

FCC C2PC Test Report

Equipment	:	Wireless AC1000 Dual Band Cloud Router
Brand Name	:	D-Link
Model No.	:	DIR-820L
FCC ID	:	KA2IR820LB1
Standard	:	47 CFR FCC Part 15.407
Operating Band	:	5150 MHz – 5250 MHz
FCC Classification	:	NII
Applicant	:	D-Link Corporation 17595 Mt. Herrmann, Fountain Valley, CA 92708 U.S.A.

The product sample received on May 07, 2014 and completely tested on Jul. 09, 2014. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

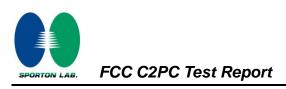
The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

James Fan / Assistant Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Accessories and Support Equipment	7
1.3	Testing Applied Standards	7
1.4	Testing Location Information	7
1.5	Measurement Uncertainty	8
2	TEST CONFIGURATION OF EUT	9
2.1	The Worst Case Modulation Configuration	9
2.2	The Worst Case Power Setting Parameter	9
2.3	The Worst Case Measurement Configuration	10
2.4	Test Setup Diagram	11
3	TRANSMITTER TEST RESULT	12
3.1	AC Power-line Conducted Emissions	12
3.2	Emission Bandwidth	15
3.3	RF Output Power	17
3.4	Peak Power Spectral Density	20
3.5	Transmitter Radiated Unwanted Emissions and Band Edge	23
3.6	Frequency Stability	46
4	TEST EQUIPMENT AND CALIBRATION DATA	48
APPE	ENDIX A. TEST PHOTOS	A1-A3


Summary of Test Result

	Conformance Test Specifications							
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result			
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied			
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]: 21.174MHz 48.54 (Margin 11.46dB) - QP 44.25 (Margin 5.75dB) - AV	FCC 15.207	Complied			
3.2	15.407(a)	Emission Bandwidth	Bandwidth [MHz] 20M: 43.41 / 40M: 57.97 80M: 83.71	Information only	Complied			
3.3	15.407(a)	RF Output Power (Maximum Conducted (Average) Output Power)	Power [dBm] 5150-5250MHz: 26.95	Power [dBm] 5150-5250MHz: 30	Complied			
3.4	15.407(a)	Peak Power Spectral Density	PPSD [dBm/MHz] 5150-5250MHz: 13.75	PPSD [dBm/MHz] 5150-5250MHz: 17	Complied			
3.5	15.407(b)	Transmitter Unwanted Emissions and Band Edge	Restricted Bands [dBuV/m at 3m]: 5150.00MHz 52.97 (Margin 1.03dB) – AV	Non-Restricted Bands: ≤ -27dBm (68.2dBuV/m@3m) Restricted Bands: FCC 15.209	Complied			
3.6	15.407(g)	Frequency Stability	4.8462 ppm	Signal shall remain in-band	Complied			

Revision History

Report No.	Version	Description	Issued Date
FR430734-01AN	Rev. 01	Initial issue of report	Aug. 22, 2014

1 General Description

1.1 Information

This report is issued as a FCC Class II Permissive Change for complying with New U-NII rule requirement. The modification is only software setting.

1.1.1 RF General Information

RF General Information						
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	RF Output Power (dBm)	Co-location
5150-5250	а	5180-5240	36-48 [4]	2	26.95	Yes
5150-5250	n(HT20)	5180-5240	36-48 [4]	2	26.72	Yes
5150-5250	n(HT40)	5190-5230	38-46 [2]	2	24.38	Yes
5150-5250	ac(VHT20)	5180-5240	36-48 [4]	2	26.86	Yes
5150-5250	ac(VHT40)	5190-5230	38-46 [2]	2	24.53	Yes
5150-5250	ac(VHT80)	5210	42 [1]	2	17.63	Yes
Note 1: RF out	out nower specifies th	nat Maximum	Conducted (A	verage) Outpu	it Power	•

Note 1: RF output power specifies that Maximum Conducted (Average) Output Power.

Note 2: 802.11a/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

Note 3: 802.11ac uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM modulation.

Note 4: Co-location, Co-location is generally defined as simultaneously transmitting (co-transmitting) antennas within 20 cm of each other. (i.e., EUT has simultaneously co-transmitting that operating

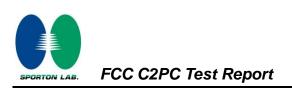
2.4GHz and 5GHz.)

1.1.2 Antenna Information

	Antenna Category						
	Equ	Equipment placed on the market without antennas					
\square	Inte	gral antenna (antenna permanently attached)					
	\boxtimes	Temporary RF connector provided					
	No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.						
	Exte	ernal antenna (dedicated antennas)					
		Single power level with corresponding antenna(s).					
		Multiple power level and corresponding antenna(s).					
		RF connector provided					
		Unique antenna connector. (e.g., MMCX, U.FL, IPX, and RP-SMA, RP-N type)					
		Standard antenna connector. (e.g., SMA, N, BNC, and TNC type)					

	Antenna General Information						
No.	No. Ant. Cat. Ant. Type Connector Gain (dBi)						
1	Integral	PCB	I-PEX	0			
2	Integral	PCB	I-PEX	0			

1.1.3 Type of EUT


	Identify EUT				
EUT	Γ Serial Number	N/A			
Pre	sentation of Equipment	Production ; Pre-Production ; Prototype			
		Type of EUT			
\boxtimes	Stand-alone				
	Combined (EUT where the radio part is fully integrated within another device)				
	Combined Equipment - Brand Name / Model No.:				
	Plug-in radio (EUT intended for a variety of host systems)				
	Host System - Brand Name / Model No.:				
	Other:				

1.1.4 Test Signal Duty Cycle

Operated Mode for Worst Duty Cycle					
Operated test mode for worst duty cycle					
Test Signal Duty Cycle (x)Power Duty Factor[dB] - (10 log 1/x)					
⊠ 95.59% - IEEE 802.11a	0.20				
91.87% - IEEE 802.11ac (VHT20)	0.37				
80.20% - IEEE 802.11ac (VHT40)	0.96				
☑ 65.30% - IEEE 802.11ac (VHT80)	1.85				

1.1.5 EUT Operational Condition

Supply Voltage	☑ 12Vdc from adapter		
Test Voltage	🛛 Vnom (120 V)	🛛 Vmax (102 V)	🛛 Vmin (138 V)
Test Climatic	Tnom (20°C)	🖾 Tmax (50°C)	⊠ Tmin (-30°C)

1.2 Accessories and Support Equipment

	Accessories							
No.	Equipment	Brand Name	Model Name	Spec.				
1	Adapter 1	D-Link	AMS9-1201000FU2	I/P: 100-240Vac, 50-60Hz, 0.5A, O/P: 12Vdc, 1.0A 1.22m non-shielded without core.				
2	Adapter 2	D-Link	F12W-120100SPAU	I/P: 100-240Vac, 50-60Hz, 0.3A, O/P: 12Vdc, 1.0A 1.22m non-shielded without core.				
3	Adapter 3	D-Link	F12W3-120100SPAU	I/P: 100-240Vac, 50-60Hz, 0.3A, O/P: 12Vdc, 1.0A 1.20m non-shielded without core.				

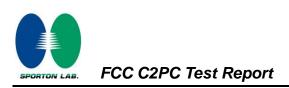
	Support Equipment						
No.	o. Equipment Brand Name Model Name FCC ID						
1	Notebook	DELL	E6430	DoC			
2	Notebook	DELL	E6410	DoC			
3	USB Dongle	Transcend	4G				

1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- 789033 D02 General UNII Test Procedures New Rules v01
- FCC KDB 662911 v02r01

1.4 Testing Location Information


	Testing Location									
\boxtimes	HWA YA	ADD	ADD : No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.							
	TEL : 886-3-327-3456 FAX : 886-3-327-0973									
Т	Test Condition Test Site No. Test Engineer Test Environment Test Date						Test Date			
F	RF Conducte	d		TH01-HY	Mark Liao	22°C / 64%	Jul. 09, 2014			
AC Conduction CO04-HY Skys Huang 25°C / 67% Jul. 03, 201						Jul. 03, 2014				
Rad	Radiated Emission03CH08-HYJack Li22°C / 67%May 21, 2014									
	Test site registered number [636805] with FCC Test site registered number [4086B-2] with IC									

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

	Measurement Uncertainty		
Test Item	Uncertainty	Limit	
AC power-line conducted emissions	±2.26 dB	N/A	
Emission bandwidth		±1.42 %	N/A
RF output power, conducted		±0.63 dB	N/A
Power density, conducted		±0.81 dB	N/A
Unwanted emissions, conducted	30 – 1000 MHz	±0.51 dB	N/A
	1 – 18 GHz	±0.67 dB	N/A
	18 – 40 GHz	±0.83 dB	N/A
	40 – 200 GHz	N/A	N/A
All emissions, radiated	30 – 1000 MHz	±2.56 dB	N/A
	1 – 18 GHz	±3.59 dB	N/A
	18 – 40 GHz	±3.82 dB	N/A
	40 – 200 GHz	N/A	N/A
Temperature	·	±0.8 °C	N/A
Humidity	±3 %	N/A	
DC and low frequency voltages	±3 %	N/A	
Time	±1.42 %	N/A	
Duty Cycle		±1.42 %	N/A

