

No.3, Jinshagang 1st Road, ShiXia, Dalang Town, Dong Guan, China. TEL : (0769) 8318-3000 FAX : (0769) 8319-6000

Declaration

Neutron represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to National Measurement Laboratory (**NML**) of **R.O.C**, or National Institute of Standards and Technology (**NIST**) of **U.S.A**.

Neutron's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **Neutron** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **Neutron** issued reports.

Neutron's reports must not be used by the client to claim product endorsement by the authorities or any agency of the Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **Neutron-self**, extracts from the test report shall not be reproduced except in full with **Neutron**'s authorized written approval.

Neutron's laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Table of Contents	Page
1. CERTIFICATION	5
2 . SUMMARY OF TEST RESULTS	6
2.1 TEST FACILITY	7
2.2 MEASUREMENT UNCERTAINTY	7
3. GENERAL INFORMATION	8
3.1 GENERAL DESCRIPTION OF EUT	8
	-
3.2 DESCRIPTION OF TEST MODES	10
3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	11
3.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTE	
3.5 DESCRIPTION OF SUPPORT UNITS	13
4 . EMC EMISSION TEST	14
4.1 CONDUCTED EMISSION MEASUREMENT	14
4.1.1 POWER LINE CONDUCTED EMISSION LIMITS	14
4.1.2 MEASUREMENT INSTRUMENTS LIST AND SETTING 4.1.3 TEST PROCEDURE	14 15
4.1.3 TEST PROCEDURE 4.1.4 DEVIATION FROM TEST STANDARD	15
4.1.5 TEST SETUP	15
4.1.6 EUT OPERATING CONDITIONS	15
4.1.7 TEST RESULTS	16
4.1.8. EUT TEST PHOTO	21
4.2 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION LIMITS	22 22
4.2.1 RADIATED EMISSION LIMITS 4.2.2 MEASUREMENT INSTRUMENTS LIST ANS SETTING	22
4.2.3 TEST PROCEDURE	24
4.2.4 DEVIATION FROM TEST STANDARD	24
	25
4.2.6 EUT OPERATING CONDITIONS 4.2.7 TEST RESULTS (BELOW 30MHZ)	26 27
4.2.8 TEST RESULTS (BETWEEN 30 – 1000 MHZ)	28
4.2.9 TEST RESULTS (ABOVE 1000 MHZ)	41
4.2.10. EUT TEST PHOTO	89
5 . BANDWIDTH TEST	92
5.1 APPLIED PROCEDURES / LIMIT	92
5.1.1 MEASUREMENT INSTRUMENTS LIST	92
5.1.2 TEST PROCEDURE 5.1.3 DEVIATION FROM STANDARD	92 92
5.1.4 TEST SETUP	92 92
5.1.5 EUT OPERATION CONDITIONS	92

Neutron Engineering Inc.	
Table of Content	
5.1.6 TEST RESULTS 5.1.7. EUT TEST PHOTO	93 101
6 . MAXIMUM OUTPUT POWER TEST	102
6.1 APPLIED PROCEDURES / LIMIT 6.1.1 MEASUREMENT INSTRUMENTS L 6.1.2 TEST PROCEDURE 6.1.3 DEVIATION FROM STANDARD 6.1.4 TEST SETUP 6.1.5 EUT OPERATION CONDITIONS 6.1.6 TEST RESULTS 6.1.7. EUT TEST PHOTO	.IST 102 102 102 102 102 102 103 103 105
7 . ANTENNA CONDUCTED SPURIOUS EN 7.1 APPLIED PROCEDURES / LIMIT 7.1.1 MEASUREMENT INSTRUMENTS L 7.1.2 TEST PROCEDURE 7.1.3 DEVIATION FROM STANDARD 7.1.4 TEST SETUP 7.1.5 EUT OPERATION CONDITIONS 7.1.6 TEST RESULTS 7.1.7. EUT TEST PHOTO	106
8 . POWER SPECTRAL DENSITY TEST 8.1 APPLIED PROCEDURES / LIMIT 8.1.1 MEASUREMENT INSTRUMENTS L 8.1.2 TEST PROCEDURE 8.1.3 DEVIATION FROM STANDARD 8.1.4 TEST SETUP 8.1.5 EUT OPERATION CONDITIONS 8.1.6 TEST RESULTS 8.1.7. EUT TEST PHOTO	128 128 128 128 128 128 128 128 128 129 137
9 . EUT PHOTO	138

1. CERTIFICATION

Equipment	:	Wireless N150 Cloud Router
Brand Name	:	D-Link
Model Name	:	DIR-600L
Applicant	:	D-LINK CORPORATION
Date of Test	:	Jan. 10, 2013 ~ Feb. 27, 2013
Test Item	:	ENGINEERING SAMPLE
Standards	:	FCC Part15, Subpart C(15.247) / ANSI C63.4-2009

The above equipment has been tested and found compliance with the requirement of the relative standards by Neutron Engineering Inc. EMC Laboratory.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. NEI-FCCP-1-1301C059) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of NVLAP and TAF according to the ISO-17025 quality assessment standard and technical standard(s).

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C				
Standard Section	Test Item	Judgment	Remark	
15.207	Conducted Emission	PASS		
15.247(d)	Antenna conducted Spurious Emission	PASS		
15.247(a)(2)	6dB Bandwidth	PASS		
15.247(b)(3)	Peak Output Power	PASS		
15.209/15.205	Radiated Spurious Emission	PASS		
15.247(e)	Power Spectral Density	PASS		
15.203	Antenna Requirement	PASS		

NOTE:

(1)" N/A" denotes test is not applicable in this test report

(2) The test follows FCC KDB Publication No. 558074 D01 DTS Meas Guidance v02 (Measurement Guidelines of DTS)

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is **DG-C02/DG-CB03** at the location of No.3, Jinshagang 1st Road, ShiXia, Dalang Town, Dong Guan, China.523792 Neutron's test firm number for IC 4428B-1

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

The reported uncertainty of measurement y \pm U $_{\rm 2}$ where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $\,$ k=2 $_{\rm 2}$ providing a level of confidence of approximately 95 % $_{\rm 2}$

A. Conducted Measurement :

Test Site	Method	Measurement Frequency Range	U , (dB)	NOTE
DG-C02	CISPR	150 KHz ~ 30MHz	1.94	

B. Radiated Measurement :

Test Site	Method	Measurement Frequency Range	Ant. H / V	U , (dB)	NOTE
		30MHz ~ 200MHz	V	3.82	
		30MHz ~ 200MHz	Н	3.60	
		200MHz ~ 1,000MHz	V	3.86	
DG-CB03	CISPR	200MHz ~ 1,000MHz	Н	3.94	
DG-CB03	CISER	1GHz~18GHz	V	3.12	
		1GHz~18GHz	Н	3.68	
		18GHz~40GHz	V	4.15	
		18GHz~40GHz	Н	4.14	

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	Wireless N150 Cloud Router		
Brand Name	D-Link		
Model Name	DIR-600L		
Model Difference	N/A		
	The EUT is a Wireless N	150 Cloud Router.	
	Operation Frequency	2412~2462 MHz	
	Modulation Technology	802.11b:DSSS 802.11g:OFDM 802.11n:OFDM	
	Bit Rate of Transmitter	802.11b:11/5.5/2/1 Mbps 802.11g:54/48/36/24/18/12/9/6 Mbps Draft 802.11n:up to 150Mbps	
	Number of Channel	11 CH, Please see note 2.(Page 9)	
Product Description	Antenna Designation Antenna Gain(Peak)		
	Output Power	802.11b: 22.83dBm 802.11g: 22.32dBm 802.11n(20MHz): 21.82 dBm 802.11n(40MHz): 19.41 dBm	
	User's Manual, the EUT Device. More details of E to the User's Manual.	, features, or specification exhibited in is considered as an ITE/Computing EUT technical specification, please refer	
Power Source	DC voltage supplied from AC/DC adapter. #1 Brand/ Model name: D-Link / F05W-050100SPAU #2 Brand/ Model name: D-Link / AMS47-0501000FU		
Power Rating	#1 I/P AC 100-240V~ 50/60Hz, 190mA O/P DC 5V 1A #2 I/P AC 100-240V~ 50/60Hz, 0.2A/15VA O/P DC 5V 1.0A		
Connecting I/O Port(s)	Please refer to the User'	s Manual	

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2. CH 01 – CH 11 for 802.11b, 802.11g, 802.11n(20MHz) CH 03 – CH 09 for 802.11n(40MHz)

	Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452		

3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	Note
Group 1	8 M.gear	C037-511238-A (SSR-30090)	Dipole	N/A	4.0	
Group 2	Ð	260-31069	Dipole	N/A	3.29	

ANT 1 and ANT 2 are the same type antenna, ANT 1 is recorded as the worst case since which gain is higher than ANT 2.

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	TX B MODE CHANNEL 01/06/11
Mode 2	TX G MODE CHANNEL 01/06/11
Mode 3	TX N-20MHZ MODE CHANNEL 01/06/11
Mode 4	TX N-40MHZ MODE CHANNEL 03/06/09
Mode 5	Normal Link

The EUT system operated these modes were found to be the worst case during the pre-scanning test as following:

For Conducted Test		
Final Test Mode	Description	
Mode 5	Normal Link	

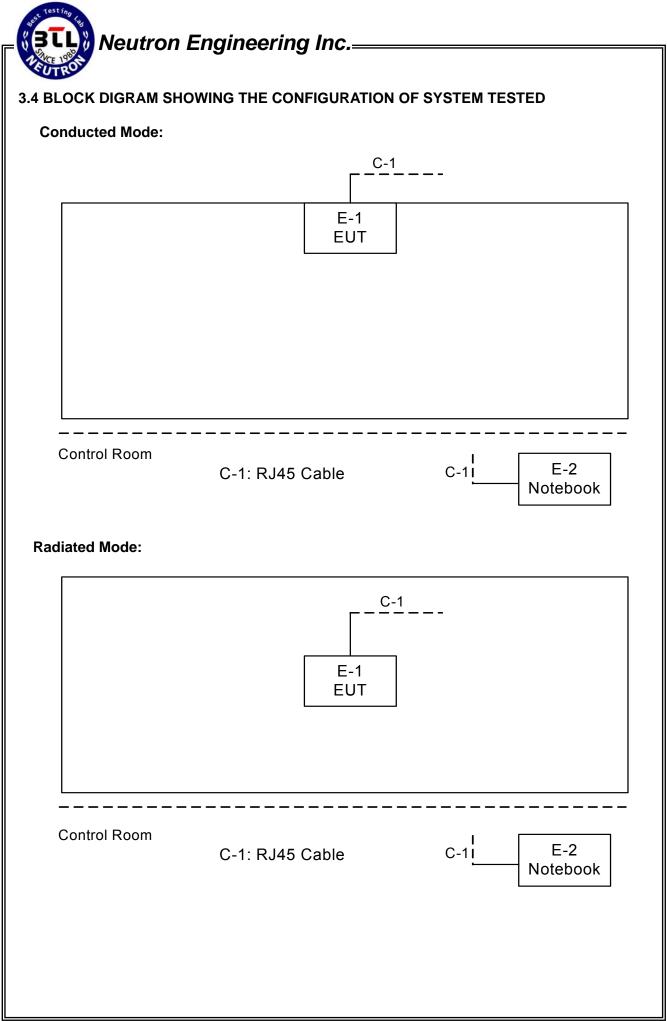
For Radiated Test				
Final Test Mode	Description			
Mode 1	TX B MODE CHANNEL 01/06/11			
Mode 2	TX G MODE CHANNEL 01/06/11			
Mode 3	TX N-20MHZ MODE CHANNEL 01/06/11			
Mode 4	TX N-40MHZ MODE CHANNEL 03/06/09			

Note:

(1) The measurements are performed at the high, middle, low available channels.

(2) 802.11b mode: DBPSK (1Mbps)

802.11g mode: OFDM (6Mbps) 802.11n HT20 mode : BPSK (6.5Mbps) 802.11n HT40 mode : BPSK (13.5Mbps) For radiated emission tests, the highest output powers were set for final test.



3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN

Test software version	MP_TEST				
Frequency	2412 MHz	2412 MHz 2437 MHz 2462 M			
IEEE 802.11b DSSS	44	44	44		
IEEE 802.11g OFDM	43	43	43		

Test software version	MP-TOOL				
Frequency (MHz)	2412 MHz 2437 MHz 2462 MHz				
IEEE 802.11n (20MHz)	43	43	43		
Frequency (MHz)	2422 MHz	2437 MHz	2452 MHz		
IEEE 802.11n (40MHz)	36	36	36		

3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	IC ID	Series No.	Note
E-1	Wireless N150 Cloud Router	D-Link	DIR-600L	KA2IR600LB1	N/A	EUT
E-2	NOTEBOOK	DELL	INSPIRON 1420	NA	NA	

Item	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	10m	

Note:

(1) The support equipment was authorized by Declaration of Confirmation.

(2) For detachable type I/O cable should be specified the length in m in $\[\]$ Length $\[\]$ column.

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

FREQUENCY (MHz)	Class A	(dBuV)	Class B	Standard		
	Quasi-peak	Average	Quasi-peak	Average	Stanuaru	
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	CISPR	
0.50 -5.0	73.00	60.00	56.00	46.00	CISPR	
5.0 -30.0	73.00	60.00	60.00	50.00	CISPR	

0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	73.00	60.00	56.00	46.00	FCC
5.0 -30.0	73.00	60.00	60.00	50.00	FCC

Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

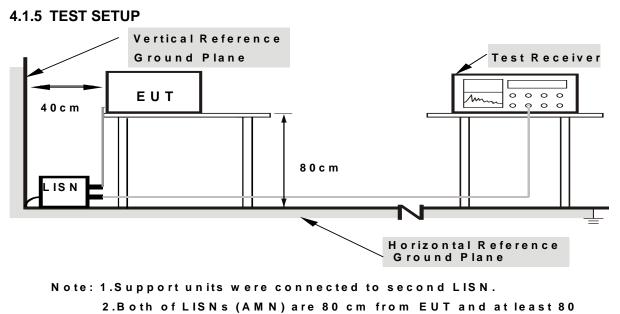
4.1.2 MEASUREMENT INSTRUMENTS LIST AND SETTING

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Next Calibration
1	LISN	EMCO	3816/2	00052765	May.26.2012	May.04.2013
2	LISN	R&S	ENV216	100087	May.26.2012	May.04.2013
3	Test Cable	N/A	C_17	N/A	Mar.18.2012	Mar.28.2013
4	EMI TEST RECEIVER	R&S	ESCS30	826547/02 2	May.26.2012	May.04.2013
5	50Ω Terminator	SHX	TF2-3G-A	08122902	May.26.2012	May.04.2013

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of Equipment List is One Year.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz



4.1.3 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.4 DEVIATION FROM TEST STANDARD

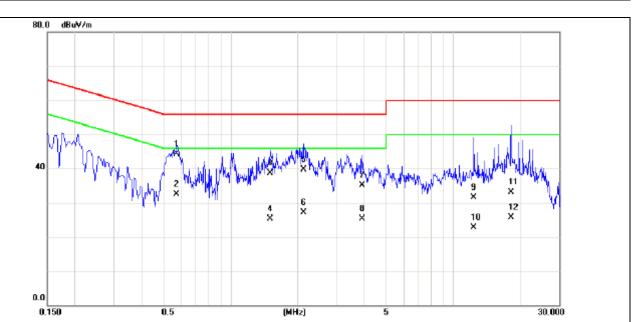
No deviation

from other units and other metal planes

4.1.6 EUT OPERATING CONDITIONS

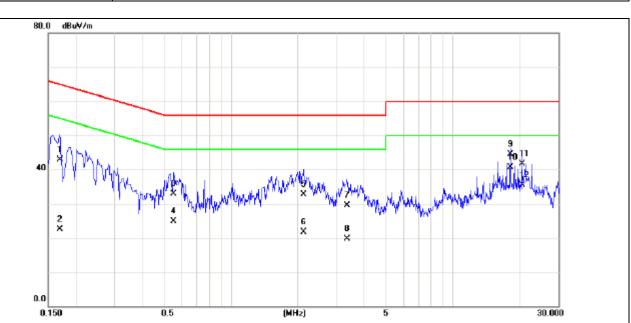
The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

The EUT was programmed to be in continuously transmitting mode.

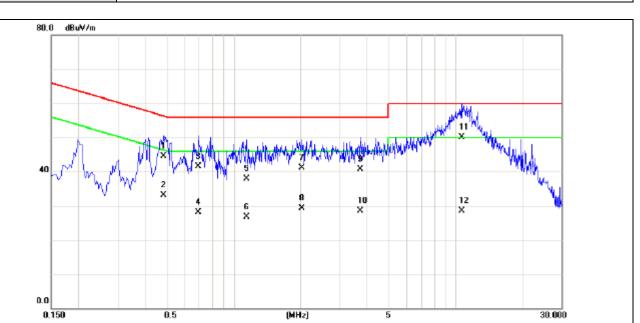

4.1.7 TEST RESULTS

Remark

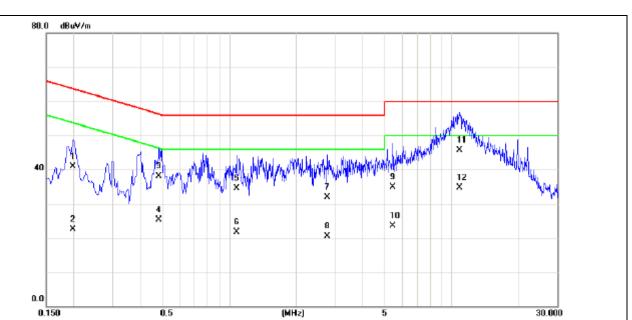
- (1) Reading in which marked as QP means measurements by using are Quasi-Peak Mode with Detector BW=9KHz;SPA setting in RBW=10KHz,VBW =10KHz, Swp. Time = 0.3 sec./MHz ° Reading in which marked as AV means measurements by using are Average Mode with instrument setting in RBW=10KHz,VBW=10KHz, Swp. Time =0.3 sec./MHz °
- (2) All readings are QP Mode value unless otherwise stated AVG in column of Note ... If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform In this case, a "*" marked in AVG Mode column of Interference Voltage Measured •
- (3) Measuring frequency range from 150KHz to 30MHz $_{\circ}$


EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L			
Temperature:	25 °C	Relative Humidity :	58 %			
Test Voltage :	AC 120V/60Hz	Phase:	Line			
Test Mode:	Normal Link– Adapter: F05W-050100SPAU					

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	0.5740	34.60	9.70	44.30	56.00	-11.70	QP	
2		0.5740	22.80	9.70	32.50	46.00	-13.50	AVG	
3		1.5100	28.90	9.74	38.64	56.00	-17.36	QP	
4		1.5100	15.60	9.74	25.34	46.00	-20.66	AVG	
5		2.1340	30.00	9.76	39.76	56.00	-16.24	QP	
6		2.1340	17.30	9.76	27.06	46.00	-18.94	AVG	
7		3.9100	25.20	9.82	35.02	56.00	-20.98	QP	
8		3.9100	15.50	9.82	25.32	46.00	-20.68	AVG	
9		12.4260	21.30	10.15	31.45	60.00	-28.55	QP	
10		12.4260	12.60	10.15	22.75	50.00	-27.25	AVG	
11		18.2380	22.80	10.33	33.13	60.00	-26.87	QP	
12		18.2380	15.40	10.33	25.73	50.00	-24.27	AVG	


	_					
EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L			
Temperature:	25 °C	Relative Humidity :	58 %			
Test Voltage :	AC 120V/60Hz	Phase:	Neutral			
Test Mode:	Normal Link– Adapter: F05W-050100SPAU					

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	0.1700	33.20	9.68	42.88	64.96	-22.08	QP	
2	0.1700	12.88	9.68	22.56	54.96	-32.40	AVG	
3	0.5540	23.20	9.70	32.90	56.00	-23.10	QP	
4	0.5540	15.20	9.70	24.90	46.00	-21.10	AVG	
5	2.1340	22.90	9.78	32.68	56.00	-23.32	QP	
6	2.1340	11.90	9.78	21.68	46.00	-24.32	AVG	
7	3.3500	19.74	9.81	29.55	56.00	-26.45	QP	
8	3.3500	9.90	9.81	19.71	46.00	-26.29	AVG	
9	18.2900	34.00	10.42	44.42	60.00	-15.58	QP	
10 *	18.2900	30.30	10.42	40.72	50.00	-9.28	AVG	
11	20.5820	31.10	10.54	41.64	60.00	-18.36	QP	
12	20.5820	24.90	10.54	35.44	50.00	-14.56	AVG	


EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L	
Temperature:	25 °C	Relative Humidity :	58 %	
Test Voltage :	AC 120V/60Hz	Phase:	Line	
Test Mode:	Normal Link– Adapter: AMS47-0501000FU			

No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	0.4860	34.90	9.70	44.60	56.24	-11.64	QP	
2	0.4860	23.50	9.70	33.20	46.24	-13.04	AVG	
3	0.6940	31.70	9.71	41.41	56.00	-14.59	QP	
4	0.6940	18.40	9.71	28.11	46.00	-17.89	AVG	
5	1.1420	28.20	9.71	37.91	56.00	-18.09	QP	
6	1.1420	17.00	9.71	26.71	46.00	-19.29	AVG	
7	2.0260	31.30	9.76	41.06	56.00	-14.94	QP	
8	2.0260	19.60	9.76	29.36	46.00	-16.64	AVG	
9	3.7340	30.90	9.80	40.70	56.00	-15.30	QP	
10	3.7340	18.70	9.80	28.50	46.00	-17.50	AVG	
11 *	10.6580	40.00	10.10	50.10	60.00	-9.90	QP	
12	10.6580	18.40	10.10	28.50	50.00	-21.50	AVG	

EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L	
Temperature:	25 °C	Relative Humidity :	58 %	
Test Voltage :	AC 120V/60Hz	Phase:	Neutral	
Test Mode:	Normal Link– Adapter: AMS47-0501000FU			

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	0.1980	31.20	9.69	40.89	63.69	-22.80	QP	
2	0.1980	12.90	9.69	22.59	53.69	-31.10	AVG	
3	0.4860	28.40	9.69	38.09	56.24	-18.15	QP	
4	0.4860	15.60	9.69	25.29	46.24	-20.95	AVG	
5	1.0780	24.80	9.72	34.52	56.00	-21.48	QP	
6	1.0780	11.90	9.72	21.62	46.00	-24.38	AVG	
7	2.7740	22.20	9.80	32.00	56.00	-24.00	QP	
8	2.7740	10.70	9.80	20.50	46.00	-25.50	AVG	
9	5.4700	25.10	9.86	34.96	60.00	-25.04	QP	
10	5.4700	13.70	9.86	23.56	50.00	-26.44	AVG	
11 *	10.9140	35.50	10.15	45.65	60.00	-14.35	QP	
12	10.9140	24.60	10.15	34.75	50.00	-15.25	AVG	

4.1.8. EUT TEST PHOTO

Conducted Measurement Photos

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 RADIATED EMISSION LIMITS (Frequency Range 9KHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	(dBuV/m) (at 3m)		
FREQUENCT (IVITZ)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 – 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

4.2.2 MEASUREMENT INSTRUMENTS LIST ANS SETTING

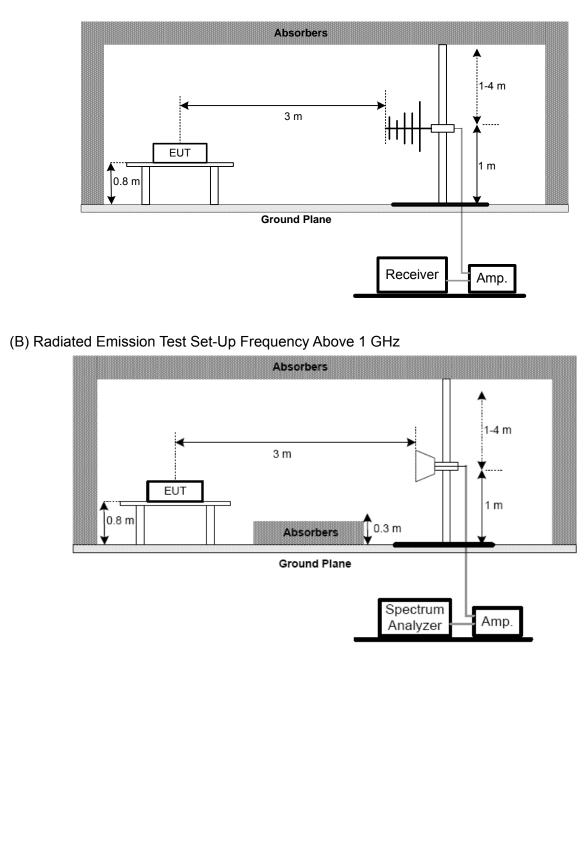
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Next Calibration
1	Antenna	Schwarbeck	VULB9160	9160-3232	Jun .04.2012	May.25.2013
2	Amplifier	HP	8447D	2944A09673	May.26.2012	May.04.2013
3	Test Receiver	R&S	ESCI	100382	May.26.2012	May.04.2013
4	Test Cable	N/A	C-01_CB03	N/A	Jul.01.2012	Jul.01.2013
5	Antenna	ETS	3115	00075789	May.25.2012	May.25.2013
6	Amplifier	Agilent	8449B	3008A02274	May.25.2012	May.04.2013
7	Spectrum	Agilent	E4408B	US39240143	Nov.24.2012	Nov.24.2013
8	Test Cable	HUBER+SUH NER	C-45	N/A	May.04.2012	May.02.2013
9	Controller	СТ	SC100	N/A	N/A	N/A
10	Horn Antenna	EMCO	3115	9605-4803	May.26.2012	May.25.2013
11	Active Loop Antenna	R&S	HFH2-Z2	830749/020	Oct.13.2012	May.04.2013
12	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170319	Oct.13.2012	Oct.12.2013

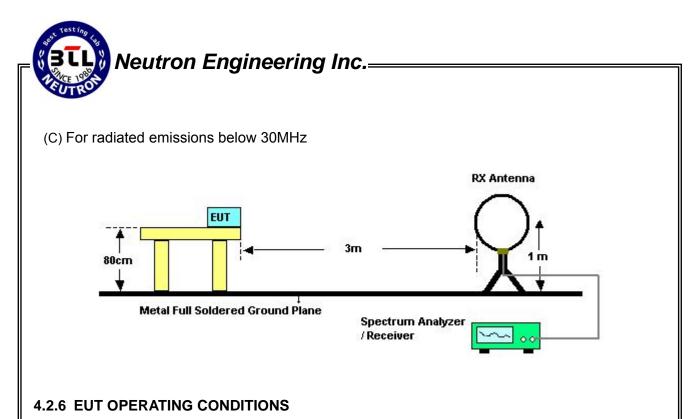
Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of Equipment List is One Year.

Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RB / VB			
(Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average		

Receiver Parameter	Setting		
Attenuation	Auto		
Start ~ Stop Frequency	9kHz~90kHz for PK/AVG detector		
Start ~ Stop Frequency	90kHz~110kHz for QP detector		
Start ~ Stop Frequency	110kHz~490kHz for PK/AVG detector		
Start ~ Stop Frequency	490kHz~30MHz for QP detector		
Start ~ Stop Frequency	30MHz~1000MHz for QP detector		

4.2.3 TEST PROCEDURE


- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.


4.2.4 DEVIATION FROM TEST STANDARD

No deviation

4.2.5 TEST SETUP

(A) Radiated Emission Test Set-Up Frequency Below 1 GHz

The EUT tested system was configured as the statements of **4.1.6** Unless otherwise a special operating condition is specified in the follows during the testing.

4.2.7 TEST RESULTS (BELOW 30MHZ)

EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L			
Temperature:	25 ℃	Relative Humidity:	55 %			
Test Voltage:	AC 120V/60Hz					
Test Mode:	TX Mode – Adapter: AMS47-0501000FU					

Freq.	Ant.	Reading(RA)	Corr.Factor(CF)	Measured(FS)	Limits(QP)	Margin	Note
(MHz)	0°/90°	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	NOLE
0.0906	0°	29.63	21.59	51.22	108.46	-57.24	QP
0.0976	0°	42.52	21.45	63.97	107.82	-43.85	QP
0.1064	0°	24.80	21.30	46.10	107.07	-60.97	QP
0.1083	0°	22.39	21.27	43.66	106.91	-63.25	QP
0.5219	0°	22.82	19.87	42.69	73.25	-30.56	QP
1.2877	0°	25.96	19.57	45.53	65.41	-19.88	QP

Freq.	Ant.	Reading(RA)	Corr.Factor(CF)	Measured(FS)	Limits(QP)	Margin	Note
(MHz)	0°/90°	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	NOLE
0.0941	90°	28.28	21.52	49.80	108.13	-58.33	QP
0.1052	90°	25.46	21.32	46.78	107.16	-60.39	QP
0.1095	90°	27.52	21.25	48.77	106.82	-58.05	QP
0.5138	90°	21.82	19.84	41.66	73.39	-31.72	QP
0.6241	90°	22.39	20.20	42.59	71.70	-29.11	QP
1.2140	90°	22.86	19.58	42.44	65.92	-23.48	QP

Remark :

- (1) The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported ${}^\circ$
- (2) Distance extrapolation factor = 40 log (specific distance / test distance) (dB); •
- (3) Limit line = specific limits (dBuV) + distance extrapolation factor. •

4.2.8 TEST RESULTS (BETWEEN 30 - 1000 MHZ)

Remark :

- (1) Reading in which marked as QP or Peak means measurements by using are Quasi-Peak Mode or Peak Mode with Detector BW=120KHz ; SPA setting in RBW=120KHz, VBW =120KHz, Swp. Time = 0.3 sec./MHz ∘
- (2) All readings are Peak unless otherwise stated QP in column of $\,{}^{\mathbb{C}}\,Note_{\,\mathbb{J}}$. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform $_{\circ}$
- (3) Measuring frequency range from 30MHz to 1000MHz \circ
- (4) If the peak scan value lower limit more than 20dB, then this signal data does not show in table ${}^{\circ}$

EUT:		Wireles	ss N150	Cloud R	outer	Model	Name:	DIR-6	600L	
Tempe	erature:	25 ℃				Relativ	/e Humic	dity: 58 %)	
Test Vo	oltage:	AC 120	0V/60Hz	2		Phase	:	Vertio	cal	
Test M	ode:	TX B N	IODE C	HANNEL	. 01 – A	dapter:	F05W-0	50100SPA	۱U	
		·								
80.0	.0 dBm									
]
										•
										1
40										
		I	Š	3	{	5				
			Ş	3 S		5X	5			
		M. M	Marillun	n May	e W. Malha	×	unhu ning	ja ju je stali na sta	marken	
	htmm from	A market	Marilling	with	e Muddillur		under when	hunder som	makukan	
		M. M	Malling	with	k Www.hr	* • M	under villed	hrender and here	mallinker	
	North	M. Marine Marine	M. May	n Mini	e Www.hr	ž M _{ar} ini	unhunding	hunderson	matul	
0.0	North		321.00	418.00	515.00	5 5 612.00	109.00	806.00	1000.00	MH2
D.0 31	60.000 127.0	0 224.00	321.00	418.00 Measure-		5 612.00	209.00	806.00	1000.00	MH2
0.0	a					512.00 Over	anh 1, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	806.00	May Muthan 1000.00	MH2
0.0 31 No. M	127.0 10.000 127.0 1k. Freq. MHz	0 224.00 Reading Level dBm	Correct Factor dB	Measure- ment	Limit dBm	Over dB	Detector	806.00 Comment	300 Mulham 1000.00	MH2
0.0 31 No. M	Ik. Freq. MHz 145.4300	0 224.00 Reading Level dBm 46.41	Correct Factor dB -14.88	Measure- ment dBm 31.53	Limit dBm 43.50	Over dB -11.97	Detector peak		1000.00	MH2
0.0 30 No. M 1 2	145.4300 317.1200	0 224.00 Reading Level dBm 46.41 46.38	Correct Factor dB -14.88 -11.50	Measure- ment dBm 31.53 34.88	Limit dBm 43.50 46.00	Over dB -11.97 -11.12	Detector peak peak		1000.00	MHz
0.0 31 No. M 1 2 3 *	IL. Freq. MHz 145.4300 317.1200 420.9100	0 224.00 Reading Level dBm 46.41 46.38 45.49	Correct Factor dB -14.88 -11.50 -10.18	Measure- ment 31.53 34.88 35.31	Limit dBm 43.50 46.00 46.00	Over dB -11.97 -11.12 -10.69	Detector peak peak peak		1000.00	MH2
0.0 30 No. M 1 2 3 * 4	145.4300 317.1200 462.6200	0 224.00 Reading Level dBm 46.41 46.38 45.49 44.35	Correct Factor dB -14.88 -11.50 -10.18 -9.39	Measure- ment 31.53 34.88 35.31 34.96	Limit dBm 43.50 46.00 46.00 46.00	Over dB -11.97 -11.12 -10.69 -11.04	Detector peak peak peak peak		1000.00	MH2
0.0 31 No. M 1 2 3 *	IL. Freq. MHz 145.4300 317.1200 420.9100	0 224.00 Reading Level dBm 46.41 46.38 45.49	Correct Factor dB -14.88 -11.50 -10.18	Measure- ment 31.53 34.88 35.31	Limit dBm 43.50 46.00 46.00 46.00 46.00	Over dB -11.97 -11.12 -10.69	Detector peak peak peak		1000.00	MH2

					-				
EUT:	Wire	less N150	Cloud Ro	outer	Model	Name:	DIR-6	00L	
Temperature:	25 °C	2			Relativ	e Humidit	ty: 58 %		
Test Voltage:	AC 1	20V/60Hz	Z		Phase	:	Horizo	ontal	
Test Mode:	TX B	MODE C	HANNEL	. 01 – A	dapter:	F05W-05	0100SPAL	J	
80.0 dBm									
]
									•
40									
40		3	3 4	1.5				5	
40		\$	n a	į ž				5×	
	with the	, Mid. H. w	A. Manual		also is	Lunak	utentert	J-lulu	
	ant the		Ry Adam	i i i	ad the add	malinamante	uthertal M		
40	ant M	Why	Nymin	k k Muhan	addinghol	and some of	. he the shart M		
	w the	UNIN IN	Ang And Marcel	i i i	ad de april	mal proved a for	. het has the share the sh		· · · · · · · · · · · · · · · · · · ·
0.0			hy Mand	Which have	ad shapped				
0.0	27.00 224.0		418.00	515.00	addl	709.00		1000.00	MH2
0.0	Readin	g Correct	Measure-	515.00	612.00 Over				MH2
0.0	Readin eq. Level			515.00		709.00			MH2
0.0 30.000 12 No. Mk. Fre	Readin eq. Level lz dBm	g Correct Factor	Measure- ment	515.00 Limit	Over	709.00	806.00		MHz
0.0 30.000 13 No. Mk. Fre	Readin eq. Level tz dBm 00 44.21	g Correct Factor dB -14.92	Measure- ment	515.00 Limit dBm 43.50	Over dB	709.00 Detector C	806.00		MH2
0.0 30.000 12 No. Mk. Fre MH 1 148.34	Readin eq. Level iz dBm 00 44.21 00 46.84	g Correct Factor dB -14.92 -11.50	Measure- ment dBm 29.29	515.00 Limit dBm 43.50 46.00	Over dB -14.21	709.00 Detector C peak	806.00		MH2
0.0 30.000 12 No. Mk. Fre 1 148.34 2 * 317.12	Readin Level iz dBm 00 44.21 00 46.84 00 43.94	g Correct Factor dB -14.92 -11.50 -10.18	Measure- ment dBm 29.29 35.34	515.00 Limit dBm 43.50 46.00	Over dB -14.21 -10.66	709.00 Detector C peak peak	806.00		MH2
n.n 30.000 12 No. Mk. Fre MH 1 148.34 2 * 317.12 3 420.91	Readin Level iz dBm 00 44.21 00 46.84 00 43.94 00 42.39	g Correct Factor dB -14.92 -11.50 -10.18	Measure- ment 29.29 35.34 33.76	515.00 Limit dBm 43.50 46.00 46.00	Over dB -14.21 -10.66 -12.24	709.00 Detector C peak peak peak	806.00		MH2

						1				
EUT:		Wirele	ss N150	Cloud R	outer	Model	Name:	DIR-		
Temper	rature:	25 ℃				Relativ	e Humid	lity: 58 %)	
Test Vo	oltage:	AC 12	0V/60Hz	<u>'</u>		Phase	:	Vertio	cal	
Test Mo	ode:	TXB	NODE C	HANNEL	. 06 – A	dapter:	F05W-0	50100SPA	NU	
80.0) dBm									_
ſ]
-										
										1
40										1
				3	4	F				
		1	2X	nnx X	*	\$ X	6			
	un LA	Manun		*	* J. W. Ju	5×	AN MAL		مىرىلى	
	North Mark	Munum	in the second	M			wh why	humbersom	monotenthere	
	NAMAN	Munum	ahaan dii kang	M			why had	hi undire sydens	monortunter	
	North	Manun	ahun Many	r May	*		why May	h _{u m} alin yang	makenter	
	NP	M. Lawrence and	ahaan dii kaan	n May	*		wahay Mada	hundersyme	makulan	
0.0	N 127.0		321.00	418.00	515.00	512.00	5 mah Mulu 709.00	806.00	mma Mundharma 1000.00	MH2
0.0 30	1.000 127.0	0 224.00 Reading	321.00 Correct	Measure-		612.00	5 444 709.00	806.00	mm Mullium 1000.00	MHz
0.0	1.000 127.0 K. Freq.	0 224.00 Reading Level	321.00 Correct Factor	Measure- ment	Limit	612.00 Over			mag Mundharma 1000.00	MH2
0.0 30	1.000 127.0	0 224.00 Reading	321.00 Correct	Measure-	Limit dBm	612.00	Detector	806.00	1000.00	MH2
0.0 30. No. Mk	000 127.0 K. Freq. MHz	0 224.00 Reading Level dBm	321.00 Correct Factor dB	Measure- ment	Limit dBm 43.50	612.00 Over dB	Detector peak		mon Mundhama 1000.00	MHz
0.0 30 No. Mk	.000 127.0 K. Freq. MHz 145.4300	0 224.00 Reading Level dBm 46.41	321.00 Correct Factor dB -14.88	Measure- ment dBm 31.53	Limit dBm 43.50 46.00	612.00 Over dB -11.97	Detector		3 m M M M M	MH2
0.0 30 No. Mk	0000 127.0 (. Freq. MHz 145.4300 317.1200	0 224.00 Reading Level dBm 46.41 45.38	321.00 Correct Factor dB -14.88 -11.50	Measure- ment dBm 31.53 33.88	Limit dBm 43.50 46.00 46.00	612.00 Over dB -11.97 -12.12	Detector peak peak		1000.00	MH2
0.0 30. No. Mk 1 2 3 *	000 127.0 K. Freq. MHz 145.4300 317.1200 420.9100	0 224.00 Reading Level dBm 46.41 45.38 45.99	321.00 Correct Factor dB -14.88 -11.50 -10.18	Measure- ment dBm 31.53 33.88 35.81	Limit dBm 43.50 46.00 46.00 46.00	612.00 Over dB -11.97 -12.12 -10.19	Detector peak peak peak		1000.00	MH2

		1.4.1						-		~ .	
EUT:			ss N150	Cloud Ro	outer	-	Name:		0IR-600	JL	
	erature:	25 ℃					e Humic	,	8 %		
Test V	Voltage:		0V/60Hz			Phase			lorizon	tal	
Test N	Mode:	TX B N	IODE C	HANNEL	. 06 – A	dapter:	F05W-0	50100	SPAU		
8	10.0 dBm										_
											4
	40										
4	40		ŝ	3.4	5					6	-
4	40	► Å.	ž	nx x	- S					6	-
	40	Min	Al Jan Januar	2 4	\$ \$	Mun	~ 1	udulland	hat March	S.	-
4	eo	, Milling	Allahay Markov	e e	E E	herm	- Anorala	brederthard	when	5	- - -
	40	, rithius	Allaha Jaha ka	e s		Mun	- Anora	brocketboord	when	5 Mulul	-
	40	JA AN	hida, <mark>N</mark> ados	y and had		Mun	-durante	bruderlburd	hilmul	S.	- - - -
0.	Mar	, rita ina	Aldrey Houses	2 3 Walker	hilyo	Mun	-home				
0.	What		321.00	3 4 418.00	515.00	612.00	~~~l.,	bro de 100 antes 806.00		5 	MHz
0.	Mar Ma Mar Ma 30.000 127.	Reading	Correct	Measure-	515.00		709.00				MHz
0.	30.000 127. Mk. Freq.	Reading Level	Correct Factor	Measure- ment	515.00 Limit	Over		806.00	1		MHz
No. M	1.0 30.000 127. Mk. Freq.	Reading Level	Correct Factor dB	Measure- ment	515.00 Limit dBm	Over dB	Detector		1		MHz
0. No. M	30.000 127.0 Mk. Freq. 179.3800	Reading Level dBm 45.88	Correct Factor dB -14.57	Measure- ment dBm 31.31	515.00 Limit dBm 43.50	Over dB -12.19	Detector peak	806.00	1		MHz
No. N	Mk. Freq. 179.38000 * 319.0600	Reading Level dBm 45.88 47.95	Correct Factor dB -14.57 -11.47	Measure- ment dBm 31.31 36.48	515.00 515.00 Limit dBm 43.50 46.00	Over dB -12.19 -9.52	Detector peak peak	806.00	1		MHz
No. N 1 2 3	Mk. Freq. Mk. Freq. 179.3800 * 319.0600 420.9100	Reading Level dBm 45.88 47.95 43.94	Correct Factor dB -14.57 -11.47 -10.18	Measure- ment 31.31 36.48 33.76	515.00 Limit dBm 43.50 46.00 46.00	Over dB -12.19 -9.52 -12.24	Detector peak peak peak	806.00	1		MHz
No. N 1 2 3 4	Mk. Freq. 179.3800 * 319.0600 420.9100 462.6200	Reading Level dBm 45.88 47.95 43.94 42.88	Correct Factor dB -14.57 -11.47 -10.18 -9.39	Measure- ment 31.31 36.48 33.76 33.49	515.00 515.00 Limit dBm 43.50 46.00 46.00	Over dB -12.19 -9.52 -12.24 -12.51	Detector peak peak peak peak	806.00	1		MHz
No. N 1 2 3	Mk. Freq. Mk. Freq. 179.3800 * 319.0600 420.9100	Reading Level dBm 45.88 47.95 43.94 42.88 41.28	Correct Factor dB -14.57 -11.47 -10.18	Measure- ment 31.31 36.48 33.76	515.00 515.00 Limit dBm 43.50 46.00 46.00 46.00 46.00	Over dB -12.19 -9.52 -12.24	Detector peak peak peak	806.00	1		MHz

EUT:			Wireles	s N150	Cloud Ro	outer	Model	Name:	DIR-60	0L	
Temp	peratu	re:	25 ℃				Relativ	e Humidit	ty: 58 %		
Test	Voltag	je:	AC 120)V/60Hz			Phase	:	Vertical		
Test	Mode:	:	TX B M	IODE CH	HANNEL	11 – A	dapter:	F05W-05	0100SPAU		
	80.0 dB	m									
]
	40			2	3	4					1
			1	3	X	4 X	14	5		ê	
			unun mil		alenge de la mart	s Na luttur		MAL	u	Rend was	
		mur N ^M	una da	h. Ila	shout delland	h. h	Marked	hand with the	Yungan yang mangan kang ma	m Mender	
		mur N ^m	ynan de la companya	h. May	skarst delland		March	here the the ten	^h landelennegdensinger	M. Mundham	
		NWN	und	han di kang	okan tradillana	\$ hh. Juli lur	Marked	lundel Miller	Yudan yang ma	n Marthan	
		nut N ^A	unn	h.,	ne na hadilana	* Wr. Wr. Jer	Marked	hand with the	Yn ddiwraethau yn ywrait yw ywrait yw	mantham	
	þønd	127.00	224.00	321.00	418.00	515.00	612.00	709.00	⁴]	6 m/u-l	MHz
No	0.0 30.000	127.00	224.00 Reading	321.00 Correct	Measure-	515.00		709.00	کور	6 m/m/m/m 1000.00	MHz
No.	0.0 30.000	127.00 Freq.	224.00 Reading Level	321.00 Correct Factor	Measure- ment	515.00 Limit	Over			6 m/u-h-/	MHz
No.	0.0 30.000	127.00 Freq. MHz	224.00 Reading Level dBm	321.00 Correct Factor dB	Measure- ment dBm	515.00 Limit dBm	Over dB	Detector (۲ 806.00 Comment	6 m / m / m / m / m / m / m / m / m / m /	MHz
1	0.0 30.000 Mk.	127.00 Freq. MHz 0.1900	224.00 Reading Level	321.00 Correct Factor dB -13.62	Measure- ment dBm 33.56	515.00 Limit dBm 46.00	Over dB -12.44	Detector (peak		1000.00	MHz
	0.0 30.000 Mk. 250 317	127.00 Freq. MHz	224.00 Reading Level dBm 47.18	321.00 Correct Factor dB	Measure- ment dBm	515.00 Limit dBm	Over dB	Detector (6 m / m / m / m / m / m / m / m / m / m /	MHz
1	0.0 30.000 Mk. 250 317 * 420	127.00 Freq. MHz 0.1900 7.1200	224.00 Reading Level dBm 47.18 46.88	321.00 Correct Factor dB -13.62 -11.50	Measure- ment dBm 33.56 35.38	515.00 Limit dBm 46.00 46.00	Over dB -12.44 -10.62	Detector (peak peak		1000.00	MHz
1 2 3	0.0 30.000 Mk. 250 317 * 420 500	127.00 Freq. MHz 0.1900 7.1200 0.9100	224.00 Reading Level dBm 47.18 46.88 46.99	321.00 Correct Factor dB -13.62 -11.50 -10.18	Measure- ment dBm 33.56 35.38 36.81	515.00 Limit 46.00 46.00	Over dB -12.44 -10.62 -9.19	Detector (peak peak peak		1000.00	MHz
1 2 3 4	0.0 30.000 Mk. 250 317 * 420 500 709	127.00 Freq. MHz 0.1900 7.1200 0.9100 0.4500	224.00 Reading Level dBm 47.18 46.88 46.99 44.59	321.00 Correct Factor dB -13.62 -11.50 -10.18 -8.48	Measure- ment 33.56 35.38 36.81 36.11	515.00 Limit dBm 46.00 46.00 46.00	Over dB -12.44 -10.62 -9.19 -9.89	Detector (peak peak peak peak		1000.00	MH2

							1				
EUT				ss N150	Cloud R	outer	Mode	I Name:	DIR-60	00L	
Tem	perat	ure:	25 ℃				Relati	ve Humid	ity: 58 %		
Test	Volta	ge:	AC 12	0V/60Hz	2		Phase	e:	Horizo	ontal	
Test	Mode	e:	TX B N	NODE C	HANNEL	11 – A	dapter	: F05W-0	50100SPAL	J	
	80.0 d	Bm									
]
											-
			_								
	40										
				2	3					e K	
		;					Ň	5	I IM	Mal 1	
	1,1	MANAN	W WWW	NUMAR	" MAN	Ahuly ho	protection (Mr	Municipal	And a shall M	the second second	1
	ď					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	- ľ'										
											1
	0.0	407.00	004.00	0.04 0.0	110.00	E1E 00.	210.00	700.00		1000.00	
	30.000	127.00		321.00	418.00	515.00	612.00	709.00	806.00	1000.00	MH2
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comment		
1	14	8.3400	46.21	-14.92	31.29	43.50	-12.21	peak			
2	* 31	9.0600	47.45	-11.47	35.98	46.00	-10.02	peak			
3	46	2.6200	43.38	-9.39	33.99	46.00	-12.01	peak			
								· ·			
4	58	0.9600	38.22	-6.92	31.30	46.00	-14.70	peak			
		0.9600 3.3400	38.22 36.35	-6.92 -6.66	31.30 29.69		-14.70	· ·			
4	63					46.00		peak peak peak			

