

FCC TEST REPORT (15.407)

REPORT NO.: RF110914C18A-1
MODEL NO.: DIR-857MO1
FCC ID: KA2IR857MO1
RECEIVED: Dec. 21, 2011
TESTED: Dec. 26 ~ Dec. 31, 2011
ISSUED: Jan. 04, 2012

- APPLICANT: D-Link Corporation
 - ADDRESS: 17595 Mt. Herrmann, Fountain Valley, CA 92708, U.S.A.
- **ISSUED BY:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
- LAB ADDRESS: No. 47, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan (R.O.C)
- **TEST LOCATION:** No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This test report consists of 24 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval or endorsement by TAF or any government agency. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

RELEAS	E CONTROL RECORD	3
1.	CERTIFICATION	
2.	SUMMARY OF TEST RESULTS	5
2.1	MEASUREMENT UNCERTAINTY	5
3.	GENERAL INFORMATION	
3.1	GENERAL DESCRIPTION OF EUT	
3.2	DESCRIPTION OF TEST MODES	
3.2.1	CONFIGURATION OF SYSTEM UNDER TEST	8
3.2.2	DESCRIPTION OF SUPPORT UNITS	-
3.2.3	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	9
3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	-
4.	TEST TYPES AND RESULTS	
4.1	RADIATED EMISSION MEASUREMENT	
4.1.1	LIMITS OF RADIATED EMISSION MEASUREMENT	
4.1.2	LIMITS OF UNWANTED EMISSION OUT OF THE RESTRICTED BANDS	11
4.1.3	TEST INSTRUMENTS	12
4.1.4	TEST PROCEDURES	
4.1.5	DEVIATION FROM TEST STANDARD	13
4.1.6	TEST SETUP	
4.1.7	EUT OPERATING CONDITION	
4.1.8	TEST RESULTS	
4.2	CONDUCTED EMISSION MEASUREMENT	
4.2.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	
4.2.2	TEST INSTRUMENTS	
4.2.3	TEST PROCEDURES	
4.2.4	DEVIATION FROM TEST STANDARD	18
4.2.5	TEST SETUP	
4.2.6	EUT OPERATING CONDITIONS	
4.2.7	TEST RESULTS	
5.	PHOTOGRAPHS OF THE TEST CONFIGURATION	
6.	INFORMATION ON THE TESTING LABORATORIES	23
7.	APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING	
	CHANGES TO THE EUT BY THE LAB	24

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
Original release	N/A	Jan. 04, 2012

1. CERTIFICATION

PRODUCT:	RODUCT: HD Media Router 3000	
MODEL:	DIR-857MO1	
BRAND:	D-Link	
APPLICANT:	D-Link Corporation	
TESTED:	Dec. 26 ~ Dec. 31, 2011	
TEST SAMPLE:	ENGINEERING SAMPLE	
STANDARDS:	FCC Part 15, Subpart E (Section 15.407)	
	ANSI C63.4-2003	
	ANSI C63.10-2009	

This report is issued as a supplementary report of RF110914C18-1. This report shall be used combined together with its original report.

PREPARED BY	: Andrea Hia	, DATE : _	Jan. 04, 2012
APPROVED BY	: 67 C	DATE :	Jan. 04, 2012
	Gary Chang / Technical Manager	-	

NOTE: The conducted emission test & radiated emission test were performed for the addendum. Refer to original report for the other test data.

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC PART 15, SUBPART E (SECTION 15.407)					
STANDARD SECTION TEST TYPE AND LIMIT		RESULT	REMARK		
15.407(b)(5)	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -20.01dB at 18.031MHz.		
15.407(b/1/2/3) (b)(5)	Electric Field Strength Spurious Emissions, 30MHz ~ 40000MHz	PASS	Meet the requirement of limit. Minimum passing margin is -1.0dB at 5040.00MHz.		
15.407(a/1/2/3)	Peak Transmit Power	NA	Refer to Note		
15.407(a)(6)	Peak Power Excursion	NA	Refer to Note		
15.407(a/1/2/3)	Peak Power Spectral Density	NA	Refer to Note		
15.407(g)	Frequency Stability	NA	Refer to Note		
15.203	Antenna Requirement	NA	Refer to Note		

NOTE: The conducted emission test & radiated emission test were performed for the addendum. Refer to original report for the other test data.