2 Test Configuration of EUT

2.1 The Worst Case Modulation Configuration

Worst	Worst Modulation Used for Conformance Testing (5150-5250MHz)							
Modulation Mode	Transmit Chains (N _{TX})	Data Rate / MCS	Worst Data Rate / MCS					
11a	2	6-54Mbps	6 Mbps					
HT20	2	MCS 0-15	MCS 0					
HT40	2	MCS 0-15	MCS 0					
VHT20	2	MCS 0-8	MCS 0					
VHT40	2	MCS 0-9	MCS 0					
VHT80	2	MCS 0-9	MCS 0					

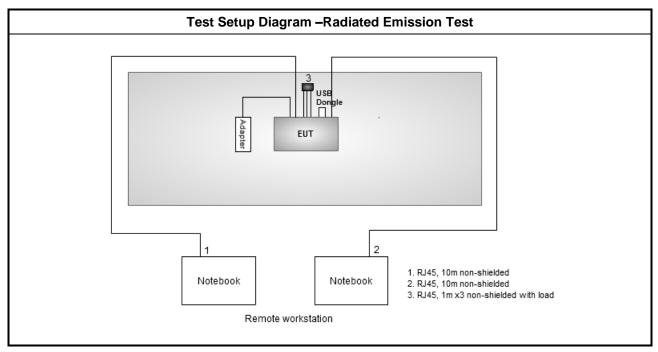
2.2 The Worst Case Power Setting Parameter

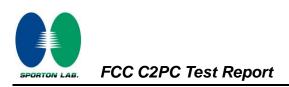
The	Worst	t Case Pow	er Setting F	Parameter (5150-5250M	Hz band)		
Test Software	Mtool	Atool						
Test Software Version	RTL8	19x 2.3						
				Test Fre	quency (Mł	łz)		
Modulation Mode	Ντχ	NCB: 20MHz			NCB: 40MHz		NCB: 80MHz	
		5180	5200	5240	5190	5230	5210	
11a,6-54Mbps	2	53/52	63/62	60/59				
HT20,M0-15	2	53/52	63/62	59/58				
HT40,M0-15	2				45/44	56/54		
VHT20,M0-8	2	53/52	63/62	59/58				
VHT40,M0-9	2				45/44	56/54		
VHT80,M0-9	2						41/39	

2.3 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests						
Tests Item AC power-line conducted emissions						
Condition AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz						
Operating Mode	Operating Mode Description					
1 AC Power & Radio link (WLAN), Adapter 1						
Note: Adapter 1, Adapter	2, and Adapter 3 had been pretested and found that the Adapter 1 was the worst					

case and was selected for final test.


Tł	The Worst Case Mode for Following Conformance Tests					
Tests Item RF Output Power						
Test Condition Conducted measurement at transmit chains						
Modulation Mode 11a, HT20, HT40, VHT20, VHT40, VHT80						
Operating Mode Operating Mode Description						
1 AC Power & Radio link (WLAN), Adapter 1						


Tł	The Worst Case Mode for Following Conformance Tests					
Tests Item Peak Power Spectral Density, Emission Bandwidth						
Test Condition Conducted measurement at transmit chains						
Modulation Mode	11a, VHT20, VHT40, VHT80					
Operating Mode Operating Mode Description						
1 AC Power & Radio link (WLAN), Adapter 1						

Th	The Worst Case Mode for Following Conformance Tests					
Tests Item		Transmitter Radiated Unwanted Emissions Transmitter Radiated Bandedge Emissions				
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.					
	EUT will be placed in	fixed position.				
User Position	EUT will be placed in mobile position and operating multiple positions. EUT shall be performed three orthogonal planes. The worst planes is Z.					
	EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. EUT shall be performed two or three orthogonal planes. The worst planes is X.					
Operating Mode	1. AC Power & Radio link (WLAN), Adapter 1					
Modulation Mode	11a, VHT20, VHT40, VHT80					
	X Plane	Y Plane	Z Plane			
Orthogonal Planes of EUT						
	Note: Adapter 1, Adapter 2, and Adapter 3 had been pretested and found that the Adapter 1 was the worst case and was selected for final test.					

2.4 Test Setup Diagram

Transmitter Test Result 3

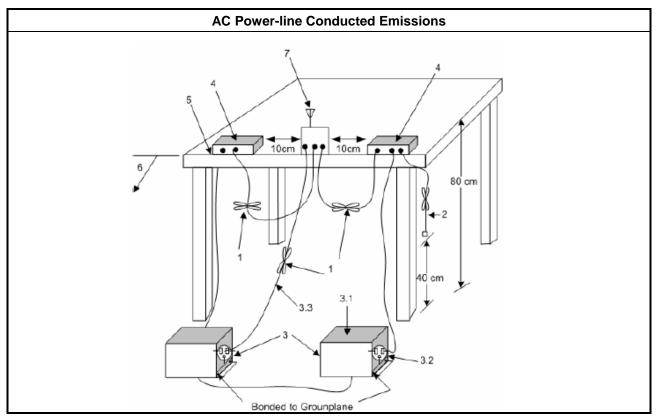
3.1 **AC Power-line Conducted Emissions**

3.1.1 **AC Power-line Conducted Emissions Limit**

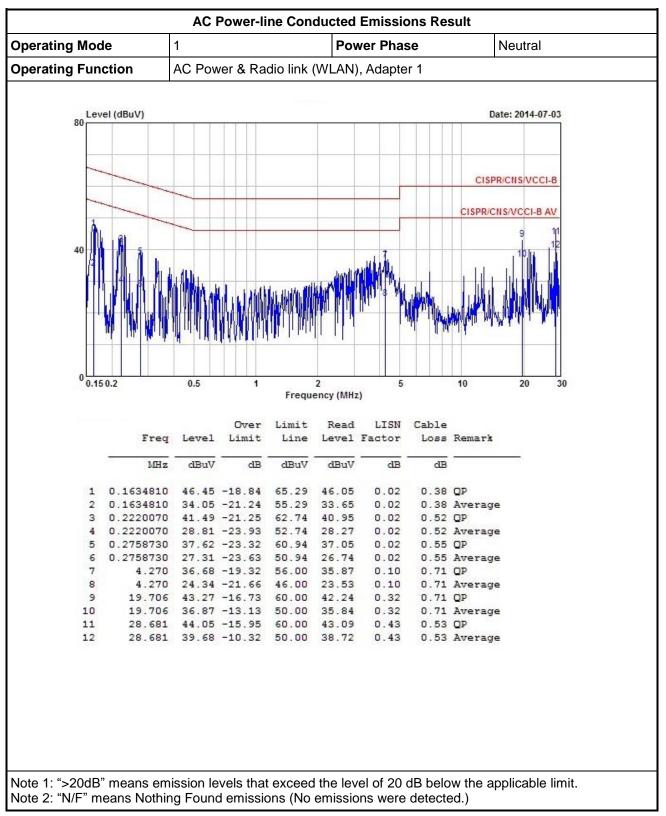
AC Power-line Conducted Emissions Limit							
Frequency Emission (MHz) Quasi-Peak Average							
0.15-0.5 66 - 56 * 56 - 46 *							
0.5-5 56 46							
5-30 60 50							
Note 1: * Decreases with the logarithm of the frequency.							

ecreases with the logarithm of the frequency

3.1.2 Measuring Instruments

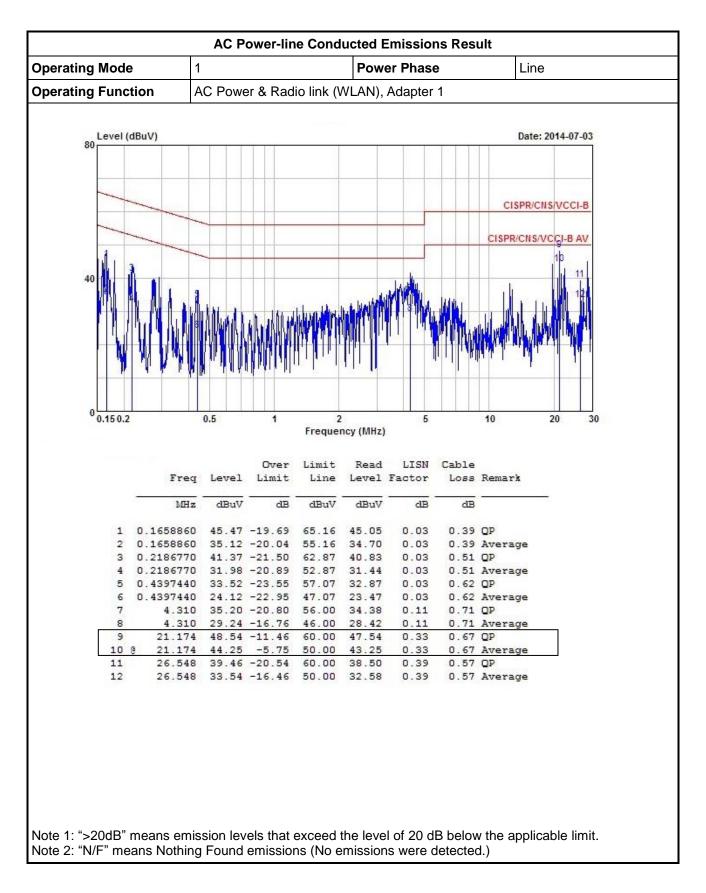

Refer a test equipment and calibration data table in this test report.