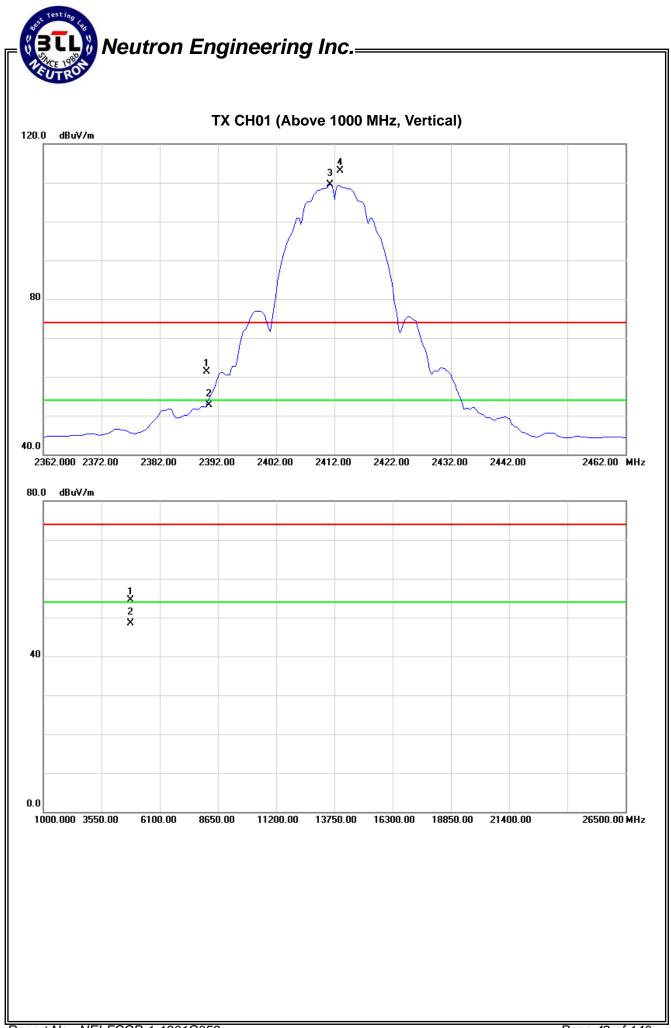
							1				
EUT:			Wireles	ss N150	Cloud Ro	outer	Model	Name:	DIR-60	0L	
Temp	peratur	e:	25 ℃				Relativ	e Humidi	ty: 58 %		
Test	Voltage	e:	AC 120)V/60Hz			Phase	:	Vertical		
Test	Mode:		TX B M	10DE CI	HANNEL	01 – A	dapter:	AMS47-0)501000FU		
	80.0 dBa	6									
											1
											•
			_								
	40										
				z 3	4	5					
		Ň		Ť 1	, Ť	×	h.			\$	
	10	ar de la	W.M.	N. M.	MAN	M.M.M.	rdw ^r 464g	. بار		www.	
	AMANA		ALC: NO	, when whe	W/ W		Wind	www.waldwalaway	h.A.		
	0.0]
	30.000	127.00	224.00	321.00	418.00	515.00	612.00	709.00	806.00	1000.00	MH2
No	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comment		
1				-14.86	31.34	43.50	-12.16	peak			
		.1600	46.20	-14.80							
		.1600 .7400	46.20 45.35			46.00	-13.42	peak			
2	264.	7400	45.35	-12.77	32.58	46.00	-13.42 -12.84	peak peak			
	264. 317.			-12.77 -11.50	32.58 33.16	46.00 46.00 46.00	-12.84	peak			
2 3 4	264. 317. 422.	.7400 .1200 .8500	45.35 44.66 42.24	-12.77 -11.50 -10.14	32.58 33.16 32.10	46.00 46.00	-12.84 -13.90	peak peak			
2	264. 317. 422. 500.	.7400	45.35 44.66	-12.77 -11.50	32.58 33.16	46.00	-12.84	peak			

	r										
EUT:			ss N150) Cloud R	outer		Name:		IR-600I	L	
Temperature		25 ℃				Relativ	e Humid	-	3 %		
Test Voltage	:	AC 120	0V/60Hz	Z		Phase	:	Ho	orizonta	al	
Test Mode:		TX B M	IODE C	HANNEL	. 01 – A	dapter:	AMS47-	050100	0FU		
80.0 dBm											_
40											
40				3	*	5			5		
			2× 1	3X X	×	5X	الا يومدين		EX X	Mucharda	
40	Vince was		1 No Market	2 AMUNICAN	*		war ward	whenter	S.	Marchard	
	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW		i i i i i i i i i i i i i i i i i i i	3 Munul Miller	\$ Wordy Jaw		wanter	when	\$ Junor	ilink dy	
	Virus Mary	 	i i www.	2 Myray Maria	* Uprily Lev		wanter	anglen Astan by	\$ Unor	ilinkalı,	
	Marine Marine		i i i i i i i i i i i i i i i i i i i	3 WHUMUU	\$ Uprely dest		ser and	wheth	5 Januar	Hud d	
0.0	Whyter 4	224.00	1 X X X X X X X X X X X X X X X X X X X	3 111 118.00	515.00		209.00	806.00	\$ Junor	1000.00	MH2
0.0	R	224.00 Reading	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	3 MHUMU 418.00 Measure-		612.00			\$ Unum	1000.00	MH2
0.0 30.000	R req.					rhn, yw			\$ Junor	1000.00	MH2
0.0 30.000 T	R req. IHz	Reading Level dBm	Correct Factor dB	Measure- ment	Limit	612.00 Over dB	709.00 Detector		\$ Juno	1000.00	MH2
No. Mk. Fr	R req. Hz 400	Reading Level dBm 40.97	Correct Factor dB -12.77	Measure- ment dBm 28.20	Limit dBm 46.00	612.00 Over dB -17.80	709.00 Detector peak	806.00		1000.00	MH2
No. Mk. Fr 1 264.7 2 * 317.12	R req. Hz 400 200	Reading Level dBm 40.97 46.15	Correct Factor dB -12.77 -11.50	Measure- ment dBm 28.20 34.65	Limit dBm 46.00 46.00	612.00 612.00 Over dB -17.80 -11.35	709.00 Detector peak peak	806.00		1000.00	MH2
No. Mk. Fr 1 264.7 2 * 317.1 3 412.1	R req. 400 200 800	Reading Level dBm 40.97 46.15 41.53	Correct Factor dB -12.77 -11.50 -10.32	Measure- ment 28.20 34.65 31.21	Limit dBm 46.00 46.00 46.00	612.00 Over dB -17.80 -11.35 -14.79	709.00 Detector peak peak peak	806.00		1000.00	MH2
No. Mk. Fr 1 264.7 2 * 317.1 3 412.1 4 500.4	Req. Hz 400 200 800 500	Reading Level dBm 40.97 46.15 41.53 41.89	Correct Factor dB -12.77 -11.50 -10.32 -8.48	Measure- ment 28.20 34.65 31.21 33.41	Limit dBm 46.00 46.00 46.00 46.00	612.00 612.00 Over dB -17.80 -11.35 -14.79 -12.59	709.00 Detector peak peak peak peak	806.00		1000.00	MH2
No. Mk. Fr 2 * 317.12 3 412.12	Req. Hz 400 200 800 500 700	Reading Level dBm 40.97 46.15 41.53	Correct Factor dB -12.77 -11.50 -10.32	Measure- ment 28.20 34.65 31.21	Limit dBm 46.00 46.00 46.00 46.00 46.00	612.00 Over dB -17.80 -11.35 -14.79	709.00 Detector peak peak peak	806.00		1000.00	MHz

						1				
EUT:			ss N150	Cloud R	outer	Model	Name:	DIR-6		
Tempera	ature:	25 ℃				Relativ	ve Humidi	ity: 58 %		
Test Vol	Itage:	AC 12	0V/60Hz	2		Phase	:	Vertio	cal	
Test Mo	ode:	TXBN	IODE C	HANNEL	. 06 – A	dapter:	: AMS47-0	0501000F	U	
80.0	dBm									
Γ]
-										
										1
										1
										1
40					-					
40			J Ž	3 4 X X	, ⁵	6 X				
			1 2			5 M			, Kathers	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	nt in the second	while	\$ 	× M	luger Mangar	water and while the start	have been been a	-
	Www	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	han the second		\$ Hubme	, March	lungut Mennyan	Lander Martin Martin	hardware	-
	Www	www.w	h j	www.	* 	* ****	have the way	have and a start of the second	harder Marthana	- - -
ļ	Mary	~~~m~~	Å.		\$ Hudminty	S. March	wyw.Meniger	han an a	have been been a	- - -
		224.00	321.00	418.00	515.00	5 612.00	209.00	806.00	har	MHz
0.0 30.0	000 127.00	Reading	Correct	Measure-			709.00	806.00	Professional and a second	MHz
0.0	000 127.00 . Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			Professional and a second	MHz
0.0 30.0 No. Mk.	000 127.00 . Freq. MHz	Reading Level dBm	Correct Factor dB	Measure- ment	Limit dBm	Over dB	Detector (	806.00	Professional and a second	MHz
0.0 30.0 No. Mk.	000 127.00 . Freq. MHz 264.7400	Reading Level dBm 44.35	Correct Factor dB -12.77	Measure- ment dBm 31.58	Limit dBm 46.00	Over dB -14.42	Detector ( peak		Professional and a second	MHz
0.0 30.0 No. Mk.	000 127.00 Freq. MHz 264.7400 308.3900	Reading Level dBm 44.35 44.72	Correct Factor dB -12.77 -11.63	Measure- ment dBm 31.58 33.09	Limit dBm 46.00 46.00	Over dB -14.42 -12.91	Detector ( peak peak		Professional and a second	MHz
0.0 30.0 No. Mk. 1 2 3	000 127.00 Freq. MHz 264.7400 308.3900 422.8500	Reading Level dBm 44.35 44.72 44.74	Correct Factor dB -12.77 -11.63 -10.14	Measure- ment dBm 31.58 33.09 34.60	Limit dBm 46.00 46.00 46.00	Over dB -14.42 -12.91 -11.40	Detector ( peak peak peak		Professional and a second	MHz
0.0 30.0 1 2 3 4	000 127.00 Freq. MHz 264.7400 308.3900 422.8500 462.6200	Reading Level dBm 44.35 44.72 44.74 43.19	Correct Factor dB -12.77 -11.63 -10.14 -9.39	Measure- ment 31.58 33.09 34.60 33.80	Limit dBm 46.00 46.00 46.00 46.00	Over dB -14.42 -12.91 -11.40 -12.20	Detector ( peak peak peak peak		Professional and a second	MHz
0.0 30.0 No. Mk. 1 2 3 4 5 *	000 127.00 Freq. MHz 264.7400 308.3900 422.8500	Reading Level dBm 44.35 44.72 44.74	Correct Factor dB -12.77 -11.63 -10.14	Measure- ment dBm 31.58 33.09 34.60	Limit dBm 46.00 46.00 46.00 46.00 46.00	Over dB -14.42 -12.91 -11.40	Detector ( peak peak peak		Professional and a second	MHz

EUT:			Wirolog	N150	Cloud Ro	outer	Model	Name:		DIR-600L		
-	erature		25 ℃	5 11130		Julei	_	ve Humic		58 %		
				)V/60Hz			Phase		-		tol	
	oltage:									Horizon	ital	
Test M	lode:		IXBM	IODE CI	HANNEL	06 – A	dapter:	AMS47-	-05010	000FU		
80	0.0 dBm											
												•
												1
4												
	40											
	I r			2	3	4 X	5			6		
				2 X	ž	4 X	\$			Ř	v h d	
		NL NU	ÅA	2 A she	s mi	*		ر مەلەر الىرىمى	Maryaka		- North - dy	
		Muru	Ŵ	1 april and	ay when the second	*		had a when the start of the sta	Maydon		adwhady	
	and the second	Marta	Ŵ	ž Armilian	ay when the	\$ Maril Mari		hour - had along	Maybola		- Howkindy	
		Muntuh	, År	handharr	3 Myrawlywaw	\$ When you		had and had had had had had had had had had ha	Marybooks		atokaly	
0.0		Muru	, MA	2 Antra an	3 Munulhulut	\$ Lifering the		hadr ^{an-t} hebaland	Marylanda		- the shade	
		Mm M	224.00	2 /////~// 321.00	418.00	\$ 515.00		709.00	May Jon An 806.	-Warner	1000.00	MHz
	a 30.000		Reading	Correct	Measure-	515.00	612.00			-Warner		MHz
	o 30.000	req.	Reading Level	Correct Factor	Measure- ment	515.00 Limit	612.00 Over	709.00	806.	un ann		MHz
: No. N	0 30.000	ireq. MHz	Reading Level dBm	Correct Factor dB	Measure- ment	515.00 Limit	612.00 Over dB	709.00 Detector		un ann		MHz
: No. M 1	0 30.000 Mk. Fi 208.4	req. MHz 1800	Reading Level dBm 41.53	Correct Factor dB -14.45	Measure- ment dBm 27.08	515.00 Limit dBm 43.50	612.00 Over dB -16.42	709.00 Detector peak	806.	un ann		MHz
: No. N 1 2 *	a 30.000 Mk. Fr 208.4 * 317.1	req. //Hz /800	Reading Level dBm 41.53 46.65	Correct Factor dB -14.45 -11.50	Measure- ment dBm 27.08 35.15	515.00 Limit 43.50 46.00	612.00 Over dB -16.42 -10.85	709.00 Detector peak peak	806.	un ann		MHz
: No. N 1 2 * 3	a 30.000 Mk. Fi 208.4 * 317.1 412.1	req. //Hz /800 /200 /800	Reading Level dBm 41.53 46.65 42.54	Correct Factor dB -14.45 -11.50 -10.32	Measure- ment 27.08 35.15 32.22	515.00 515.00 Limit 43.50 46.00 46.00	612.00 Over dB -16.42 -10.85 -13.78	709.00 Detector peak peak peak	806.	un ann		MHz
No. N 1 2 * 3 4	0 30.000 Wk. Fr 208.4 * 317.1 412.1 500.4	req. //Hz 1800 200 1800 1500	Reading Level dBm 41.53 46.65 42.54 42.89	Correct Factor dB -14.45 -11.50 -10.32 -8.48	Measure- ment 27.08 35.15 32.22 34.41	515.00 Limit dBm 43.50 46.00 46.00 46.00	612.00 Over dB -16.42 -10.85 -13.78 -11.59	709.00 Detector peak peak peak peak	806.	un ann		MHz
1 2 * 3	a 30.000 Mk. Fi 208.4 * 317.1 412.1	ireq. MHz 1800 1200 1800 1500 1700	Reading Level dBm 41.53 46.65 42.54	Correct Factor dB -14.45 -11.50 -10.32	Measure- ment 27.08 35.15 32.22	515.00 515.00 Limit 43.50 46.00 46.00	612.00 Over dB -16.42 -10.85 -13.78	709.00 Detector peak peak peak	806.	un ann		MH2

EUT:			s N150	Cloud Ro	outer	Model		DIR-6	00L	
Tempe	erature:	<b>25</b> ℃				Relativ	e Humidity	/: 58 %		
Test V	/oltage:	AC 120	)V/60Hz	-		Phase		Vertica	al	
Test M	lode:	TX B M	IODE C	HANNEL	11 – A	dapter:	AMS47-05	501000FU	l	
80	).0 dBm									_
										-
										1
										1
										1
40	o					_				
40	0 j		2 3 1	ا ڭلىز.		5			6 X	
41		within	i i		Hubbut		. 11.	unt assessed	Extended and the second	ī.
41		want	in the	white	Hubble	MAL	www.	mark production of	5 X	
41	NHAN AND	wand	il m Ma	with	Hudroche	MA MA	m	na and a start of the start of	5 Level of the life way	-
41		wither	il m		Hudrya	, Mh. Ly	ng Menana	na and a start of the start of	len a Mond Warney	- - -
40	MANY	ny mand	in the second		Hudore	M.L.	man Mennanan	n and a start of the	S. and Station of the second	- - - -
0.0	MANY	224.00	321.00	418.00	515.00	5 612.00	709.00	806.00	5× (e)	MHz
0.0 3	0 30.000 127.00	Reading	Correct	Measure-			709.00	806.00	len ha Mala an an an	MHz
0.0	a 30.000 127.00 Mk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			len ha Mala an an an	MHz
0.0 3 No. M	0 30.000 127.00 Mk. Freq. MHz	Reading Level	Correct Factor dB	Measure- ment dBm	Limit dBm	Over dB	Detector Co	806.00	len ha Mala an an an	MHz
n.c 3 No. M 1	0 30.000 127.00 Mk. Freq. MHz 154.1600	Reading Level dBm 45.70	Correct Factor dB -14.86	Measure- ment dBm 30.84	Limit dBm 43.50	Over dB -12.66	Detector Co peak		len ha Mala an an an	MHz
No. N 1 2	0 30.000 127.00 Mk. Freq. MHz 154.1600 264.7400	Reading Level dBm 45.70 46.85	Correct Factor dB -14.86 -12.77	Measure- ment dBm 30.84 34.08	Limit dBm 43.50 46.00	Over dB -12.66 -11.92	Detector Co peak peak		len ha Mala an an an	MHz
n.c 3 No. M 1 2 3 *	a 30.000 127.00 Mk. Freq. MHz 154.1600 264.7400 * 317.1200	Reading Level dBm 45.70 46.85 46.16	Correct Factor dB -14.86 -12.77 -11.50	Measure- ment dBm 30.84 34.08 34.66	Limit dBm 43.50 46.00 46.00	Over dB -12.66 -11.92 -11.34	Detector Co peak peak peak		len ha Mala an an an	MHz
No. N 1 2 3 * 4	0 30.000 127.00 Mk. Freq. MHz 154.1600 264.7400 317.1200 422.8500	Reading Level dBm 45.70 46.85 46.16 44.74	Correct Factor dB -14.86 -12.77 -11.50 -10.14	Measure- ment 30.84 34.08 34.66 34.60	Limit dBm 43.50 46.00 46.00 46.00	Over dB -12.66 -11.92 -11.34 -11.40	Detector Co peak peak peak peak peak		len ha Mala an an an	MHz
n.c 3 No. M 1 2 3 *	a 30.000 127.00 Mk. Freq. MHz 154.1600 264.7400 * 317.1200	Reading Level dBm 45.70 46.85 46.16	Correct Factor dB -14.86 -12.77 -11.50	Measure- ment dBm 30.84 34.08 34.66	Limit dBm 43.50 46.00 46.00 46.00 46.00	Over dB -12.66 -11.92 -11.34	Detector Co peak peak peak		len ha Mala an an an	MHz


	1	i								
EUT:		Model Name:	DIR-600L							
Temperature:	<b>25</b> ℃	Relative Humidity:	58 %							
Test Voltage:	AC 120V/60Hz	Phase:	Horizontal							
Test Mode:	TX B MODE CHANNEL 11 – Ad	dapter: AMS47-0501	000FU							
80.0 dBm	80.0 dBm									
40										
40			5 <b>5</b>							
40			A Andread							
40	where the way where the way where a second	any examinante whet	A Andread							
40	with where the work with the second second	and the marking the	A Andread							
40	with where the weather where the second seco	where have a strange when the work	A Andread							
And and a second and	with when the with the particular	and provident with	A Andread							
40 0.0 30.000 127.00	224.00 321.00 418.00 515.00	·	A Andread							
0.0 30.000 127.00	224.00 321.00 418.00 515.00 Reading Correct Measure-	·	n for the month which has							
0.0 30.000 127.00	224.00 321.00 418.00 515.00	·	n for the work which has							
a.a 30.000 127.00 No. Mk. Freq. MHz	224.00 321.00 418.00 515.00 Reading Correct Measure- Level Factor ment Limit dBm dB dBm dBm	612.00 709.00 806 Over dB Detector Comm	ми ми .00 1000.00 МНг							
0.0 30.000 127.00 No. Mk. Freq. MHz 1 208.4800	1     1       224.00     321.00       418.00     515.00       Reading Level     Correct Factor     Measure- ment       dBm     dBm     dBm       46.03     -14.45     31.58     43.50	612.00 709.00 806 Over dB Detector Comm -11.92 peak	ми ми .00 1000.00 МНг							
No. Mk. Freq. MHz 1 208.4800 2 317.1200	1         1         1           224.00         321.00         418.00         515.00           Reading Level         Correct Factor         Measure- ment         Limit           dBm         dB         dBm         dBm           46.03         -14.45         31.58         43.50           45.65         -11.50         34.15         46.00	612.00 709.00 806 Over dB Detector Comm -11.92 peak -11.85 peak	ми ми .00 1000.00 МНг							
No. Mk. Freq. MHz 1 208.4800 2 317.1200 3 412.1800	1         224.00         321.00         418.00         515.00           Reading Level         Correct Factor         Measurement         Limit           dBm         dB         dBm         dBm           46.03         -14.45         31.58         43.50           45.65         -11.50         34.15         46.00           45.04         -10.32         34.72         46.00	612.00 709.00 806 Over dB Detector Comm -11.92 peak -11.85 peak -11.28 peak	ми ми .00 1000.00 МНг							
0.0 30.000 127.00 No. Mk. Freq. MHz 1 208.4800 2 317.1200 3 412.1800 4 * 500.4500	1         7         7           224.00         321.00         418.00         515.00           Reading Level         Correct Factor         Measure- ment         Limit           dBm         dB         dBm         dBm           46.03         -14.45         31.58         43.50           45.65         -11.50         34.15         46.00           45.04         -10.32         34.72         46.00           44.39         -8.48         35.91         46.00	612.00 709.00 806 Over dB Detector Comm -11.92 peak -11.85 peak -11.28 peak -10.09 peak	ми ми .00 1000.00 MHz							
No. Mk. Freq. MHz 1 208.4800 2 317.1200 3 412.1800	1         7           224.00         321.00         418.00         515.00           Reading Level         Correct Factor         Measure- ment         Limit           dBm         dBm         dBm         dBm           46.03         -14.45         31.58         43.50           45.65         -11.50         34.15         46.00           45.04         -10.32         34.72         46.00           44.39         -8.48         35.91         46.00           40.75         -6.06         34.69         46.00	612.00 709.00 806 Over dB Detector Comm -11.92 peak -11.85 peak -11.28 peak	ми ми .00 1000.00 MHz							

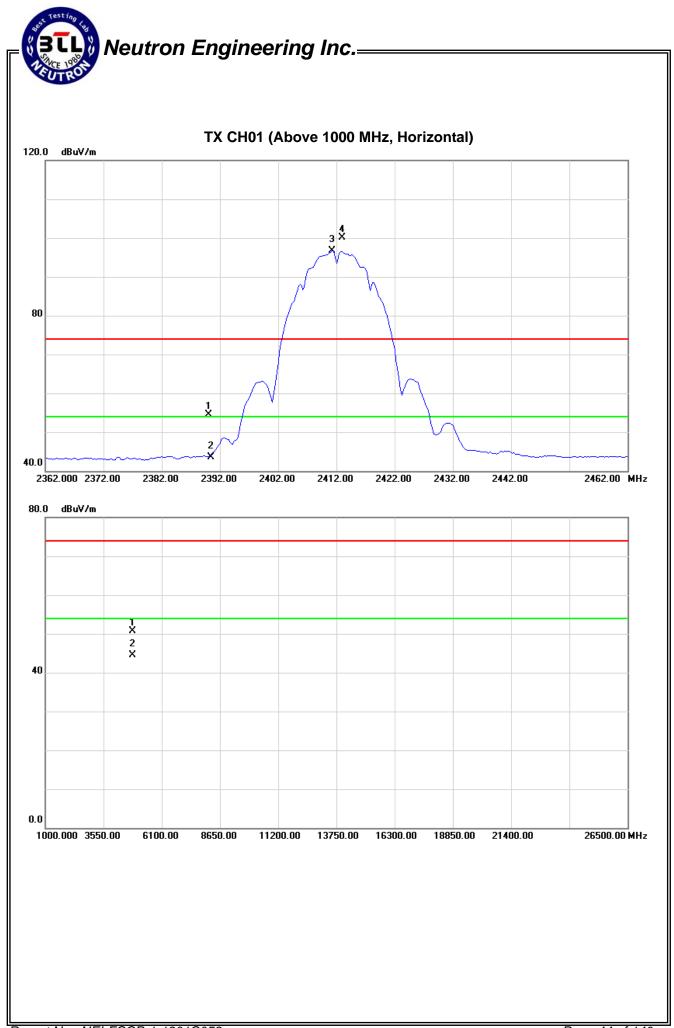
## 4.2.9 TEST RESULTS (ABOVE 1000 MHZ)

EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L
Temperature:	<b>25</b> ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX B MODE 2412MHz		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		
1164.		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2390.00	V	29.00	20.35	32.28	61.28	52.63	74.00	54.00	X/E
2413.00	V	80.79	77.19	32.25	113.04	109.44			X/F
4823.85	V	48.33	42.40	6.19	54.52	48.59	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of  $\[\]$  Note  $\[\]$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $\[\circ$
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency^o "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
  - "X" denotes Laid on Table ; "Y" denotes Vertical Stand ; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