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz~30MHz	2.44 dB
Radiated emissions	30MHz ~ 200MHz	2.93 dB
	200MHz ~1000MHz	2.95 dB
	1GHz ~ 18GHz	2.26 dB
	18GHz ~ 40GHz	1.94 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

EUT	HD Media Router 3000		
MODEL NO.	DIR-857MO1		
FCC ID	KA2IR857MO1		
POWER SUPPLY	3.3Vdc		
MODULATION TYPE	64QAM, 16QAM, QPSK, BPSK		
MODULATION TECHNOLOGY	OFDM		
TRANSFER RATE	802.11a: 54.0/ 48.0/ 36.0/ 24.0/ 18.0/ 12.0/ 9.0/ 6.0Mbps		
TRANSFER RATE	802.11n: up to 450.0Mbps		
OPERATING FREQUENCY	5180.0 ~ 5240.0MHz		
NUMBER OF CHANNEL	4 for 802.11a, 802.11n (20MHz)		
NOWBER OF CHANNEL	2 for 802.11n (40MHz)		
OUTPUT POWER	32.2mW		
ANTENNA TYPE	PIFA antenna with 3.0dBi gain		
ANTENNA CONNECTOR	UFL		
DATA CABLE	NA		
I/O PORTS	Refer to user's manual		
ACCESSORY DEVICES	NA		

NOTE:

1. This report is prepared for FCC class II permissive change. This report is issued as a supplementary report of BV ADT report no.: RF110914C18-1.The differences compared with original report is adding a same type and gain antenna but antenna architecture is different to original. Therefore, we re-tested radiated emission and conducted emission tests and presented in the test report.

2. The frequency bands used in this EUT are listed as follows:

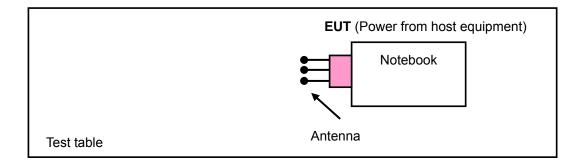
Frequency Band (MHz)	2412~2462	5180~5240	5745~5825
802.11b	\checkmark		
802.11g	\checkmark		
802.11a		\checkmark	\checkmark
802.11n (20MHz)	\checkmark	\checkmark	\checkmark
802.11n (40MHz)	\checkmark		

3. The EUT incorporates a MIMO function. Physically, the EUT provides three completed transmitters and three receivers.

MODULATION MODE	TX FUNCTION	
802.11b	3TX	
802.11g	3TX	
802.11a	3TX	
802.11n (20MHz)	3TX	
802.11n (40MHz)	3TX	

4. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 DESCRIPTION OF TEST MODES


4 channels are provided for 802.11a, 802.11n (20MHz):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
36	5180MHz	44	5220MHz
40	5200MHz	48	5240MHz

2 channels are provided for 802.11n (40MHz):

CHANNEL	FREQUENCY CHANNEL		FREQUENCY
38	5190MHz	46	5230MHz

3.2.1 CONFIGURATION OF SYSTEM UNDER TEST

3.2.2 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	NOTEBOOK	DELL	E5420	CHHYLQ1	NA

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	NA

NOTE: All power cords of the above support units are non shielded (1.8m).