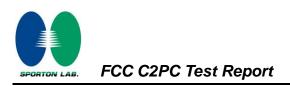
3.1.3 **Test Procedures**


Test Method

Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.

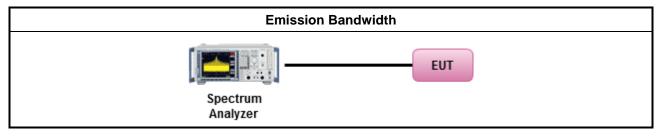
3.1.4 Test Setup





3.1.5 Test Result of AC Power-line Conducted Emissions

3.2 Emission Bandwidth


3.2.1 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.2 Test Procedures

			Test Method					
\boxtimes	\boxtimes For the emission bandwidth shall be measured using one of the options below:							
	\boxtimes		er as 789033 D02 General UNII Test Procedures New Rules v01, clause C for EBW and clause or OBW measurement.					
		Ref	er as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.					
		Refer as IC RSS-Gen, clause 4.6 for bandwidth testing.						
\boxtimes	For	cond	ucted measurement.					
		The EUT supports single transmit chain and measurements performed on this transmit chain.						
		The	EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.					
	\boxtimes	The	EUT supports multiple transmit chains using options given below:					
			Option 1: Multiple transmit chains measurements need to be performed on one of the active transmit chains (antenna outputs). All measurement had be performed on transmit chains 1.					
			Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains.					

3.2.3 Test Setup

3.2.4 Test Result of Emission Bandwidth

	UNII Emission Bandwidth Result (5150-5250MHz band)											
Condi	Condition				Emission Bandwidth (MHz)							
Modulation		Freq.		99% Ba	ndwidth			26dB Ba	ndwidth			
Mode	Ντχ	(MHz)	Chain- Port 1	Chain- Port 2	Chain- Port 3	Chain- Port 4	Chain- Port 1	Chain- Port 2	Chain- Port 3	Chain- Port 4		
11a	2	5180	16.96	16.90			23.77	21.62				
11a	2	5200	25.18	24.89			42.17	42.10				
11a	2	5240	23.95	24.02			41.16	42.03				
VHT20	2	5180	18.00	17.95			23.13	22.43				
VHT20	2	5200	25.69	24.02			43.41	42.75				
VHT20	2	5240	22.79	19.90			42.68	39.28				
VHT40	2	5190	36.82	36.93			44.41	44.41				
VHT40	2	5230	37.51	37.28			57.97	54.96				
VHT80	2	5210	75.95	75.95			83.48	83.71				
Res	ult					Com	plied					

Worst Emission	Bandwidth Plots					
99% Bandwidth	26dB Bandwidth					
Spectrum (III) Ref Level 20.00 dBm Offset 11.50 dB @ RBW 1 MHz Att 30 dB SWT 1 ms @ VBW 3 MHz Mode Sweep IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Spectrum Image: Constraint of the sector of t					
M1[1]	M1[1] -19.43 dBm 10 dBm 01 6.543 dBm 71 0 d					
-10 dBm	-10 dBm /// ///////////////////////////////					
-40 dBm	-60 dBm					
-70 dBm F1 F1 CF 5.21 GHz 691 pts Span 160.0 MHz (1990 191 191 191 191 191 191 191 191 191	-70 dBm - F1 - F2 - F2 - F1 - F2 - F2 - F2 - F1 - F2 - F2					

3.3 **RF Output Power**

3.3.1 RF Output Power Limit

Maximum Conducted Output Power Limit

The maximum conducted output power over the frequency band of operation shall not exceed 1 W.

If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output

power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

		Test Method
\boxtimes	Мах	imum Conducted Output Power
		Refer as 789033 D02 General UNII Test Procedures New Rules v01, clause E Method SA-1 (spectral trace averaging).
		Refer as 789033 D02 General UNII Test Procedures New Rules v01, clause E Method SA-1 Alt. (RMS detection with slow sweep speed)
		Refer as 789033 D02 General UNII Test Procedures New Rules v01, clause E Method SA-2 (spectral trace averaging).
		Refer as 789033 D02 General UNII Test Procedures New Rules v01, clause E Method SA-2 Alt. (RMS detection with slow sweep speed)
	Wid	eband RF power meter and average over on/off periods with duty factor
	\boxtimes	Refer as 789033 D02 General UNII Test Procedures New Rules v01, clause E Method PM-G (using a gated RF average power meter).
\boxtimes	For	conducted measurement.
		The EUT supports single transmit chain and measurements performed on this transmit chain.
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.
		The EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
		If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG

3.3.4 Test Setup

RF Output Power (Power Meter)	
EUT Power Meter	

3.3.5 Directional Gain for Power Measurement

	Dire	ectional Gain (D	G) Result		
Transmit Chains No.		1	2	-	-
Maximum G _{ANT} (dBi)		0	0	-	-
Modulation Mode	DG (dBi)	Ντχ	N _{ss}	STBC	Array Gain (dB)
11a,6-54Mbps	0	2	1	-	-
HT20,M0-15	0	2	1	-	-
HT40,M0-15	0	2	1	-	-
VHT20,M0-8	0	2	1	-	-
VHT40,M0-9	0	2	1	-	-
VHT80,M0-9	0	2	1		-

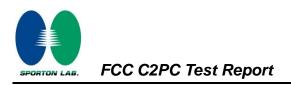
	Maxim	um Cond	ucted (A	verage	Output	Power	(5150-5	250MHz	band)						
Cond	ition		RF Output Power (dBm)												
Modulation Mode	Ντχ	Freq. (MHz)	Chain Port 1	Chain Port 2	Chain Port 3	Chain Port 4	Sum Chain	Power Limit	DG (dBi)	EIRP Power	EIRP Limit				
11a	2	5180	20.00	20.09			23.06	30.00	0	23.06	36.00				
11a	2	5200	23.86	24.01			26.95	30.00	0	26.95	36.00				
11a	2	5240	23.21	23.44			26.34	30.00	0	26.34	36.00				
HT20	2	5180	20.12	20.06			23.10	30.00	0	23.10	36.00				
HT20	2	5200	23.45	23.96			26.72	30.00	0	26.72	36.00				
HT20	2	5240	22.51	22.49			25.51	30.00	0	25.51	36.00				
HT40	2	5190	16.39	16.72			19.57	30.00	0	19.57	36.00				
HT40	2	5230	21.65	21.08			24.38	30.00	0	24.38	36.00				
VHT20	2	5180	20.37	20.33			23.36	30.00	0	23.36	36.00				
VHT20	2	5200	23.68	24.02			26.86	30.00	0	26.86	36.00				
VHT20	2	5240	22.76	22.73			25.76	30.00	0	25.76	36.00				
VHT40	2	5190	16.57	16.91			19.75	30.00	0	19.75	36.00				
VHT40	2	5230	21.79	21.23			24.53	30.00	0	24.53	36.00				
VHT80	2	5210	14.84	14.39			17.63	30.00	0	17.63	36.00				
Res	ult				-	C	Complie	d		•					

3.3.6 Test Result of Maximum Conducted Output Power

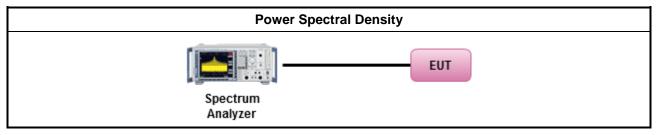
3.4 Peak Power Spectral Density

3.4.1 Peak Power Spectral Density Limit

Peak Power Spectral Density Limit


The maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band

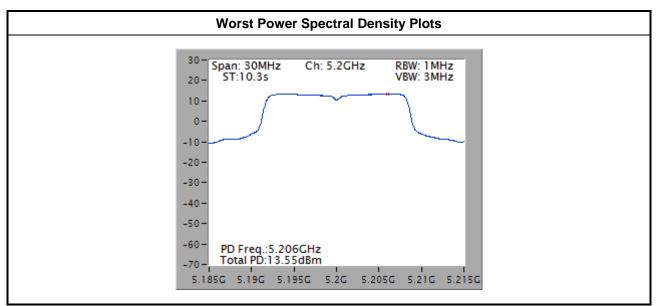
3.4.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