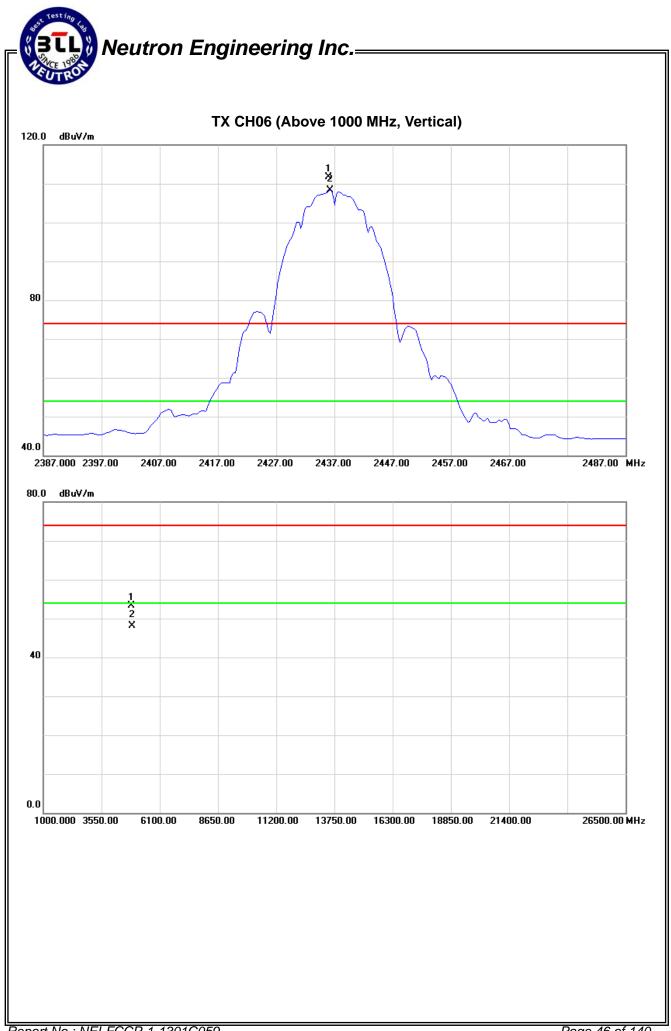





EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L
Temperature:	<b>25</b> ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX B MODE 2412MHz	·	

Freq.	Ant.Pol.	Reading		Ant./CF	Ant./CF Act.		Lir		
1164.		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2390.00	Н	22.24	11.17	32.28	54.52	43.45	74.00	54.00	X/E
2413.00	Н	67.93	64.41	32.25	100.18	96.66			X/F
4823.50	Н	44.52	38.32	6.19	50.71	44.51	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of  $\[\]$  Note  $\]$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $\[\circ\]$
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency^o "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:

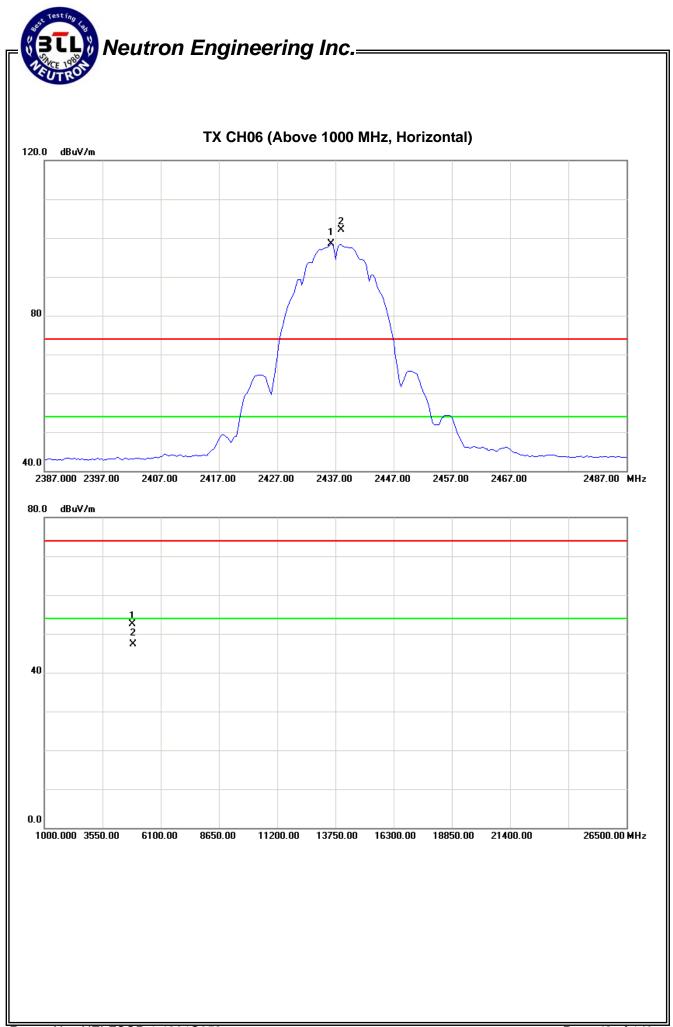

"X" - denotes Laid on Table ; "Y" - denotes Vertical Stand ; "Z" - denotes Side Stand



EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L
Temperature:	<b>25</b> ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX B MODE 2437MHz		

Freg.	Ant.Pol.	Reading		Ant Pol Reading Ant./CF Act.		Lir	Limit		
1164.		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2436.00	V	79.48	76.08	32.23	111.71	108.31			X/F
4873.84	V	46.88	41.73	6.39	53.27	48.12	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of  $\,\,{}^{\mathbb{C}}$  Note  $_{\mathbb{J}}\,$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $_{\circ}$
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency^o "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
  - "X" denotes Laid on Table ; "Y" denotes Vertical Stand ; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



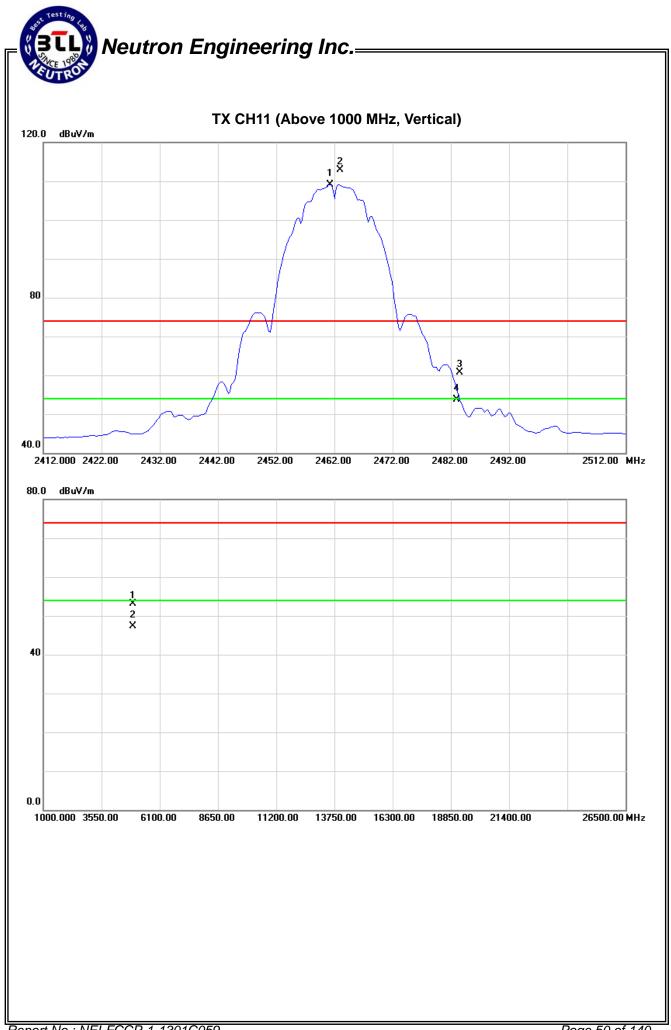



EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L
Temperature:	<b>25</b> ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX B MODE 2437MHz	·	

Freg.	Ant.Pol.	Reading		Ant./CF	A	Act.		Limit		
1164.		Peak	AV		Peak	AV	Peak	AV	Note	
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)		
2438.00	Н	69.86	66.21	32.22	102.08	98.43			X/F	
4873.77	Н	46.08	40.88	6.39	52.47	47.27	74.00	54.00	X/H	

- (1) All readings are Peak unless otherwise stated QP in column of  $\[\]$  Note  $\[\]$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $\[\circ$
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency.
   "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
  - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



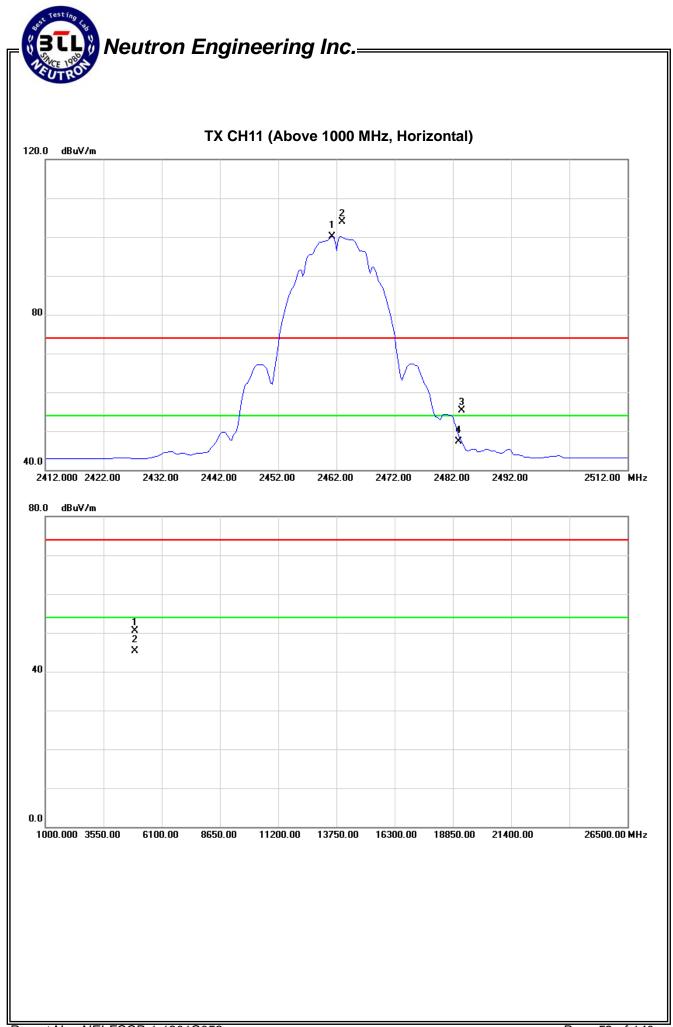



EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L
Temperature:	<b>25</b> ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX B MODE 2462MHz	·	

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2463.00	V	80.68	76.95	32.20	112.88	109.15			X/F
2483.50	V	28.50	21.61	32.17	60.67	53.78	74.00	54.00	X/E
4923.00	V	46.58	40.63	6.59	53.17	47.22	74.00	54.00	X/H

(1) All readings are Peak unless otherwise stated QP in column of  $\[\]$  Note  $\[\]$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $\[\circ$ 

- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency^o"F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis :
  "X" denotes Laid on Table ; "Y" denotes Vertical Stand ; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

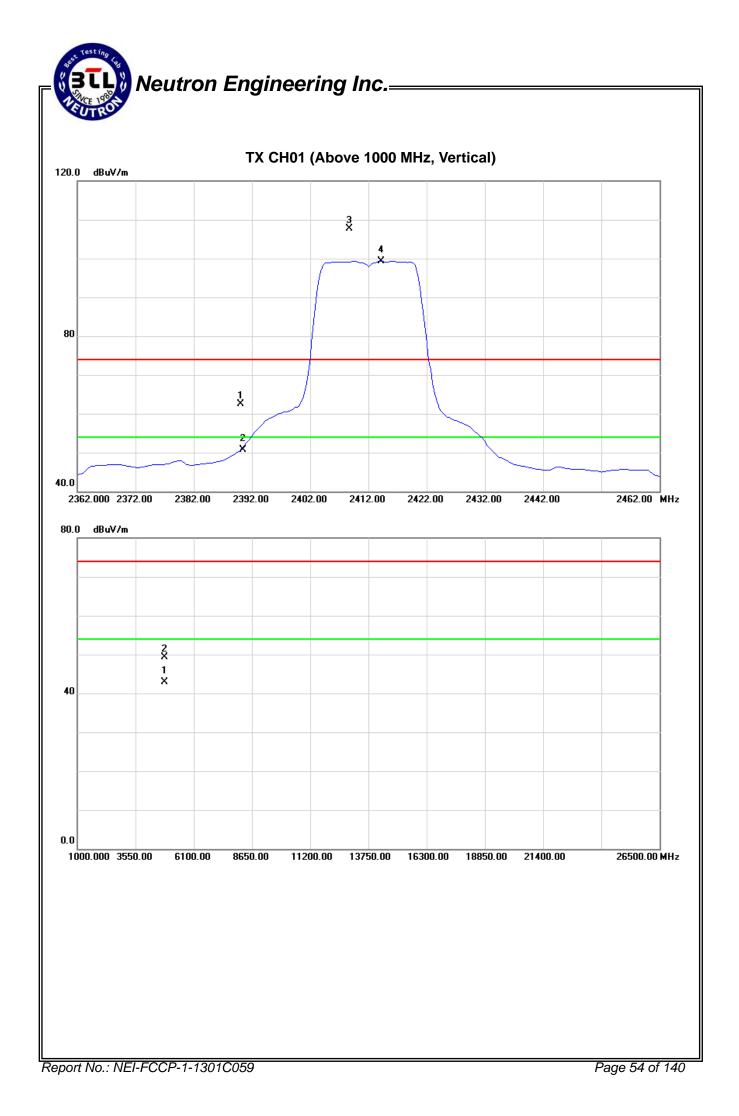





EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L
Temperature:	<b>25</b> ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX B MODE 2462MHz		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2463.00	Н	71.63	67.87	32.20	103.83	100.07			X/F
2483.50	Н	23.04	15.10	32.17	55.21	47.27	74.00	54.00	X/E
4923.74	Н	43.88	38.78	6.59	50.47	45.37	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of  $\,{}^{\mathbb{F}}$  Note  $_{\mathbb{J}}\,$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $_{\circ}$
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency^o "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis : "X" - denotes Laid on Table ; "Y" - denotes Vertical Stand ; "Z" - denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

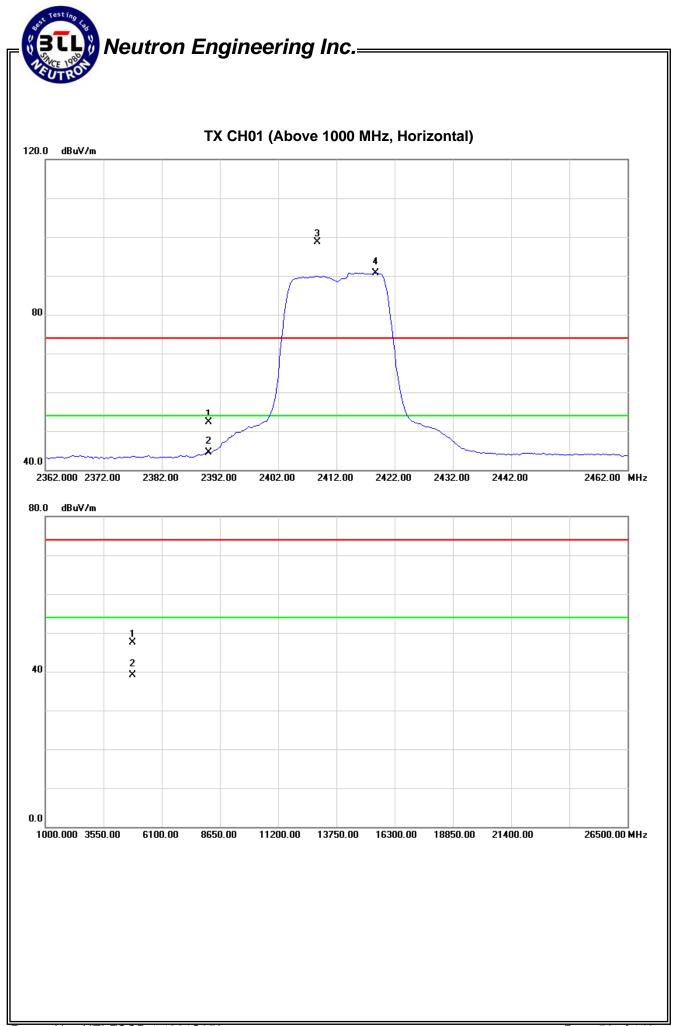





EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L
Temperature:	<b>25</b> ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX G MODE 2412MHz		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Lir		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2390.00	V	30.30	18.42	32.28	62.58	50.70	74.00	54.00	X/E
2408.75	V	75.40	67.03	32.26	107.66	99.29			X/F
4824.19	V	43.20	36.74	6.19	49.39	42.93	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of  $\,{}^{\mathbb{F}}$  Note  $_{\mathbb{J}}$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $_{\circ}$
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency^o"F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis :
  "X" denotes Laid on Table ; "Y" denotes Vertical Stand ; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

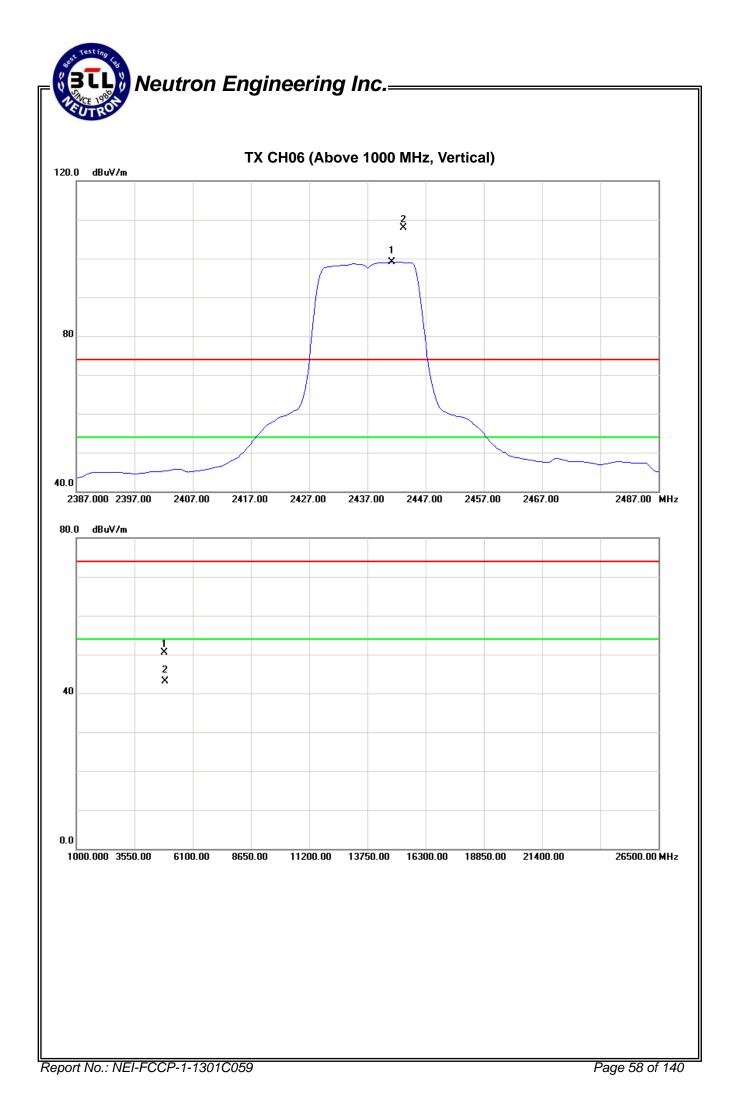





EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L
Temperature:	<b>25</b> ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX G MODE 2412MHz		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Lir		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2390.00	Н	20.08	12.19	32.28	52.36	44.47	74.00	54.00	X/E
2408.75	Н	66.40	58.48	32.26	98.66	90.74			X/F
4823.79	Н	41.35	32.94	6.19	47.54	39.13	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of  $\,{}^{\mathbb{F}}$  Note  $_{\mathbb{J}}$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $_{\circ}$
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency^o"F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis :
  "X" denotes Laid on Table ; "Y" denotes Vertical Stand ; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

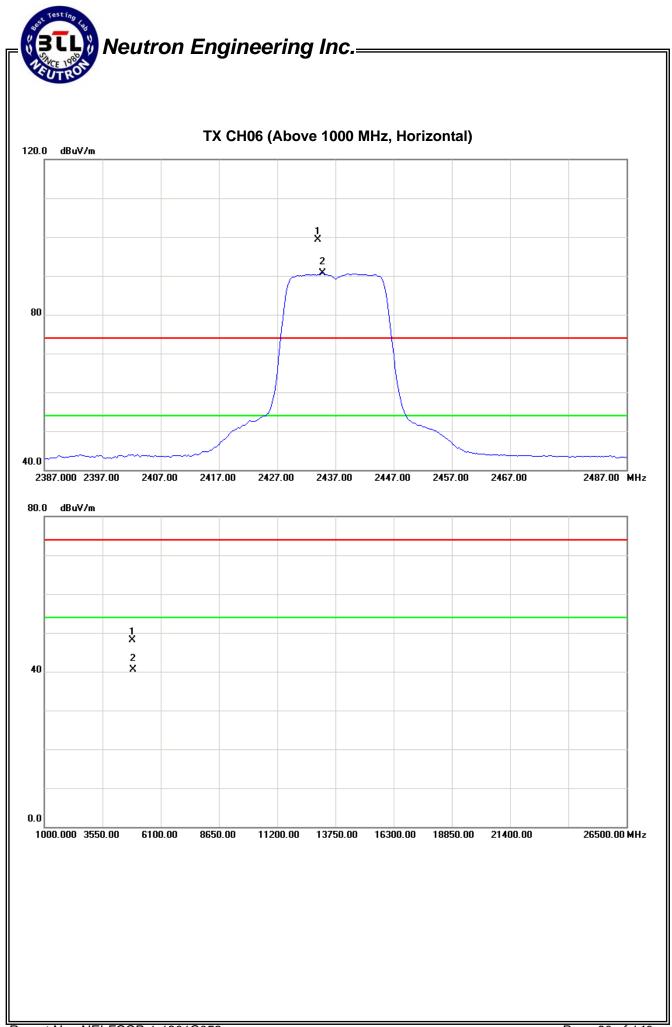





EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L
Temperature:	<b>25</b> ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX G MODE 2437MHz		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		
TTEQ.	Ant.1 01.	Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2443.25	V	75.60	66.81	32.22	107.82	99.03			X/F
4874.03	V	44.16	36.73	6.39	50.55	43.12	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of  $\[\]$  Note $\]$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $\[\circ\]$
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency^o "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
  - "X" denotes Laid on Table ; "Y" denotes Vertical Stand ; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

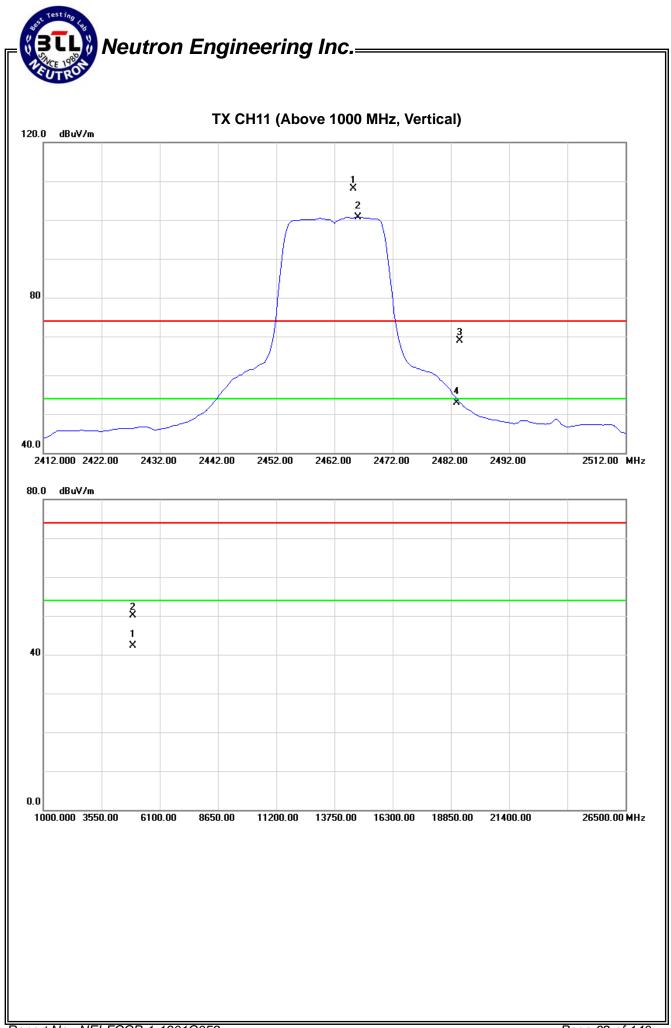





EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L
Temperature:	<b>25</b> ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX G MODE 2437MHz		