3.2.3 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT CONFIGURE	<i>I</i>	APPLICABLE TO			DESCRIPTION		
MODE	RE≥1G	RE<1G	PLC			2200111	on
-	\checkmark	\checkmark	\checkmark	-			
PL	≥1G: Radiated Err C: Power Line Cor SION TEST (#	nducted Emissi	on	G: Radiate	ed Emiss	sion below 1G	Hz
combinations antenna diver	been conduct between availa sity architectur annel(s) was (w	able modula [.] e).	tions, data rate	es and a	Intenn	a ports (if E	
MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY			DATA RATE (Mbps)	
802.11a	36 to 48	40	OFDM	BP	SK	6.0	
combinations with antenna	between availa diversity archite annel(s) was (w	able modula ecture).	tions, XYZ axi	s, data r	ates a		
combinations with antenna	between availa diversity archite annel(s) was (w	able modula ecture). /ere) selecte	tions, XYZ axi	s, data r test as li	ates a	nd antenna elow.	
combinations with antenna	between availadiversity archite	able modula ecture).	tions, XYZ axi	s, data r	ates a isted b ATION	nd antenna	
combinations with antenna Following cha	between availa diversity archite annel(s) was (w AVAILABLE CHANNEL	able modula ecture). /ere) selecte TESTED	tions, XYZ axi d for the final MODULATION	s, data r test as li MODUL/	ates a isted b ATION PE	nd antenna elow. DATA RATE	
combinations with antenna Following cha MODE 802.11n (40MH WER LINE CO Pre-Scan has combinations antenna diver	between availa diversity archite annel(s) was (w AVAILABLE CHANNEL z) 38 to 46 DNDUCTED El between availa rsity architectur annel(s) was (w	able modula ecture). /ere) selecte TESTED CHANNEL 38 MISSION TE ed to determ able modula re). /ere) selecte	tions, XYZ axi ad for the final MODULATION TECHNOLOGY OFDM EST: nine the worst- tions, data rate ad for the final	s, data r test as li MODUL/ BPS case mo es and a test as li	ates a isted b ATION E SK ode fro intenna	nd antenna elow. DATA RATE (Mbps) 15.0 m all possil a ports (if E elow.	ports (if E
combinations with antenna Following cha MODE 802.11n (40MH WER LINE CO Pre-Scan has combinations antenna diver	between availa diversity archite annel(s) was (w AVAILABLE CHANNEL z) 38 to 46 DNDUCTED El between availa rsity architectur	able modula ecture). vere) selecte TESTED CHANNEL 38 MISSION TE ed to determ able modula re).	tions, XYZ axi ad for the final MODULATION TECHNOLOGY OFDM EST: hine the worst- tions, data rate	s, data r test as li MODUL/ TYP BPS case mo es and a	ates a isted b ATION E SK ode fro intenna isted b ATION	nd antenna elow. DATA RATE (Mbps) 15.0 m all possil a ports (if E	ports (if E
combinations with antenna Following cha MODE 802.11n (40MH WER LINE CO Pre-Scan has combinations antenna diver Following cha	between availa diversity archite annel(s) was (w AVAILABLE CHANNEL z) 38 to 46 DNDUCTED El between availa rsity architectur annel(s) was (w AVAILABLE CHANNEL	able modula ecture). vere) selecte TESTED CHANNEL 38 MISSION TE ed to determ able modula re). vere) selecte TESTED	tions, XYZ axi ad for the final MODULATION TECHNOLOGY OFDM EST: nine the worst- tions, data rate ad for the final MODULATION	s, data r test as li MODUL/ TYP BPS case mo es and a test as li MODUL/	ates a isted b ATION E SK ode fro intenna isted b ATION E	nd antenna elow. DATA RATE (Mbps) 15.0 m all possil a ports (if E elow. DATA RATE	ports (if E
combinations with antenna Following cha MODE 802.11n (40MH WER LINE CO Pre-Scan has combinations antenna diver Following cha 802.11n (40MH	between availa diversity archite annel(s) was (w AVAILABLE CHANNEL z) 38 to 46 DNDUCTED El between availa rsity architectur annel(s) was (w AVAILABLE CHANNEL z) 38 to 46 N:	able modula ecture). /ere) selecte CHANNEL 38 MISSION TE ed to determ able modula re). /ere) selecte CHANNEL 38	tions, XYZ axi ad for the final MODULATION TECHNOLOGY OFDM EST: hine the worst- tions, data rate ad for the final MODULATION TECHNOLOGY OFDM	s, data r test as li MODUL/ TYP BPS case mo es and a test as li MODUL/ TYP BPS	ates a isted b ATION E SK ode fro intenna isted b ATION E SK	nd antenna elow. DATA RATE (Mbps) 15.0 m all possil a ports (if E elow. DATA RATE (Mbps) 15.0	ports (if E
combinations with antenna Following cha 802.11n (40MH WER LINE CO Pre-Scan has combinations antenna diver Following cha 802.11n (40MH 802.11n (40MH ST CONDITIO	between availa diversity archite annel(s) was (w AVAILABLE CHANNEL z) 38 to 46 DNDUCTED El between availa rsity architectur annel(s) was (w AVAILABLE CHANNEL z) 38 to 46 N: ENVIRONMENTA	able modula ecture). /ere) selecte CHANNEL 38 MISSION TE ed to determ able modula re). /ere) selecte CHANNEL 38	tions, XYZ axi ad for the final MODULATION TECHNOLOGY OFDM EST: hine the worst- tions, data rate ad for the final MODULATION TECHNOLOGY OFDM IS INPUT PC	s, data r test as li MODUL/ TYP BPS case mo es and a test as li MODUL/ TYP BPS	ates a isted b ATION E SK ode fro isted b ATION E SK	nd antenna elow. DATA RATE (Mbps) 15.0 m all possil a ports (if E elow. DATA RATE (Mbps) 15.0	ports (if E
combinations with antenna Following cha 802.11n (40MH WER LINE CO Pre-Scan has combinations antenna diver Following cha 802.11n (40MH 802.11n (40MH	between availa diversity archite annel(s) was (w AVAILABLE CHANNEL z) 38 to 46 DNDUCTED El between availa rsity architectur annel(s) was (w AVAILABLE CHANNEL z) 38 to 46 N:	able modula ecture). vere) selecte TESTED CHANNEL 38 MISSION TE ed to determ able modula re). vere) selecte TESTED CHANNEL 38	tions, XYZ axi ad for the final MODULATION TECHNOLOGY OFDM EST: hine the worst- tions, data rate ad for the final MODULATION TECHNOLOGY OFDM	s, data r test as li MODUL/ TYP BPS case mo es and a test as li MODUL/ TYP BPS	ates a isted b ATION PE SK Dode fro intenna isted b ATION PE SK	nd antenna elow. DATA RATE (Mbps) 15.0 m all possil a ports (if E elow. DATA RATE (Mbps) 15.0	ports (if E