		Test Method
	outp func	c power spectral density procedures that the same method as used to determine the conducted ut power shall be used to determine the peak power spectral density and use the peak search tion on the spectrum analyzer to find the peak of the spectrum. For the peak power spectral density be measured using below options:
		Refer as 789033 D02 General UNII Test Procedures New Rules v01, F)5) power spectral density can be measured using resolution bandwidths < 1 MHz provided that the results are integrated over 1 MHz bandwidth
		Refer as 789033 D02 General UNII Test Procedures New Rules v01, clause E Method SA-1 (spectral trace averaging).
		Refer as 789033 D02 General UNII Test Procedures New Rules v01, clause E Method SA-1 Alt. (RMS detection with slow sweep speed)
		Refer as 789033 D02 General UNII Test Procedures New Rules v01, clause E Method SA-2 (spectral trace averaging).
	\boxtimes	Refer as 789033 D02 General UNII Test Procedures New Rules v01, clause E Method SA-2 Alt. (RMS detection with slow sweep speed)
\bowtie	For	conducted measurement.
		The EUT supports single transmit chain and measurements performed on this transmit chain.
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.
	\square	The EUT supports multiple transmit chains using options given below:
		Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
		Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.
		If multiple transmit chains, EIRP PPSD calculation could be following as methods: $PPSD_{total} = PPSD_1 + PPSD_2 + + PPSD_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) $EIRP_{total} = PPSD_{total} + DG$
		Each individually PPSD plots refer as test report clause 3.3.5 with each individually PPSD plots.
_		

3.4.4 Test Setup



	Pe	eak Powe	r Spectral Der	nsity Result (5	150-5250MHz	band)							
Cond	lition		Peak Power Spectral Density (dBm/MHz)										
Modulation Mode	Ντχ	Freq. (MHz)	Sum Chain	PSD Limit	DG (dBi)	EIRP PSD	EIRP Limit						
11a	2	5180	10.52	17.00	3.01	13.53	23						
11a	2	5200	13.75	17.00	3.01	16.76	23						
11a	2	5240	13.17	17.00	3.01	16.18	23						
VHT20	2	5180	9.88	17.00	3.01	12.89	23						
VHT20	2	5200	13.31	17.00	3.01	16.32	23						
VHT20	2	5240	12.29	17.00	3.01	15.30	23						
VHT40	2	5190	2.55	17.00	3.01	5.56	23						
VHT40	2	5230	7.52	17.00	3.01	10.53	23						
VHT80	2	5210	-1.95	17.00	3.01	1.06	23						
Res	sult	•		•	Complied	•	•						

3.4.5 Test Result of Peak Power Spectral Density

Note: Test result is bin-by-bin summing measured value of each TX port

3.5 Transmitter Radiated Unwanted Emissions and Band Edge

3.5.1 Transmitter Radiated Unwanted Emissions and Band Edge Limit

Unwanted emiss	sions below 1 GHz and re	stricted band emissions a	bove 1GHz limit
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3
Note 1: Test distance for fr	equencies at or above 30	MHz, measurements may be	performed at a distance

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

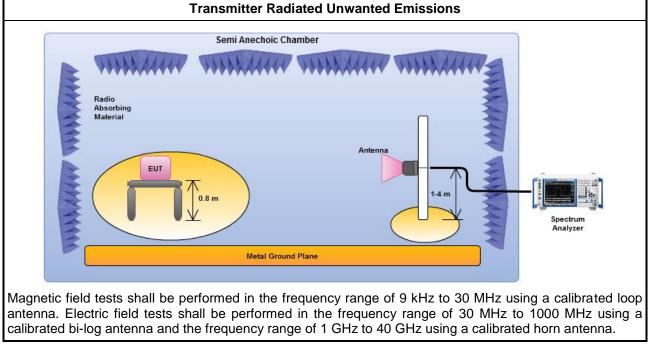
Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

U	In-restricted band emissions above 1GHz Limit
Operating Band	Limit
5.15 - 5.25 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]
5.25 - 5.35 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]
5.47 - 5.725 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]
5.725 - 5.825 GHz	5.715 5.725 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] 5.825 5.835 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] Other un-restricted band: e.i.r.p27 dBm [68.2 dBuV/m@3m]

Note 1: Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.



3.5.3 Test Procedures

		Test Method
	perfe equi abov are i be e dista	surements may be performed at a distance other than the limit distance provided they are not ormed in the near field and the emissions to be measured can be detected by the measurement pment. Measurements shall not be performed at a distance greater than 30 m for frequencies ve 30 MHz, unless it can be further demonstrated that measurements at a distance of 30 m or less mpractical. When performing measurements at a distance other than that specified, the results shall xtrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear ance for field-strength measurements, inverse of linear distance-squared for power-density isurements).
\boxtimes	For	the transmitter unwanted emissions shall be measured using following options below:
		Refer as 789033 D02 General UNII Test Procedures New Rules v01, clause G)2) for unwanted emissions into non-restricted bands.
	\square	Refer as 789033 D02 General UNII Test Procedures New Rules v01, clause G)1) for unwanted emissions into restricted bands.
		Refer as 789033 D02 General UNII Test Procedures New Rules v01, G)6) Method AD (Trace Averaging).
		Refer as 789033 D02 General UNII Test Procedures New Rules v01, G)6) Method VB (Reduced VBW).
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
		Refer as 789033 D02 General UNII Test Procedures New Rules v01, clause G)5) measurement procedure peak limit.
		Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit.
\square	For	radiated measurement.
	\square	Refer as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz.
	\square	Refer as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1000 MHz.
	\square	Refer as ANSI C63.10, clause 6.6 for radiated emissions from above 1 GHz.
		conducted and cabinet radiation measurement, refer as 789033 D02 General UNII Test Procedures Rules v01, clause G)3).
		For conducted unwanted emissions into non-restricted bands (relative emission limits). Devices with multiple transmit chains: Refer as FCC KDB 662911, when testing out-of-band and spurious emissions against relative emission limits, tests may be performed on each output individually without summing or adding 10 log(N) if the measurements are made relative to the in-band emissions on the individual outputs.
		For conducted unwanted emissions into restricted bands (absolute emission limits). Devices with multiple transmit chains using options given below: (1) Measure and sum the spectra across the outputs or (2) Measure and add 10 log(N) dB
		For FCC KDB 662911 The methodology described here may overestimate array gain, thereby resulting in apparent failures to satisfy the out-of-band limits even if the device is actually compliant. In such cases, compliance may be demonstrated by performing radiated tests around the frequencies at which the apparent failures occurred.

3.5.4 Test Setup

Note: Test distance is 3m.

3.5.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

Nodulation Mode		11a			Test	t Freq. ((MHz)		5200		
Polarization		Н									
90 Level (dBuV/m)									Date: 201	14-05-21
81.0											
72.0											
63.0										FCC C	LASS-B
54.0											
45.0 36.0	12							5	6		
27.0	ī								ĭ		
18.0											
9.0											
0 <mark></mark>	100.	200.	300.	400.	500. Frequenc	600 v (MHz)	. 7(00.	800.	900.	1000
			0ver	limit	Read		a Cable	Pream	Δ/Pos	T/Pos	
	Freq	Level	Limit			Factor				1/103	Remark
1	MHz	dBuV/m 2 36.77		dBuV/m 43.50		dB/m 12.26	dB	dB 31.66	CM	deg	Peak
2		33.33						31.63			Peak
3		42.57						31.51			Peak
4		42.73						31.41	100	186	QP
5	750.75		-8.10 -14.33		45.30	22.11 22.47		31.39			Peak
0	/00./1	51.07	-14.33	40.00	20.02	22.4/	1.94	31.37			Peak

3.5.6 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Modulation Mode	1	1a			Tes	t Freq. (I	MHz)		5200				
Polarization	٧	/			•								
Lovel (dPu)	(m)									Date: 201	4.05.21		
90 Level (dBu	v/iii)												
81.0													
72.0													
63.0										TCC CI	ASS-B		
54.0										FUL U	A33-B		
45.0	3							-					
36.0	, 	4						6					
27.0													
18.0													
9.0													
0 <mark>30 100.</mark>		200.	300.	400.	500. Frequenc	600.	70)0.	800.	900.	1000		
			0ver			Antenna	Cable	Preamp	A/Pos	T/Pos			
F	req	Level		Line	Level	Factor	Loss			.,	Remark		
N	Hz	dBuV/m	dB	dBuV/m		dB/m	dB	dB	cm	deg			
				40.00				31.78		13	-		
				43.50				31.69					
				43.50				31.66			Peak		
				46.00 46.00				31.51 31.41			Peak Peak		
						22.10		31.39			Peak		
Noto 1. ">20dD" maara	0011		ionion la		tovaca	d the let			1014 46 -	onnlia			
ote 1: ">20dB" means ote 2: "N/F" means No													

