

FCC Radio Test Report

FCC ID: KA2IR605LB2

This report concerns (check one): ⊠Original Grant □Class II Change

: 1408C090 Project No. Equipment : Wireless N 300 Cloud Router : DIR-605L;DIR-905L Model Name Applicant : D-Link Corporation : No.289, Sinhu 3rd Rd., Neihu District, Taipei City 114, Address Taiwan, R.O.C. Date of Receipt : Aug. 13, 2014 **Date of Test** : Aug. 13, 2014 ~ Aug. 20, 2014 : Aug. 22, 2014 Issued Date Tested by : BTL Inc. **Testing Engineer Technical Manager** (Leo Hung) **Authorized Signatory**

BTL INC.

No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China.

(Steven Lu)

TEL: +86-769-8318-3000 FAX: +86-769-8319-6000

Report No.: BTL-FCCP-1-1408C090 Page 1 of 160

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to National Measurement Laboratory (**NML**) of **R.O.C**, or National Institute of Standards and Technology (**NIST**) of **U.S.A.**

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

BTL's reports must not be used by the client to claim product endorsement by the authorities or any agency of the Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **BTL-self**, extracts from the test report shall not be reproduced except in full with **BTL**'s authorized written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Report No.: BTL-FCCP-1-1408C090 Page 2 of 160

Table of Contents	Page
1. CERTIFICATION	6
2 . SUMMARY OF TEST RESULTS	7
2.1 TEST FACILITY	8
2.2 MEASUREMENT UNCERTAINTY	8
3 . GENERAL INFORMATION	9
3.1 GENERAL DESCRIPTION OF EUT	9
3.2 DESCRIPTION OF TEST MODES	11
3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	12
3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TES	TED 13
3.5 DESCRIPTION OF SUPPORT UNITS	14
4 . EMC EMISSION TEST	15
4.1 CONDUCTED EMISSION MEASUREMENT	15
4.1.1 POWER LINE CONDUCTED EMISSION LIMITS	15 45
4.1.2 TEST PROCEDURE 4.1.3 DEVIATION FROM TEST STANDARD	15 15
4.1.4 TEST SETUP	16
4.1.5 EUT OPERATING CONDITIONS	16
4.1.6 EUT TEST CONDITIONS 4.1.7 TEST RESULTS	16 16
4.2 RADIATED EMISSION MEASUREMENT	17
4.2.1 RADIATED EMISSION LIMITS	17
4.2.2 TEST PROCEDURE	18
4.2.3 DEVIATION FROM TEST STANDARD 4.2.4 TEST SETUP	18 18
4.2.5 EUT OPERATING CONDITIONS	19
4.2.6 EUT TEST CONDITIONS	19
4.2.7 TEST RESULTS (9KHZ TO 30MHZ) 4.2.8 TEST RESULTS (BETWEEN 30MHZ TO 1000 MHZ)	20 20
4.2.9 TEST RESULTS (BETWEEN SUMHZ TO 1000 MHZ)	20 20
5 . BANDWIDTH TEST	21
5.1 APPLIED PROCEDURES	21
5.1.1 TEST PROCEDURE	21
5.1.2 DEVIATION FROM STANDARD 5.1.3 TEST SETUP	21 21
5.1.4 EUT OPERATION CONDITIONS	21 21
5.1.5 EUT TEST CONDITIONS	21
5.1.6 TEST RESULTS	21

Report No.: BTL-FCCP-1-1408C090 Page 3 of 160

Table of Contents	Page
6 . MAXIMUM OUTPUT POWER TEST	22
6.1 APPLIED PROCEDURES / LIMIT	22
6.1.1 TEST PROCEDURE	22 22
6.1.2 DEVIATION FROM STANDARD 6.1.3 TEST SETUP	22
6.1.4 EUT OPERATION CONDITIONS	22
6.1.5 EUT TEST CONDITIONS	22
6.1.6 TEST RESULTS	22
7. ANTENNA CONDUCTED SPURIOUS EMISSION	23
7.1 APPLIED PROCEDURES / LIMIT	23
7.1.1 TEST PROCEDURE	23
7.1.2 DEVIATION FROM STANDARD 7.1.3 TEST SETUP	23 23
7.1.4 EUT OPERATION CONDITIONS	23
7.1.5 EUT TEST CONDITIONS	23
7.1.6 TEST RESULTS	23
8 . POWER SPECTRAL DENSITY TEST	24
8.1 APPLIED PROCEDURES / LIMIT	24
8.1.1 TEST PROCEDURE 8.1.2 DEVIATION FROM STANDARD	24 24
8.1.3 TEST SETUP	24
8.1.4 EUT OPERATION CONDITIONS	24
8.1.5 EUT TEST CONDITIONS	24
8.1.6 TEST RESULTS	24
9 . MEASUREMENT INSTRUMENTS LIST	25
ATTACHMENT A - CONDUCTED EMISSION	27
ATTACHMENT B - RADIATED EMISSION (9KHZ TO 30MHZ)	31
ATTACHMENT C - RADIATED EMISSION (30MHZ TO 1000MHZ)	34
ATTACHMENT D - RADIATED EMISSION (ABOVE 1000MHZ)	42
ATTACHMENT E - BANDWIDTH	92
ATTACHMENT F - MAXIMUM OUTPUT POWER	102
ATTACHMENT G - ANTENNA CONDUCTED SPURIOUS EMISSION	108
ATTACHMENT H - POWER SPECTRAL DENSITY	138
10 . EUT PHOTO	157

Report No.: BTL-FCCP-1-1408C090 Page 4 of 160

REPORT ISSUED HISTORY

Issued No.	Description	Issued Date
BTL-FCCP-1- 1408C090	Original Issue.	Aug. 22, 2014

Report No.: BTL-FCCP-1-1408C090 Page 5 of 160

1. CERTIFICATION

Equipment : Wireless N 300 Cloud Router

Brand Name: D-Link

Model Name: DIR-605L;DIR-905L Applicant: D-Link Corporation

Date of Test : Aug. 13, 2014 ~ Aug. 20, 2014 Test Sample : ENGINEERING SAMPLE

Standard(s): FCC Part15, Subpart C: 2013 (15.247) / ANSI C63.4-2009

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FCCP-1- 1408C090) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

Report No.: BTL-FCCP-1-1408C090 Page 6 of 160

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

Applied Standard(s): FCC Part15 (15.247), Subpart C: 2013					
Standard(s) Section FCC	Test Item	Judgment	Remark		
15.207	Conducted Emission	PASS			
15.247(d)	Antenna conducted Spurious Emission	PASS			
15.247(a)(2)	6dB Bandwidth	PASS			
15.247(b)(3)	Peak Output Power	PASS			
15.247(e)	Power Spectral Density	PASS			
15.203	Antenna Requirement	PASS			
15.209/15.205	Transmitter Radiated Emissions	PASS			

NOTE:

- (1)" N/A" denotes test is not applicable in this test report.
- (2) The test follows FCC KDB Publication No. 558074 D01 DTS Meas Guidance v03r02 (Measurement Guidelines of DTS)

Report No.: BTL-FCCP-1-1408C090 Page 7 of 160

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is **DG-C02/DG-CB03** at the location of No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China.523792 BTL's test firm number for FCC: 319330

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 % $^{\circ}$

A. Conducted Measurement :

Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
DG-C02	CISPR	150 KHz ~ 30MHz	3.40	

B. Radiated Measurement:

Test Site	Method	Measurement Frequency Range		U,(dB)	NOTE
		9KHz~30MHz	V	3.79	
		9KHz~30MHz	Н	3.57	
		30MHz ~ 200MHz	V	3.82	
		30MHz ~ 200MHz	Н	3.60	
DG-CB03	CISPR	200MHz ~ 1,000MHz	V	3.86	
DG-CB03	CISER	200MHz ~ 1,000MHz	Н	3.94	
		1GHz~18GHz	V	3.12	
		1GHz~18GHz	Н	3.68	
		18GHz~40GHz	V	4.15	
		18GHz~40GHz	Н	4.14	

Report No.: BTL-FCCP-1-1408C090 Page 8 of 160

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	Wireless N 300 Cloud Ro	Wireless N 300 Cloud Router			
Brand Name	D-Link				
Model Name	DIR-605L;DIR-905L				
Model Difference	Only differ in model name				
	Operation Frequency	2412~2462 MHz			
	Modulation Technology	802.11b:DSSS 802.11g:OFDM 802.11n:OFDM			
Product Description	Bit Rate of Transmitter	802.11b: 11/5.5/2/1 Mbps 802.11g: 54/48/36/24/18/12/9/6 Mbps 802.11n up to 300 Mbps			
	Output Power (Max.) 802.11b: 22.27dBm 802.11g: 26.68dBm 802.11n(20MHz): 26.65dBm 802.11n(40MHz): 24.96dBm				
	DC voltage supplied from	AC/DC adapter.			
Power Source	#1 Brand / Model: PHIHONG / PSAC05A-050				
	#2 Brand / Model: YEOU DIANN / AMS20-0501000FU2				
Power Rating		A, 50/60Hz 12-16VA O/P: DC 5V 1A 60Hz 0.2A/15VA O/P: DC 5V 1.0A			

Note

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Report No.: BTL-FCCP-1-1408C090 Page 9 of 160

2. Channel List:

O.1.41.11.01 =10							
	CH01 – CH11 for 802.11b, 802.11g, 802.11n(20MHz) CH03 – CH09 for 802.11n(40MHz)						
Channel	Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Frequency (MHz)						
01	01 2412 04 2427 07 2442 10 2457						
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452		

3. Table for Filed Antenna

G	ro	u	p	
•	. •	•	~	

Ant.	Brand	P/N	Antenna Type	Connector	Gain (dBi)	Note
1	$[\mathcal{G}]$	260-20007	Dipole	N/A	4.19	TX/RX
2	\bigcirc	290-20136	Dipole	N/A	3.86	TX/RX

Group 2

Ant.	Brand	P/N	Antenna Type	Connector	Gain (dBi)	Note
1	Nienyi	NYS0794	Dipole	N/A	5.23	TX/RX
2	Nienyi	NYS0795	Dipole	N/A	5.07	TX/RX

Note:

(1) The EUT has two group antenna, the Group 2 antenna is worst case since the gain is greater than Group 1.

(2) The EUT incorporates a MIMO function. Physically, the EUT provides two completed two transmitters and two receivers (2T2R), all transmit signals are completely uncorrelated, then, **Direction gain = G**_{ANT}, that is Directional gain=5.23.

