FCC Radio Test Report FCC ID: KA2IR615T3

This report concerns (check one): \boxtimes Original Grant \square Class I Change \square Class II Change

Project No.	$:$	1707C020
Equipment	$:$	Wireless N300 Router
Model Name	$:$ DIR-615	
Applicant	$:$	D Link Corporation
Address	$:$	17595 Mt. Herrmann Fountain Valley California
	United States 92708	

Date of Receipt : Jul. 04, 2017
Date of Test : Jul. 04, 2017 ~ Jul. 18, 2017
Issued Date : Jul. 19, 2017
Tested by : BTL Inc.

Testing Engineer

Technical Manager

Authorized Signatory

BTLINC.

No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China.
TEL: +86-769-8318-3000 FAX: +86-769-8319-6000

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).
BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. BTL shall have no liability for any declarations, inferences or generalizations drawn by the client or others from BTL issued reports.
BTL's report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and BTL-self, extracts from the test report shall not be reproduced except in full with BTL's authorized written approval.
BTL's laboratory quality assurance procedures are in compliance with the ISO Guide 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Table of Contents

Page

1. CERTIFICATION 6
2. SUMMARY OF TEST RESULTS 7
2.1 TEST FACILITY 8
2.2 MEASUREMENT UNCERTAINTY 8
3. GENERAL INFORMATION 9
3.1 GENERAL DESCRIPTION OF EUT 9
3.2 DESCRIPTION OF TEST MODES 10
3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING 12
3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 13
3.5 DESCRIPTION OF SUPPORT UNITS 13
4. EMC EMISSION TEST 14
4.1 CONDUCTED EMISSION MEASUREMENT 14
4.1.1 POWER LINE CONDUCTED EMISSION LIMITS 14
4.1.2 TEST PROCEDURE 14
4.1.3 DEVIATION FROM TEST STANDARD 14
4.1.4 TEST SETUP 15
4.1.5 EUT OPERATING CONDITIONS 15
4.1.6 EUT TEST CONDITIONS 15
4.1.7 TEST RESULTS 15
4.2 RADIATED EMISSION MEASUREMENT 16
4.2.1 RADIATED EMISSION LIMITS 16
4.2.2 TEST PROCEDURE 17
4.2.3 DEVIATION FROM TEST STANDARD 17
4.2.4 TEST SETUP 18
4.2.5 EUT OPERATING CONDITIONS 19
4.2.6 EUT TEST CONDITIONS 19
4.2.7 TEST RESULTS (9KHZ TO 30MHZ) 19
4.2.8 TEST RESULTS (30MHZ TO 1000 MHZ) 19
4.2.9 TEST RESULTS (ABOVE 1000 MHZ) 19
5. BANDWIDTH TEST 20
5.1 APPLIED PROCEDURES 20
5.1.1 TEST PROCEDURE 20
5.1.2 DEVIATION FROM STANDARD 20
5.1.3 TEST SETUP 20
5.1.4 EUT OPERATION CONDITIONS 20
5.1.5 EUT TEST CONDITIONS 20
5.1.6 TEST RESULTS 20
6 . MAXIMUM PEAK CONDUCTED OUTPUT POWER TEST 21

> Table of Contents Page
6.1 APPLIED PROCEDURES / LIMIT 21
6.1.1 TEST PROCEDURE 21
6.1.2 DEVIATION FROM STANDARD 21
6.1.3 TEST SETUP 21
6.1.4 EUT OPERATION CONDITIONS 21
6.1.5 EUT TEST CONDITIONS 21
6.1.6 TEST RESULTS 21
7. ANTENNA CONDUCTED SPURIOUS EMISSION 22
7.1 APPLIED PROCEDURES / LIMIT 22
7.1.1 TEST PROCEDURE 22
7.1.2 DEVIATION FROM STANDARD 22
7.1.3 TEST SETUP 22
7.1.4 EUT OPERATION CONDITIONS 22
7.1.5 EUT TEST CONDITIONS 22
7.1.6 TEST RESULTS 22
8. POWER SPECTRAL DENSITY TEST 23
8.1 APPLIED PROCEDURES / LIMIT 23
8.1.1 TEST PROCEDURE 23
8.1.2 DEVIATION FROM STANDARD 23
8.1.3 TEST SETUP 23
8.1.4 EUT OPERATION CONDITIONS 23
8.1.5 EUT TEST CONDITIONS 23
8.1.6 TEST RESULTS 23
9. MEASUREMENT INSTRUMENTS LIST 24
10. EUT TEST PHOTO 26