25deg. C, 65%RH

PLC

David Huang

120Vac, 60Hz

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart E (15.407)

ANSI C63.4-2003 ANSI C63.10-2009

All test items have been performed and recorded as per the above standards.

NOTE: The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

4. TEST TYPES AND RESULTS

4.1 RADIATED EMISSION MEASUREMENT

4.1.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 LIMITS OF UNWANTED EMISSION OUT OF THE RESTRICTED BANDS

FREQUENCIES (MHz)	EIRP LIMIT (dBm)	EQUIVALENT FIELD STRENGTH AT 3m (dBµV/m) *NOTE 3		
	РК	РК		
5150 ~ 5250	-27	68.3		

NOTE: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3}$$

 $-\mu V/m$, where P is the eirp (Watts).

4.1.3 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESIB7	100212	Aug. 02, 2011	Aug. 01, 2012
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100039	Feb. 23, 2011	Feb. 22, 2012
BILOG Antenna SCHWARZBECK	VULB9168	9168-155	Apr. 12, 2011	Apr. 11, 2012
HORN Antenna SCHWARZBECK	BBHA 9120D	9120D-408	Jan. 06, 2011	Jan. 05, 2012
HORN Antenna SCHWARZBECK	BBHA 9170	148	Jul. 20, 2011	Jul. 19, 2012
Preamplifier Agilent	8449B	3008A01961	Oct. 29, 2011	Oct. 28, 2012
Preamplifier Agilent	8447D	2944A10738	Oct. 29, 2011	Oct. 28, 2012
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	309220/4	Nov. 03, 2011	Nov. 02, 2012
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	250724/4	Nov. 03, 2011	Nov. 02, 2012
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	295012/4	Nov. 03, 2011	Nov. 02, 2012
Software ADT.	ADT_Radiated_ V7.6.15.9.2	NA	NA	NA
Antenna Tower inn-co GmbH	MA 4000	010303	NA	NA
Antenna Tower Controller inn-co GmbH	CO2000	019303	NA	NA
Turn Table ADT.	TT100.	TT93021704	NA	NA
Turn Table Controller ADT.	SC100.	SC93021704	NA	NA
26GHz ~ 40GHz Amplifier	EM26400	815221	Nov. 03, 2010	Nov. 02, 2011

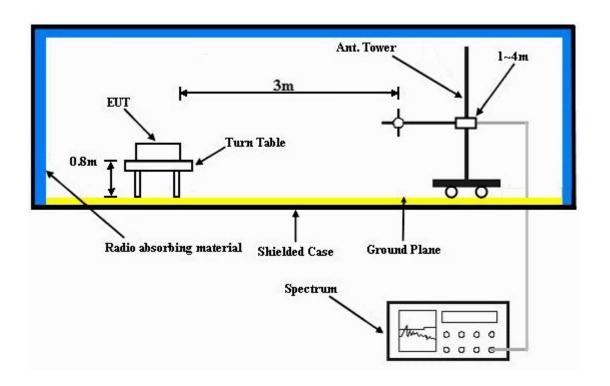
NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 4.
- 3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 460141.
- 5. The IC Site Registration No. is IC7450F-4.

4.1.4 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 1kHz for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.5 DEVIATION FROM TEST STANDARD

No deviation.