4

Operating Mode	1TX	2TX	
TX Mode	117.	217	
802.11b	V (ANT 1 or ANT 2)	-	
802.11g	-	V (ANT 1 + ANT 2)	
802.11n(20MHz)	-	V (ANT 1 + ANT 2)	
802.11n(40MHz)	-	V (ANT 1 + ANT 2)	

Report No.: BTL-FCCP-1-1408C090 Page 10 of 160

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description	
Mode 1	TX B MODE CHANNEL 01/06/11	
Mode 2	TX G MODE CHANNEL 01/06/11	
Mode 3	TX N-20MHZ MODE CHANNEL 01/06/11	
Mode 4	TX N-40MHZ MODE CHANNEL 03/06/09	
Mode 5	TX MODE	

The EUT system operated these modes were found to be the worst case during the pre-scanning test as following:

	For Conducted Test
Final Test Mode	Description
Mode 5	TX MODE

For Radiated Test		
Final Test Mode	Description	
Mode 1	TX B MODE CHANNEL 01/06/11	
Mode 2	TX G MODE CHANNEL 01/06/11	
Mode 3	TX N-20MHZ MODE CHANNEL 01/06/11	
Mode 4	TX N-40MHZ MODE CHANNEL 03/06/09	

Note:

(1) The measurements are performed at the high, middle, low available channels.

(2) 802.11b mode: DBPSK (1Mbps)

802.11g mode: OFDM (6Mbps) 802.11n HT20 mode : BPSK (13Mbps)

802.11n HT20 mode : BPSK (13Mbps) 802.11n HT40 mode : BPSK (27Mbps)

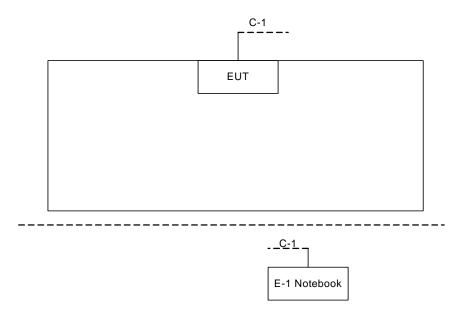
For radiated emission tests, the highest output powers were set for final test.

- (3) For radiated below 1G test, the 802.11b is found to be the worst case and recorded.
- (4) The adapter: YEOU DIANN / AMS20-0501000FU2 is worst case and included in the test report.

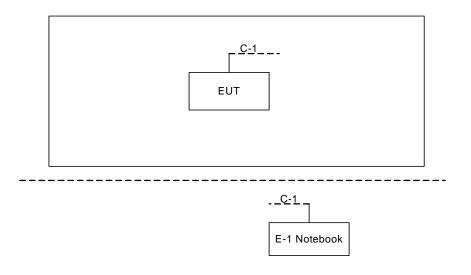
Report No.: BTL-FCCP-1-1408C090 Page 11 of 160

3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing, channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN


Test software version		MP-TEST	
Frequency	2412 MHz	2437 MHz	2462 MHz
IEEE 802.11b DSSS	51	55	51
IEEE 802.11g OFDM	48	63	48
IEEE 802.11n (20MHz)	48	63	51
Frequency	2422 MHz	2437 MHz	2452 MHz
IEEE 802.11n (40MHz)	51	52	46

Report No.: BTL-FCCP-1-1408C090 Page 12 of 160



3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Conducted TX Mode:

Radiated TX Mode:

Report No.: BTL-FCCP-1-1408C090 Page 13 of 160

3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID/IC	Series No.	Note
E-1	Notebook	DELL	INSPIRON 1420	DOC	N/A	

It	em	Shielded Type	Ferrite Core	Length	Note
C	C-1	NO	NO	10m	RJ45 Cable

Report No.: BTL-FCCP-1-1408C090 Page 14 of 160

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

Fraguency of Emission (MHz)	Conducted Limit (dBµV)		
Frequency of Emission (MHz)	Quasi-peak	Average	
0.15 -0.	66 to 56*	56 to 46*	
0.50 -5.0	56	46	
5.0 -30.0	60	50	

Note:

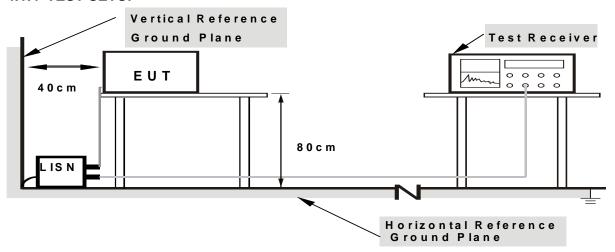
(1) The limit of " * " decreases with the logarithm of the frequency

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.


4.1.3 DEVIATION FROM TEST STANDARD

No deviation

Report No.: BTL-FCCP-1-1408C090 Page 15 of 160

4.1.4 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

4.1.6 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

4.1.7 TEST RESULTS

Please refer to the Attachment A.

Report No.: BTL-FCCP-1-1408C090 Page 16 of 160

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 RADIATED EMISSION LIMITS

20dB in any 100 KHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9KHz-1000MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

Frequency (MHz)	(dBuV/m) (at 3 meters)	
Frequency (Miriz)	PEAK	AVERAGE
Above 1000	74	54

Notes:

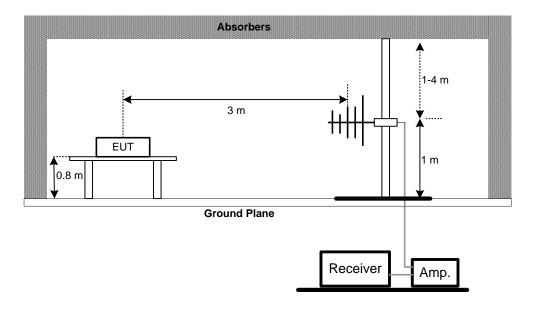
- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	ANNUE / ANNUE for Dools A MULE / AQUE for Asserting
(Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

Report No.: BTL-FCCP-1-1408C090 Page 17 of 160

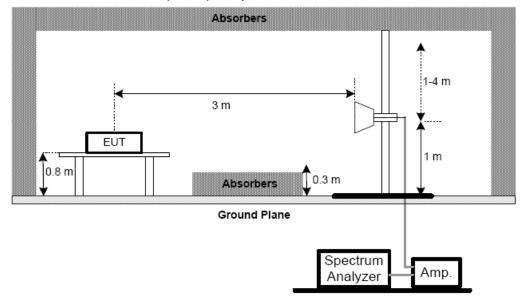
4.2.2 TEST PROCEDURE

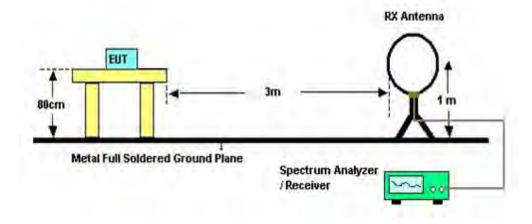

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.2.3 DEVIATION FROM TEST STANDARD

No deviation

4.2.4 TEST SETUP


(A) Radiated Emission Test Set-Up Frequency Below 1 GHz


Report No.: BTL-FCCP-1-1408C090 Page 18 of 160

(B) Radiated Emission Test Set-Up Frequency Above 1 GHz

(C) For radiated emissions below 30MHz

4.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **4.1.6** Unless otherwise a special operating condition is specified in the follows during the testing.

4.2.6 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

Report No.: BTL-FCCP-1-1408C090 Page 19 of 160

4.2.7 TEST RESULTS (9KHZ TO 30MHZ)

Please refer to the Attachment B

Remark:

- (1) The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.
- (2) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
 (3) Limit line = specific limits (dBuV) + distance extrapolation factor.

4.2.8 TEST RESULTS (BETWEEN 30MHZ TO 1000 MHZ)

Please refer to the Attachment C.

4.2.9 TEST RESULTS (ABOVE 1000 MHZ)

Please refer to the Attachment D.

Report No.: BTL-FCCP-1-1408C090 Page 20 of 160

5. BANDWIDTH TEST

5.1 Applied procedures

FCC Part15 (15.247), Subpart C				
Section	Frequency Range (MHz)	Result		
15.247(a)(2)	Bandwidth	2400-2483.5	PASS	

5.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- h Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

5.1.2 DEVIATION FROM STANDARD

No deviation.

5.1.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

5.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.6 Unless otherwise a special operating condition is specified in the follows during the testing.

5.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

5.1.6 TEST RESULTS

Please refer to the Attachment E.

Report No.: BTL-FCCP-1-1408C090 Page 21 of 160

6. MAXIMUM OUTPUT POWER TEST

6.1 Applied procedures / limit

FCC Part15 (15.247) , Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(b)(3)	Maximum Output Power	1 Watt or 30dBm	2400-2483.5	PASS	

6.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below,
- b. The maximum peak conducted output power was performed in accordance with method 9.1.3 of FCC KDB 558074 D01 DTS Meas Guidance v03r01.

6.1.2 DEVIATION FROM STANDARD

No deviation.

6.1.3 TEST SETUP

EUT	Power Meter
	, c., c. Meter

6.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.6 Unless otherwise a special operating condition is specified in the follows during the testing.

Transmit output power was measured while the host equipment supply voltage was varied from 85 % to 115 % of the nominal rated supply voltage. No change in transmit output power was observed.

6.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

6.1.6 TEST RESULTS

Please refer to the Attachment F.

Report No.: BTL-FCCP-1-1408C090 Page 22 of 160

7. ANTENNA CONDUCTED SPURIOUS EMISSION

7.1 Applied procedures / limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

7.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = Auto.

7.1.2 DEVIATION FROM STANDARD

No deviation.

7.1.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

7.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.6 Unless otherwise a special operating condition is specified in the follows during the testing.

7.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

7.1.6 TEST RESULTS

Please refer to the Attachment G.

Report No.: BTL-FCCP-1-1408C090 Page 23 of 160

8. POWER SPECTRAL DENSITY TEST

8.1 Applied procedures / limit

FCC Part15 (15.247) , Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(e)	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS	

8.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=3KHz, VBW=10KHz, Sweep time = Auto.

8.1.2 DEVIATION FROM STANDARD

No deviation.

8.1.3 TEST SETUP

8.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.6 Unless otherwise a special operating condition is specified in the follows during the testing.

8.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

8.1.6 TEST RESULTS

Please refer to the Attachment H.