ATTACHMENT A - CONDUCTED EMISSION 30
ATTACHMENT B - RADIATED EMISSION (9KHZ TO 30MHZ) 33
ATTACHMENT C - RADIATED EMISSION (30MHZ TO 1000MHZ) 38
ATTACHMENT D - RADIATED EMISSION (ABOVE 1000MHZ) 45
ATTACHMENT E - BANDWIDTH 94
ATTACHMENT F - MAXIMUM PEAK CONDUCTED OUTPUT POWER 103
ATTACHMENT G - ANTENNA CONDUCTED SPURIOUS EMISSION 108
ATTACHMENT H - POWER SPECTRAL DENSITY 157

REPORT ISSUED HISTORY

Issued No.	Description	Issued Date
BTL-FCCP-1-1707C020	Original Issue.	Jul. 19, 2017

1．CERTIFICATION

Equipment $:$ Wireless N300 Router	
Brand Name $:$	D－Link
Model Name $:$	DIR－615
Applicant $:$	D Link Corporation
Manufacturer：	D Link Corporation
Address $:$	17595 Mt．Herrmann Fountain Valley California United States 92708
Date of Test	Jul．05，2017～Jul．17， 2017
Test Sample $:$	Engineering Sample
Standard（s）$:$ FCC Part15，Subpart C：（15．247）／ANSI C63．10－2013	

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc．
The test data，data evaluation，and equipment configuration contained in our test report（Ref No． BTL－FCCP－1－1707C020）were obtained utilizing the test procedures，test instruments，test sites that has been accredited by the Authority of TAF according to the ISO－17025 quality assessment standard and technical standard（s）．

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

Applied Standard(s): FCC Part15 (15.247), Subpart C			
Standard(s) Section	Test Item	Judgment	Remark
15.207	Conducted Emission	PASS	
$15.247(\mathrm{~d})$	Antenna conducted Spurious Emission	PASS	
$15.247(\mathrm{a})(2)$	6dB Bandwidth	PASS	
$15.247(\mathrm{~b})(3)$	Peak Output Power	PASS	
$15.247(\mathrm{e})$	Power Spectral Density	PASS	
15.203	Transmitter Radiated Emissions	PASS	
$15.247(\mathrm{~d}) /$ $15.205 /$ 15.209		PASS	

NOTE:

(1)" N/A" denotes test is not applicable in this test report.

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No.3,Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China.
BTL's test firm number for FCC: 319330

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 $\mathrm{U}_{\text {cispr }}$ requirement.

The reported uncertainty of measurement $y \pm U$, where expanded uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $\mathrm{k}=2$, providing a level of confidence of approximately 95%.
A. Conducted Measurement:

Test Site	Method	Measurement Frequency Range	$\mathrm{U},(\mathrm{dB})$
DG-C02	CISPR	$150 \mathrm{KHz} \sim 30 \mathrm{MHz}$	2.32

B. Radiated Measurement:

Test Site	Method	Measurement Frequency Range	Ant. H/V	U, (dB)
DG-CB03	CISPR	9 KHz 30 MHz	V	3.79
		9 KHz 30 MHz	H	3.57
		$30 \mathrm{MHz} \sim 200 \mathrm{MHz}$	V	3.82
		$30 \mathrm{MHz} \sim 200 \mathrm{MHz}$	H	3.78
		$200 \mathrm{MHz} \sim 1,000 \mathrm{MHz}$	V	4.10
		$200 \mathrm{MHz} \sim 1,000 \mathrm{MHz}$	H	4.06
		$1 \mathrm{GHz} \sim 18 \mathrm{GHz}$	V	3.12
		$1 \mathrm{GHz} \sim 18 \mathrm{GHz}$	H	3.68
		$18 \mathrm{GHz} \sim 40 \mathrm{GHz}$	V	4.15
		$18 \mathrm{GHz}-40 \mathrm{GHz}$	H	4.14

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	Wireless N300 Router	
Brand Name	D-Link	
Model Name	DIR-615	
Model Difference	N/A	
Product Description	Operation Frequency	2412~2462 MHz
	Modulation Technology	802.11b:DSSS 802.11g:OFDM 802.11n:OFDM
	Bit Rate of Transmitter	$\begin{aligned} & \text { 802.11b: 11/5.5/2/1 Mbps } \\ & \text { 802.11g: } \\ & 54 / 48 / 36 / 24 / 18 / 12 / 9 / 6 \mathrm{Mbps} \\ & 802.11 \mathrm{n} \text { up to } 300 \mathrm{Mbps} \end{aligned}$
	Output Power (Max.)	$\begin{aligned} & \text { 802.11b: } 21.40 \mathrm{dBm} \\ & 802.11 \mathrm{~g}: 29.39 \mathrm{dBm} \\ & 802.11 \mathrm{n}(20 \mathrm{MHz}): 29.50 \mathrm{dBm} \\ & 802.11 \mathrm{n}(40 \mathrm{MHz}): 28.22 \mathrm{dBm} \end{aligned}$
Power Source	DC voltage supplied from AC/DC adapter. Manufacturer: Shenzhen Gongjin Electronlcs Co.,Ltd Model: S06A12-120A050-P4	
Power Rating	I/P: 100-240V ~ 50/60Hz max 0.3A O/P: 12Vdc 0.5A	

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
2. Channel List:

$\mathrm{CHO1}$ CH11 for 802.11b, 802.11g, 802.11n(20MHz)							
CH03-CH09 for 802.11n(40MHz)							

3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	Wu Tong	K802-240036-A	Dipole	N/A	5
2	Wu Tong	WTTX140080B	Dipole	N/A	5

Note:
(1) The EUT incorporates a MIMO function. Physically, the EUT provides two completed transmitters and receivers (2T2R).