Freg. Ant.F	Ant.Pol.	Ant Pol Read		Ant./CF	Act.		Limit		
i ieq.	Ant.i Oi.	Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2434.00	Н	67.08	58.38	32.23	99.31	90.61			X/F
4873.75	Н	41.69	34.09	6.39	48.08	40.48	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of  $\[\]$  Note $\]$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $\[\circ$
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency^o"F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission 。
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
  - "X" denotes Laid on Table ; "Y" denotes Vertical Stand ; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



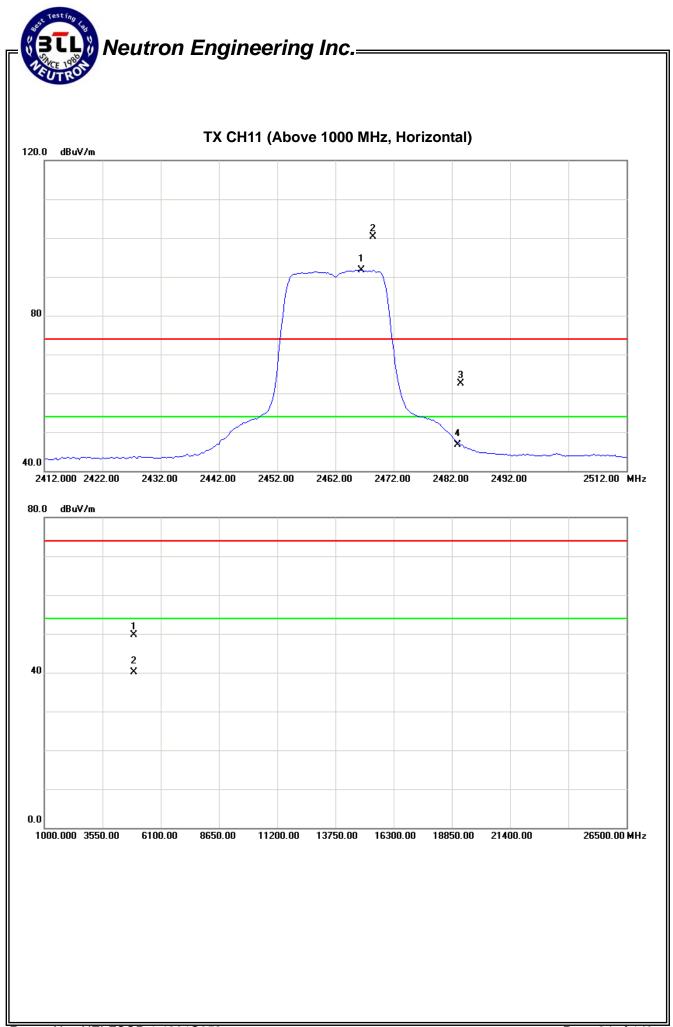



EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L
Temperature:	<b>25</b> ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX G MODE 2462MHz		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2465.25	V	75.89	68.47	32.20	108.09	100.67			X/F
2483.50	V	36.80	20.81	32.17	68.97	52.98	74.00	54.00	X/E
4924.09	V	43.48	35.71	6.59	50.07	42.30	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of  $\,{}^{\mathbb{F}}$  Note  $_{\mathbb{J}}$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $_{\circ}$
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency^o "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis :
  "X" denotes Laid on Table ; "Y" denotes Vertical Stand ; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna





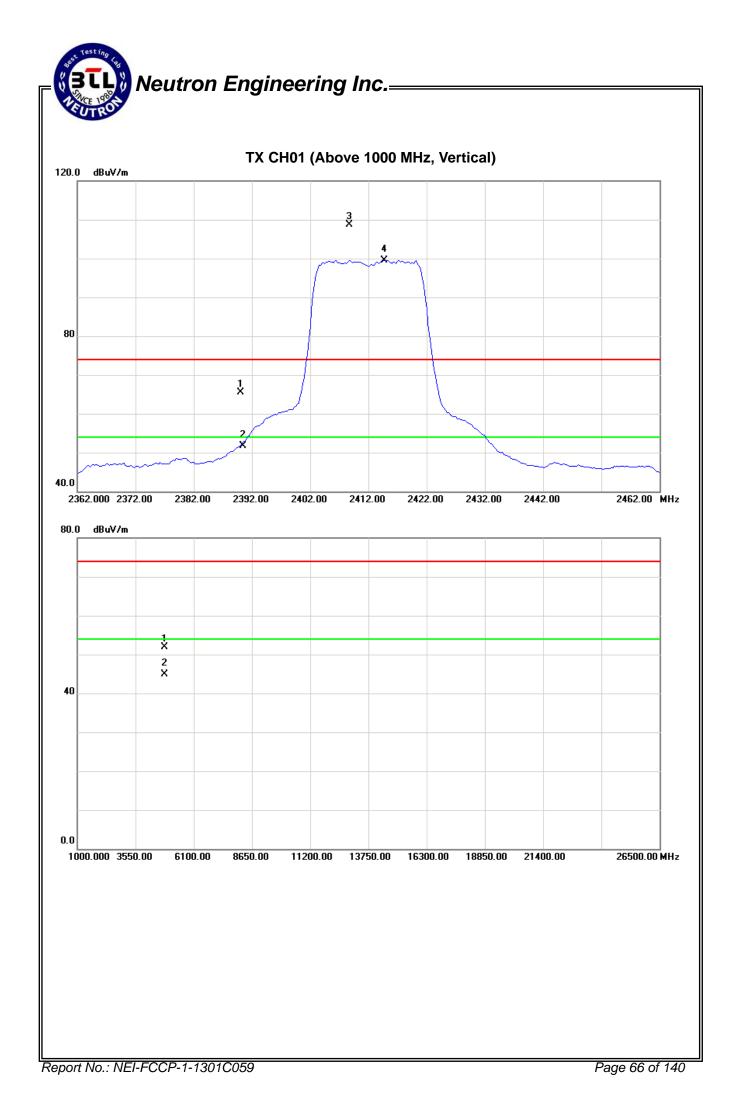

EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L
Temperature:	<b>25</b> ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX G MODE 2462MHz		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2468.50	Н	68.20	59.56	32.19	100.39	91.75			X/F
2483.50	Н	30.24	14.63	32.17	62.41	46.80	74.00	54.00	X/E
4923.74	Н	43.20	33.53	6.59	49.79	40.12	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of  $\[\]$  Note  $\]$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $\[\circ\]$
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency^o"F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:

"X" - denotes Laid on Table ; "Y" - denotes Vertical Stand ; "Z" - denotes Side Stand



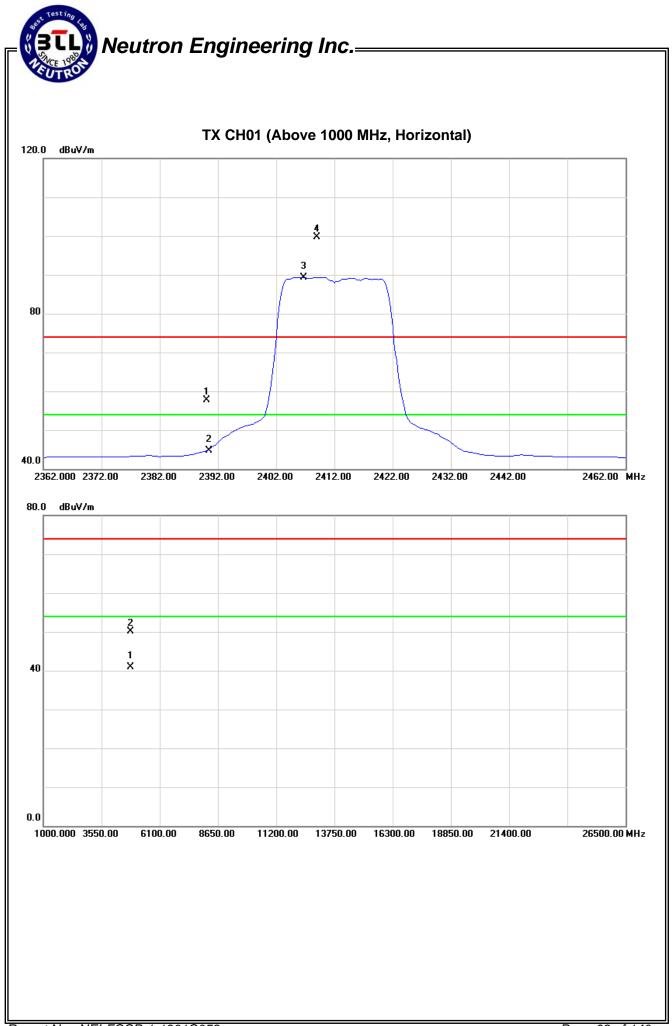



EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L
Temperature:	<b>25</b> ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX N-20M MODE 2412MHz		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Lir		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2390.00	V	33.30	19.46	32.28	65.58	51.74	74.00	54.00	X/E
2408.75	V	76.40	67.25	32.26	108.66	99.51			X/F
4823.98	V	45.78	38.71	6.19	51.97	44.90	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of  $\[\]$  Note  $\]$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $\[\circ\]$
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency^o "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:

"X" - denotes Laid on Table; "Y" - denotes Vertical Stand; "Z" - denotes Side Stand



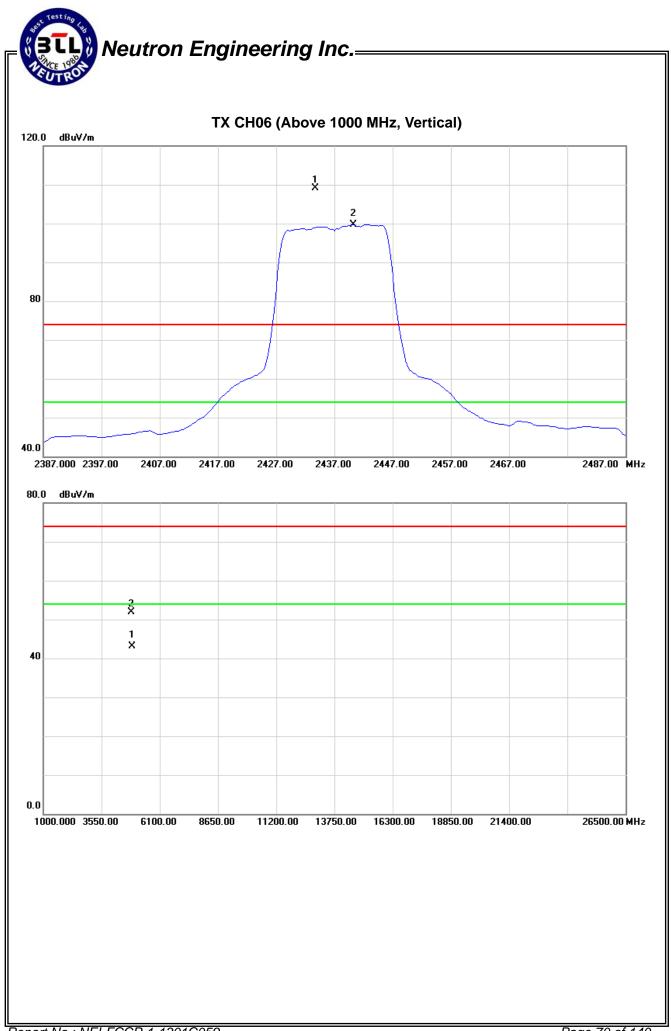



EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L
Temperature:	<b>25</b> ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX N-20M MODE 2412MHz		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Lir		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2390.00	Н	25.45	12.43	32.28	57.73	44.71	74.00	54.00	X/E
2409.00	Н	67.41	57.12	32.26	99.67	89.38			X/F
4824.00	Н	43.93	34.73	6.19	50.12	40.92	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of  $\,{}^{\mathbb{F}}$  Note  $_{\mathbb{J}}$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $_{\circ}$
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency^o "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis :
  "X" denotes Laid on Table ; "Y" denotes Vertical Stand ; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



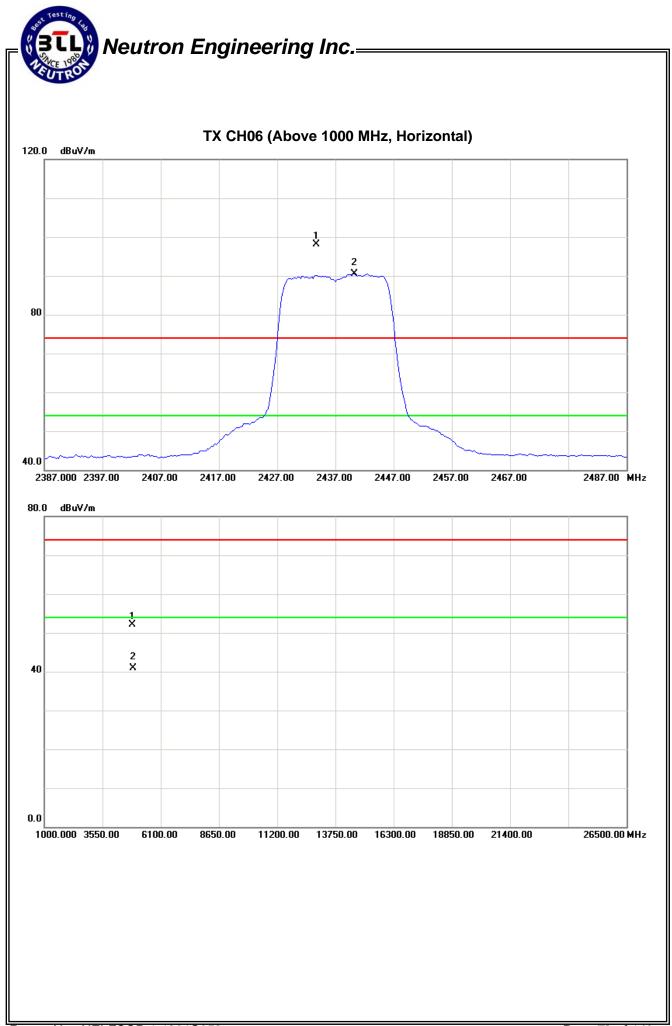



EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L
Temperature:	<b>25</b> ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX N-20M MODE 2437MHz		

Freq. Ant.P	Ant Pol	Ant.Pol. Reading		Ant./CF	Act.		Lir		
rieq.	Ant.i oi.	Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2433.75	V	76.94	67.45	32.23	109.17	99.68			X/F
4874.04	V	45.48	36.77	6.39	51.87	43.16	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of  $\[\]$  Note  $\]$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $\[\circ\]$
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency^o "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission 。
- (4) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:

"X" - denotes Laid on Table ; "Y" - denotes Vertical Stand ; "Z" - denotes Side Stand

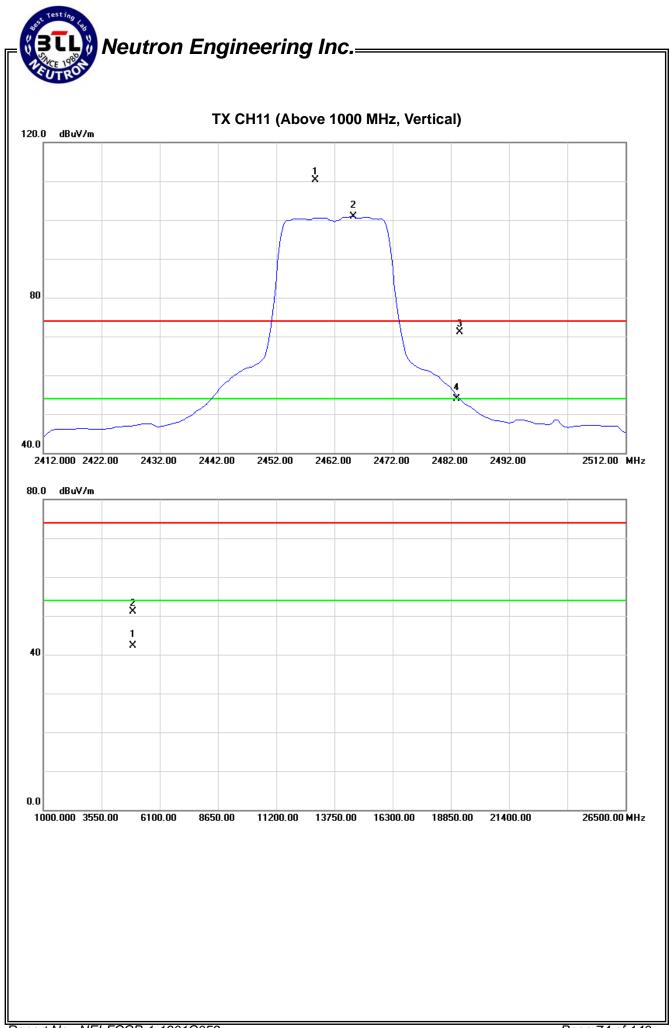





EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L
Temperature:	<b>25</b> ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX N-20M MODE 2437MHz	·	

Freq. Ant.Pol.	Reading		Ant./CF	A	Act.		Limit		
i ieq.	Ant.i Oi.	Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2433.75	Н	65.78	58.36	32.23	98.01	90.59			X/F
4873.75	Н	45.64	34.42	6.39	52.03	40.81	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of  $\[\]$  Note $\]$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $\[\circ$
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency.
   "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission 。
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
  - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

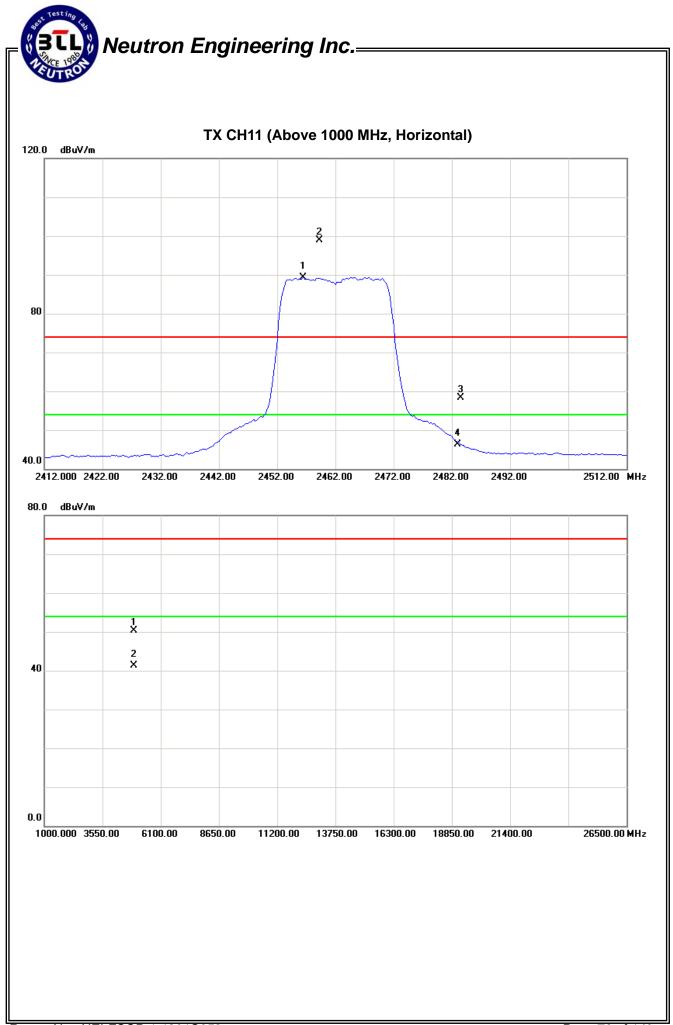





EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L
Temperature:	<b>25</b> ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX N-20M MODE 2462MHz		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2458.75	V	78.03	68.77	32.20	110.23	100.97			X/F
2483.50	V	38.85	21.72	32.17	71.02	53.89	74.00	54.00	X/E
4824.10	V	44.48	35.73	6.59	51.07	42.32	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of  $\,{}^{\mathbb{F}}$  Note  $_{\mathbb{J}}\,$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $_{\circ}$
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency^o "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis :
  "X" denotes Laid on Table ; "Y" denotes Vertical Stand ; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna





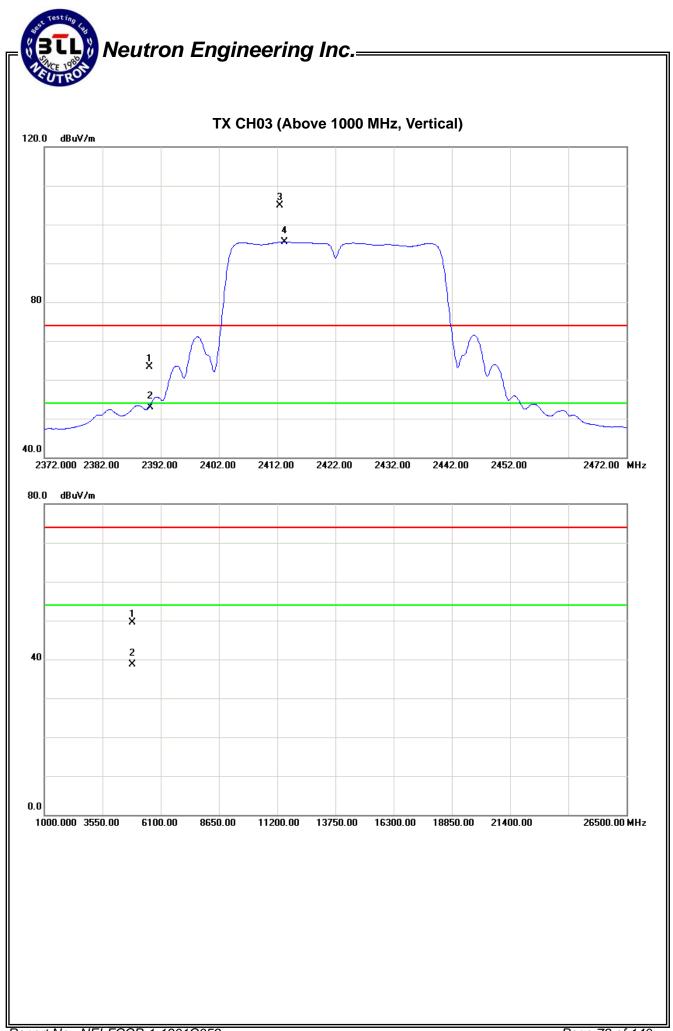

EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L
Temperature:	<b>25</b> ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX N-20M MODE 2462MHz		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2459.25	Н	66.65	57.15	32.20	98.85	89.35			X/F
2483.50	Н	26.19	14.09	32.17	58.36	46.26	74.00	54.00	X/E
4924.07	Н	43.76	34.71	6.59	50.35	41.30	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of  $\[\]$  Note  $\[\]$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $\[\circ$
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency^o "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis : "X" - denotes Laid on Table ; "Y" - denotes Vertical Stand ; "Z" - denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna






EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L
Temperature:	<b>25</b> ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX N-40M MODE 2422MHz		

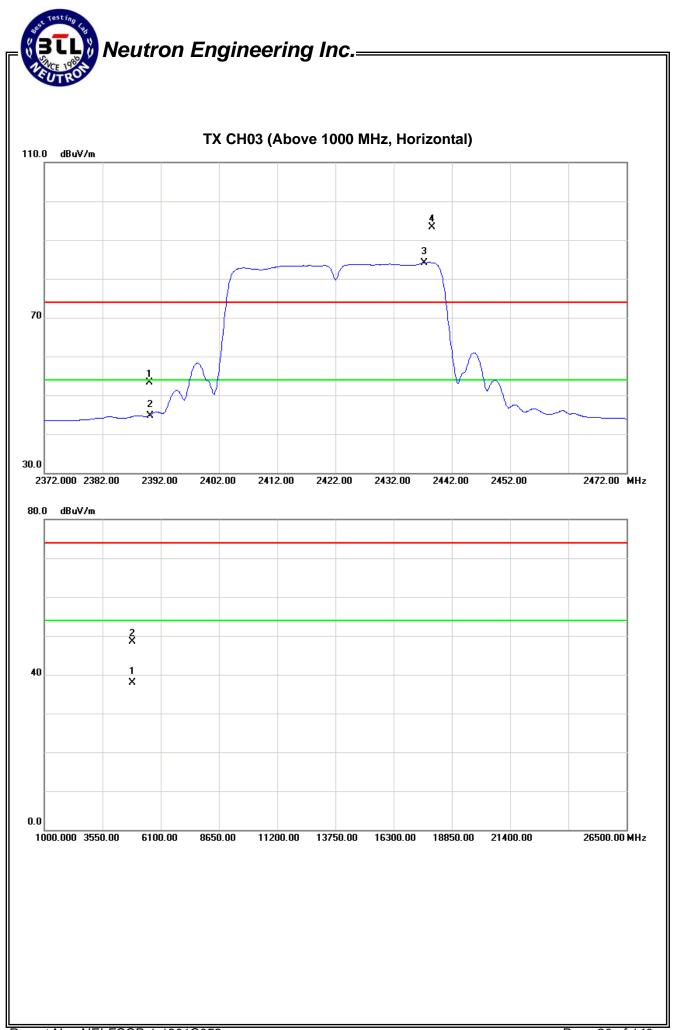
Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Lir		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2390.00	V	31.10	20.71	32.28	63.38	52.99	74.00	54.00	X/E
2412.40	V	72.72	63.26	32.26	104.98	95.52			X/F
4843.95	V	43.22	32.46	6.27	49.49	38.73	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of  $\[\]$  Note  $\]$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $\[\circ\]$
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency^o "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:

"X" - denotes Laid on Table; "Y" - denotes Vertical Stand; "Z" - denotes Side Stand

(7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna






EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L
Temperature:	<b>25</b> ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX N-40M MODE 2422MHz		

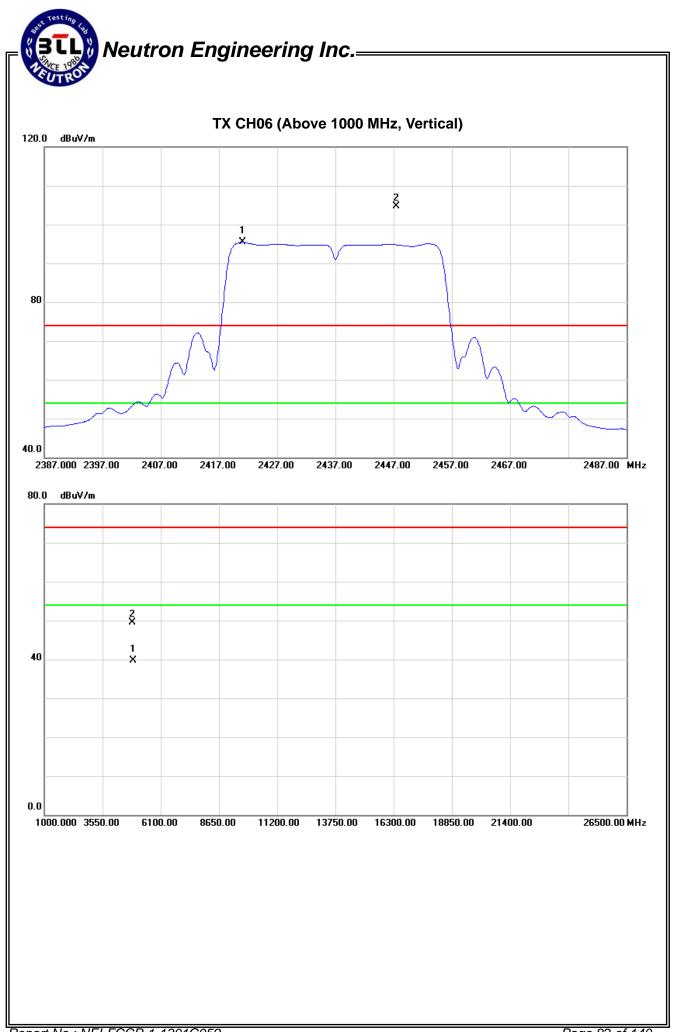
Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2390.00	Н	20.96	12.42	32.28	53.24	44.70	74.00	54.00	X/E
2438.60	Н	61.17	51.79	32.22	93.39	84.01			X/F
4844.02	Н	42.16	31.60	6.27	48.43	37.87	74.00	54.00	X/H

(1) All readings are Peak unless otherwise stated QP in column of  $\,{}^{\mathbb{F}}$  Note  $_{\mathbb{J}}$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $_{\circ}$ 

- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency^o"F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis :
  "X" denotes Laid on Table ; "Y" denotes Vertical Stand ; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna





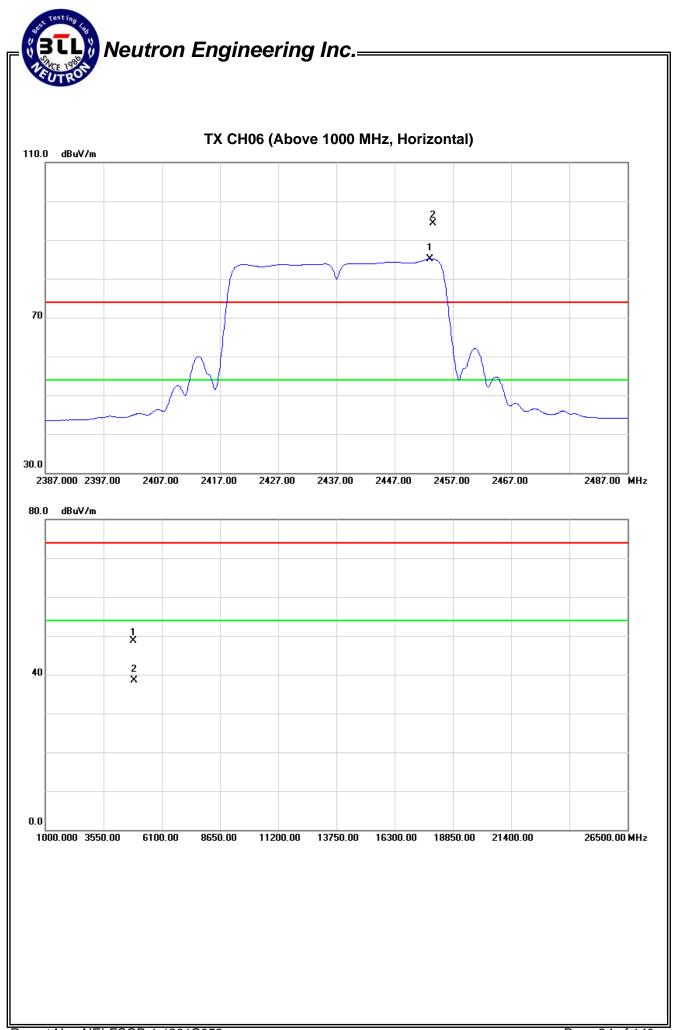

EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L
Temperature:	<b>25</b> ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX N-40M MODE 2437MHz		

Freq. Ant.Pol.	Reading		Ant./CF	A	Act.		Limit		
rieq.	Ant.i Oi.	Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2447.40	V	72.45	63.17	32.22	104.67	95.39			X/F
4874.10	V	43.06	33.37	6.39	49.45	39.76	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of  $\[\]$  Note  $\]$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $\[\circ\]$
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency^o "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission 。
- (4) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:

"X" - denotes Laid on Table ; "Y" - denotes Vertical Stand ; "Z" - denotes Side Stand

(7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

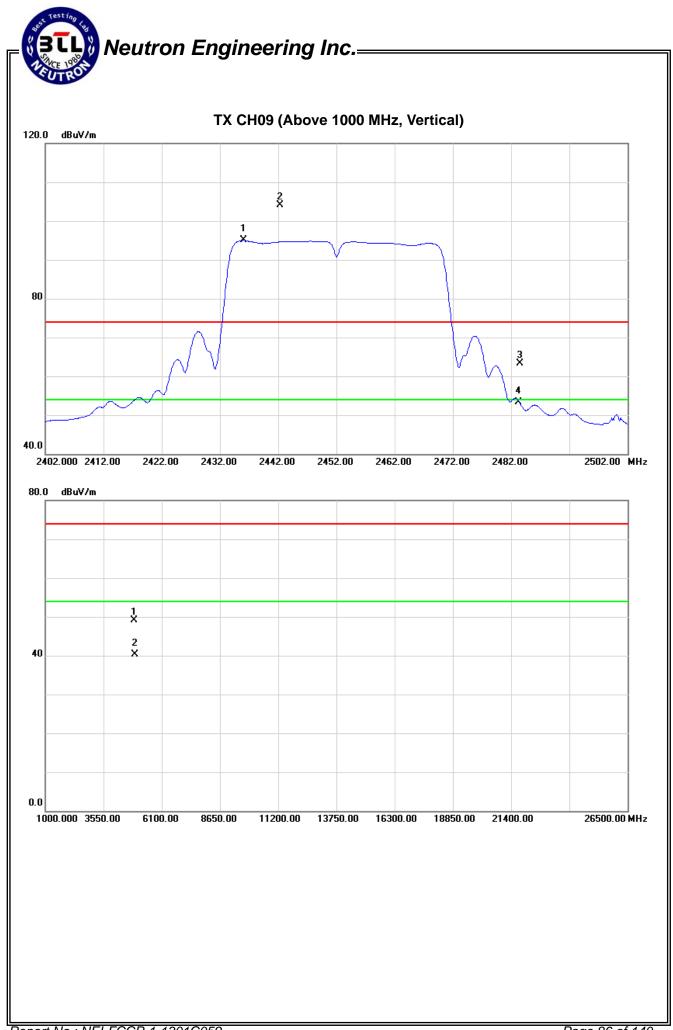





EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L
Temperature:	<b>25</b> ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX N-40M MODE 2437MHz		

Freq. Ant.Pol.		Reading		Ant./CF	Act.		Limit		
rieq.	Ant.i Oi.	Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2453.60	Н	62.07	52.90	32.21	94.28	85.11			X/F
4874.00	Н	42.41	32.12	6.39	48.80	38.51	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of  $\[\]$  Note $\]$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $\[\circ$
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency.
   "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission 。
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
  - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

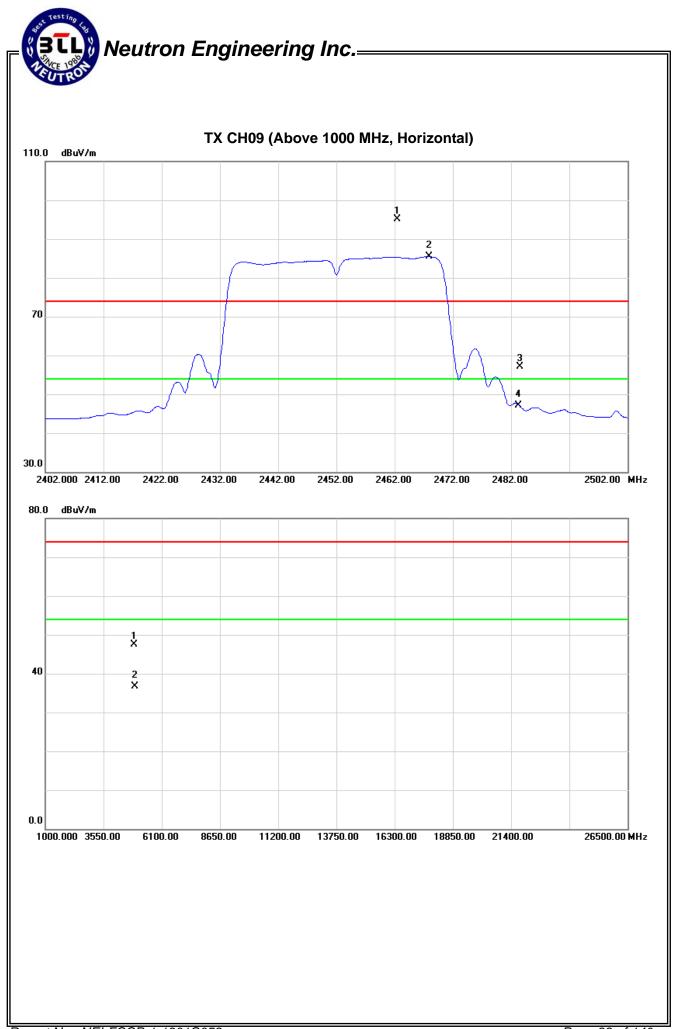





EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L
Temperature:	<b>25</b> ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX N-40M MODE 2452MHz		

Freq.	Ant.Pol.	Rea	ding	Ant./CF	Act.		Limit		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2442.30	V	71.83	62.78	32.23	104.06	95.01			X/F
2483.50	V	31.13	21.08	32.17	63.30	53.25	74.00	54.00	X/E
4903.80	V	42.58	33.89	6.51	49.09	40.40	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of  $\,{}^{\mathbb{F}}$  Note  $_{\mathbb{J}}$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $_{\circ}$
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency^o "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis :
  "X" denotes Laid on Table ; "Y" denotes Vertical Stand ; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna






EUT:	Wireless N150 Cloud Router	Model Name:	DIR-600L
Temperature:	<b>25</b> ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX N-40M MODE 2452MHz		

Freq.	Ant.Pol.	Reading Ant./CF		Act.		Limit			
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2462.40	Н	62.99	53.32	32.21	95.20	85.53			X/F
2483.50	Н	24.99	14.84	32.17	57.16	47.01	74.00	54.00	X/E
4904.00	Н	41.08	30.12	6.51	47.59	36.63	74.00	54.00	X/H

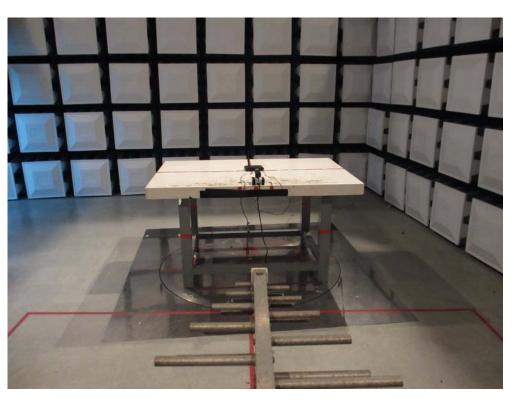
- (1) All readings are Peak unless otherwise stated QP in column of  $\[\]$  Note  $\[\]$ . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform  $\[\circ$
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency^o "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis : "X" - denotes Laid on Table ; "Y" - denotes Vertical Stand ; "Z" - denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna





4.2.10. EUT TEST PHOTO

#### Radiated Measurement Photos 9K~ 30MHz








### Radiated Measurement Photos 30MHz~1000MHz







#### Radiated Measurement Photos Above 1000MHz





# Neutron Engineering Inc.=

#### 5. BANDWIDTH TEST

#### 5.1 Applied procedures / limit

FCC Part15 (15.247), Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS	

#### 5.1.1 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Next Calibration
1	Spectrum Analyzer	R&S	FSP_40	100185	Nov. 16.2012	Nov. 16.2013

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of Equipment List is One Year.

#### 5.1.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=300KHz, Sweep time = 5 ms.

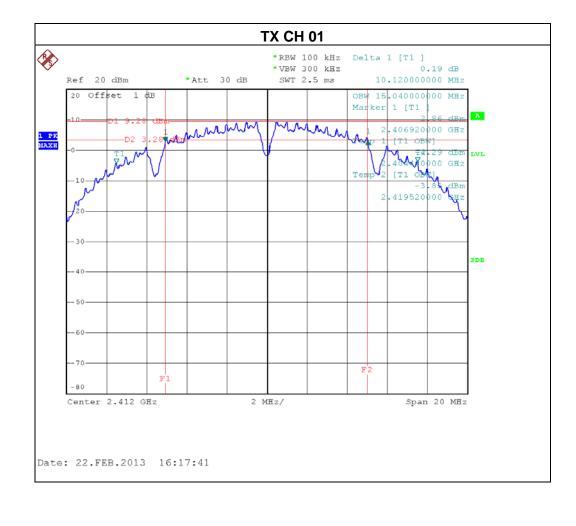
#### 5.1.3 DEVIATION FROM STANDARD

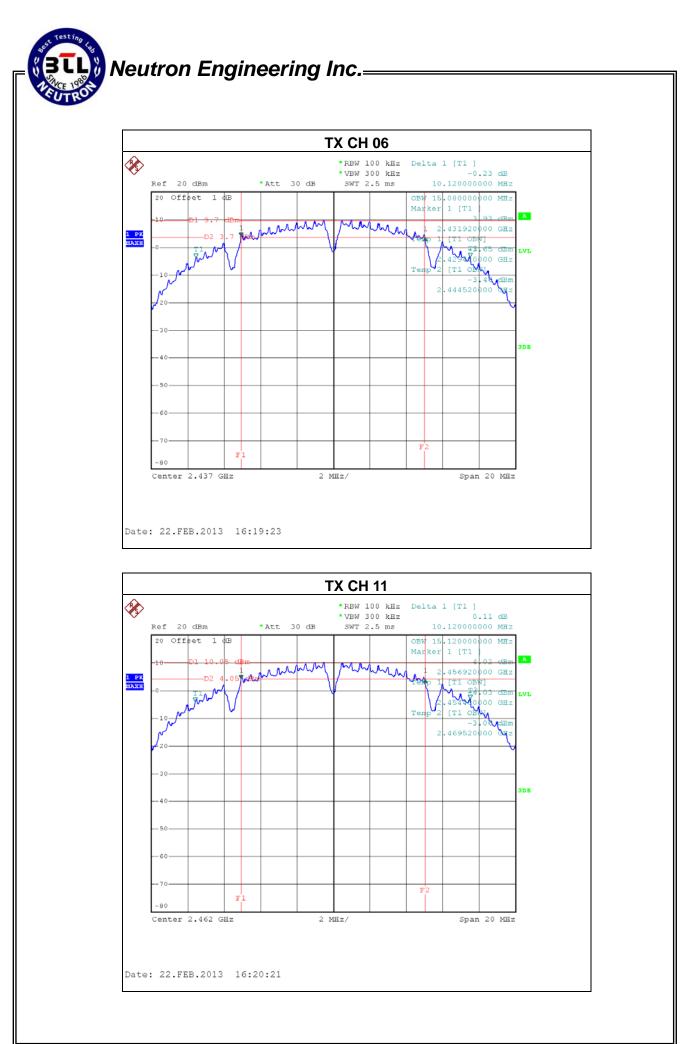
No deviation.

#### 5.1.4 TEST SETUP



#### 5.1.5 EUT OPERATION CONDITIONS

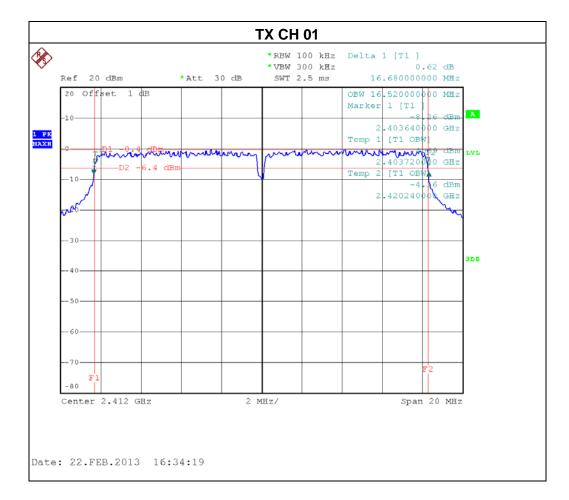

The EUT tested system was configured as the statements of 4.1.6 Unless otherwise a special operating condition is specified in the follows during the testing.

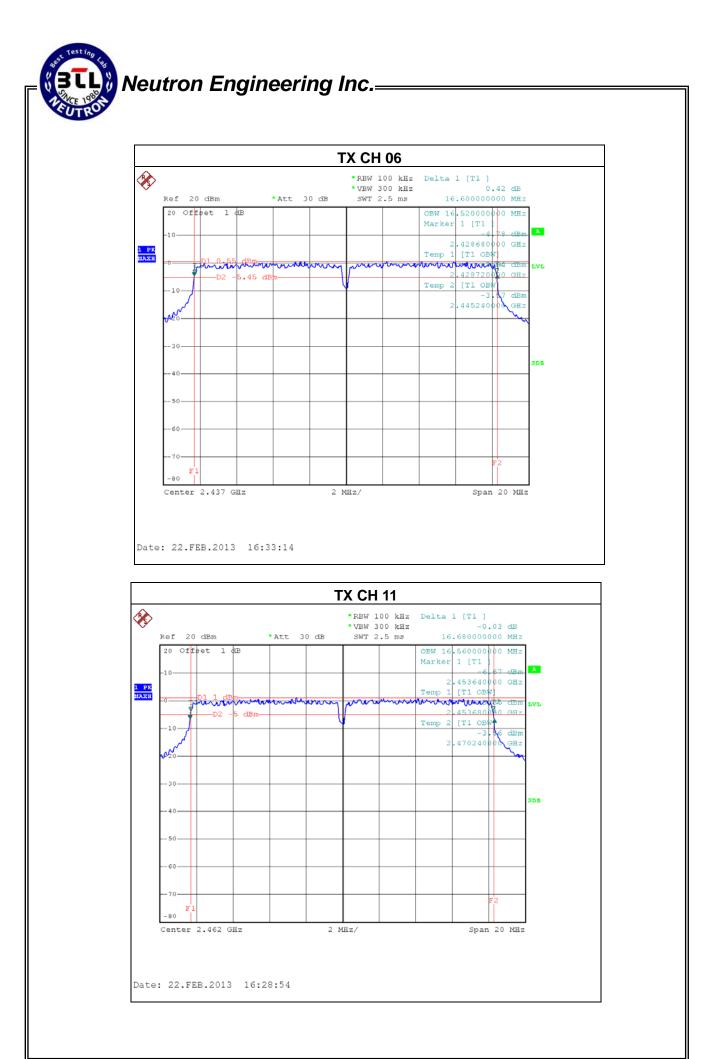



#### 5.1.6 TEST RESULTS

EUT :	Wireless N150 Cloud Router	Model Name. :	DIR-600L		
Temperature :	<b>24</b> ℃	Relative Humidity :	60 %		
Pressure :	1016 hPa	Test Voltage :	AC 120V/60Hz		
Test Mode :	TX B MODE /CH01, CH06, CH11				

Test Channel	Frequency (MHz)	Bandwidth (MHz)	99% Occupied BW (MHz)	LIMIT (MHz)
CH01	2412	10.12	15.04	>=500KHz
CH06	2437	10.12	15.08	>=500KHz
CH11	2462	10.12	15.12	>=500KHz

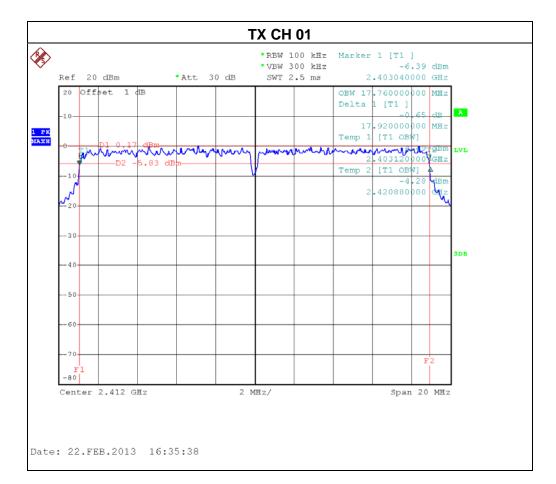


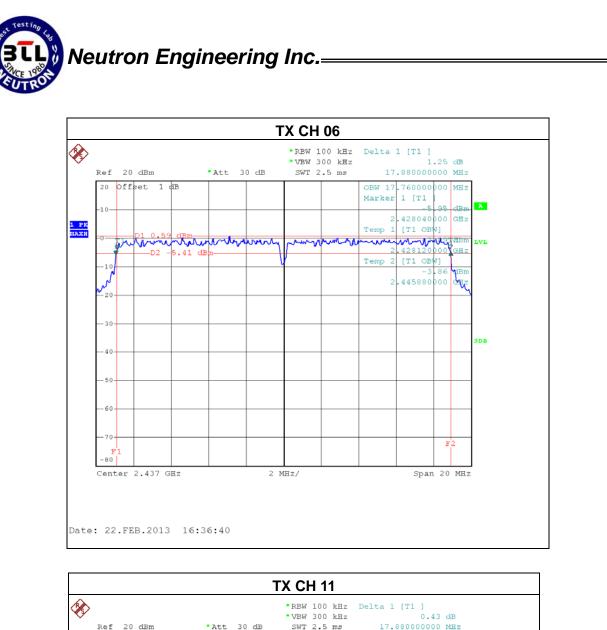






EUT :	Wireless N150 Cloud Router	Model Name. :	DIR-600L		
Temperature :	<b>24</b> °C	Relative Humidity :	60 %		
Pressure :	1016 hPa	Test Voltage :	AC 120V/60Hz		
Test Mode :	TX G MODE /CH01, CH06, CH11				

Test Channel	Frequency (MHz)	Bandwidth (MHz)	99% Occupied BW (MHz)	LIMIT (MHz)
CH01	2412	16.68	16.52	>=500KHz
CH06	2437	16.60	16.52	>=500KHz
CH11	2462	16.68	16.56	>=500KHz