Report No.: BTL-FCCP-1-1408C090 Page 24 of 160

9. MEASUREMENT INSTRUMENTS LIST

	Conducted Emission Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	LISN	EMCO	3816/2	00052765	Mar. 29, 2015	
2	LISN	R&S	ENV216	101447	Mar. 29, 2015	
3	Test Cable	N/A	C_17	N/A	Mar. 14, 2015	
4	EMI TEST RECEIVER	R&S	ESCS30	833364/017	Mar. 29, 2015	
5	50Ω Terminator	SHX	TF2-3G-A	08122902	Mar. 29, 2015	

	Radiated Emission Measurement						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	Antenna	EMCO	3142C	00066462	Mar. 29, 2015		
2	Antenna	EMCO	3142C	00066464	Mar. 29, 2015		
3	Amplifier	Agilent	8447D	2944A11203	Nov. 11, 2014		
4	Amplifier	Agilent	8447D	2944A11204	Nov. 11, 2014		
5	Spectrum Analyzer	Agilent	E4443A	MY48250370	Nov. 11, 2014		
6	RF Pre-selector	Agilent	N9039A	MY46520201	Nov. 11, 2014		
7	Test Cable	N/A	Cable_5m_8m _15m	N/A	Jan. 14, 2015		
8	Test Cable	N/A	Cable_5m_11 m_15m	N/A	Jan. 14, 2015		
9	Spectrum Analyzer	Agilent	E4447A	MY48250208	Nov. 11, 2014		
10	RF Pre-selector	Agilent	N9039A	MY46520214	Nov. 11, 2014		
11	Multi-Device Controller	ETS-Lindgren	2090	N/A	N/A		
12	Horn Antenna	EMCO	3115	9605-4803	Mar. 29, 2015		
13	Amplifier	Agilent	8449B	3008A02584	Nov. 11, 2014		
14	Spectrum Analyzer	Agilent	E4447A	MY48250208	Nov. 11, 2014		
15	Test Cable	Huber+Suhner	SUCOFLEX_1 5m_4m	N/A	Jan. 14, 2015		

Report No.: BTL-FCCP-1-1408C090 Page 25 of 160

6dB Bandwidth Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 11, 2014

	Peak Output Power Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	P-series Power meter	Agilent	N1911A	MY45100473	Mar. 29, 2015	
2	Wireband Power sensor	Agilent	N1921A	MY51100041	Mar. 29, 2015	

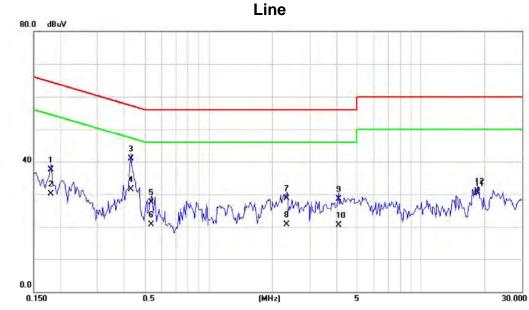
	Antenna Conducted Spurious Emission Measurement				
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 11, 2014

	Power Spectral Density Measurement				
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 11, 2014

Remark: "N/A" denotes no model name, serial no. or calibration specified.

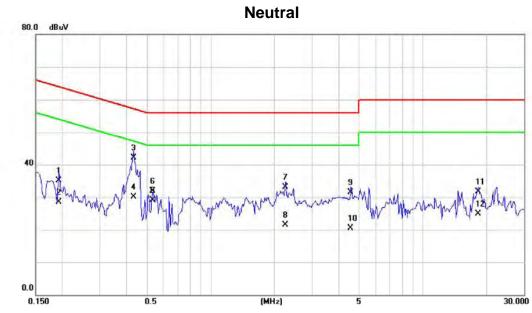
All calibration period of equipment list is one year.

Report No.: BTL-FCCP-1-1408C090 Page 26 of 160



ATTACHMENT A - CONDUCTED EMISSION

Report No.: BTL-FCCP-1-1408C090 Page 27 of 160

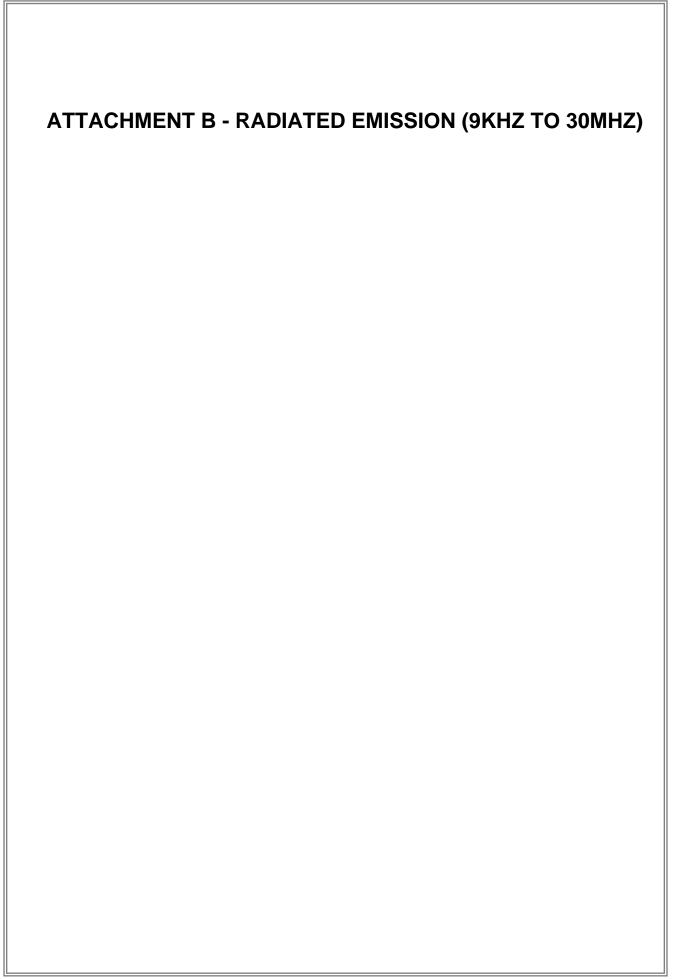


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1812	28.02	9.53	37.55	64.43	-26.88	QP	
2		0.1812	20.65	9.53	30.18	54.43	-24.25	AVG	
3		0.4312	31.23	9.66	40.89	57.23	-16.34	QP	
4	*	0.4313	21.92	9.66	31.58	47.23	-15.65	AVG	
5		0.5406	17.81	9.68	27.49	56.00	-28.51	QP	
6		0.5406	10.95	9.68	20.63	46.00	-25.37	AVG	
7		2.3453	19.04	9.73	28.77	56.00	-27.23	QP	
8		2.3453	10.96	9.73	20.69	46.00	-25.31	AVG	
9		4.1015	18.62	9.82	28.44	56.00	-27.56	QP	
10		4.1016	10.59	9.82	20.41	46.00	-25.59	AVG	
11		18.5507	19.89	10.39	30.28	60.00	-29.72	QP	
12		18.5508	20.49	10.39	30.88	50.00	-19.12	AVG	

Report No.: BTL-FCCP-1-1408C090 Page 28 of 160

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1930	25.55	9.61	35.16	63.91	-28.75	QP	
2		0.1930	18.85	9.61	28.46	53.91	-25.45	AVG	
3		0.4351	32.48	9.63	42.11	57.15	-15.04	QP	
4		0.4352	20.49	9.63	30.12	47.15	-17.03	AVG	
5		0.5328	19.55	9.64	29.19	56.00	-26.81	QP	
6	*	0.5328	22.34	9.64	31.98	46.00	-14.02	AVG	
7		2.2593	23.41	9.75	33.16	56.00	-22.84	QP	
8		2.2594	11.83	9.75	21.58	46.00	-24.42	AVG	
9		4.5976	21.72	9.86	31.58	56.00	-24.42	QP	
10		4.5977	10.63	9.86	20.49	46.00	-25.51	AVG	
11		18.2500	21.41	10.38	31.79	60.00	-28.21	QP	
12		18.2500	14.46	10.38	24.84	50.00	-25.16	AVG	

Report No.: BTL-FCCP-1-1408C090 Page 29 of 160



Report No.: BTL-FCCP-1-1408C090 Page 30 of 160

Report No.: BTL-FCCP-1-1408C090 Page 31 of 160

Test Mode: TX Mode 2412MHz

frequency (MHz)	Ant 0°/90°	Read level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector
0.00942	0°	68.12	24.30	92.42	128.12	-35.70	AVG
0.00942	0°	71.05	24.30	95.35	148.12	-52.77	PK
0.0135	0°	70.12	24.30	94.42	125.00	-30.58	AVG
0.0135	0°	78.36	24.30	102.66	145.00	-42.34	PK
0.0245	0°	56.36	24.02	80.38	119.82	-39.45	AVG
0.0245	0°	60.12	24.02	84.14	139.82	-55.69	PK
0.0328	0°	61.36	23.49	84.85	117.29	-32.44	AVG
0.0328	0°	65.38	23.49	88.87	137.29	-48.42	PK
0.568	0°	18.72	20.02	38.74	72.52	-33.78	QP
1.7536	0°	18.95	19.52	38.47	69.54	-31.07	QP

frequency (MHz)	Ant 0°/90°	Read level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector
0.00936	90°	76.35	24.30	100.65	128.18	-27.53	AVG
0.00936	90°	82.36	24.30	106.66	148.18	-41.52	PK
0.0237	90°	56.38	24.07	80.45	120.11	-39.66	AVG
0.0237	90°	59.35	24.07	83.42	140.11	-56.69	PK
0.0318	90°	58.64	23.55	82.19	117.56	-35.36	AVG
0.0318	90°	59.11	23.55	82.66	137.56	-54.89	PK
0.0428	90°	58.79	22.86	81.65	114.98	-33.33	AVG
0.0428	90°	62.39	22.86	85.25	134.98	-49.73	PK
0.4912	90°	17.45	19.82	37.27	73.78	-36.51	QP
1.7156	90°	18.63	19.53	38.16	69.54	-31.38	QP

Remark:

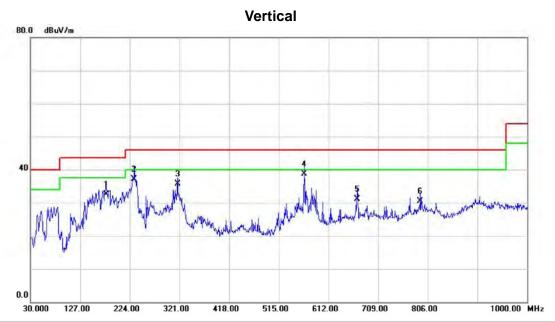
- (1) The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.
- (2) Distance extrapolation factor = 40 log (specific distance / test distance) (dB);
- (3) Limit line = specific limits (dBuV) + distance extrapolation factor.