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	TX B MODE CHANNEL 01/06/11
Mode 2	TX G MODE CHANNEL 01/06/11
Mode 3	TX N-20MHZ MODE CHANNEL 01/06/11
Mode 4	TX N-40MHZ MODE CHANNEL 03/06/09
Mode 5	TX MODE

The EUT system operated these modes were found to be the worst case during the pre-scanning test as following:

For Conducted Test

Final Test Mode	Description
Mode 5	TX MODE

For Radiated Test	
Final Test Mode	Description
Mode 1	TX B MODE CHANNEL 01/06/11
Mode 2	TX G MODE CHANNEL 01/06/11
Mode 3	TX N-20MHZ MODE CHANNEL 01/06/11
Mode 4	TX N-40MHZ MODE CHANNEL 03/06/09

For Band Edge Test

Final Test Mode	Description
Mode 1	TX B MODE CHANNEL 01/06/11
Mode 2	TX G MODE CHANNEL 01/06/11
Mode 3	TX N-20MHZ MODE CHANNEL 01/06/11
Mode 4	TX N-40MHZ MODE CHANNEL 03/06/09

6dB Spectrum Bandwidth

Final Test Mode	Description
Mode 1	TX B MODE CHANNEL 01/06/11
Mode 2	TX G MODE CHANNEL 01/06/11
Mode 3	TX N-20MHZ MODE CHANNEL 01/06/11
Mode 4	TX N-4OMHZ MODE CHANNEL 03/06/09

Maximum Conducted Output Power	
Final Test Mode	Description
Mode 1	TX B MODE CHANNEL 01/06/11
Mode 2	TX G MODE CHANNEL 01/06/11
Mode 3	TX N-20MHZ MODE CHANNEL 01/06/11
Mode 4	TX N-40MHZ MODE CHANNEL 03/06/09

Power Spectral Density	
Final Test Mode	Description
Mode 1	TX B MODE CHANNEL 01/06/11
Mode 2	TX G MODE CHANNEL 01/06/11
Mode 3	TX N-20MHZ MODE CHANNEL 01/06/11
Mode 4	TX N-40MHZ MODE CHANNEL 03/06/09

Note:

(1) The measurements are performed at the high, middle, low available channels.
(2) 802.11 b mode: DBPSK (1Mbps)
802.11g mode: OFDM (6Mbps)
802.11n HT20 mode : BPSK (13Mbps)
802.11n HT40 mode : BPSK (27Mbps)

For radiated emission tests, the highest output powers were set for final test.
(3) For radiated below 1G test, the 802.11 b is found to be the worst case and recorded.
(4) The EUT was programmed to be in continuously transmitting mode and the transmit duty cycle is not less than 98%.

3．3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing，channel \＆power controlling software provided by the customer was used to control the operating channel as well as the output power level．The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN

Test software version	N／A		
Frequency (MHz)	2412	2437	2462
802.11 b	33	36	36
802.11 g	53	59	51
$802.11 \mathrm{n}(20 \mathrm{MHz})$	50	59	46
Frequency	2422	2437	2452
$802.11 \mathrm{n}(40 \mathrm{MHz})$	47	54	50

3．4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

3．5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units．The following support units or accessories were used to form a representative test configuration during the tests．

Item	Equipment	Mfr／Brand	Model／Type No．	FCC ID	Series No．
A	Notebook	Lenovo	INSPIRON 1420	DOC	JX193A01SDC2

Item	Shielded Type	Ferrite Core	Length	Note
1	NO	NO	1.5 m	AC Cable
2	NO	NO	10 m	RJ－45 Cable

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 POWER LINE CONDUCTED EMISSION LIMITS (Frequency Range 150KHz-30MHz)

Frequency of Emission (MHz)	Conducted Limit (dB $\mu \mathrm{V})$	
	Quasi-peak	Average \square
$0.15-0.50$	66 to 56^{\star}	56 to 46*
$0.50-5.0$	56	46
$5.0-30.0$	60	50

Note:
(1) The limit of " * " decreases with the logarithm of the frequency
(2) The test result calculated as following:

Measurement Value $=$ Reading Level + Correct Factor
Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use)
Margin Level $=$ Measurement Value - Limit Value
The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