Modulation Mo	11	а				Tes	st Fi	req. ((MHz)		Ę	5180				
N _{TX}							Pol	ariz	atio	n		ł	4			
مما	evel (dBuV/r	n)												Date:	2014	4-05-21
81.0- 72.0													1	FCC		RT15E
63.0	4.			. Ц									L	ru		NITSE
54.0	1		5										FC	C PAR	F15E	(AVG)
45.0					_											
36.0					_											
27.0		_														
18.0		_														
<mark>9.0</mark> -																
0	000 4000.6	000.8	000.	12000.	16	000.	2000	0.	2400	00. 28	000.	32	000.	360	00.	40000
						F	Frequen	cy (M	IHz)							
				0ver						a Cable			A/Pos	5 T/P	os	
	Fre	eq	Level	Limi	t Li	ne	Leve]	l Fa	ctor	Loss	Fact	or				Remark
	MH:		lBuV/m	dB	dBu	 V/m	dBuV	 d	B/m	dB	dE	3	сm	 d	eg	
1			46.27						1.84						<u> </u>	Averag
2			58.87						1.84						-	Peak
3			47.72						1.86							Averag
4			63.35 55.19						1.86							Peak Peak
5	10500		JJ.1J	15.0	1 00	.20	40.72	, J		10.00						I Cuk
Note 1: ">20dB' Note 2: "N/F" m Note 3: Measur Note 4: For rest with the	eans Noth ement rec	ning ceive nds, t	Found anten he pea	spurio na pola ak mea	us en arizati Isurer	nissio on: H nent	ons (N H (Hor is full <u>y</u>	lo sj izor y su	purio ntal), ifficie	us emis V (Verti nt, as th	sions cal) ie ma	s we ax fie	ere de eld st	reng	ed.) th a	is mea

3.5.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11a

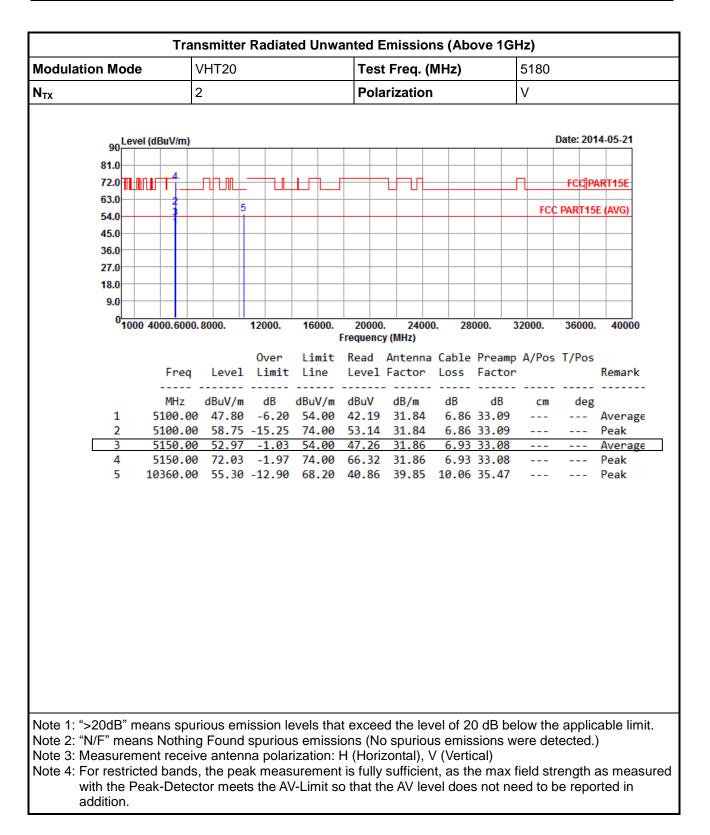
Modulation M	lod	e		11	а					Tes	t Fr	eq. (I	MHz)			5180		
N _{TX}	90 81.0 72.0 63.0 54.0 45.0 36.0 27.0 18.0 9.0 0 1000 4000. F 									Pol	ariz	ation	1			V		
																	Deter 204	1.05.24
ç		vel (dB	uV/m)													Date: 201	4-05-21
81	0													-				
72	0 m		F‡-		╟╢╟	_		ШF			┶	᠇᠘					FCC[P/	RT15E
63	0		4			5								-		ECO	C PART15	
54	0					Ī					-			-		ru	PARTIS	E (AVO)
45	0													-				_
36	0										-			-				
27	0										-			-				
18	0		+		+ +													
9	0		+											-				
	010	00 400	0.600	00.80	000.	12	000.	160	000.	2000).	2400	0. 1	2800	0. 3	2000.	36000.	40000
										requent	cy (M							
							ver										T/Pos	
			Free	9	Level	L	imit	Lir	ne	Level		ctor	Loss	F	actor			Remark
		-	 MU-									 B/m						
	1		MHz		1BuV/m 46.99		dB 7 01			dBuV 41.38			dB 6 8	6 3	dB 3.09	Cm	deg	Average
					57.80					52.19					3.09			
	3				52.83					47.12					3.08			Average
	4				70.29					64.58					3.08			Peak
	5	103	60.0	90	55.08	3 -1	3.12	68.	.20	40.64	3	9.85	10.0	63	5.47			Peak
Note 2: "N/F"																ere de	tected.)
Note 3: Meas																الماما مد	ronoth .	
Note 4: For re																	rengtn a be repo	
	1 H H		Dett	รบเบ	ппее	ະເວເ	ILE AI	v−∟III	111 50	י נוומנ נ	ne /	<u>v</u> 181	/ CI UU	60 1	IULIE	เฮนเบเ	ne reno	ILEU III

Modulation M	od	е		11a					Tes	t Fre	eq. (N	MHz)		5200		
N _{TX}				2					Pola	ariza	tion			Н		
															Data: 204	4.05.24
90) Lev	/el (dBu\	V/m)												Date: 201	4-05-21
81.0)									_						
72.0) IIII	ĴŮÛĹ					ЪF			₽	T			Л	FCC P/	ART15E
63.0			2		5											
54.0			┫		ĭ					_				FC	C PART15	e (AVG)
45.0			1													
36.0																
27.0																
18.0																
9.0																
	100	00 4000	.6000	.8000.	120	00.	160	000.	20000	-	24000). 28	000.	32000.	36000.	40000
									Frequenc							
						/er									T/Pos	
		F	req	Level	l Li	mit	Lir	ne			tor	Loss	Factor	•		Remark
1			Hz a ac	dBuV/r 3 47.32		IB			dBuV		/m .85	dB	dB 33.09	Cm	deg	Average
)			58.49					52.84		.85		33.09			
	<u>.</u> }) 47.7									33.08			Averag
	ļ			60.01									33.08			Peak
	5			56.30												Peak
-																
Note 1: ">20d	3" r	neans	spu	rious er	nissi	on le	evels	tha	t excee	d th	e lev	el of 2	0 dB be	elow the	e applic	able lim
Note 2: "N/F" r																
Note 3: Measu														-	,	
Note 4: For res														field st	rength a	as meas
				ctor mee												
	n.															

Modulation Mo	de	11a				Tes	t Freq.	(MHz)		5200		
N _{TX}		2				Pola	arizatio	n		V		
											Date: 201	4 05 24
90	evel (dBuV/m)										Date. 201	4-05-21
81.0							_					
72.0						-				Л	FCCP	ART15E
63.0	2		;								C PART15	
54.0										- ru	PARTIS	E (AVG)
45.0												
36.0						_						
27.0							_					
18.0												
9.0												
0_1	000 4000.600	0 000	12000.	160	00 .	20000	240)00. 2	8000.	32000.	36000.	40000
	4000.000	0.0000.	12000.	100			, 240 y (MHz)	. 2		52000.	50000.	40000
			0ver						e Preamp		T/Pos	
	Free	Level	Limit	Lin	ie Le	evel	Factor	Loss	Factor	•		Remark
	MHz	dBuV/m	dB	dBuV	//m di	RuV	dB/m	dB	dB	сm	deg	
1		0 48.40					-		9 33.09		-	Average
2		0 58.09					31.85		9 33.09			Peak
3	5150.0	0 49.62	-4.38	54.	00 43	3.91	31.86		3 33.08			Averag
4		66.33					31.86		3 33.08			Peak
5	10400.0	0 55.54	-12.66	68.	20 43	1.04	39.92	2 10.0	6 35.48			Peak
			looice la	n vele	thet -		ا مطاهم		00 40 F		o o n n l' -	
Note 1: ">20dB"												
Note 2: "N/F" me											lected.)
Note 3: Measure Note 4: For restr										field et	renath	as mear
	Peak-Dete											

Modulation M	ode			11a					Tes	t Fre	eq. (I	MHz)		5240		
Ν _{τχ}				2					Pola	ariza	ation			Н		
	1		1000												Date: 201	4.05.24
90	Leve	l (dBuV	<u>/m)</u>												Date. 201	4-03-21
81.0					+											
72.0	THE AL			נתת	Ц÷					T	┅∟			Л	FCC P/	RT15E
63.0		2	24		5					_				ECO	C PART15	
54.0			╏┼╴		+										PARTIS	E (AVO)
45.0					+											
36.0					+											
27.0					+											
18.0					+											
9.0														_		
(4000.	6000	9000		12000.	460	000.	20000		24000	200	000. :	32000.	36000.	40000
	1000	4000.	0000.	. 0000.		12000.	100		Frequenc			J. 20		52000.	50000.	40000
						0ver									T/Pos	
		Fr	req	Lev	el	Limit	Li	ne	Level	Fac	tor	Loss	Factor	•		Remark
		MH	Hz	dBuV	/m	dB	dBu	V/m	dBuV	dB	/m	dB	dB	cm	deg	
1		5156	0.00	45.	20	-8.80	54	.00	39.49	31	.86	6.93	33.08			Average
2	2					-16.96			51.33		.86		33.08			Peak
3						-9.01			39.00				33.06			Average
4						-16.16							33.06			Peak
5		1048	0.00	56.	91	-11.29	68	. 20	42.28	46	.06	10.07	35.50			Peak
Note 1: ">20dE	3" m	eans	sou	rious	em	ission I	evels	that	t excer	hd th	e lev	el of 20) dB be	low the	e applic	able lim
Note 2: "N/F" r																
Note 3: Measu																/
Note 4: For res														field st	renath :	as meas
															be repo	