Report No.: BTL-FCCP-1-1408C090 Page 32 of 160

Radiated Measurement Photos

9KHz to 30MHz

Report No.: BTL-FCCP-1-1408C090 Page 33 of 160

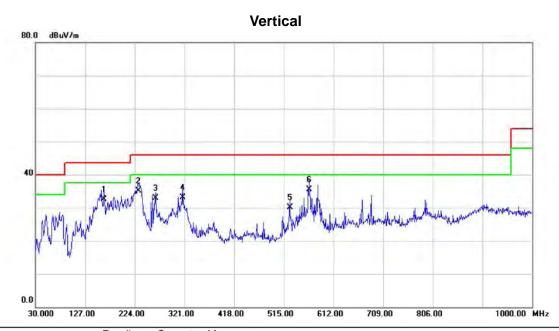


ATTACHMENT C - RADIATED EMISSION (30MHZ TO 1000MHZ)

Report No.: BTL-FCCP-1-1408C090 Page 34 of 160

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		177.4400	44.35	-11.89	32.46	43.50	-11.04	QP	
2		232.7300	50.26	-13.12	37.14	46.00	-8.86	QP	
3		317.1200	45.37	-9.74	35.63	46.00	-10.37	QP	
4	*	564.4700	42.28	-3.49	38.79	46.00	-7.21	QP	
5		668.2600	32.50	-1.48	31.02	46.00	-14.98	QP	
6		791.4500	29.23	1.33	30.56	46.00	-15.44	QP	

Report No.: BTL-FCCP-1-1408C090 Page 35 of 160

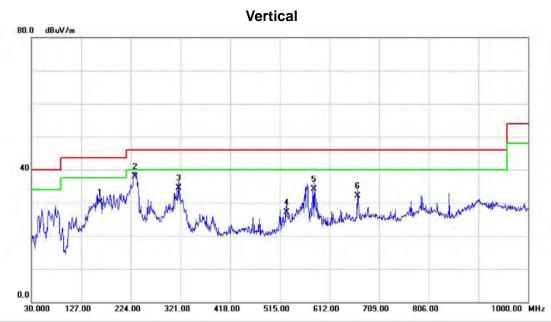


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		159.0100	42.73	-11.21	31.52	43.50	-11.98	QP	
2	*	232.7300	54.90	-13.12	41.78	46.00	-4.22	QP	
3	!	264.7400	53.13	-12.88	40.25	46.00	-5.75	QP	
4		317.1200	47.70	-9.74	37.96	46.00	-8.04	QP	
5		382.1100	41.76	-8.50	33.26	46.00	-12.74	QP	
6		580.9600	35.58	-4.17	31.41	46.00	-14.59	QP	

Report No.: BTL-FCCP-1-1408C090 Page 36 of 160

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		163.8600	43.89	-11.34	32.55	43.50	-10.95	QP	
2		230.7900	48.30	-13.16	35.14	46.00	-10.86	QP	
3		264.7400	45.86	-12.88	32.98	46.00	-13.02	QP	
4		317.1200	42.80	-9.74	33.06	46.00	-12.94	QP	
5		526.6400	35.16	-5.05	30.11	46.00	-15.89	QP	
6	*	564.4700	38.95	-3.49	35.46	46.00	-10.54	QP	

Report No.: BTL-FCCP-1-1408C090 Page 37 of 160



Mk.	. Fr	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	М	Hz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
	163.8	600	43.45	-11.34	32.11	43.50	-11.39	QP		
*	231.7	600	55.66	-13.14	42.52	46.00	-3.48	QP		
!	257.9	500	55.07	-13.17	41.90	46.00	-4.10	QP		
	317.12	200	48.27	-9.74	38.53	46.00	-7.47	QP		
	410.2	400	39.29	-7.26	32.03	46.00	-13.97	QP		
	555.7	400	33.24	-3.10	30.14	46.00	-15.86	QP		
	* !	M 163.8(* 231.7(*) 257.9(*) 317.1(*) 410.24	Mk. Freq. MHz 163.8600 * 231.7600 ! 257.9500 317.1200 410.2400 555.7400	Mk. Freq. Level MHz dBuV 163.8600 43.45 * 231.7600 55.66 ! 257.9500 55.07 317.1200 48.27 410.2400 39.29	Mk. Freq. Level Factor MHz dBuV dB 163.8600 43.45 -11.34 * 231.7600 55.66 -13.14 ! 257.9500 55.07 -13.17 317.1200 48.27 -9.74 410.2400 39.29 -7.26	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 163.8600 43.45 -11.34 32.11 * 231.7600 55.66 -13.14 42.52 ! 257.9500 55.07 -13.17 41.90 317.1200 48.27 -9.74 38.53 410.2400 39.29 -7.26 32.03	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 163.8600 43.45 -11.34 32.11 43.50 * 231.7600 55.66 -13.14 42.52 46.00 ! 257.9500 55.07 -13.17 41.90 46.00 317.1200 48.27 -9.74 38.53 46.00 410.2400 39.29 -7.26 32.03 46.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dBuV/m dB 163.8600 43.45 -11.34 32.11 43.50 -11.39 * 231.7600 55.66 -13.14 42.52 46.00 -3.48 ! 257.9500 55.07 -13.17 41.90 46.00 -4.10 317.1200 48.27 -9.74 38.53 46.00 -7.47 410.2400 39.29 -7.26 32.03 46.00 -13.97	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector 163.8600 43.45 -11.34 32.11 43.50 -11.39 QP * 231.7600 55.66 -13.14 42.52 46.00 -3.48 QP ! 257.9500 55.07 -13.17 41.90 46.00 -4.10 QP 317.1200 48.27 -9.74 38.53 46.00 -7.47 QP 410.2400 39.29 -7.26 32.03 46.00 -13.97 QP	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector Comment 163.8600 43.45 -11.34 32.11 43.50 -11.39 QP * 231.7600 55.66 -13.14 42.52 46.00 -3.48 QP ! 257.9500 55.07 -13.17 41.90 46.00 -4.10 QP 317.1200 48.27 -9.74 38.53 46.00 -7.47 QP 410.2400 39.29 -7.26 32.03 46.00 -13.97 QP

Report No.: BTL-FCCP-1-1408C090 Page 38 of 160

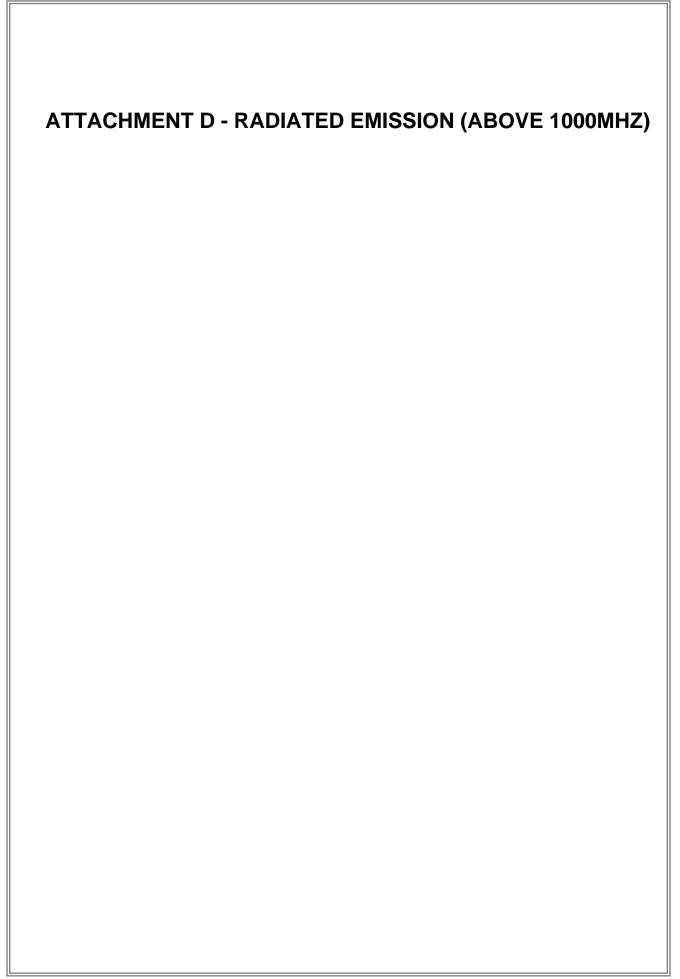
No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		163.8600	41.45	-11.34	30.11	43.50	-13.39	QP	
2	*	232.7300	51.01	-13.12	37.89	46.00	-8.11	QP	
3		317.1200	44.26	-9.74	34.52	46.00	-11.48	QP	
4		528.5800	32.02	-4.88	27.14	46.00	-18.86	QP	
5		580.9600	38.37	-4.17	34.20	46.00	-11.80	QP	
6		666.3200	33.57	-1.52	32.05	46.00	-13.95	QP	

Report No.: BTL-FCCP-1-1408C090 Page 39 of 160

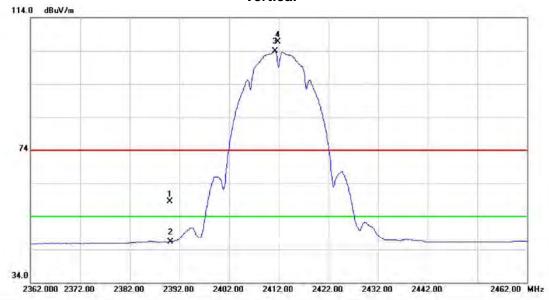
No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		159.0100	44.09	-11.21	32.88	43.50	-10.62	QP	
2	!	210.4200	51.86	-13.72	38.14	43.50	-5.36	QP	
3	*	235.6400	54.63	-13.08	41.55	46.00	-4.45	QP	
4	!	317.1200	50.56	-9.74	40.82	46.00	-5.18	QP	
5		410.2400	42.42	-7.26	35.16	46.00	-10.84	QP	
6		564.4700	35.11	-3.49	31.62	46.00	-14.38	QP	

Report No.: BTL-FCCP-1-1408C090 Page 40 of 160

Radiated Measurement Photos


30MHz to 1000MHz

Report No.: BTL-FCCP-1-1408C090 Page 41 of 160



Report No.: BTL-FCCP-1-1408C090 Page 42 of 160

Test Mode: TX B MODE 2412MHz

Vertical

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2390.000	25.08	33.35	58.43	74.00	-15.57	peak	
2		2390.000	13.02	33.35	46.37	54.00	-7.63	AVG	
3	*	2411.200	70.57	33.36	103.93	54.00	49.93	AVG	Fundamental frequency, no limit
4	Χ	2411.800	73.43	33.36	106.79	74.00	32.79	peak	Fundamental frequency, no limit

