

FCC RF EXPOSURE REPORT

FCC ID: KA2IR822E1

Project No.	:	2006H007
Equipment	:	AC1200 Wi-Fi Router
Brand Name	:	D-Link
Test Model	:	DIR-822
Series Model	:	N/A
Applicant	:	D-Link Corporation
Address	:	17595 Mt. Herrmann, Fountain Valley, California United State 92708
Manufacturer	:	D-Link Corporation
Address	:	17595 Mt. Herrmann, Fountain Valley, California United State 92708
Date of Receipt	:	Jul. 06, 2020
Date of Test	:	Jul. 07, 2020~Aug. 12, 2020
Issued Date	:	Aug. 24, 2020
Report Version	:	R00
Test Sample	:	Engineering Sample No.: SH202007067 SH202007068
Standard(s)	:	FCC Guidelines for Human Exposure IEEE C95.1 & FCC Part 2.1091 FCC Title 47 Part 2.1091, OET Bulletin 65 Supplement C

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Allen Wei

Prepared by : Allen Wei

yan. Wang

Approved by : Ryan Wang

Certificate # 5123.03

Add: No. 29, Jintang Road, Tangzhen Industry Park, Pudong New Area, Shanghai 201210, China TEL: +86-021-61765666 Web: www.newbtl.com

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue	Aug. 24, 2020

1. MPE CALCULATION METHOD

Calculation Method of RF Safety Distance:

$$S = \frac{PG}{4\pi r^2} = \frac{EIRP}{4\pi r^2}$$

where:

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Table for Filed Antenna

For 2.4G:

	Ant.	Brand	Model Name	Antenna Type	Connector	Gain(dBi)	Note
	1	Tenda	N/A	Dipole	N/A	5	N/A
	2	Tenda	N/A	Dipole	N/A	5	N/A

Note:

All antennas have the same gain, Directional gain = G_{ANT} +Array Gain,

For power spectral density measurements, $N_{ANT} = 2$, $N_{SS} = 1$.

So Directional gain = G_{ANT} + Array Gain =10log (N_{ANT}/N_{SS}) dB =5+10log(2/1)dBi=8.01.

Then, the power density limit is 8-(8.01-6)=5.99.

For power measurements, Array Gain = 0 dB (N_{ANT} \leq 4), so the Directional gain=5.

For 5G

Ant.	Brand	Model Name	Antenna Type	Connector	Gain(dBi)	Note
1	N/A	N/A	Dipole	N/A	5	N/A
2	N/A	N/A	Dipole	N/A	5	N/A

Note:

All antennas have the same gain, Directional gain = G_{ANT} +Array Gain,

For power spectral density measurements, $N_{ANT} = 2$, $N_{SS} = 1$.

So Directional gain = G_{ANT} + Array Gain = 10log (N_{ANT}/N_{SS}) dB = 5+10log(2/1)dBi=8.01.

Then, the UNII-1 power density limit is 17-(8.01-6)=14.99. the UNII-3 power density limit is 30-8.01+6=27.99 For power measurements, Array Gain = 0 dB ($N_{ANT} \leq 4$), so the Directional gain=5.

Table for Antenna Configuration: For 2.4G:

3

Operating Mode TX Mode	Ant. 1	Ant. 2	Ant. 1+2
802.11b	\checkmark	\checkmark	×
802.11g	\checkmark	\checkmark	~
802.11n(20 MHz)	\checkmark	\checkmark	~
802.11n(40 MHz)	\checkmark	✓	✓

For 5G:

Operating Mode TX Mode	Ant. 1	Ant. 2	Ant. 1+2
IEEE 802.11a	\checkmark	\checkmark	\checkmark
IEEE 802.11n (HT20)	\checkmark	\checkmark	\checkmark
IEEE 802.11n (HT40)	\checkmark	\checkmark	\checkmark
IEEE 802.11ac (VHT20)	\checkmark	\checkmark	\checkmark
IEEE 802.11ac (VHT40)	\checkmark	\checkmark	\checkmark
IEEE 802.11ac (VHT80)	\checkmark	\checkmark	✓

1.1. TEST RESULTS

For 2.4GHz:

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. tune up Power (dBm)	Max. tune up Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
5	3.1623	30	1000	0.629115	1	Complies

For 5GHz :

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. tune up Power (dBm)	Max. tune up Power Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
5	3.1623	25	251.1886	0.198944	1	Complies

For the max simultaneous transmission MPE:

2.4G+5G

Power Density (S) (mW/cm ²) 2.4GHz	Power Density (S) (mW/cm ²) 5GHz	Total	Limit of Power Density (S) (mW/cm ²)	Test Result
0.629115	0.198944	0.828059	1	Complies

Note: The calculated distance is 20 cm.

Output power including tune up tolerance.

End of Test Report