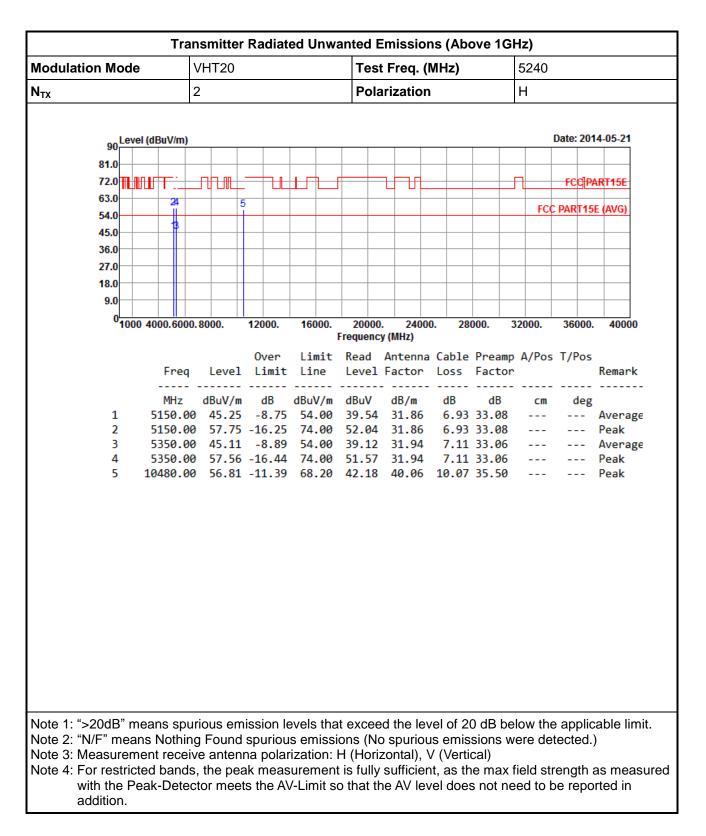
	16000. 2					Date: 201 FCC PA	RT15E
81.0 72.0 63.0 54.0 45.0 36.0 27.0 18.0 9.0 0 1000 4000.6000.8000. 12000. Over	16000. 2					FCCIPA	RT15E
81.0 72.0 63.0 54.0 45.0 36.0 27.0 18.0 9.0 0 1000 4000.6000.8000. 12000. Over	16000. 2					FCCIPA	RT15E
72.0 63.0 24 5 54.0 45.0 36.0 27.0 18.0 9.0 0 1000 4000.6000.8000. 12000. Over	16000. 2				FCC		
63.0 54.0 45.0 36.0 27.0 18.0 9.0 0 1000 4000.6000.8000. 12000. Over	16000. 2				FCC		
54.0 45.0 36.0 27.0 18.0 9.0 0 1000 4000.6000.8000. 12000. Over					FCC	PART15	e (AVG)
54.0 45.0 36.0 27.0 18.0 9.0 0 1000 4000.6000.8000. 12000. Over					FCC	PART15	e (AVG)
36.0 27.0 18.0 9.0 0 1000 4000.6000.8000. 12000. Over							
27.0 18.0 9.0 0 1000 4000.6000.8000. 12000. Over							
18.0 9.0 0 1000 4000.6000.8000. 12000. Over							
18.0 9.0 0 1000 4000.6000.8000. 12000. Over					_		
9.0 0 1000 4000.6000.8000. 12000. Over							
0 <mark>1000 4000.6000.8000. 12000.</mark> Over							
Over							
	Fren			000. 3	2000.	36000.	40000
		quency (MHz					
Freq Level Limit			nna Cable			T/Pos	<u> </u>
	Line Le		or Loss	Factor			Remark
MHz dBuV/m dB d	dBuV/m dB	BuV dB/	m dB	dB		dog	
1 5150.00 45.30 -8.70				33.08	Cm	deg	Average
2 5150.00 57.42 -16.58				33.08			Peak
3 5350.00 44.52 -9.48		3.53 31.		33.06			Average
4 5350.00 56.66 -17.34			94 7.11				Peak
5 10480.00 56.11 -12.09							Peak
Note 1: ">20dB" means spurious emission lev							
Note 2: "N/F" means Nothing Found spurious					ere de	tected.)	
Note 3: Measurement receive antenna polariz	```			,			
Note 4: For restricted bands, the peak measured							
with the Peak-Detector meets the AV-I addition.	LIMIT SO th	hat the AV	level doe	s not ne	ed to b	pe repo	rted in



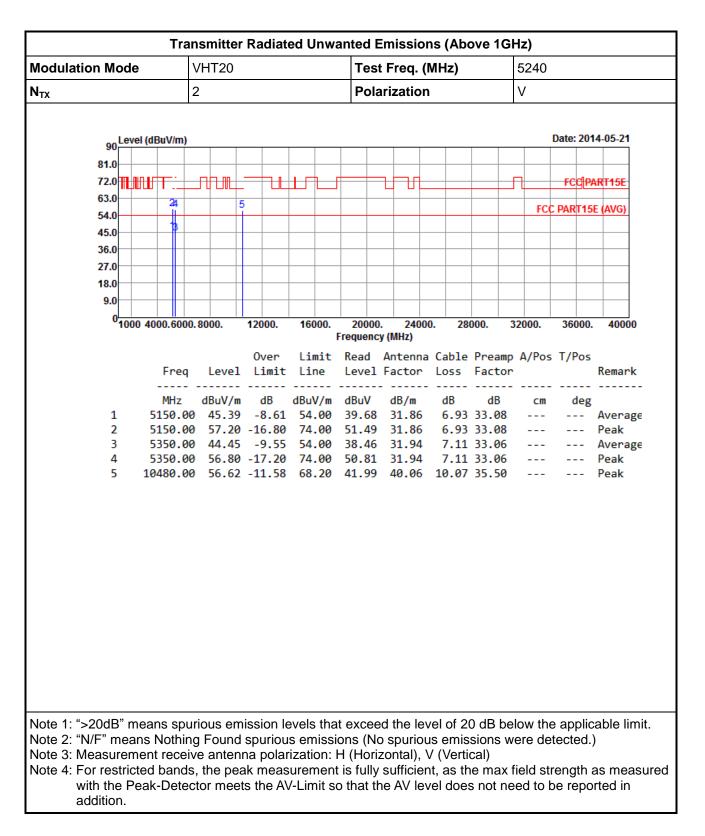
Modulation Mode		VHT20			Tes	Freq.	(MHz)		5180			
TX 90 Level (dBuV 81.0 72.0 63.0 54.0 45.0 36.0 27.0 18.0 9.0 0 1000 4000. Fri Mi 1 5100 2 5100 3 5150 4 5150		2			Pola	rizatio	'n		Н			
Level	(dBuV/m)									Date:	2014	-05-21
Image: constraint of the second se												
									_			
	4-									FC	PAN	(115E
	2	5							FC	C PAR	T15E	(AVG)
~ 1 000	4000.600	0.8000.	12000.				00. 28	000. :	32000.	360	00.	40000
			Over				a Cable	Preamn		= т/р	05	
	Frea	Level								5 1/1		Remark
				-					cm	d	eg	
-												_
Note 2: "N/F" mean Note 3: Measureme Note 4: For restricte with the Pea	s Nothir ent recei ed band	ng Found ive anteni s, the pea	spuriou na polar ik meas	s emiss ization: uremen	ions (No H (Hori t is fully	o spuric zontal), sufficie	ous emis V (Verti ent, as th	sions w cal) ie max	vere de field st	etecte	ed.) th as	s meası