4.1.6 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.7 EUT OPERATING CONDITION

- a. Plugged the EUT into notebook and placed them on the testing table.
- b. The notebook system ran a test program (provided by manufacturer) to enable EUT under transmission condition continuously at specific channel frequency.
- c. The necessary accessories enable the system in full functions.

4.1.8 TEST RESULTS

ABOVE 1GHz: 802.11a				
EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 40	FREQUENCY RANGE	1 ~ 40GHz	
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	25deg. C, 68%RH	TESTED BY	Anderson Hong	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	5040.00	61.0 PK	74.0	-13.0	1.00 H	213	22.80	38.20	
2	5040.00	53.0 AV	54.0	-1.0	1.00 H	213	14.80	38.20	
3	*5200.00	104.0 PK			1.17 H	214	65.60	38.40	
4	*5200.00	94.7 AV			1.17 H	214	56.30	38.40	
5	#10400.00	58.6 PK	68.3	-9.7	1.04 H	32	10.20	48.40	
		ANTENNA		Y & TEST DI	STANCE: V	ERTICAL A	T 3 M		
NO.	EMISSION		MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	5040.00	59.1 PK	74.0	-14.9	1.53 V	266	20.90	38.20	
2	5040.00	49.4 AV	54.0	-4.6	1.53 V	266	11.20	38.20	
3	*5200.00	102.7 PK			1.43 V	257	64.30	38.40	
4	*5200.00	93.0 AV			1.43 V	257	54.60	38.40	
5	#10400.00	58.4 PK	68.3	-9.9	1.00 V	0	10.00	48.40	

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

5. "* ": Fundamental frequency.

6. "#": The radiated frequency is out the restricted band.

BELOW 1GHz WORST-CASE DATA : 802.11n (40MHz)

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL Channel 38		FREQUENCY RANGE	Below 1000MHz	
INPUT POWER (SYSTEM)	120\/ac_60 Hz	DETECTOR FUNCTION	Quasi-Peak	
ENVIRONMENTAL CONDITIONS	25deg. C, 68%RH	TESTED BY	Sun Lin	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)	
1	214.22	39.2 QP	43.5	-4.3	1.22 H	197	28.20	11.00	
2	234.05	40.4 QP	46.0	-5.6	1.20 H	187	28.50	11.90	
3	298.47	42.3 QP	46.0	-3.7	1.02 H	198	27.70	14.60	
4	498.47	35.9 QP	46.0	-10.1	1.50 H	73	16.30	19.60	
5	665.68	34.6 QP	46.0	-11.4	1.00 H	73	11.80	22.80	
6	702.62	36.5 QP	46.0	-9.5	1.00 H	220	13.30	23.20	
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	T 3 M		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)	
1	144.61	26.0 QP	43.5	-17.5	1.00 V	115	12.80	13.20	
2	214.61	27.2 QP	43.5	-16.3	2.00 V	118	16.20	11.00	
3	300.16	33.1 QP	46.0	-12.9	1.00 V	124	18.40	14.70	
4	432.37	31.5 QP	46.0	-14.5	1.00 V	175	13.70	17.80	
5	498.47	31.1 QP	46.0	-14.9	1.50 V	121	11.50	19.60	
6	698.74	29.8 QP	46.0	-16.2	2.00 V	244	6.60	23.20	

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

4.2 CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)		
	Quasi-peak	Average	
0.15 ~ 0.5	66 to 56	56 to 46	
0.5 ~ 5	56	46	
5 ~ 30	60	50	

4.2.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

NOTE: 1. The lower limit shall apply at the transition frequencies.