Report No.: BTL-FCCP-1-1408C090 Page 43 of 160

Test Mode: TX B MODE 2412MHz

Vertical


No.	Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	4823.920	45.29	8.01	53.30	54.00	-0.70	AVG		
2		4823.980	46.80	8.01	54.81	74.00	-19.19	peak		

Report No.: BTL-FCCP-1-1408C090 Page 44 of 160

Test Mode: TX B MODE 2412MHz

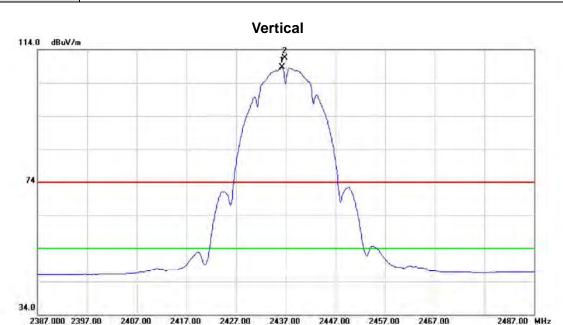
Horizontal

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	1	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2390.000	22.38	33.35	55.73	74.00	-18.27	peak	
2		2390.000	12.94	33.35	46.29	54.00	-7.71	AVG	
3	*	2411.200	58.50	33.36	91.86	54.00	37.86	AVG	Fundamental frequency, no limit
4	X	2411.800	61.35	33.36	94.71	74.00	20.71	peak	Fundamental frequency, no limit

Report No.: BTL-FCCP-1-1408C090 Page 45 of 160

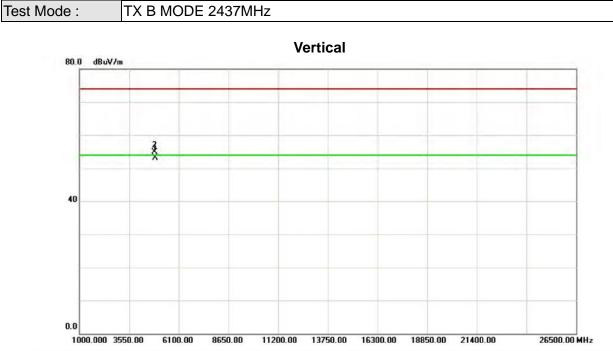
Test Mode: TX B MODE 2412MHz

Horizontal



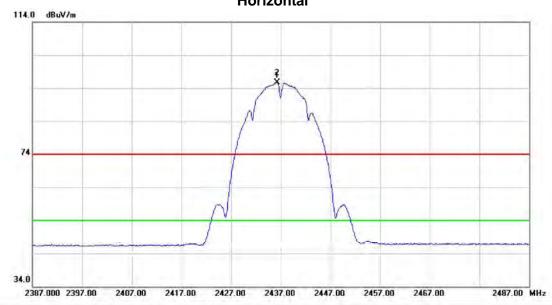
No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4823.860	45.89	8.01	53.90	74.00	-20.10	peak	
2	*	4823.920	43.45	8.01	51.46	54.00	-2.54	AVG	

Report No.: BTL-FCCP-1-1408C090 Page 46 of 160


Test Mode: TX B MODE 2437MHz

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	Χ	2436.200	75.25	33.36	108.61	74.00	34.61	peak	Fundamental frequency, no limit
2	*	2436.800	78.09	33.36	111.45	74.00	37.45	peak	Fundamental frequency, no limit

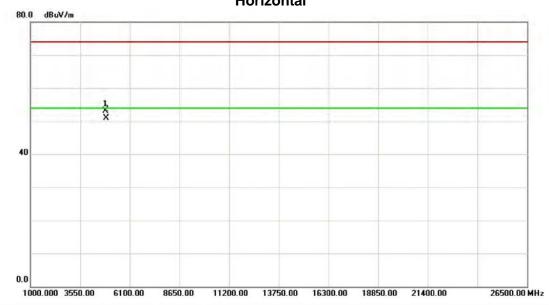
Report No.: BTL-FCCP-1-1408C090 Page 47 of 160


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	4873.920	45.06	8.11	53.17	54.00	-0.83	AVG		
2		4873.980	46.75	8.11	54.86	74.00	-19.14	peak		

Report No.: BTL-FCCP-1-1408C090 Page 48 of 160

Test Mode: TX B MODE 2437MHz

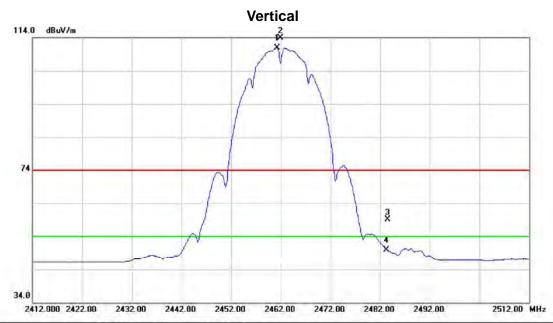
Horizontal


No.	Mk	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	Χ	2436.200	62.39	33.36	95.75	74.00	21.75	peak	Fundamental frequency, no limit
2	*	2436.200	62.39	33.36	95.75	54.00	41.75	AVG	Fundamental frequency, no limit

Report No.: BTL-FCCP-1-1408C090 Page 49 of 160

Test Mode: TX B MODE 2437MHz

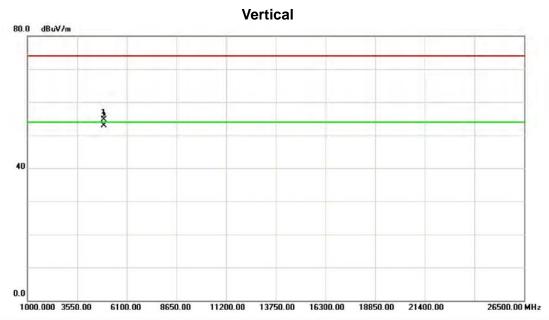
Horizontal



No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4873.900	45.02	8.11	53.13	74.00	-20.87	peak	
2	*	4873.900	42.82	8.11	50.93	54.00	-3.07	AVG	

Report No.: BTL-FCCP-1-1408C090 Page 50 of 160

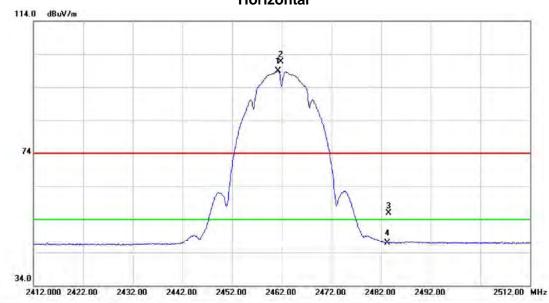
Test Mode: TX B MODE 2462MHz



Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
*	2461.200	77.63	33.37	111.00	54.00	57.00	AVG	Fundamental frequency, no limit
Χ	2461.900	80.50	33.37	113.87	74.00	39.87	peak	Fundamental frequency, no limit
	2483.500	25.70	33.37	59.07	74.00	-14.93	peak	
	2483.500	16.59	33.37	49.96	54.00	-4.04	AVG	
	*	MHz * 2461.200 X 2461.900 2483.500	Mk. Freq. Level MHz dBuV * 2461.200 77.63 X 2461.900 80.50 2483.500 25.70	Mk. Freq. Level Factor MHz dBuV dB * 2461.200 77.63 33.37 X 2461.900 80.50 33.37 2483.500 25.70 33.37	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m * 2461.200 77.63 33.37 111.00 X 2461.900 80.50 33.37 113.87 2483.500 25.70 33.37 59.07	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m * 2461.200 77.63 33.37 111.00 54.00 X 2461.900 80.50 33.37 113.87 74.00 2483.500 25.70 33.37 59.07 74.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB dB	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector * 2461.200 77.63 33.37 111.00 54.00 57.00 AVG X 2461.900 80.50 33.37 113.87 74.00 39.87 peak 2483.500 25.70 33.37 59.07 74.00 -14.93 peak

Report No.: BTL-FCCP-1-1408C090 Page 51 of 160

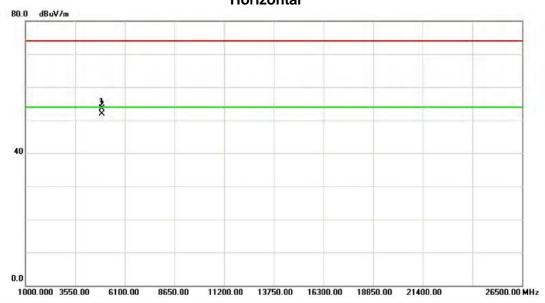
Orthogonal Axis: X
Test Mode: TX B MODE 2462MHz


No.	Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4923.820	46.41	8.20	54.61	74.00	-19.39	peak		
2	*	4923.900	44.66	8.20	52.86	54.00	-1.14	AVG		

Report No.: BTL-FCCP-1-1408C090 Page 52 of 160

Test Mode: TX B MODE 2462MHz

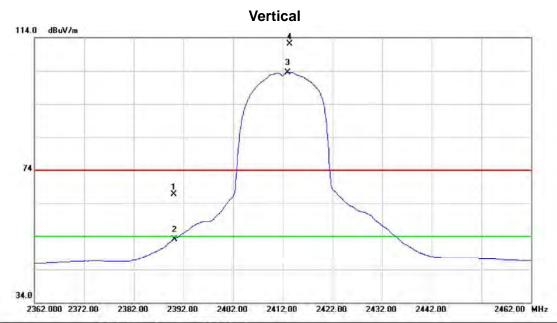
Horizontal


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	2461.200	65.62	33.37	98.99	54.00	44.99	AVG	Fundamental frequency, no limit
2	Χ	2461.800	68.30	33.37	101.67	74.00	27.67	peak	Fundamental frequency, no limit
3		2483.500	22.49	33.37	55.86	74.00	-18.14	peak	
4		2483.500	13.57	33.37	46.94	54.00	-7.06	AVG	