4.1.2 TEST PROCEDURE

a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide $50 \mathrm{Ohm} / 50 \mathrm{uH}$ of coupling impedance for the measuring instrument.
b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m .
d. LISN at least 80 cm from nearest part of EUT chassis.
e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

No deviation

4．1．4 TEST SETUP

Note：1．Support units were connected to second LISN．
2．Both of LISNs（AMN）are 80 cm from EUT and at least 80 from other units and other metal planes

4．1．5 EUT OPERATING CONDITIONS

The EUT was placed on the test table and programmed in normal function．

4．1．6 EUT TEST CONDITIONS

Temperature： $25^{\circ} \mathrm{C} \quad$ Relative Humidity：55\％Test Voltage：AC $120 \mathrm{~V} / 60 \mathrm{~Hz}$

4．1．7 TEST RESULTS

Please refer to the Attachment A．

4．2 RADIATED EMISSION MEASUREMENT

4．2．1 RADIATED EMISSION LIMITS

In case the emission fall within the restricted band specified on 15．205（a），then the 15．209（a）limit in the table below has to be followed．

LIMITS OF RADIATED EMISSION MEASUREMENT（9KHz－1000MHz）

Frequency (MHz)	Field Strength $($ microvolts／meter）	Measurement Distance （meters）
$0.009 \sim 0.490$	$2400 / \mathrm{F}(\mathrm{KHz})$	300
$0.490 \sim 1.705$	$24000 / \mathrm{F}(\mathrm{KHz})$	30
$1.705 \sim 30.0$	30	30
$30 \sim 88$	100	3
$88 \sim 216$	150	3
$216 \sim 960$	200	3
$960 \sim 1000$	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT（Above 1000MHz）

Frequency (MHz)	（dBuV／m）（at 3 meters）	
	PEAK	AVERAGE
Above 1000	74	54

Notes：
（1）The limit for radiated test was performed according to FCC PART 15C．
（2）The tighter limit applies at the band edges．
（3）Emission level（dBuV／m）＝20log Emission level（uV／m）．
（4）The test result calculated as following： Measurement Value＝Reading Level＋Correct Factor Correct Factor＝Antenna Factor＋Cable Loss－Amplifier Gain（if use） Margin Level $=$ Measurement Value－Limit Value

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10 th carrier harmonic
RBW / VBW	$1 \mathrm{MHz} / 3 \mathrm{MHz}$ for Peak,
(Emission in restricted band)	$1 \mathrm{MHz} / 1 / \mathrm{T}$ for Average

Receiver Parameter	Setting
Attenuation	Auto
Start \sim Stop Frequency	$9 \mathrm{KHz} \sim 90 \mathrm{KHz}$ for PK/AVG detector
Start $~$ Stop Frequency	$90 \mathrm{KHz} \sim 110 \mathrm{KHz}$ for QP detector
Start \sim Stop Frequency	$110 \mathrm{KHz} \sim 490 \mathrm{KHz}$ for PK/AVG detector
Start \sim Stop Frequency	$490 \mathrm{KHz} \sim 30 \mathrm{MHz}$ for QP detector
Start $~$ Stop Frequency	$30 \mathrm{MHz} \sim 1000 \mathrm{MHz}$ for QP detector

4.2.2 TEST PROCEDURE

a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1 GHz)
c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m ; the height of the test antenna shall vary between 1 m to 4 m . Both horizontal and vertical polarizations of the antenna are set to make the measurement.
d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz .
f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak \& AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
i. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.2.3 DEVIATION FROM TEST STANDARD

No deviation

4.2.4 TEST SETUP

(A) Radiated Emission Test Set-Up Frequency Below 1 GHz

(B) Radiated Emission Test Set-Up Frequency Above 1 GHz

Ground Plane
(C) For Radiated Emissions Below 30MHz

4.2.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.2.6 EUT TEST CONDITIONS

Temperature: $25^{\circ} \mathrm{C}$ Relative Humidity: 55\% Test Voltage: AC $120 \mathrm{~V} / 60 \mathrm{~Hz}$

4.2.7 TEST RESULTS (9KHZ TO 30MHZ)

Please refer to the Attachment B

Remark:
(1) The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.
(2) Distance extrapolation factor $=40$ log (specific distance / test distance) (dB).
(3) Limit line $=$ specific limits (dBuV) + distance extrapolation factor.

4.2.8 TEST RESULTS (30MHZ TO 1000 MHZ)

Please refer to the Attachment C.