3.5.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT20

Modulation M	ode	;	١	/HT20					Tes	t Fred	q. (N	ИHz)		5200		
N _{TX}	90 Level (dBu) 81.0 72.0 63.0 54.0 45.0 36.0 27.0 18.0 9.0 0 1000 4000. F M 1 5122 2 5122 3 5155 4 5155 5 1040 means Note 2: "N/F" means Note 3: Measurement restricted backspace of the second sec			2					Pola	arizat	ion			Н		
90	Lev	el (dBu\	//m)												Date: 201	4-05-21
81.0	$\left \right $										_					
72.0										1-1	л				FCC P/	RT15E
63.0			2		5											
54.0	\vdash				Ť						_			FCC	PART15	e (AVG)
45.0	\vdash		\square		_						_					
36.0											_			_		
27.0											_					
					-											
· · ·	100	0 4000.	6000.	8000.	12	000.	160)00.	20000 Frequenc		4000). 28	000. 3	32000.	36000.	40000
												C 1 1		A (D	T (D	
		г		Leve]		ver							Preamp Factor		T/Pos	Demente
		F	req	Level		1m10	LI	ne		гаст			Factor			Remark
		м	Hz	dBuV/n	,	dB	dBu	//m	dBuV				dB	cm	deg	
1				47.13				-					33.09		_	Averag
				58.59									33.09			
3		515	0.00	47.85	; -	6.15	54	.00	42.14	31.	86		33.08			Averag
4		515	0.00	61.01	-1	2.99	74	.00	55.30	31.	86	6.93	33.08			Peak
5		1040	0.00	56.70) -1	1.50	68	.20	42.20	39.	92	10.06	35.48			Peak
															••	
														ere de	tected.))
with the	нΡ	eak-L)	PIPC	INT MAG	t one	η Δι	v_i in	111 0/	1 TOOT H	10 /\\/	101/	AL 0000	· not no	and to k	vo rono	

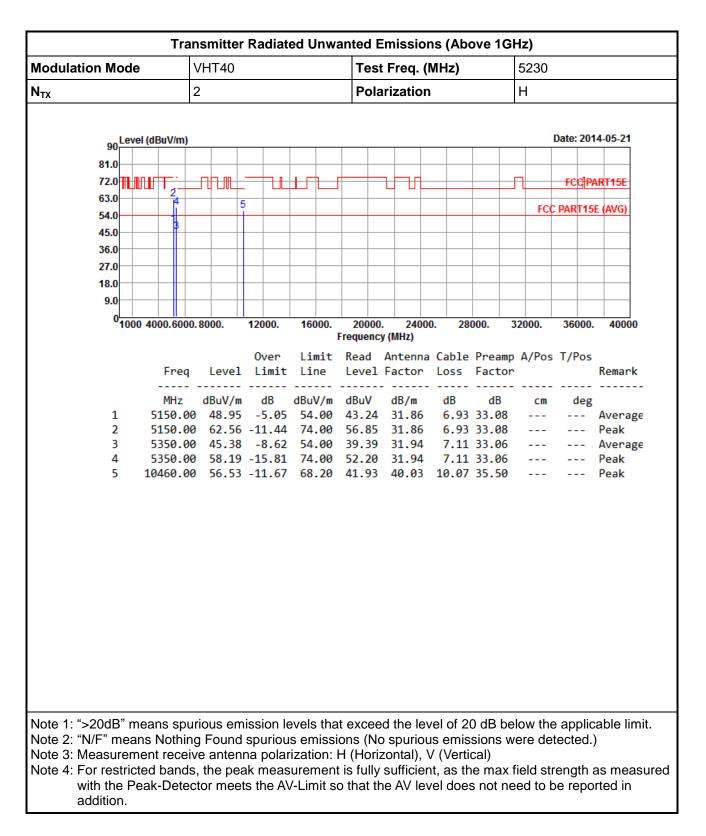


Modulation Mo	de	VHT20			Tes	t Freq.	(MHz)		5200		
Ντχ		2			Pola	arizatio	n		V		
-										Data: 204	4 05 24
90 <mark>-</mark>	evel (dBuV/m)									Date: 201	4-05-21
81.0											
72.0										FCCP	ART15E
63.0	2	5									-
54.0	+ + + +								FC	CPART15	E (AVG)
45.0						_			_		
36.0									_		
27.0											
18.0											
9.0											
°1	000 4000.600	0.8000.	12000.	1600	0. 20000 Frequenc		00. 28	000. 3	32000.	36000.	40000
								-			
	-		0ver		it Read					T/Pos	
	Free	Level	Limit	Line	e Level	Factor	Loss	Factor			Remark
	MHz	dBuV/m	dB	dBuV	/m dBuV	dB/m	dB	dB	cm	deg	
1					0 42.78	-		33.09		-	Average
2					0 52.84			33.09			
3		0 49.74			00 44.03			33.08			Averag
4	5150.0	66.33						33.08			Peak
5	10400.0	0 55.86	-12.34	68.2	20 41.36	39.92	2 10.06	35.48			Peak
Note 1: ">20dB"	means sp	urious em	ission le	evels t	hat excee	d the le	evel of 2	0 dB be	low the	e applic	able lim
Note 2: "N/F" m											
Note 3: Measure											,
Note 4: For rest									field st	renath a	as meas
	Peak-Dete										
										r •	

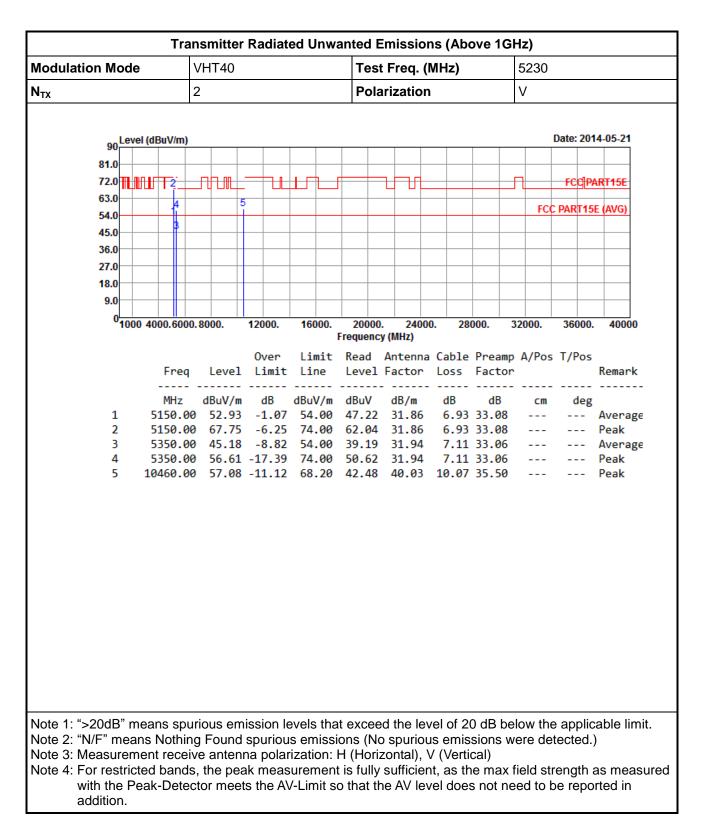


Modulation Mod	le	VHT40			Tes	Freq.	(MHz)		5190	5190				
Ν _{τχ}		2			Pola	rizatio	n		Н					
ام	vel (dBuV/m)									Date:	2014	-05-21		
81.0														
									FL	FC	PAR	T15E		
63.0	4	5	i						FC	C PAR	[15E ((AVG)		
54.0	3													
45.0														
36.0 27.0														
18.0														
9.0														
°10	00 4000.600	0.8000.	12000.	16000.	20000 Frequenc		00. 28	000. 3	32000.	360	00.	40000		
			0ver				a Cable	Preamn		: Т/Р	05			
	Freq	Level	Limit				Loss			, ,,,		lemark		
	MHz	dBuV/m	dB	dBuV/m		dB/m	dB	dB	cm		eg .			
1		0 49.84 0 62.95				31.86 31.86		33.08				lverage Peak		
2		0 62.95 0 45.03						33.08 33.06				verage		
4		0 56.71						33.06				Peak		
5	10380.0	0 55.34	-12.86	68.20	40.88	39.88		35.48			- P	Peak		
Note 1: ">20dB" n Note 2: "N/F" mea Note 3: Measurer Note 4: For restri with the F addition.	ans Nothii ment rece	ng Found ive anteni s, the pea	spuriou na polar ak meas	s emiss ization: suremen	ions (Ne H (Hori t is fully	o spurio zontal), sufficie	ous emis V (Verti ent, as th	sions w cal) ie max	vere de field st	rengt	ed.) th as	s measi		

3.5.9 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT40



Modulation Mode	VH	IT40				Test	Freq.	(MHz)		5190		
N _{TX}	2					Pola	rizatio	on		V		
											D _4 = = =	
90 Level (di	BuV/m)	1									Date: 201	4-05-21
81.0												
72.0			<u></u>	┨┍╡) F		┶╴╌┎				FCC	RT15E
63.0	ĥ.			_								
54.0	1	5								FCC	PART15	e (AVG)
45.0	3									_		
36.0										_		
27.0												
18.0												
9.0												
⁰ 1000 40	00.6000.80	000.	12000.	160		20000		000. 28	000. 3	32000.	36000.	40000
			_			requenc			_			
	-		0ver					na Cable			T/Pos	
	Freq	Level	Limit	Lin	ie	Level	Factor	r Loss	Factor			Remark
	MHz d	IBuV/m	dB	dBul	//m	dBuV	dB/m	dB	dB	 ст	deg	
1 5	150.00								33.08		-	Average
	150.00		-8.13						33.08			Peak
	350.00		-8.80			39.21			33.06			Average
4 5	350.00					50.87	31.94	4 7.11				Peak
5 10	380.00	55.40	-12.80	68.	20	40.94	39.88	3 10.06	35.48			Peak
Note 1: ">20dB" mea Note 2: "N/F" means	Nothing F	Found s	spuriou	s em	issio	ons (No	o spurio	ous emis	sions w			
Note 3: Measurement										فملطعه	oneth	
Note 4: For restricted		•									•	
with the Peak	Dotooto	r mooto	+ h - h	/					n n n + n n	NOA + 2 - 5		