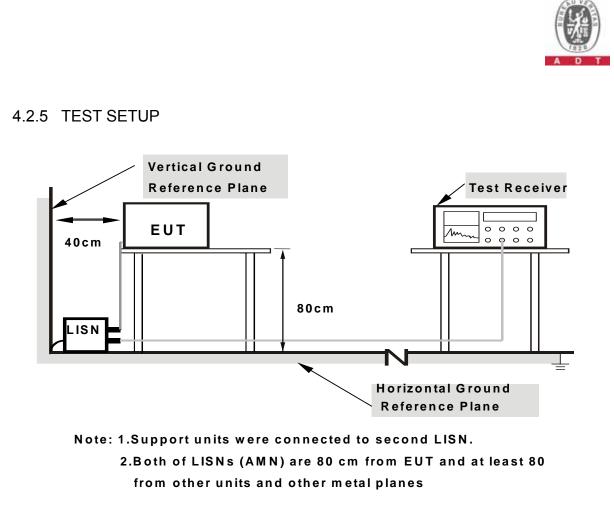
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.2.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESCS30	100291	Nov. 23, 2011	Nov. 22, 2012
RF signal cable Woken	5D-FB	Cable-HYC01-01	Dec. 22, 2011	Dec. 21, 2012
LISN ROHDE & SCHWARZ	ESH3-Z5	100312	Jul. 07, 2011	Jul. 06, 2012
LISN ROHDE & SCHWARZ	ESH2-Z5	100100	Jan. 06, 2011	Jan. 05, 2012
LISN ROHDE & SCHWARZ	ESH3-Z5	835239/001	Feb. 22, 2011	Feb. 21, 2012
V-LISN SCHWARZBECK	NNBL 8226-2	8226-142	Jun. 30, 2011	Jun. 29, 2012
LISN ROHDE & SCHWARZ	ENV216	100072	Jun. 10, 2011	Jun. 09, 2012
Software ADT	ADT_Cond_ V7.3.7	NA	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 1.
- 3. The VCCI Site Registration No. is C-2040.


4.2.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: All modes of operation were investigated and the worst-case emissions are reported.

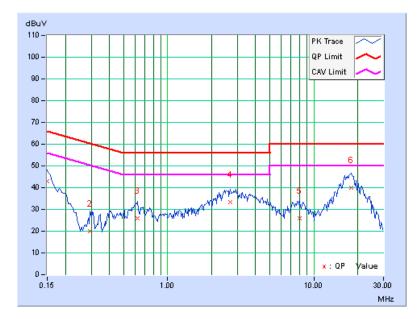
4.2.4 DEVIATION FROM TEST STANDARD

No deviation.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT OPERATING CONDITIONS

Same as 4.1.6.

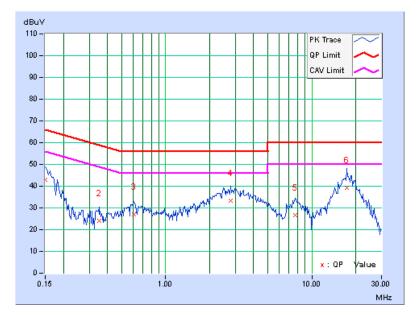

4.2.7 TEST RESULTS

CONDUCTED WORST-CASE DATA: 802.11n (40MHz)

PHASE Line 1					60	dB BANI	OWIDTH	ç	9kHz		
	Freq.	Corr.	Reading Value Emission Level			Limit		Mar	gin		
No		Factor	[dB	[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV	ν. Q.P.	AV.	
1	0.150	0.17	42.71	-	42.88	-	66.00	56.0	00 -23.12	-	
2	0.295	0.19	19.89	-	20.08	-	60.40	50.4	40 -40.31	-	
3	0.623	0.23	25.54	-	25.77	-	56.00	46.0	00 -30.23	-	
4	2.676	0.29	33.03	-	33.32	-	56.00	46.0	00 -22.68	-	
5	7.969	0.60	25.50	-	26.10	-	60.00	50.0	00 -33.90	-	
6	18.031	1.11	38.88	-	39.99	-	60.00	50.0	00 -20.01	-	

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and
- measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



PHA	SE	Line 2	Line 2				6dB BANDWIDTH			9kHz	
	Freq.	Corr.	Reading Value		Emission Level		Limit		Mar	Margin	
No		Factor	[dB (uV)]		[dB (uV)]		[dB (uV)]		(d	(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV	. Q.P.	AV.	
1	0.150	0.23	42.77	-	43.00	-	66.00	56.0	00 -23.00	-	
2	0.349	0.22	23.89	-	24.11	-	58.98	48.9	98 -34.87	-	
3	0.603	0.24	26.85	-	27.09	-	56.00	46.0	0 -28.91	-	
4	2.777	0.35	32.97	-	33.32	-	56.00	46.0	00 -22.68	-	
5	7.672	0.59	26.17	-	26.76	-	60.00	50.0	00 -33.24	_	
6	17.285	0.93	38.42	-	39.35	-	60.00	50.0	00 -20.65	-	

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss6. Emission Level = Correction Factor + Reading Value.

5. PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation and authorization certificates of our laboratories obtained from approval agencies can be downloaded from our web site: www.adt.com.tw/index.5/phtml. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Telecom Lab: Tel: 886-3-3183232 Fax: 886-3-3185050 Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

7. APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END----