Report No.: BTL-FCCP-1-1408C090 Page 53 of 160

Test Mode: TX B MODE 2462MHz

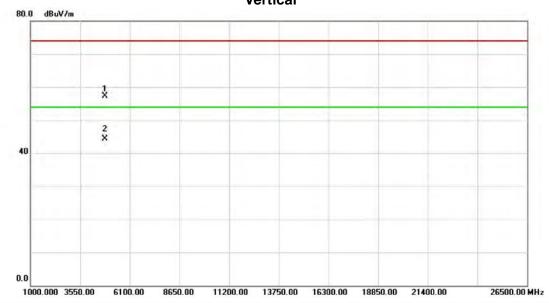
Horizontal



No.	Mk	c. Freq.	Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4923.860	45.32	8.20	53.52	74.00	-20.48	peak		
2	*	4923.900	43.61	8.20	51.81	54.00	-2.19	AVG		

Report No.: BTL-FCCP-1-1408C090 Page 54 of 160

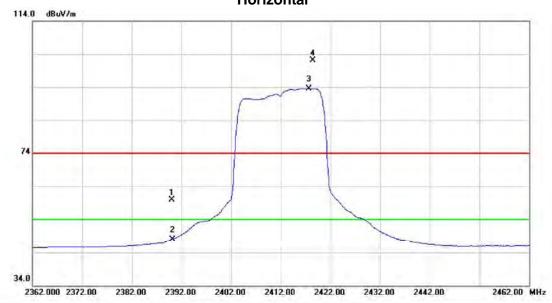
Test Mode: TX G MODE 2412MHz


Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
	2390.000	33.41	33.35	66.76	74.00	-7.24	peak	
	2390.000	19.82	33.35	53.17	54.00	-0.83	AVG	
*	2413.000	70.17	33.36	103.53	54.00	49.53	AVG	Fundamental frequency, no limit
X	2413.400	78.75	33.36	112.11	74.00	38.11	peak	Fundamental frequency, no limit
	*	MHz 2390.000 2390.000 * 2413.000	Mk, Freq. Level MHz dBuV 2390.000 33.41 2390.000 19.82 * 2413.000 70.17	Mk. Freq. Level Factor MHz dBuV dB 2390.000 33.41 33.35 2390.000 19.82 33.35 * 2413.000 70.17 33.36	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 2390.000 33.41 33.35 66.76 2390.000 19.82 33.35 53.17 * 2413.000 70.17 33.36 103.53	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 2390.000 33.41 33.35 66.76 74.00 2390.000 19.82 33.35 53.17 54.00 * 2413.000 70.17 33.36 103.53 54.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB dB dBuV/m dB dB	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector 2390.000 33.41 33.35 66.76 74.00 -7.24 peak 2390.000 19.82 33.35 53.17 54.00 -0.83 AVG * 2413.000 70.17 33.36 103.53 54.00 49.53 AVG

Report No.: BTL-FCCP-1-1408C090 Page 55 of 160

Test Mode: TX G MODE 2412MHz

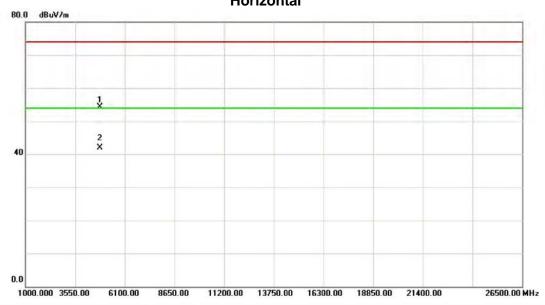
Vertical


No.	Mk		Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4822.200	49.30	8.01	57.31	74.00	-16.69	peak		
2	*	4822.200	36.39	8.01	44.40	54.00	-9.60	AVG		

Report No.: BTL-FCCP-1-1408C090 Page 56 of 160

Test Mode: TX G MODE 2412MHz

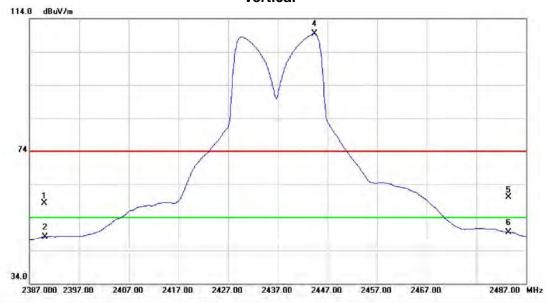
Horizontal


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2390.000	26.47	33.35	59.82	74.00	-14.18	peak	
2		2390.000	14.64	33.35	47.99	54.00	-6.01	AVG	
3	*	2417.700	60.23	33.36	93.59	54.00	39.59	AVG	Fundamental frequency, no limit
4	Χ	2418.500	68.74	33.36	102.10	74.00	28.10	peak	Fundamental frequency, no limit

Report No.: BTL-FCCP-1-1408C090 Page 57 of 160

Test Mode: TX G MODE 2412MHz

Horizontal


No.		k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4823.900	46.30	8.01	54.31	74.00	-19.69	peak		
2	*	4823.900	33.88	8.01	41.89	54.00	-12.11	AVG		

Report No.: BTL-FCCP-1-1408C090 Page 58 of 160

Test Mode: TX G MODE 2437MHz

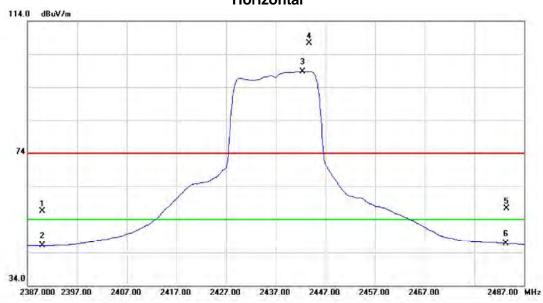
Vertical

Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
	2390.000	25.00	33.35	58.35	74.00	-15.65	peak	
	2390.000	14.75	33.35	48.10	54.00	-5.90	AVG	
Χ	2444.400	86.00	33.36	119.36	74.00	45.36	peak	Fundamental frequency, no limit
*	2444.400	76.17	33.36	109.53	54.00	55.53	AVG	Fundamental frequency, no limit
	2483.500	26.75	33.37	60.12	74.00	-13.88	peak	
	2483.500	16.19	33.37	49.56	54.00	-4.44	AVG	
	X	MHz 2390.000 2390.000 X 2444.400	MHz dBuV 2390.000 25.00 2390.000 14.75 X 2444.400 86.00 * 2444.400 76.17 2483.500 26.75	Mk. Freq. Level Factor MHz dBuV dB 2390.000 25.00 33.35 2390.000 14.75 33.35 X 2444.400 86.00 33.36 * 2444.400 76.17 33.36 2483.500 26.75 33.37	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 2390.000 25.00 33.35 58.35 2390.000 14.75 33.35 48.10 X 2444.400 86.00 33.36 119.36 * 2444.400 76.17 33.36 109.53 2483.500 26.75 33.37 60.12	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m dBuV/m 2390.000 25.00 33.35 58.35 74.00 2390.000 14.75 33.35 48.10 54.00 X 2444.400 86.00 33.36 119.36 74.00 * 2444.400 76.17 33.36 109.53 54.00 2483.500 26.75 33.37 60.12 74.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB dBuV/m dB 2390.000 25.00 33.35 58.35 74.00 -15.65 2390.000 14.75 33.35 48.10 54.00 -5.90 X 2444.400 86.00 33.36 119.36 74.00 45.36 * 2444.400 76.17 33.36 109.53 54.00 55.53 2483.500 26.75 33.37 60.12 74.00 -13.88	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB UV/m dB Detector 2390.000 25.00 33.35 58.35 74.00 -15.65 peak 2390.000 14.75 33.35 48.10 54.00 -5.90 AVG X 2444.400 86.00 33.36 119.36 74.00 45.36 peak * 2444.400 76.17 33.36 109.53 54.00 55.53 AVG 2483.500 26.75 33.37 60.12 74.00 -13.88 peak

Report No.: BTL-FCCP-1-1408C090 Page 59 of 160

Test Mode: TX G MODE 2437MHz

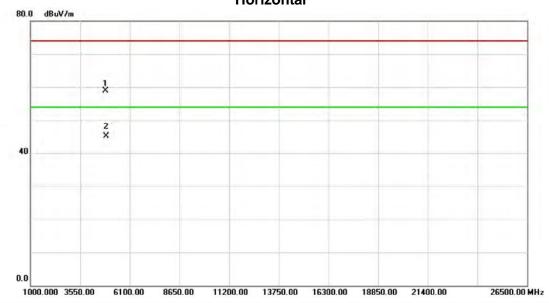
Vertical 80.0 dBuV/m 2 X 40 1000.000 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 MHz


No.	Mk		Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4874.260	52.08	8.11	60.19	74.00	-13.81	peak		
2	*	4874.260	40.05	8.11	48.16	54.00	-5.84	AVG		

Report No.: BTL-FCCP-1-1408C090 Page 60 of 160

Test Mode: TX G MODE 2437MHz

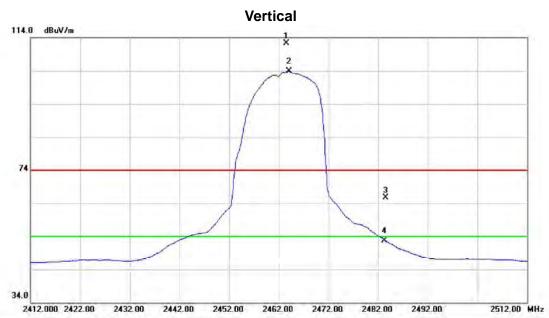
Horizontal


Mk	t. 1	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
	2390	0.000	23.11	33.35	56.46	74.00	-17.54	peak	
	2390	0.000	12.79	33.35	46.14	54.00	-7.86	AVG	
*	2442	2.400	65.39	33.36	98.75	54.00	44.75	AVG	Fundamental frequency, no limit
Χ	2443	3.700	73.89	33.36	107.25	74.00	33.25	peak	Fundamental frequency, no limit
	2483	3.500	24.00	33.37	57.37	74.00	-16.63	peak	
	2483	3.500	13.43	33.37	46.80	54.00	-7.20	AVG	
	*	2390 2390 * 2442 X 2443 2483	MHz 2390.000 2390.000 * 2442.400	Mk. Freq. Level MHz dBuV 2390.000 23.11 2390.000 12.79 * 2442.400 65.39 X 2443.700 73.89 2483.500 24.00	Mk. Freq. Level Factor MHz dBuV dB 2390.000 23.11 33.35 2390.000 12.79 33.35 * 2442.400 65.39 33.36 X 2443.700 73.89 33.36 2483.500 24.00 33.37	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 2390.000 23.11 33.35 56.46 2390.000 12.79 33.35 46.14 * 2442.400 65.39 33.36 98.75 X 2443.700 73.89 33.36 107.25 2483.500 24.00 33.37 57.37	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 2390.000 23.11 33.35 56.46 74.00 2390.000 12.79 33.35 46.14 54.00 * 2442.400 65.39 33.36 98.75 54.00 X 2443.700 73.89 33.36 107.25 74.00 2483.500 24.00 33.37 57.37 74.00	MHz dBuV dB dBuV/m dBuV/m dB dBuV/m dB dB dBuV/m dB dB </td <td>Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector 2390.000 23.11 33.35 56.46 74.00 -17.54 peak 2390.000 12.79 33.35 46.14 54.00 -7.86 AVG * 2442.400 65.39 33.36 98.75 54.00 44.75 AVG X 2443.700 73.89 33.36 107.25 74.00 33.25 peak 2483.500 24.00 33.37 57.37 74.00 -16.63 peak</td>	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector 2390.000 23.11 33.35 56.46 74.00 -17.54 peak 2390.000 12.79 33.35 46.14 54.00 -7.86 AVG * 2442.400 65.39 33.36 98.75 54.00 44.75 AVG X 2443.700 73.89 33.36 107.25 74.00 33.25 peak 2483.500 24.00 33.37 57.37 74.00 -16.63 peak