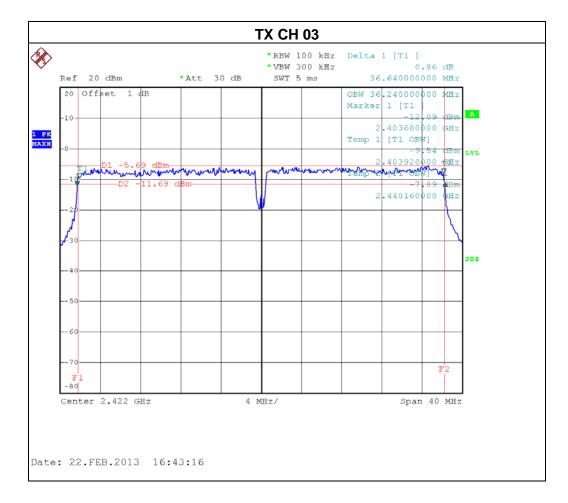


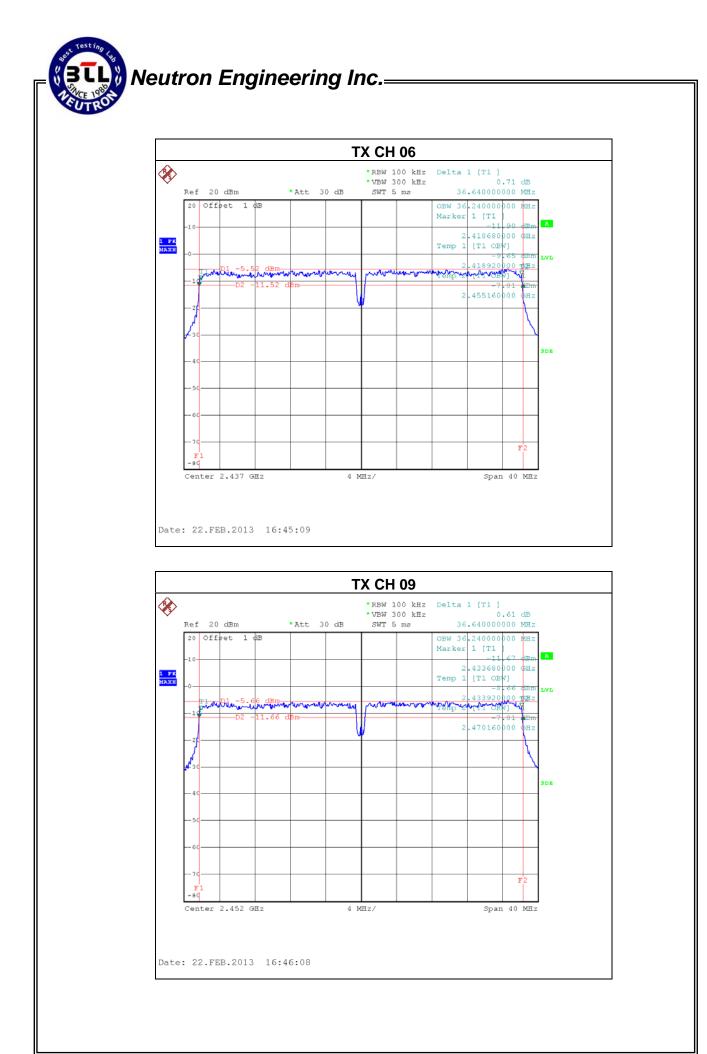


EUT :	Wireless N150 Cloud Router	Model Name. :	DIR-600L		
Temperature :	<b>24</b> ℃	Relative Humidity :	60 %		
Pressure :	1016 hPa	Test Voltage :	AC 120V/60Hz		
Test Mode :	TX N MODE -20MHz/ CH01, CH06, CH11				

Test Channel	Frequency (MHz)	Bandwidth (MHz)	99% Occupied BW (MHz)	LIMIT (MHz)
CH01	2412	17.92	17.76	>=500KHz
CH06	2437	17.88	17.76	>=500KHz
CH11	2462	17.88	17.76	>=500KHz



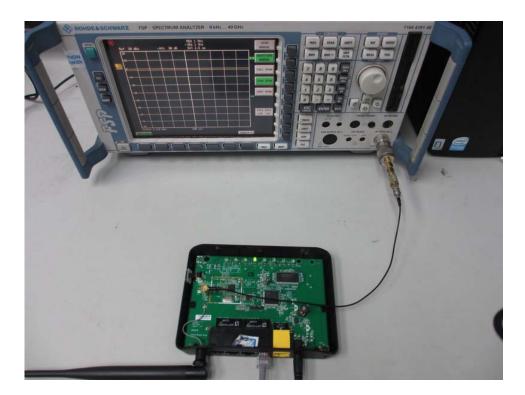





EUT :	Wireless N150 Cloud Router	Model Name. :	DIR-600L	
Temperature :	<b>24</b> ℃	Relative Humidity :	60 %	
Pressure :	1016 hPa	Test Voltage :	AC 120V/60Hz	
Test Mode :	TX N MODE -40MHz/ CH03, CH06, CH09			

Test Channel	Frequency (MHz)	Bandwidth (MHz)	99% Occupied BW (MHz)	LIMIT (MHz)
CH03	2422	36.64	36.24	>=500KHz
CH06	2437	36.64	36.24	>=500KHz
CH09	2452	36.64	36.24	>=500KHz








#### 5.1.7. EUT TEST PHOTO

#### **BANDWIDTH MEASUREMENT PHOTOS**



# Neutron Engineering Inc.=

#### 6. MAXIMUM OUTPUT POWER TEST

#### 6.1 Applied procedures / limit

FCC Part15 (15.247), Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Maximum Output Power	1 watt or 30dBm	2400-2483.5	PASS

#### 6.1.1 MEASUREMENT INSTRUMENTS LIST

I	tem	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Next Calibration
	1	Power Meter	ANRITSU	ML2495A	1128009	Nov.01.2012	Nov.01.2013
	2	Pulse Power Sensor	ANRITSU	MA 2411B	1027500	Nov.01.2012	Nov.01.2013

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of Equipment List is One Year.

#### 6.1.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below.
- b. The maximum peak conducted output power was performed in accordance with method 8.1.3 of FCC KDB 558074.

#### 6.1.3 DEVIATION FROM STANDARD

No deviation.

#### 6.1.4 TEST SETUP

EUT	Power Meter

#### 6.1.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.6 Unless otherwise a special operating condition is specified in the follows during the testing.

Transmit output power was measured while the host equipment supply voltage was varied from 85 % to 115 % of the nominal rated supply voltage. No change in transmit output power was observed.



#### 6.1.6 TEST RESULTS

EUT :	Wireless N150 Cloud Router	Model Name :	DIR-600L
Temperature :	<b>24</b> ℃	Relative Humidity :	60 %
Pressure :	1016 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX B MODE /CH01, CH06, CH11		

#### Maximum Output Power

Test Channel	Frequency (MHz)	Output Power (dBm)	LIMIT (dBm)	LIMIT (W)
CH01	2412 MHz	22.74	30	1
CH06	2437 MHz	22.83	30	1
CH11	2462 MHz	22.82	30	1

EUT :	Wireless N150 Cloud Router	Model Name :	DIR-600L
Temperature :	<b>24</b> ℃	Relative Humidity :	60 %
Pressure :	1016 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX G MODE /CH01, CH06, CH11		

#### Maximum Output Power

Test Channel	Frequency (MHz)	Output Power (dBm)	LIMIT (dBm)	LIMIT (W)
CH01	2412 MHz	22.15	30	1
CH06	2437 MHz	22.32	30	1
CH11	2462 MHz	22.11	30	1



EUT :	Wireless N150 Cloud Router	Model Name :	DIR-600L
Temperature :	<b>24</b> ℃	Relative Humidity :	60 %
Pressure :	1016 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX N-20M MODE /CH01, CH06, CH11		

#### Maximum Output Power

Test Channel	Frequency (MHz)	Output Power (dBm)	LIMIT (dBm)	LIMIT (W)
CH01	2412 MHz	21.82	30	1
CH06	2437 MHz	21.76	30	1
CH11	2462 MHz	21.74	30	1

EUT :	Wireless N150 Cloud Router	Model Name :	DIR-600L	
Temperature :	<b>24</b> ℃	Relative Humidity :	60 %	
Pressure :	1016 hPa Test Voltage :		AC 120V/60Hz	
Test Mode :	TX N-40M MODE /CH03, CH06, CH09			

#### Maximum Output Power

Test Channel	Frequency	Output Power	LIMIT	LIMIT
	(MHz)	(dBm)	(dBm)	(W)
CH03	2422 MHz	19.19	30	1
CH06	2437 MHz	19.41	30	1
CH09	2452 MHz	19.29	30	1



6.1.7. EUT TEST PHOTO

#### MAXIMUM OUTPUT POWER MEASUREMENT PHOTOS





#### 7. ANTENNA CONDUCTED SPURIOUS EMISSION

#### 7.1 Applied procedures / limit

30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

#### 7.1.1 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Next Calibration
1	Spectrum Analyzer	R&S	FSP_40	100185	Nov. 16.2012	Nov. 16.2013

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of Equipment List is One Year.

#### 7.1.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=300KHz, Sweep time = 10 ms.

#### 7.1.3 DEVIATION FROM STANDARD

No deviation.

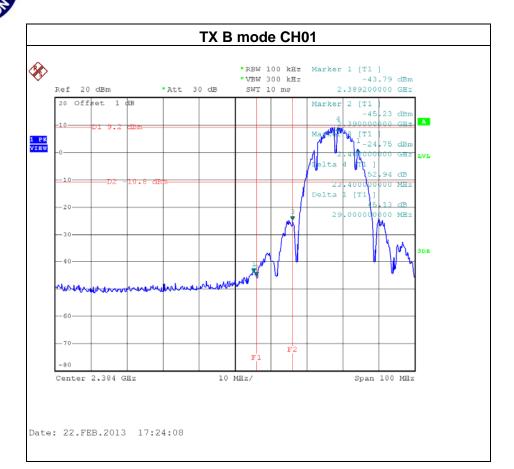
#### 7.1.4 TEST SETUP

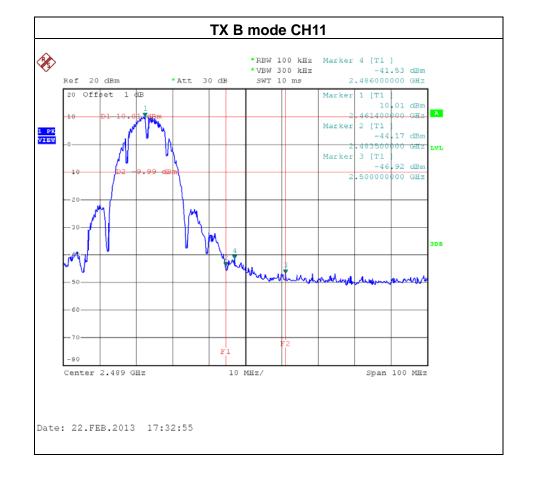
EUT	SPECTRUM	
	ANALYZER	

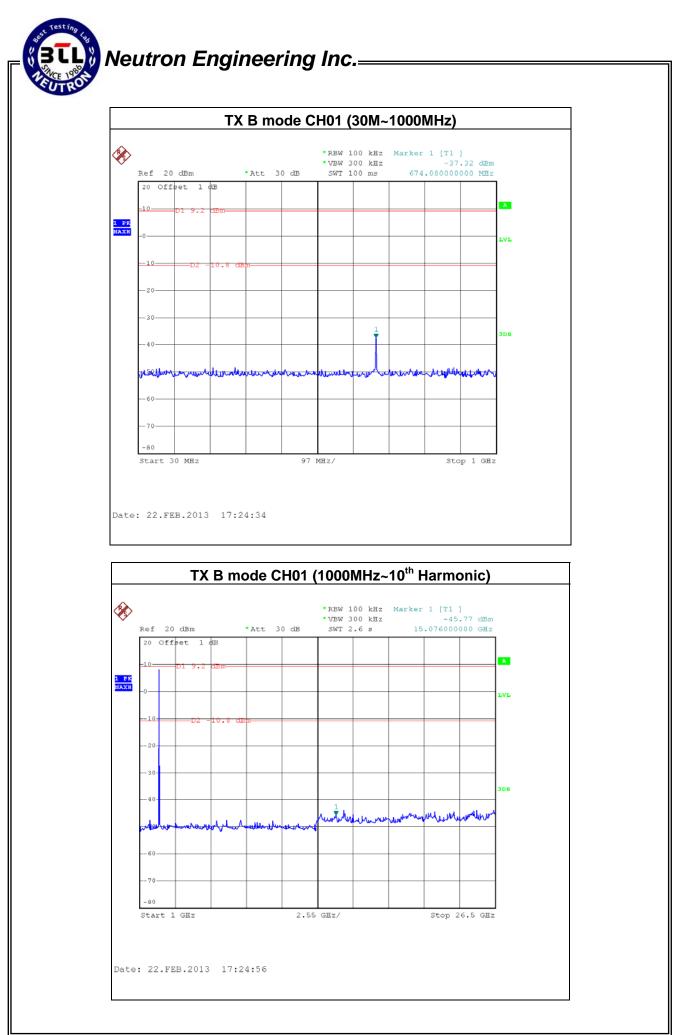
#### 7.1.5 EUT OPERATION CONDITIONS

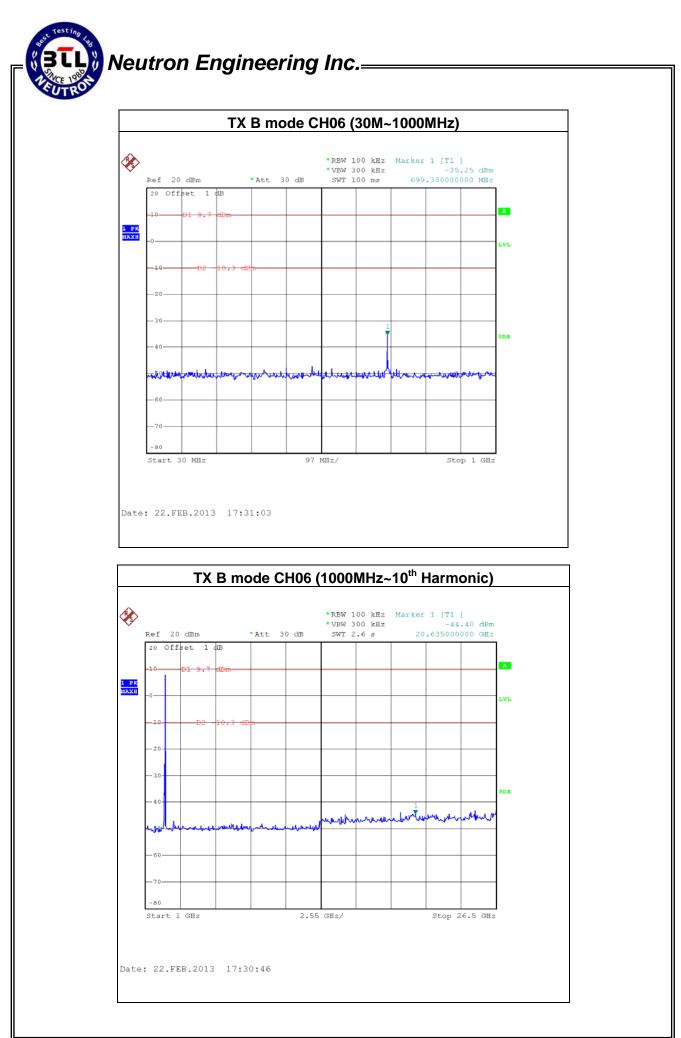
The EUT tested system was configured as the statements of 4.1.6 Unless otherwise a special operating condition is specified in the follows during the testing.

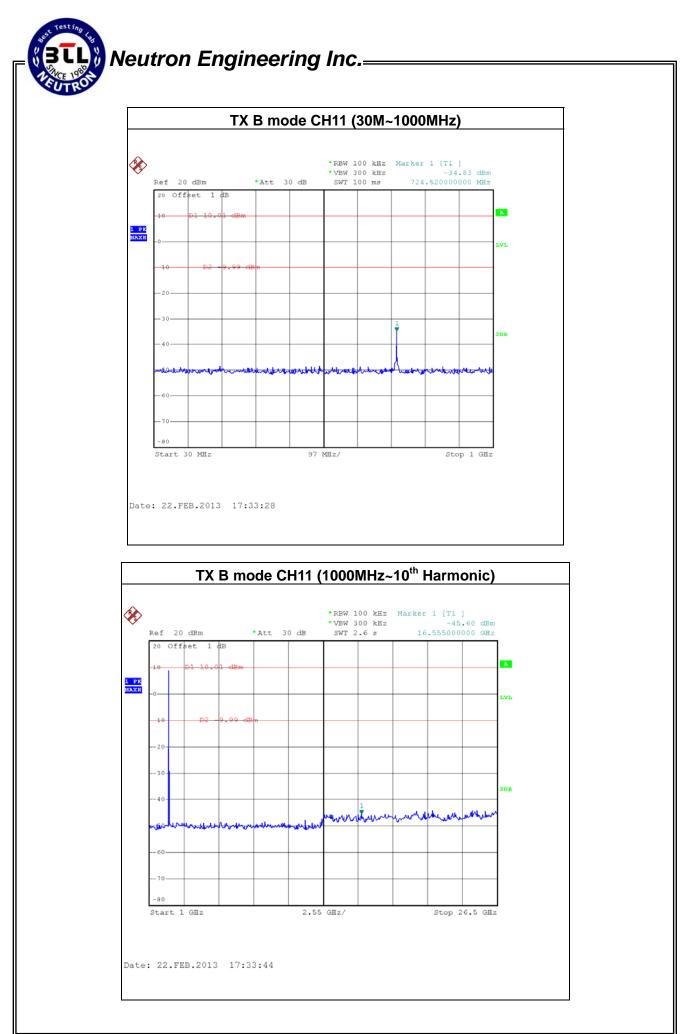



#### 7.1.6 TEST RESULTS


EUT :	Wireless N150 Cloud Router	Model Name :	DIR-600L
Temperature :	<b>24</b> °C	Relative Humidity :	60 %
Pressure :	1016 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX B MODE /CH01, CH06 , CH11		


Channel of Worst Data: CH01			
	cy power in any 100kHz the frequency band	The max. radio frequency power in any 100 kHz bandwidth outside the frequency band.	
FREQUENCY(MHz)	POWER(dBm)	FREQUENCY(MHz)	POWER(dBm)
2400.00	-24.75	2486.00	-41.53
Result			


In any 100kHz bandwidth outside the frequency band, the radio frequency power is at least 20dB below that in the 100kHz bandwidth within the band that contains the highest lever of the desired power.

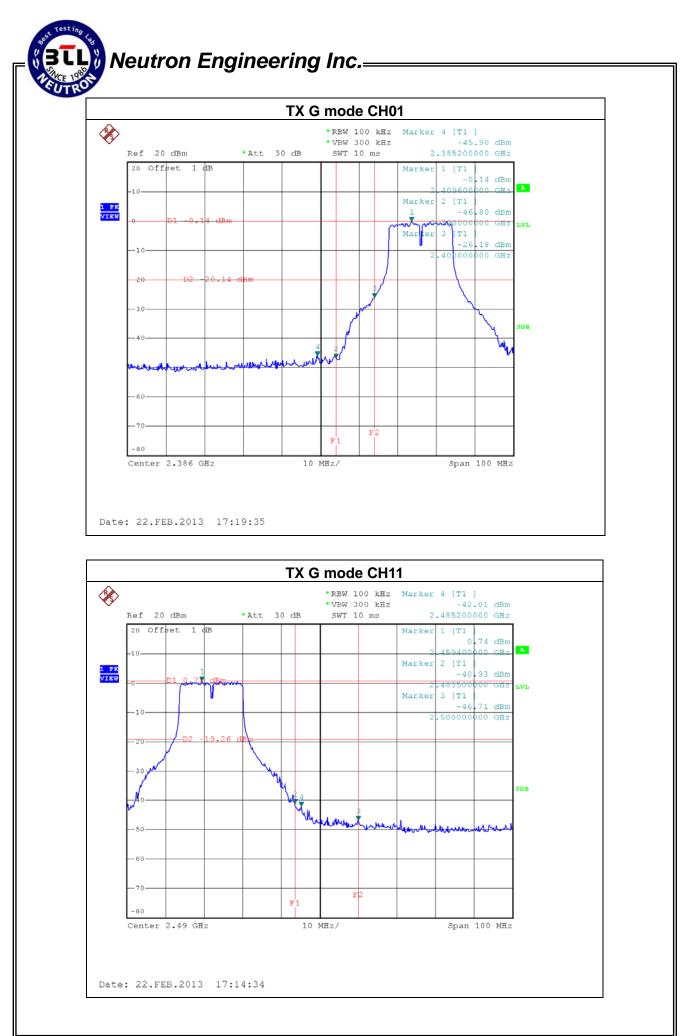

### Neutron Engineering Inc.

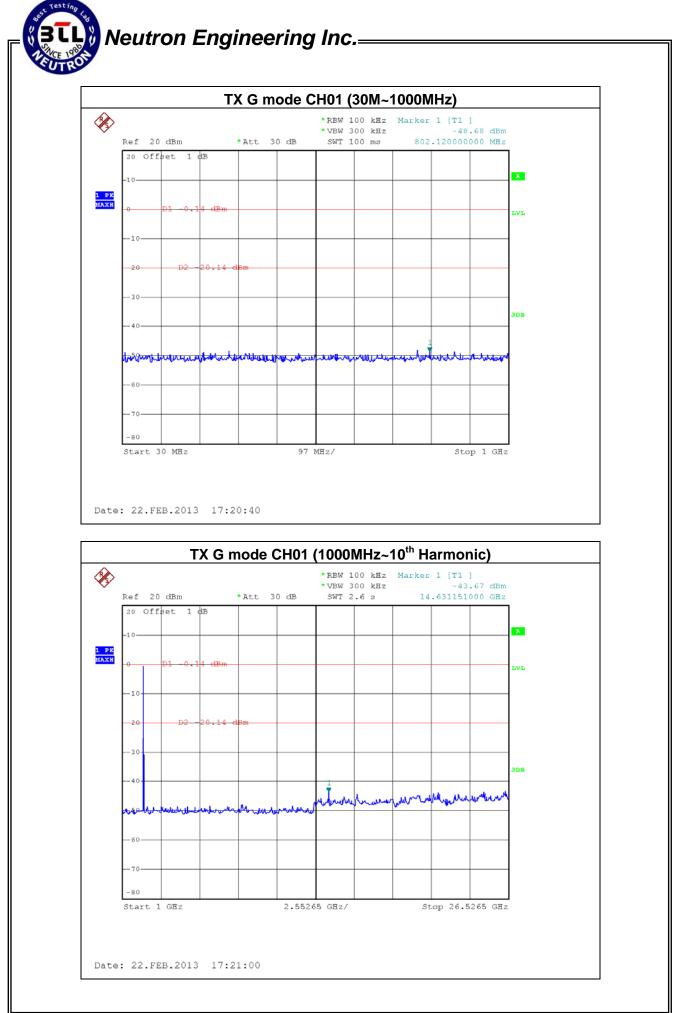


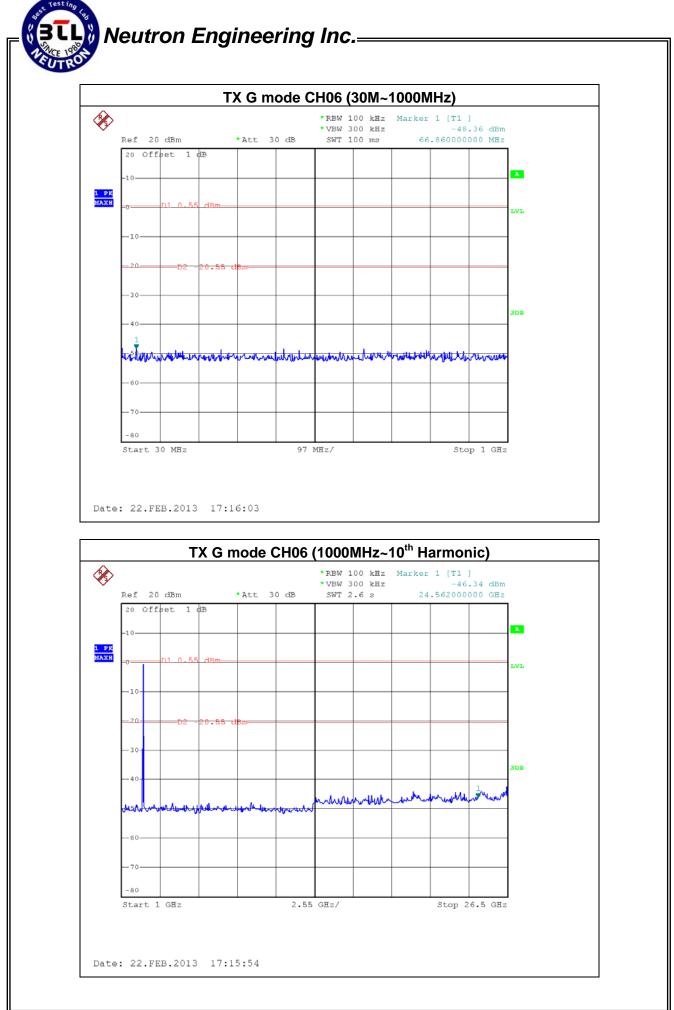


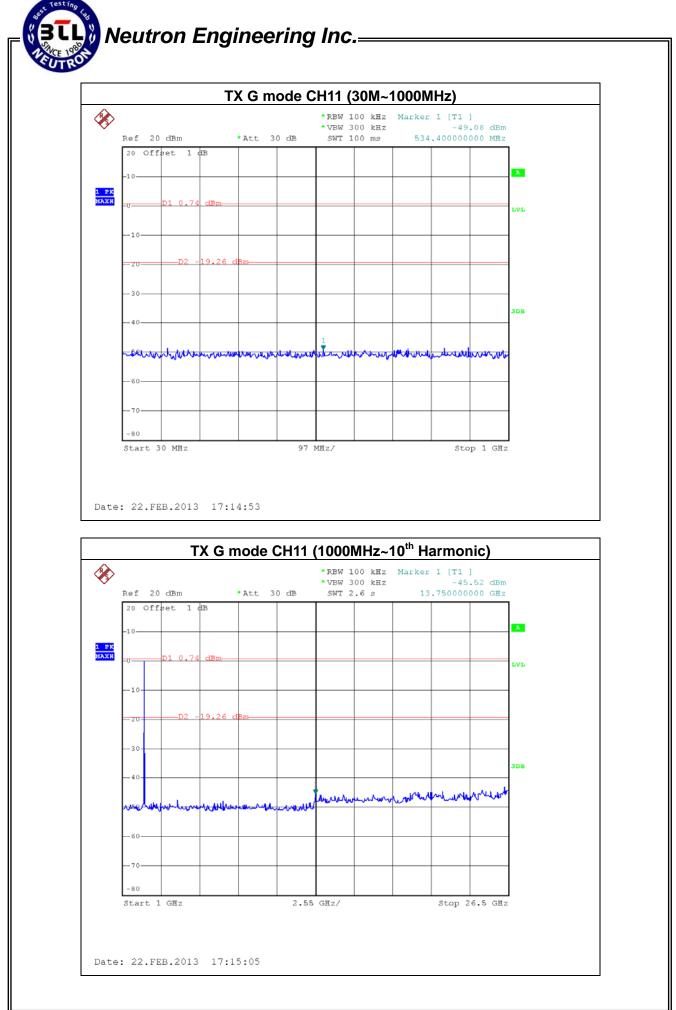








EUT :	Wireless N150 Cloud Router	Model Name :	DIR-600L
Temperature :	<b>24</b> °C	Relative Humidity :	60 %
Pressure :	1016 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX G MODE / CH01, CH06 , CH11		