4.2.9 TEST RESULTS (ABOVE 1000 MHZ)

Please refer to the Attachment D.
Remark:
(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5．BANDWIDTH TEST

5．1 APPLIED PROCEDURES

FCC Part15（15．247），Subpart C			
Section	Test Item	Frequency Range (MHz)	Result
$15.247(\mathrm{a})(2)$	Bandwidth	$2400-2483.5$	PASS

5．1．1 TEST PROCEDURE

a．The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below，
b．Spectrum Setting：RBW＝100KHz，VBW＝300KHz，Sweep time $=2.5 \mathrm{~ms}$ ．

5．1．2 DEVIATION FROM STANDARD

No deviation．

5．1．3 TEST SETUP

5．1．4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode．

5．1．5 EUT TEST CONDITIONS

Temperature： $25^{\circ} \mathrm{C}$ Relative Humidity： 55% Test Voltage：AC $120 \mathrm{~V} / 60 \mathrm{~Hz}$

5．1．6 TEST RESULTS

Please refer to the Attachment E ．
6. MAXIMUM PEAK CONDUCTED OUTPUT POWER TEST
6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
$15.247(\mathrm{~b})(3)$	Maximum Output Power	1 Watt or 30 dBm	$2400-2483.5$	PASS	

6.1.1 TEST PROCEDURE

a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below,
b. The maximum peak conducted output power was performed in accordance with method 9.1.2 of FCC KDB 558074 D01 DTS Meas Guidance and FCC KDB 662911 D01 Multiple Transmitter Output.

6.1.2 DEVIATION FROM STANDARD

No deviation.

6.1.3 TEST SETUP

6.1.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.1.5 EUT TEST CONDITIONS

Temperature: $25^{\circ} \mathrm{C}$ Relative Humidity: 55% Test Voltage: AC $120 \mathrm{~V} / 60 \mathrm{~Hz}$

6.1.6 TEST RESULTS

Please refer to the Attachment F.

7. ANTENNA CONDUCTED SPURIOUS EMISSION

7.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

7.1.1 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
b. Spectrum Setting: RBW=100KHz, VBW=300KHz, Sweep time $=$ Auto.
c. Offset=antenna gain+cable loss

7.1.2 DEVIATION FROM STANDARD

No deviation.

7.1.3 TEST SETUP

7.1.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.1.5 EUT TEST CONDITIONS

Temperature: $25^{\circ} \mathrm{C}$ Relative Humidity: 55% Test Voltage: AC $120 \mathrm{~V} / 60 \mathrm{~Hz}$

7.1.6 TEST RESULTS

Please refer to the Attachment G.

8. POWER SPECTRAL DENSITY TEST

8.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
$15.247(e)$	Power Spectral Density	8 dBm (in any 3KHz)	$2400-2483.5$	PASS	

8.1.1 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
b. Spectrum Setting: RBW=3KHz, VBW=10KHz, Sweep time = Auto.

8.1.2 DEVIATION FROM STANDARD

No deviation.

8.1.3 TEST SETUP

8.1.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.1.5 EUT TEST CONDITIONS

Temperature: $25^{\circ} \mathrm{C}$ Relative Humidity: 55% Test Voltage: AC $120 \mathrm{~V} / 60 \mathrm{~Hz}$

8.1.6 TEST RESULTS

Please refer to the Attachment H .
9. MEASUREMENT INSTRUMENTS LIST

Conducted Emission Measurement						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	50Ω Terminator	SHX	TF2-3G-A	8122901	Mar. 26, 2018	
2	TWO-LINE V-NETWORK	R\&S	ENV216	100526	Mar. 26, 2018	
3	EMI Test Receiver	R\&S	ESR3	101862	Sep. 04, 2017	
4	Artificial-Mains Network	SCHWARZBECK	NSLK 8127	8127685	Sep. 04, 2017	
5	Cable	N/A	RG400 12m	N/A	Mar. 09, 2018	
6	Measurement Software	Farad	EZ-EMC Ver.NB-03A1 -01	N/A	N/A	

Radiated Emission Measurement						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Antenna	Schwarbeck	VULB9160	9160-3232	Mar. 26, 2018	
2	Amplifier	HP	8447D	2944A09673	Oct. 20, 2017	
3	Receiver	Agilent	N9038A	$\begin{array}{c}\text { MY5213003 } \\ 9\end{array}$	Sep. 04, 2017	
4	Cable	emci	$\begin{array}{c}\text { LMR-400(30MH } \\ \text { z-1GHz)(8m+5m } \\ \text { (}\end{array}$	N/A	Jun. 26, 2018	
5	Controller	CT	SC100	N/A	N/A	
6	Controller	MF	MF-7802	MF78020841	6	

6dB Bandwidth Measurement						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Spectrum Analyzer	R\&S	FSP40	100185	Sep. 04, 2017	

Peak Output Power Measurement						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Power Meter	ANRITSU	ML2495A	1128009	Mar. 26, 2018	
2	Pulse Power Sensor	ANRITSU	MA 2411B	1027500	Mar. 26, 2018	

Antenna Conducted Spurious Emission Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R\&S	FSP40	100185	Sep. 04, 2017

Power Spectral Density Measurement						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Spectrum Analyzer	R\&S	FSP40	100185	Sep. 04, 2017	