Report No.: BTL-FCCP-1-1408C090 Page 61 of 160

Test Mode: TX G MODE 2437MHz

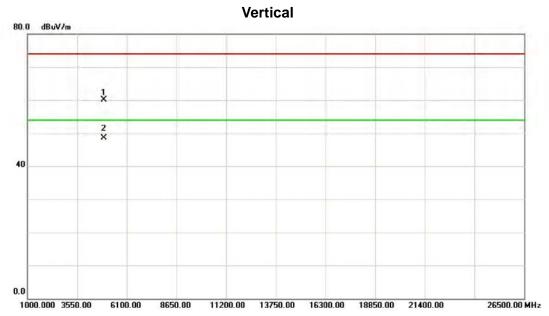
Horizontal



No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4873.200	50.86	8.11	58.97	74.00	-15.03	peak		
2	*	4873.200	37.05	8.11	45.16	54.00	-8.84	AVG		

Report No.: BTL-FCCP-1-1408C090 Page 62 of 160

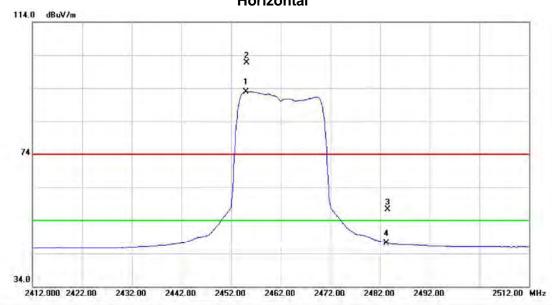
Test Mode: TX G MODE 2462MHz



No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	Χ	2463.500	78.93	33.37	112.30	74.00	38.30	peak	Fundamental frequency, no limit
2	*	2464.000	70.44	33.37	103.81	54.00	49.81	AVG	Fundamental frequency, no limit
3		2483.500	32.26	33.37	65.63	74.00	-8.37	peak	
4		2483.500	19.43	33.37	52.80	54.00	-1.20	AVG	

Report No.: BTL-FCCP-1-1408C090 Page 63 of 160

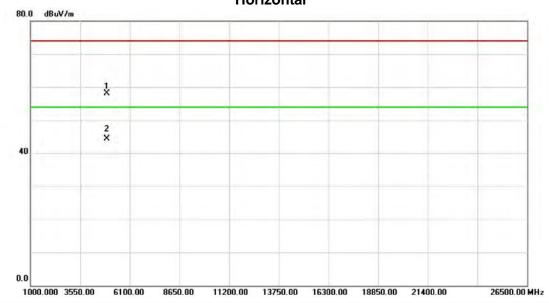
Orthogonal Axis: X
Test Mode: TX G MODE 2462MHz


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4924.460	51.91	8.20	60.11	74.00	-13.89	peak		
2	*	4924.460	40.29	8.20	48.49	54.00	-5.51	AVG		

Report No.: BTL-FCCP-1-1408C090 Page 64 of 160

Test Mode: TX G MODE 2462MHz

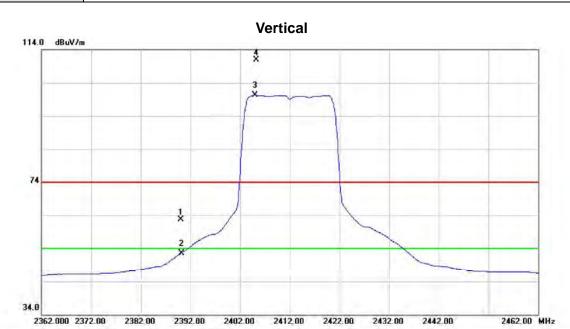
Horizontal


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	2455.000	59.59	33.37	92.96	54.00	38.96	AVG	Fundamental frequency, no limit
2	Χ	2455.100	68.32	33.37	101.69	74.00	27.69	peak	Fundamental frequency, no limit
3		2483.500	23.97	33.37	57.34	74.00	-16.66	peak	
4		2483.500	13.77	33.37	47.14	54.00	-6.86	AVG	

Report No.: BTL-FCCP-1-1408C090 Page 65 of 160

Test Mode: TX G MODE 2462MHz

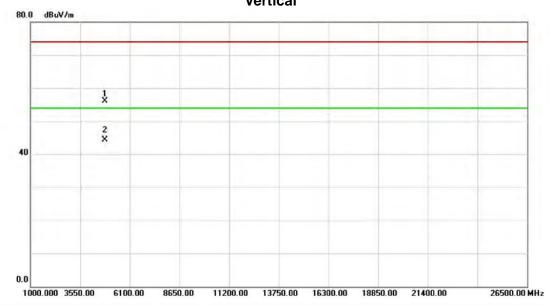
Horizontal



No.	Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4923.900	49.96	8.20	58.16	74.00	-15.84	peak		
2	*	4923.900	36.05	8.20	44.25	54.00	-9.75	AVG		

Report No.: BTL-FCCP-1-1408C090 Page 66 of 160

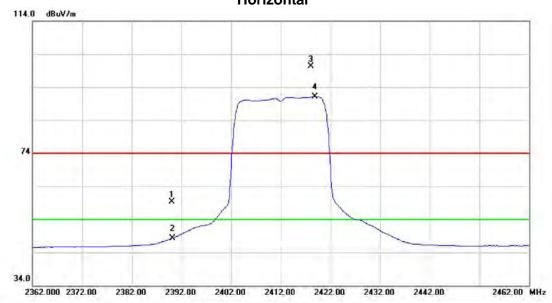
Test Mode: TX N-20M MODE 2412MHz


No.	Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2390.000	29.30	33.35	62.65	74.00	-11.35	peak	
2		2390.000	19.15	33.35	52.50	54.00	-1.50	AVG	
3	*	2405.000	66.90	33.35	100.25	54.00	46.25	AVG	Fundamental frequency, no limit
4	Χ	2405.300	77.64	33.35	110.99	74.00	36.99	peak	Fundamental frequency, no limit

Report No.: BTL-FCCP-1-1408C090 Page 67 of 160

Test Mode: TX N-20M MODE 2412MHz

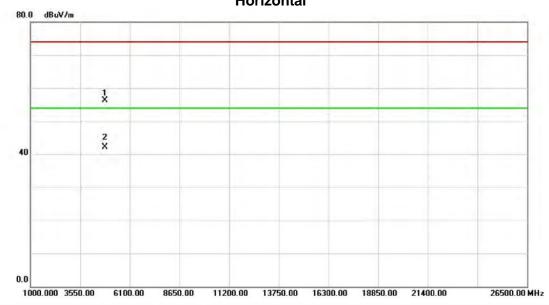
Vertical


No.	Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4824.150	48.18	8.01	56.19	74.00	-17.81	peak		
2	*	4824.150	36.28	8.01	44.29	54.00	-9.71	AVG		

Report No.: BTL-FCCP-1-1408C090 Page 68 of 160

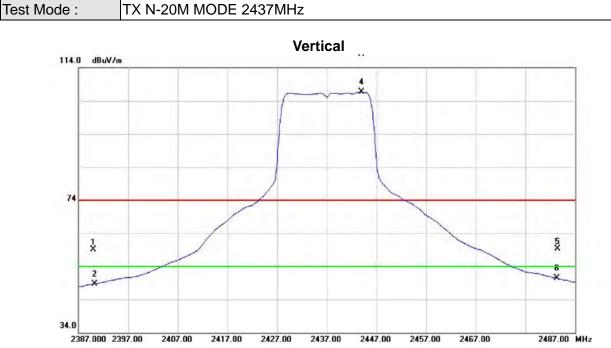
Test Mode: TX N-20M MODE 2412MHz

Horizontal


Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
	2390.000	25.91	33.35	59.26	74.00	-14.74	peak	
	2390.000	14.93	33.35	48.28	54.00	-5.72	AVG	
Χ	2418.000	67.02	33.36	100.38	74.00	26.38	peak	Fundamental frequency, no limit
*	2418.900	57.71	33.36	91.07	54.00	37.07	AVG	Fundamental frequency, no limit
	X	MHz 2390.000 2390.000 X 2418.000	Mk. Freq. Level MHz dBuV 2390.000 25.91 2390.000 14.93 X 2418.000 67.02	Mk. Freq. Level Factor MHz dBuV dB 2390.000 25.91 33.35 2390.000 14.93 33.35 X 2418.000 67.02 33.36	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 2390.000 25.91 33.35 59.26 2390.000 14.93 33.35 48.28 X 2418.000 67.02 33.36 100.38	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 2390.000 25.91 33.35 59.26 74.00 2390.000 14.93 33.35 48.28 54.00 X 2418.000 67.02 33.36 100.38 74.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB dB	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector 2390.000 25.91 33.35 59.26 74.00 -14.74 peak 2390.000 14.93 33.35 48.28 54.00 -5.72 AVG X 2418.000 67.02 33.36 100.38 74.00 26.38 peak

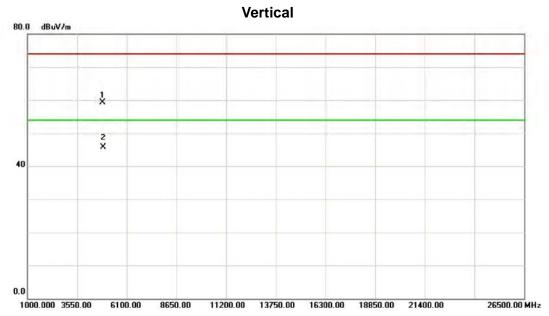
Report No.: BTL-FCCP-1-1408C090 Page 69 of 160