Modulation Mo	de	VHT80			Test	Freq. (MHz)		5210			
N _{TX}		2			Pola	rizatior	1		Н			
	ovol (dBu\/m)									Date: 2	2014-05-2	1
90 ^L	_evel (dBuV/m)									Dutter	.014-03-1	1
81.0												-
	╔ <u>╢╢</u> ╢╢╢╢					ΥL			Π	FCC	PART15	
63.0-	4		5						FC		15E (AVG	1
54.0												4
45.0												-
36.0												-
27.0												
18.0												
9.0												
0 ^L 1	1000 4000.600	0.8000.	12000.	16000.	20000 Frequenc		0. 28	000.	32000.	3600	0. 400	000
			0ver			Antenna	Cable	Preamo	A/Pos	T/Pc	5	
	Free	Level	Limit			Factor				, ,,,,	Rema	rk
1	MHz	dBuV/m 0 49.26		dBuV/m 54.00		dB/m 31.86	dB	dB 33.08	Cm	de	-	2.00
2		0 49.20			56.87			33.08				<u> </u>
3		0 44.30			38.31			33.06				
4	5350.0	0 55.45	-18.55	74.00	49.46	31.94	7.11	33.06			Peak	_
5	10420.0	0 55.73	-12.47	68.20	41.19	39.96	10.07	35.49			- Peak	
Note 1: ">20dB' Note 2: "N/F" m Note 3: Measur Note 4: For rest with the addition	eans Nothi ement rece ricted band Peak-Dete	ng Found ive anten ls, the pea	spuriou na polar ak meas	is emissi rization: surement	ons (No H (Horiz t is fully	o spuriou zontal), ` sufficier	us emis V (Verti nt, as th	sions w cal) ne max	rere de field st	rengtl	d.) h as me	easu

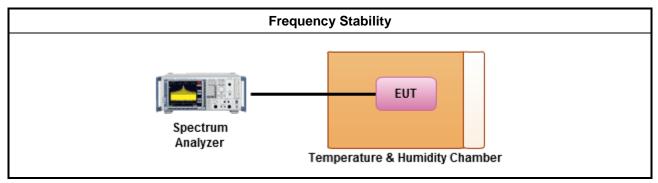
3.5.10 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT80

Modulation Mo	ode	VHT80				Tes	t Freq.	(M	Hz)		5210		
N _{TX}		2				Pola	arizatio	on			V		
90	Level (dBuV/m)							1				Date: 201	4-05-21
81.0													
72.0							┓┢╼┰╒				F	FCC P/	RT15E
63.0	2												
54.0	4	5)								FCC	PART15	e (AVG)
45.0	3												
36.0													
27.0								ļ					
18.0													
9.0													
0;	1000 4000.600	0.8000.	12000.	160		20000		000.	28	000. 3	32000.	36000.	40000
							y (MHz)						
	_		0ver							Preamp		T/Pos	_
	Freq	Level	Limit	Lin	ie L			r l	Loss	Factor			Remark
	MHz	dBuV/m	dB	dBuM	//m d	BUV			dB	dB		dog	
1		0 52.53								33.08	Cm	deg	Average
2		0 61.33								33.08			
3		0 45.08					31.94			33.06			Average
4		0 55.35											Peak
5		0 55.58											Peak
Note 1: ">20dB	" means sp	urious em	ission le	evels	that e	xcer	d the l	eve	l of 20) dB be	low the	e applic	able lim
Note 2: "N/F" m													
Note 3: Measur											5.5 40		,
Note 4: For rest											field st	renath a	as meas
	Peak-Dete												
).						-	-					

3.6 Frequency Stability

3.6.1 Frequency Stability Limit

	Frequency Stability Limit
UNI	II Devices
	In-band emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.
LE-	LAN Devices
\square	N/A
IEE	E Std. 802.11n-2009
	The transmitter center frequency tolerance shall be \pm 20 ppm maximum for the 5 GHz band and \pm 25 ppm maximum for the 2.4 GHz band.


3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.6.3 Test Procedures

	Test Method									
\square	Ref	er as ANSI C63.10, clause 6.8 for frequency stability tests								
	\boxtimes	Frequency stability with respect to ambient temperature								
	\boxtimes	Frequency stability when varying supply voltage								
\square	For	conducted measurement.								
	\boxtimes	For conducted measurements on devices with multiple transmit chains: Measurements need only to be performed on one of the active transmit chains (antenna outputs)								
		radiated measurement. The equipment to be measured and the test antenna shall be oriented to in the maximum emitted power level.								

3.6.4 Test Setup

3.6.5 Test Result of Frequency Stability

		Frequency Stability Result	
Мо	de	Frequency S	Stability (ppm)
Condition	Freq. (MHz)	Test Frequency (MHz)	Frequency Stability (ppm)
T _{20°C} Vmax	5200	5200.00390	0.7500
T _{20°C} Vmin	5200	5200.02405	4.6250
T _{50°C} Vnom	5200	5200.02520	4.8462
T _{40°C} Vnom	5200	5199.98451	-2.9788
T _{30°C} Vnom	5200	5200.00555	1.0673
T _{20°C} Vnom	5200	5200.00711	1.3673
T _{10°C} Vnom	5200	5200.00418	0.8038
$T_{0^{\circ}C}Vnom$	5200	5200.00596	1.1462
T _{-10°C} Vnom	5200	5199.99767	-0.4481
T _{-20°C} Vnom	5200	5199.99209	-1.5212
T _{-30°C} Vnom	5200	5199.99724	-0.5308
Limit (ppm)		20
Res	ult	Con	nplied

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9kHz ~ 2.75GHz	Mar. 26, 2014	Conduction (CO04-HY)
LISN	SCHWARZBECK MESS-ELEKTRO NIK	NSLK 8127	8127-477	9kHz ~ 30MHz	Jan. 21, 2014	Conduction (CO04-HY)
LISN (Support Unit)	EMCO	3810/2NM	9703-1839	9kHz ~ 30MHz	Apr. 21, 2014	Conduction (CO04-HY)
RF Cable-CON	HUBER+SUHNER	RG213/U	07611832010001	9kHz ~ 30MHz	Oct. 30, 2013	Conduction (CO04-HY)
50 ohm terminal	N/A	N/A	CON-01-04	N/A	Feb. 25, 2014	Conduction (CO04-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSV40	101499	9Kz – 40GHz	Feb. 08, 2014	Radiation (03CH08-HY)
Receiver	R&S	ESR3	101657	9KHz – 3GHz	Jan. 18, 2014	Radiation (03CH08-HY)
Amplifier	Burgeon	BPA-530	100218	30MHz ~ 1000MHz	Dec. 09, 2013	Radiation (03CH08-HY)
Amplifier	Agilent	8449B	3008A02665	1GHz – 26.5 GHz	Sep. 04, 2013	Radiation (03CH08-HY)
Horn Antenna	ETS-LINDGREN	3117	66584	1GHz~18GHz	Aug. 07, 2013	Radiation (03CH08-HY)
SHF-EHF Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA 9170517	15GHz~40GHz	Dec. 27, 2013	Radiation (03CH08-HY)
Bilog Antenna	Teseq GmbH	CBL6112D	35379	30 MHz - 1 GHz	Oct. 10, 2013	Radiation (03CH08-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Amplifier	EM	EM18G40G	060572	26.5GHz ~ 40GHz	Jun. 20, 2013	Radiation (03CH08-HY)
Loop Antenna	R&S	HFH2-Z2	860004/0001	9 kHz - 30 MHz	Jul. 03, 2012	Radiation (03CH08-HY)

Note: Calibration Interval of instruments listed above is two year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSV 40	101063	9KHz~40GHz	Feb. 17, 2014	Conducted (TH01-HY)
Temp. and Humidity Chamber	Giant Force	GTH-225-20-SP- SD	MAA1112-007	-20 ~ 100℃	Nov. 21, 2013	Conducted (TH01-HY)
Signal Generator	R&S	SMB100A	175727	10MHz ~ 40GHz	Jan. 07, 2014	Conducted (TH01-HY)
Power Sensor	Anritsu	MA2411B	1207366	300MHz ~ 40GHz	Oct. 24, 2013	Conducted (TH01-HY)
Power Meter	Anritsu	ML2495A	1241002	300MHz ~ 40GHz	Oct. 24, 2013	Conducted (TH01-HY)
AC Power Source	G.W	APS-9102	EL920581	AC 0V ~ 300V	Jul. 16, 2013	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is one year.