Remark: "N/A" denotes no model name, serial no. or calibration specified.
All calibration period of equipment list is one year.
10. EUT TEST PHOTO

Conducted Measurement Photos

3ㄴㄴ

Radiated Measurement Photos
9 KHz to 30 MHz

3ㄴㄴ

Radiated Measurement Photos

30 MHz to 1000 MHz

3డ̄L

Radiated Measurement Photos

ATTACHMENT A - CONDUCTED EMISSION

Test Mode: \quad TX MODE

Line

No.	Freq.	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
$1 *$	0.3840	39.37	9.79	49.16	58.19	-9.03	Peak	
2	0.3840	26.60	9.79	36.39	48.19	-11.80	AVG	
3	0.8024	34.63	9.82	44.45	56.00	-11.55	Peak	
4	0.8024	14.90	9.82	24.72	46.00	-21.28	AVG	
5	1.5494	31.79	9.91	41.70	56.00	-14.30	Peak	
6	2.1120	30.42	9.93	40.35	56.00	-15.65	Peak	
7	3.0075	31.05	10.00	41.05	56.00	-14.95	Peak	
8	18.6000	26.73	10.64	37.37	60.00	-22.63	Peak	

Test Mode: TX MODE

Neutral

80 dBuv

No.	Freq.	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
$1 *$	0.3750	39.59	9.69	49.28	58.39	-9.11	Peak	
2	0.3750	29.20	9.69	38.89	48.39	-9.50	AVG	
3	0.8115	34.89	9.72	44.61	56.00	-11.39	Peak	
4	0.8115	16.20	9.72	25.92	46.00	-20.08	AVG	
5	1.3470	33.00	9.77	42.77	56.00	-13.23	Peak	
6	1.8015	32.50	9.82	42.32	56.00	-13.68	Peak	
7	3.1065	31.32	9.91	41.23	56.00	-14.77	Peak	
8	16.1610	25.39	10.66	36.05	60.00	-23.95	Peak	

ATTACHMENT B - RADIATED EMISSION (9KHZ TO 30MHZ)

Test Mode：\quad TX B MODE CHANNEL 01

Ant 0°

Test Mode：\quad TX B MODE CHANNEL 01

Ant 0°

Test Mode：\quad TX B MODE CHANNEL 01

Ant 90°

Test Mode：	TX B MODE CHANNEL 01

Ant 90°

$160.0 \mathrm{dBuV} / \mathrm{m}$										
150										
140										
130										
120										
110										
100										
$\begin{aligned} & 100 \\ & 90 \end{aligned}$										
80										
70										
60										
50 mentravete										
40×2										
20										
0.150		0.5		［MHz］			5			30.000
No．Mk．	Freq．	Reading Level	Correct Factor	Measure－ ment	Limit	Margin				
	MHz	dBuV	dB	$\mathrm{dBuV} / \mathrm{m}$	dBuV／m	dB	Detector	Con	mment	
1	0.2353	28.97	16.69	45.66	100.17	－54．51	AVG			
2 ＊	2.2132	24.43	15.45	39.88	69.54	－29．66	QP			
3	3.6418	20.97	15.05	36.02	69.54	－33．52	QP			

ATTACHMENT C - RADIATED EMISSION (30MHZ TO 1000MHZ)

Test Mode: TX B MODE CHANNEL 01

Vertical
80 dBuV n

| No. | Freq. | Reading
 Leve1 | Correct
 Factor | Measure
 ment | Limit | Margin | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | MHz | $\mathrm{dBuV} / \mathrm{m}$ | dB | $\mathrm{dBuV} / \mathrm{m}$ | $\mathrm{dBuV} / \mathrm{m}$ | dB | Detector | Comment |
| 1 | 57.1600 | 45.40 | -14.04 | 31.36 | 40.00 | -8.64 | Peak | |
| 2 | 156.1000 | 43.28 | -13.16 | 30.12 | 43.50 | -13.38 | Peak | |
| 3 | 250.1900 | 43.30 | -14.90 | 28.40 | 46.00 | -17.60 | Peak | |
| 4 | 310.3299 | 44.19 | -12.65 | 31.54 | 46.00 | -14.46 | Peak | |
| 5 | 500.4500 | 39.54 | -8.71 | 30.83 | 46.00 | -15.17 | Peak | |
| $6 *$ | 689.6000 | 41.80 | -4.26 | 37.54 | 46.00 | -8.46 | Peak | |

Test Mode：TX B MODE CHANNEL 01

Horizontal

No．	Freq．	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	MHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	166.7700	40.37	-12.53	27.84	43.50	-15.66	Peak	
2	250.1900	46.08	-14.90	31.18	46.00	-14.82	Peak	
3	310.3299	47.88	-12.65	35.23	46.00	-10.77	Peak	
4	472.3200	39.96	-9.40	30.56	46.00	-15.44	Peak	
$5 *$	500.4500	44.21	-8.71	35.50	46.00	-10.50	Peak	
6	668.2600	39.15	-4.91	34.24	46.00	-11.76	Peak	

