna	SCHWARZBEAK	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Nov. 22, 2011	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Nov. 29, 2011	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP40	100056	9KHz~40GHz	Nov. 03, 2011	Radiation (03CH01-CB)
EMI Test Receiver	R&S	ESCS 30	100355	9KHz ~ 2.75GHz	Mar. 20, 2012	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9 kHz - 30 MHz	Sep. 09, 2010*	Radiation (03CH01-CB)
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N/A	Radiation (03CH01-CB)
Antenna Mast	INN CO	CO2000	N/A	1 m - 4 m	N/A	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz - 1 GHz	Nov. 17, 2011	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-1	N/A	1 GHz – 26.5 GHz	Nov. 17, 2011	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-2	N/A	1 GHz – 26.5 GHz	Nov. 17, 2011	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-3	N/A	1 GHz - 40 GHz	Nov. 17, 2011	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-4	N/A	1 GHz - 40 GHz	Nov. 17, 2011	Radiation (03CH01-CB)
Signal analyzer	R&S	FSV40	100979	9KHz~40GHz	Sep. 26, 2011	Conducted (TH01-CB)
Temp. and Humidity Chamber	Ten Billion	TTH-D3SP	TBN-931011	-30~100 degree	May 20, 2012	Conducted (TH01-CB)
Thermo-Hygro Meter	N/A	HC 520	#1	15~70 degree	Nov. 02, 2011	Conducted (TH01-CB)
Signal Generator	R&S	SMR40	100302	10MHz-40GHz	Nov. 22, 2011	Conducted (TH01-CB)
RF Power Divider	HP	11636A	00306	2GHz ~ 18GHz	N/A	Conducted (TH01-CB)
RF Power Splitter Anaren		44100	1839	2GHz ~ 18GHz	N/A	Conducted (TH01-CB)

Page No.

: 75 of 78

Issued Date : Jun. 06, 2012

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
RF Power Splitter	Anaren	42100	17930	2GHz ~ 18GHz	N/A	Conducted (TH01-CB)
Signal generator	R&S	SMU200A	102782	10MHz-40GHz	Jun. 07, 2011	Conducted (TH01-CB)
Horn Antenna	COM-POWER	AH-118	071187	1GHz – 18GHz	May 09, 2012	Conducted (TH01-CB)
Horn Antenna	COM-POWER	AH-118	071042	1GHz – 18GHz	Nov. 01, 2011	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-7	-	1 GHz – 26.5 GHz	Nov. 17, 2011	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-8	-	1 GHz – 26.5 GHz	Nov. 17, 2011	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-9	-	1 GHz – 26.5 GHz	Nov. 17, 2011	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-10	-	1 GHz – 26.5 GHz	Nov. 17, 2011	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-11	-	1 GHz – 26.5 GHz	Nov. 17, 2011	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-12	-	1 GHz – 26.5 GHz	Nov. 17, 2011	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-13	-	1 GHz – 26.5 GHz	Nov. 17, 2011	Conducted (TH01-CB)
Power Sensor	Anritsu	MA2411B	0917223	300MHz~40GHz	Nov. 01, 2011	Conducted (TH01-CB)
Power Meter Anritsu		ML2495A	1035008	300MHz~40GHz	Nov. 01, 2011	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

NCR means Non-Calibration required.

Page No. : 76 of 78 Issued Date : Jun. 06, 2012

[&]quot;*" Calibration Interval of instruments listed above is two years.

6. TEST LOCATION

SHIJR	ADD	:	6FI., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
	TEL	:	886-2-2696-2468
	FAX	:	886-2-2696-2255
HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL	:	886-3-327-3456
	FAX	:	886-3-318-0055
LINKOU	ADD	:	No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL	:	886-2-2601-1640
	FAX	:	886-2-2601-1695
DUNGHU	ADD	:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
	TEL	:	886-2-2631-4739
	FAX	:	886-2-2631-9740
JUNGHE	ADD	:	7FI., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL	:	886-2-8227-2020
	FAX	:	886-2-8227-2626
NEIHU	ADD	:	4FI., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C.
	TEL	:	886-2-2794-8886
	FAX	:	886-2-2794-9777
JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.
	TEL	:	886-3-656-9065
	FAX	:	886-3-656-9085

7. TAF CERTIFICATE OF ACCREDITATION

Certificate No.: L1190-110702

財團法人全國認證基金會 Taiwan Accreditation Foundation

Certificate of Accreditation

This is to certify that

Sporton International Inc.

EMC & Wireless Communications Laboratory

No.52, Hwa Ya 1st Road, Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

is accredited in respect of laboratory

Accreditation Criteria : ISO/IEC 17025:2005

Accreditation Number : 1190

Originally Accredited : December 15, 2003

Effective Period : January 10, 2010 to January 09, 2013

Accredited Scope : Testing Field, see described in the Appendix

Specific Accreditation : Accreditation Program for Designated Testing Laboratory

Program for Commodities Inspection

Accreditation Program for Telecommunication Equipment

Testing Laboratory

Accreditation Program for BSMI Mutual Recognition

Arrangment with Foreign Authorities

Jay-San Chen

President, Taiwan Accreditation Foundation

Date: July 02, 2011

P1, total 22 pages

The Appendix forms an integral part of this Certificate, which shall be invalid when use without the Appendix

 Report Format Version: 01
 Page No.
 : 78 of 78

 FCC ID: KA2IR865LA1
 Issued Date
 : Jun. 06, 2012