Test Mode: TX N-20M MODE 2412MHz


Horizontal

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4822.690	48.21	8.01	56.22	74.00	-17.78	peak	
2	*	4822.690	34.08	8.01	42.09	54.00	-11.91	AVG	

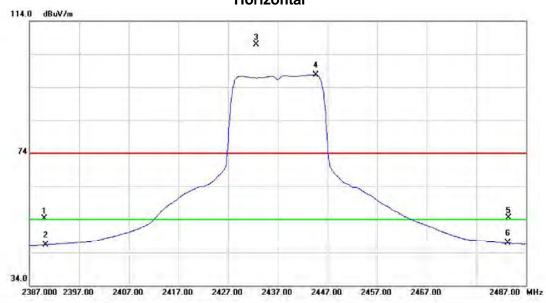
Report No.: BTL-FCCP-1-1408C090 Page 70 of 160



No.	Mk	. Freq.	Reading Level	Correct	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2390.000	25.84	33.35	59.19	74.00	-14.81	peak	
2		2390.000	15.36	33.35	48.71	54.00	-5.29	AVG	
3	Χ	2444.000	85.00	33.36	118.36	74.00	44.36	peak	Fundamental frequency, no limit
4	*	2444.000	73.27	33.36	106.63	54.00	52.63	AVG	Fundamental frequency, no limit
5		2483.500	26.00	33.37	59.37	74.00	-14.63	peak	
6		2483.500	17.09	33.37	50.46	54.00	-3.54	AVG	

Report No.: BTL-FCCP-1-1408C090 Page 71 of 160

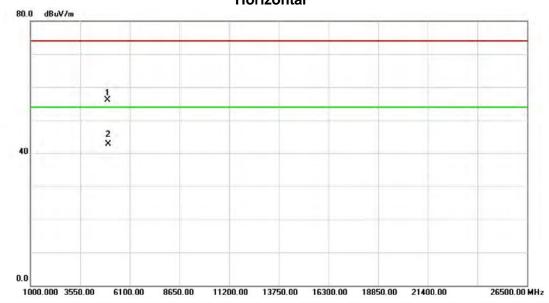
Orthogonal Axis: X
Test Mode: TX N-20M MODE 2437MHz


No.	Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4872.490	51.14	8.11	59.25	74.00	-14.75	peak		
2	*	4872.490	37.68	8.11	45.79	54.00	-8.21	AVG		

Report No.: BTL-FCCP-1-1408C090 Page 72 of 160

Test Mode: TX N-20M MODE 2437MHz

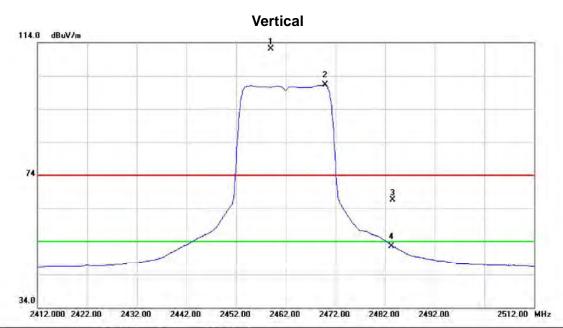
Horizontal


No.	Mk	. F	req.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		-	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2390	0.000	20.94	33.35	54.29	74.00	-19.71	peak	
2		2390	0.000	12.95	33.35	46.30	54.00	-7.70	AVG	
3	Χ	2432	2.600	73.58	33.36	106.94	74.00	32.94	peak	Fundamental frequency, no limit
4	*	2444	.600	64.37	33.36	97.73	54.00	43.73	AVG	Fundamental frequency, no limit
5		2483	3.500	21.20	33.37	54.57	74.00	-19.43	peak	
6		2483	3.500	13.51	33.37	46.88	54.00	-7.12	AVG	

Report No.: BTL-FCCP-1-1408C090 Page 73 of 160

Test Mode: TX N-20M MODE 2437MHz

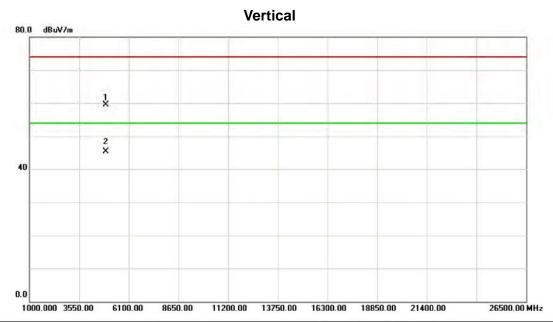
Horizontal



No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4973.550	47.89	8.30	56.19	74.00	-17.81	peak	
2	*	4973.550	34.47	8.30	42.77	54.00	-11.23	AVG	

Report No.: BTL-FCCP-1-1408C090 Page 74 of 160

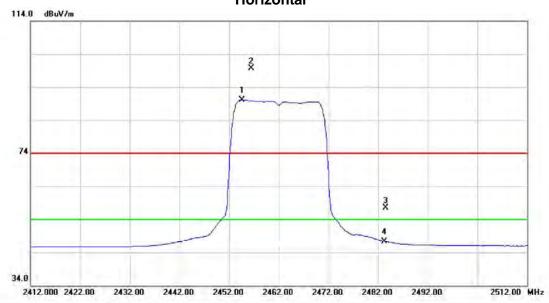
Test Mode: TX N-20M MODE 2462MHz



Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
Χ	2459.000	78.68	33.37	112.05	74.00	38.05	peak	Fundamental frequency, no limit
*	2469.900	67.83	33.38	101.21	54.00	47.21	AVG	Fundamental frequency, no limit
	2483.500	33.08	33.37	66.45	74.00	-7.55	peak	
	2483.500	19.23	33.37	52.60	54.00	-1.40	AVG	
	X	MHz X 2459.000 * 2469.900 2483.500	Mk. Freq. Level MHz dBuV X 2459.000 78.68 * 2469.900 67.83 2483.500 33.08	Mk. Freq. Level Factor MHz dBuV dB X 2459.000 78.68 33.37 * 2469.900 67.83 33.38 2483.500 33.08 33.37	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m X 2459.000 78.68 33.37 112.05 * 2469.900 67.83 33.38 101.21 2483.500 33.08 33.37 66.45	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m dBuV/m X 2459.000 78.68 33.37 112.05 74.00 * 2469.900 67.83 33.38 101.21 54.00 2483.500 33.08 33.37 66.45 74.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB dB	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector X 2459.000 78.68 33.37 112.05 74.00 38.05 peak * 2469.900 67.83 33.38 101.21 54.00 47.21 AVG 2483.500 33.08 33.37 66.45 74.00 -7.55 peak

Report No.: BTL-FCCP-1-1408C090 Page 75 of 160

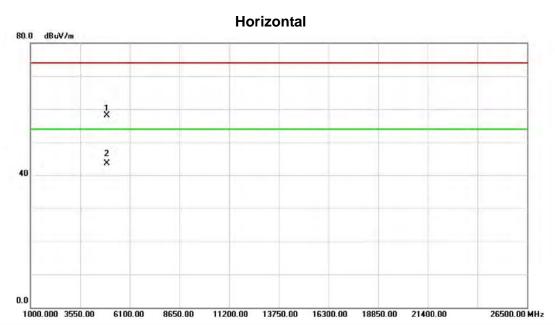
Orthogonal Axis: X
Test Mode: TX N-20M MODE 2462MHz


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4923.500	51.26	8.20	59.46	74.00	-14.54	peak		
2	*	4923.500	37.01	8.20	45.21	54.00	-8.79	AVG		

Report No.: BTL-FCCP-1-1408C090 Page 76 of 160

Test Mode: TX N-20M MODE 2462MHz

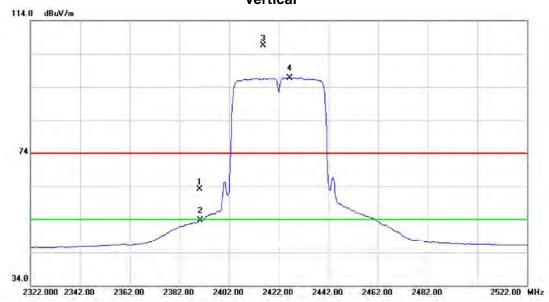
Horizontal



No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	2454.600	56.77	33.37	90.14	54.00	36.14	AVG	Fundamental frequency, no limit
2	Χ	2456.400	66.29	33.37	99.66	74.00	25.66	peak	Fundamental frequency, no limit
3		2483.500	24.05	33.37	57.42	74.00	-16.58	peak	
4		2483.500	13.97	33.37	47.34	54.00	-6.66	AVG	

Report No.: BTL-FCCP-1-1408C090 Page 77 of 160

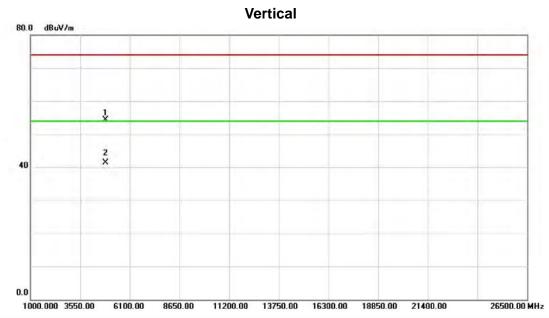
Orthogonal Axis: X
Test Mode: TX N-20M MODE 2462MHz


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4925.200	49.95	8.20	58.15	74.00	-15.85	peak		
2	*	4925.200	35.27	8.20	43.47	54.00	-10.53	AVG		

Report No.: BTL-FCCP-1-1408C090 Page 78 of 160

Test Mode: TX N-40M MODE 2422MHz

Vertical



No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	, -	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2390.000	29.79	33.35	63.14	74.00	-10.86	peak	
2		2390.000	20.27	33.35	53.62	54.00	-0.38	AVG	
3	Χ	2415.600	73.11	33.36	106.47	74.00	32.47	peak	Fundamental frequency, no limit
4	*	2426.400	63.37	33.35	96.72	54.00	42.72	AVG	Fundamental frequency, no limit

Report No.: BTL-FCCP-1-1408C090 Page 79 of 160

Orthogonal Axis: X
Test Mode: TX N-40M MODE 2422MHz

No.	Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4843.590	46.21	8.05	54.26	74.00	-19.74	peak		
2	*	4843.590	33.24	8.05	41.29	54.00	-12.71	AVG		

Report No.: BTL-FCCP-1-1408C090 Page 80 of 160