Test Mode: \quad TX B MODE CHANNEL 06

Vertical

| No. | Freq. | Reading
 Leve1 | Correct
 Factor | Measure
 ment | Limit | Margin | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | MHz | $\mathrm{dBuV} / \mathrm{m}$ | dB | $\mathrm{dBuV} / \mathrm{m}$ | $\mathrm{dBuV} / \mathrm{m}$ | dB | Detector | Comment |
| 1 | 58.1300 | 45.13 | -14.13 | 31.00 | 40.00 | -9.00 | Peak | |
| 2 | 164.8300 | 38.05 | -12.64 | 25.41 | 43.50 | -18.09 | Peak | |
| 3 | 250.1900 | 43.96 | -14.90 | 29.06 | 46.00 | -16.94 | Peak | |
| 4 | 314.2100 | 43.68 | -12.58 | 31.10 | 46.00 | -14.90 | Peak | |
| 5 | 500.4500 | 39.26 | -8.71 | 30.55 | 46.00 | -15.45 | Peak | |
| $6 *$ | 685.7199 | 42.43 | -4.38 | 38.05 | 46.00 | -7.95 | Peak | |

Test Mode：\quad TX B MODE CHANNEL 06

Horizontal

No．	Freq．	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	MHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	164.8300	40.12	-12.64	27.48	43.50	-16.02	Peak	
2	250.1900	45.71	-14.90	30.81	46.00	-15.19	Peak	
3	310.3299	47.65	-12.65	35.00	46.00	-11.00	Peak	
4	472.3200	40.78	-9.40	31.38	46.00	-14.62	Peak	
$5 *$	500.4500	44.22	-8.71	35.51	46.00	-10.49	Peak	
6	646.9200	38.85	-5.53	33.32	46.00	-12.68	Peak	

Test Mode: TX B MODE CHANNEL 11

Vertical

80 dBuV fn

| No. | Freq. | Reading
 Leve1 | Correct
 Factor | Measure
 ment | Limit | Margin | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | MHz | $\mathrm{dBuV} / \mathrm{m}$ | dB | $\mathrm{dBuV} / \mathrm{m}$ | $\mathrm{dBuV} / \mathrm{m}$ | dB | Detector | Comment |
| 1 | 59.1000 | 45.55 | -14.22 | 31.33 | 40.00 | -8.67 | Peak | |
| 2 | 155.1300 | 41.85 | -13.22 | 28.63 | 43.50 | -14.87 | Peak | |
| 3 | 250.1900 | 43.67 | -14.90 | 28.77 | 46.00 | -17.23 | Peak | |
| 4 | 314.2100 | 44.16 | -12.58 | 31.58 | 46.00 | -14.42 | Peak | |
| 5 | 500.4500 | 41.19 | -8.71 | 32.48 | 46.00 | -13.52 | Peak | |
| $6 *$ | 675.0500 | 43.61 | -4.71 | 38.90 | 46.00 | -7.10 | Peak | |

Test Mode：\quad TX B MODE CHANNEL 11

Horizontal

No．	Freq．	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	MHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
$1 *$	500.4500	45.19	-8.71	36.48	46.00	-9.52	Peak	
2	310.3299	47.56	-12.65	34.91	46.00	-11.09	Peak	
3	165.8000	41.22	-12.58	28.64	43.50	-14.86	Peak	
4	250.1900	46.05	-14.90	31.15	46.00	-14.85	Peak	
5	472.3200	41.35	-9.40	31.95	46.00	-14.05	Peak	
6	662.4400	39.35	-5.09	34.26	46.00	-11.74	Peak	

ATTACHMENT D - RADIATED EMISSION (ABOVE 1000MHZ)

\square

Orthogonal Axis :	X
Test Mode :	TX B MODE 2412MHz

Vertical

115 dBuV/n

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2385. 9000	26.56	33.04	59.60	74.00	-14.40	Peak	
2	2385. 9000	17.80	33.04	50.84	54.00	-3.16	AVG	
3	2390.0000	25. 86	33.06	58.92	74.00	-15. 08	Peak	
4	2390. 0000	14.77	33.06	47.83	54.00	-6. 17	AVG	
5	2411. 8000	75.71	33. 14	108.85	74.00	34.85	Peak	No Limit
6 *	2413. 3000	72. 28	33. 14	105.42	54.00	51.42	AVG	No Limit

壀应
准
30
年

Orthogonal Axis ：	X
Test Mode ：	TX B MODE 2412MHz

Vertical

Orthogonal Axis ：X

Test Mode：\quad TX B MODE 2412MHz
Horizontal

115 dBuV／n

No．	Freq．	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	MHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	2390.0000	22.52	33.06	55.58	74.00	-18.42	Peak	
2	2390.0000	13.40	33.06	46.46	54.00	-7.54	AVG	
3	2411.1000	66.67	33.14	99.81	74.00	25.81	Peak	No Limit
$4 *$	2413.2000	63.46	33.14	96.60	54.00	42.60	AVG	No Limit

壀应
准
30
年

Orthogonal Axis ：X

Test Mode：\quad TX B MODE 2412MHz
Horizontal

Orthogonal Axis :	X
Test Mode :	TX B MODE 2437MHz

Vertical

| No. | Freq. | Reading
 Leve1 | Correct
 Factor | Measure
 ment | Limit | Margin | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | MHz | $\mathrm{dBuV} / \mathrm{m}$ | dB | $\mathrm{dBuV} / \mathrm{m}$ | $\mathrm{dBuV} / \mathrm{m}$ | dB | Detector | Comment |
| $1 *$ | 2435.8000 | 76.36 | 33.23 | 109.59 | 54.00 | 55.59 | AVG | No Limit |
| 2 | 2436.6000 | 79.40 | 33.23 | 112.63 | 74.00 | 38.63 | Peak | No Limit |
| 3 | 2483.5000 | 26.10 | 33.41 | 59.51 | 74.00 | -14.49 | Peak | |
| 4 | 2483.5000 | 14.49 | 33.41 | 47.90 | 54.00 | -6.10 | AVG | |
| 5 | 2484.9000 | 24.63 | 33.41 | 58.04 | 74.00 | -15.96 | Peak | |
| 6 | 2484.9000 | 14.98 | 33.41 | 48.39 | 54.00 | -5.61 | AVG | |

梓換
准
30
年

Orthogonal Axis ：	X
Test Mode ：	TX B MODE 2437MHz

Vertical

壀应
准
30
年

Orthogonal Axis ：X

Test Mode：\quad TX B MODE 2437MHz
Horizontal

115 dBuV／n

No．	Freq．	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	MHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
$\mathbf{1 *}$	2435.8000	67.42	33.23	100.65	54.00	46.65	AVG	No Limit
2	2436.1000	70.33	33.23	103.56	74.00	29.56	Peak	No Limit

Orthogonal Axis ：X
Test Mode：\quad TX B MODE 2437MHz
Horizontal

\square

Orthogonal Axis :	X
Test Mode :	TX B MODE 2462MHz

Vertical

115 dBuV m

| No. | Freq. | Reading
 Level | Correct
 Factor | Measure
 ment | Limit | Margin | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | MHz | dBuV/m | dB | $\mathrm{dBuV} / \mathrm{m}$ | $\mathrm{dBuV} / \mathrm{m}$ | dB | Detector | Comment |
| $1 *$ | 2460.8000 | 72.37 | 33.32 | 105.69 | 54.00 | 51.69 | AVG | No Limit |
| 2 | 2462.4000 | 76.02 | 33.33 | 109.35 | 74.00 | 35.35 | Peak | No Limit |
| 3 | 2483.5000 | 24.66 | 33.41 | 58.07 | 74.00 | -15.93 | Peak | |
| 4 | 2483.5000 | 15.39 | 33.41 | 48.80 | 54.00 | -5.20 | AVG | |
| 5 | 2488.2000 | 27.16 | 33.43 | 60.59 | 74.00 | -13.41 | Peak | |
| 6 | 2488.2000 | 17.26 | 33.43 | 50.69 | 54.00 | -3.31 | AVG | |

梓換
准
30
年

Orthogonal Axis ：	X
Test Mode ：	TX B MODE 2462MHz

Vertical

Orthogonal Axis ：X

Test Mode：\quad TX B MODE 2462MHz
Horizontal

115 dBuV／n

No．	Freq．	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	MHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
$\mathbf{1 月}^{*}$	2460.9000	63.12	33.32	96.44	54.00	42.44	AVG	No Limit
2	2461.6000	66.08	33.33	99.41	74.00	25.41	Peak	No Limit
3	2483.5000	23.47	33.41	56.88	74.00	-17.12	Peak	
4	2483.5000	13.48	33.41	46.89	54.00	-7.11	AVG	

Orthogonal Axis ：X
Test Mode：\quad TX B MODE 2462MHz
Horizontal

Orthogonal Axis :	X
Test Mode :	TX G MODE 2412MHz

Vertical

115 dBuVhn

No.	Freq.	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	MHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	2390.0000	30.90	33.06	63.96	74.00	-10.04	Peak	
2	2390.0000	17.71	33.06	50.77	54.00	-3.23	AVG	
3	2405.5000	73.57	33.11	106.68	74.00	32.68	Peak	No Limit
$4 *$	2419.3000	65.06	33.17	98.23	54.00	44.23	AVG	No Limit

壀应
准
30
年

Orthogonal Axis ：	X
Test Mode ：	TX G MODE 2412MHz

Vertical