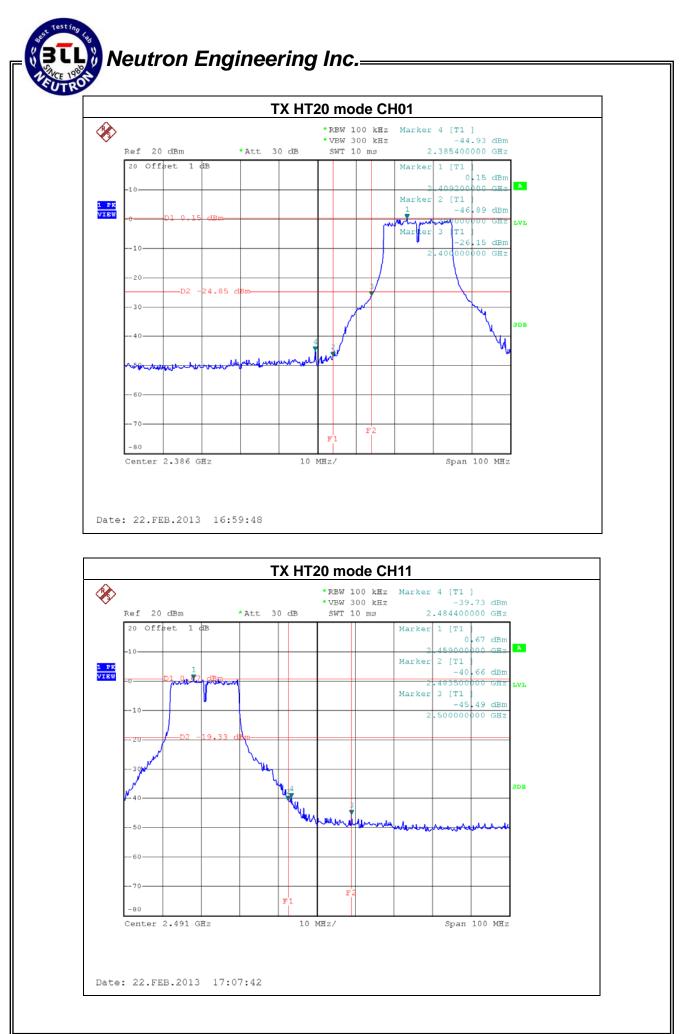

Channel of Worst Data: CH01					
The max. radio frequency power in any 100kHzThe max. radio frequency power in any 100 kHzbandwidth within the frequency bandbandwidth outside the frequency band.					
FREQUENCY(MHz)	POWER(dBm)	FREQUENCY(MHz)	POWER(dBm)		
2400.00 -26.18 2483.50 -40.93					
	Result				

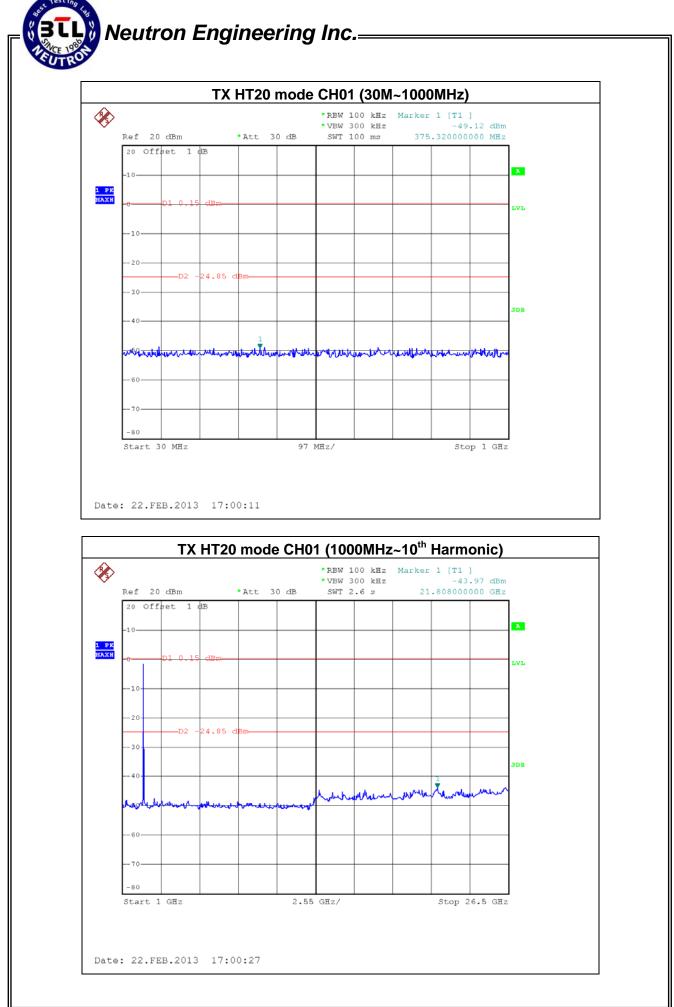
In any 100kHz bandwidth outside the frequency band, the radio frequency power is at least 20dB below that in the 100kHz bandwidth within the band that contains the highest lever of the desired power.



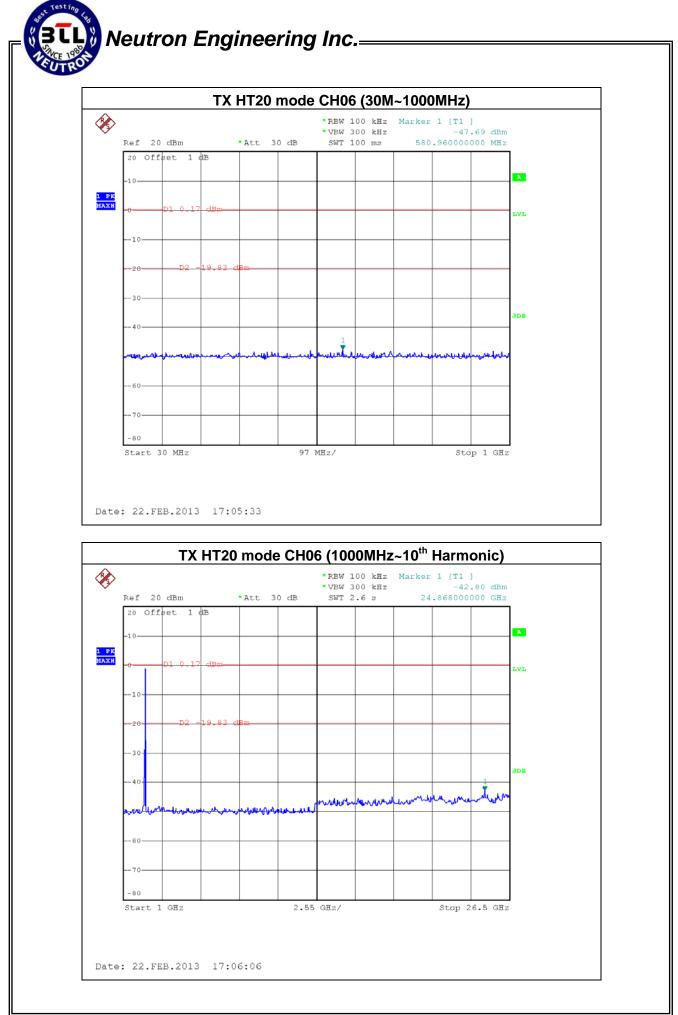


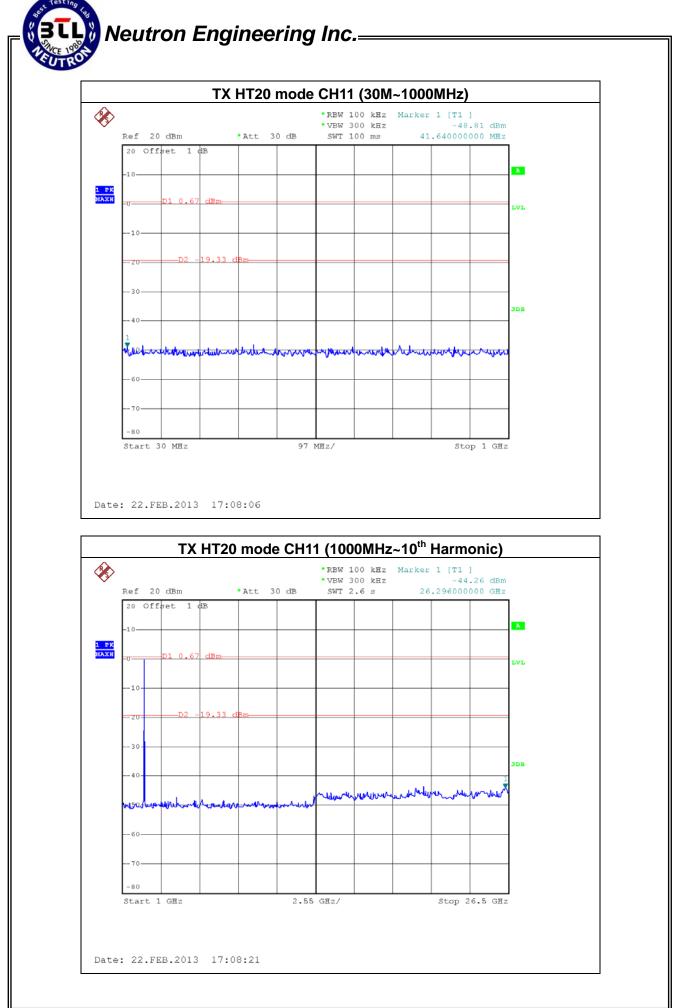





EUT :	Wireless N150 Cloud Router	Model Name :	DIR-600L	
Temperature :	<b>24</b> °C	Relative Humidity :	60 %	
Pressure :	1016 hPa	Test Voltage :	AC 120V/60Hz	
Test Mode :	TX N-20M MODE / CH01, CH06 , CH11			


Channel of Worst Data: CH01					
The max. radio frequency power in any 100kHzThe max. radio frequency power in any 100 kHzbandwidth within the frequency bandbandwidth within the frequency band.					
FREQUENCY(MHz)	POWER(dBm)	FREQUENCY(MHz)	POWER(dBm)		
2400.00 -26.15 2484.40 -39.73					
	Result				


In any 100kHz bandwidth outside the frequency band, the radio frequency power is at least 20dB below that in the 100kHz bandwidth within the band that contains the highest lever of the desired power.

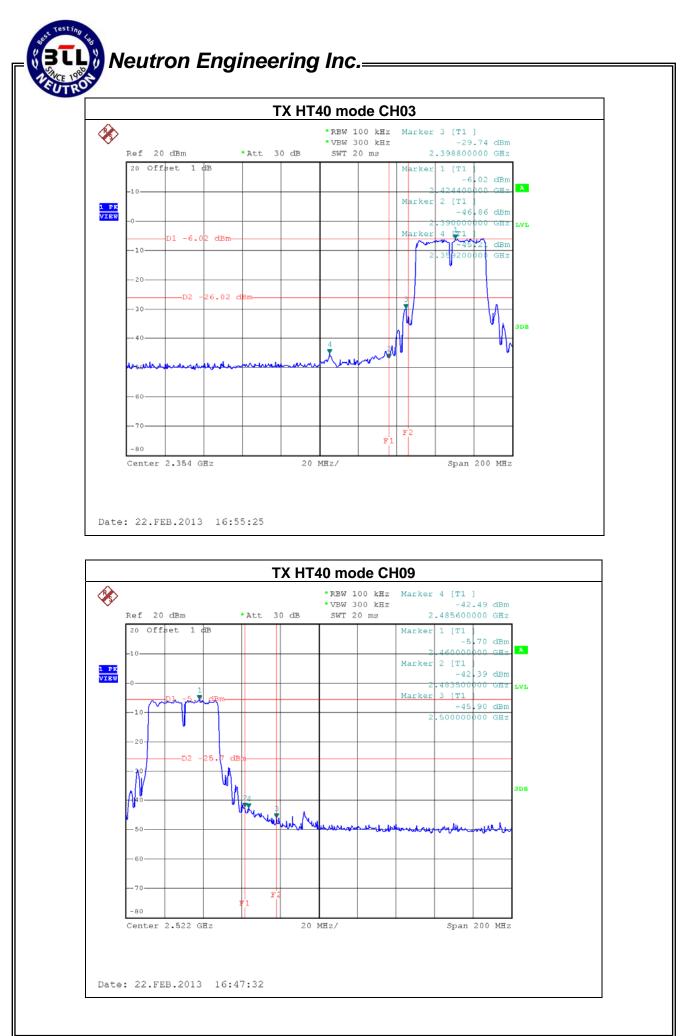


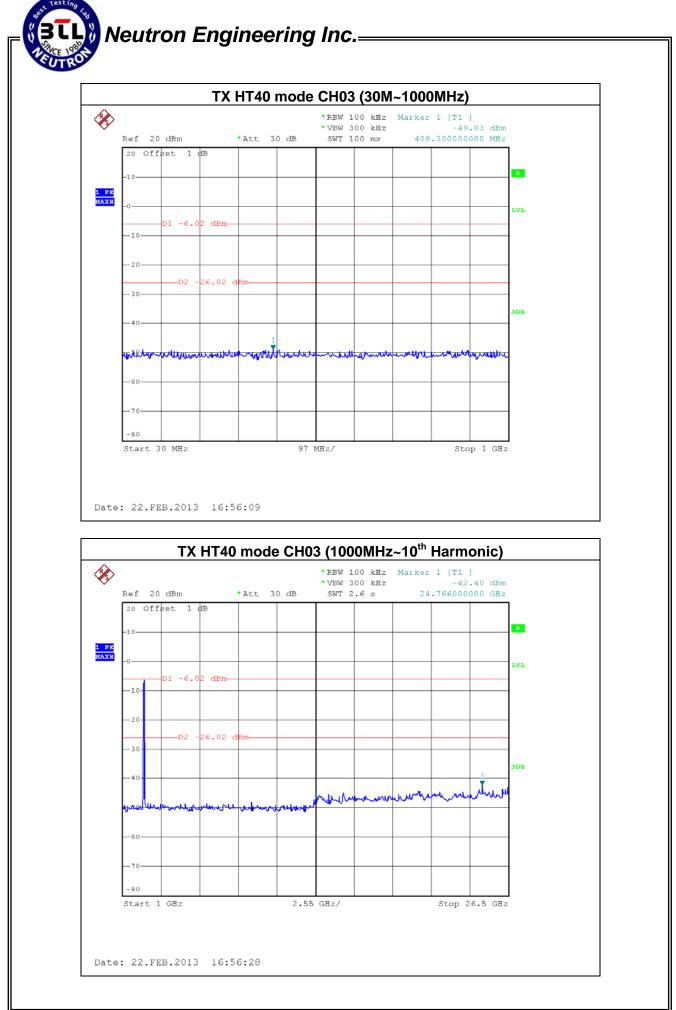


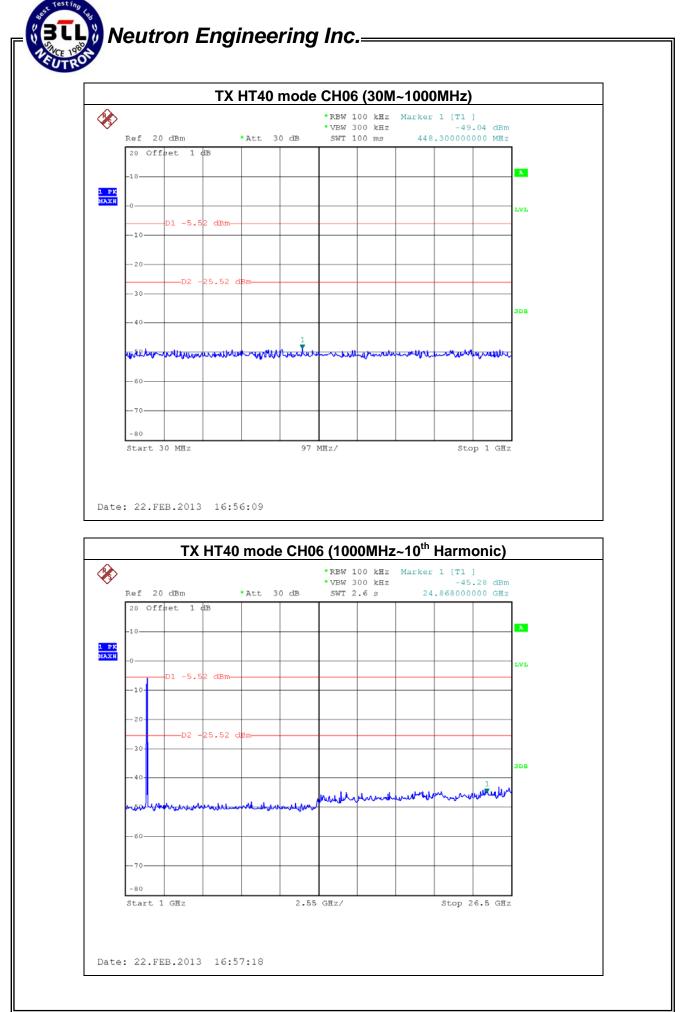
Page 119 of 140



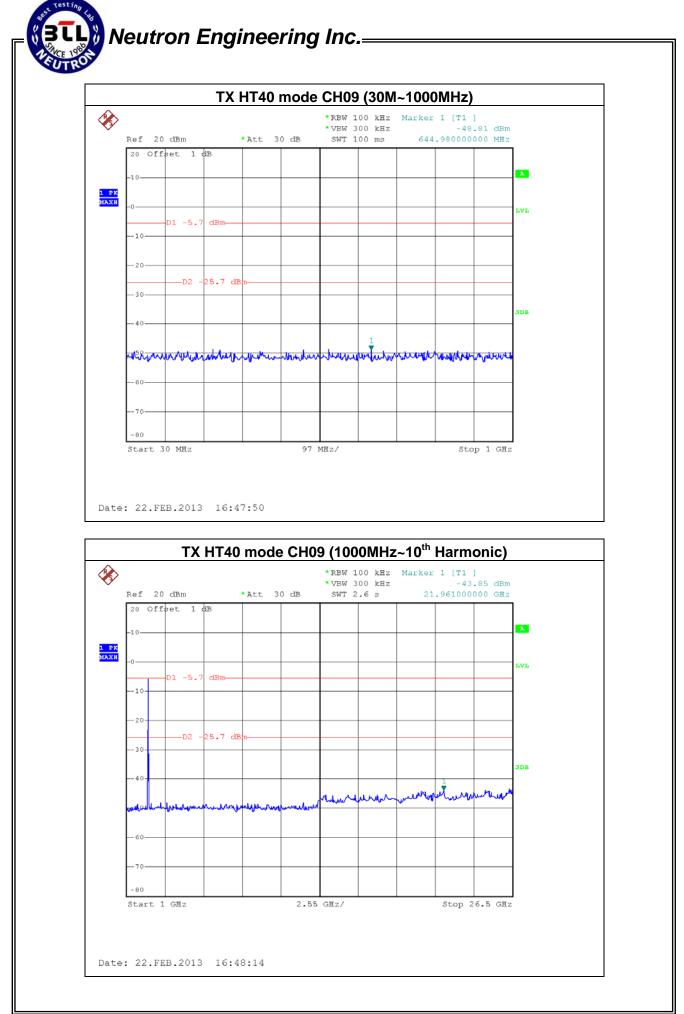



Page 121 of 140





EUT :	Wireless N150 Cloud Router	Model Name :	DIR-600L	
Temperature :	<b>24</b> °C	Relative Humidity :	60 %	
Pressure :	1016 hPa	Test Voltage :	AC 120V/60Hz	
Test Mode :	TX N-40M MODE /CH03, CH06, CH09			

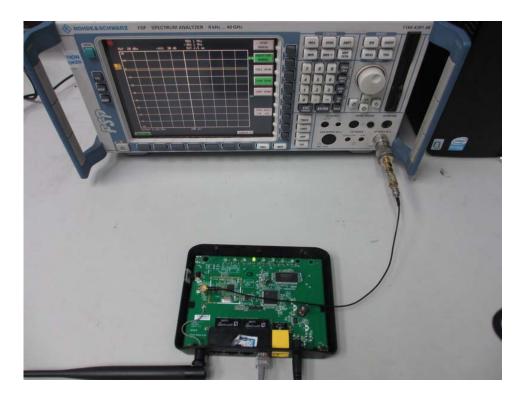
Channel of Worst Data: CH09					
The max. radio frequency power in any 100kHzThe max. radio frequency power in any 100 kHzbandwidth within the frequency bandbandwidth outside the frequency band.					
FREQUENCY(MHz)	POWER(dBm)	FREQUENCY(MHz)	POWER(dBm)		
2398.80 -29.74 2483.50 -42.39					
Result					


In any 100kHz bandwidth outside the frequency band, the radio frequency power is at least 20dB below that in the 100kHz bandwidth within the band that contains the highest lever of the desired power.








Page 125 of 140





7.1.7. EUT TEST PHOTO

# ANTENNA CONDUCTED SPURIOUS EMISSION MEASUREMENT PHOTOS



# Neutron Engineering Inc.=

# 8. POWER SPECTRAL DENSITY TEST

## 8.1 Applied procedures / limit

FCC Part15 (15.247), Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(e)	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS	

## 8.1.1 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Next Calibration
1	Spectrum Analyzer	R&S	FSP_40	100185	Nov. 16.2012	Nov. 16.2013

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of Equipment List is One Year.

#### 8.1.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=3KHz, VBW=10 KHz, Sweep time = 2.5ms.

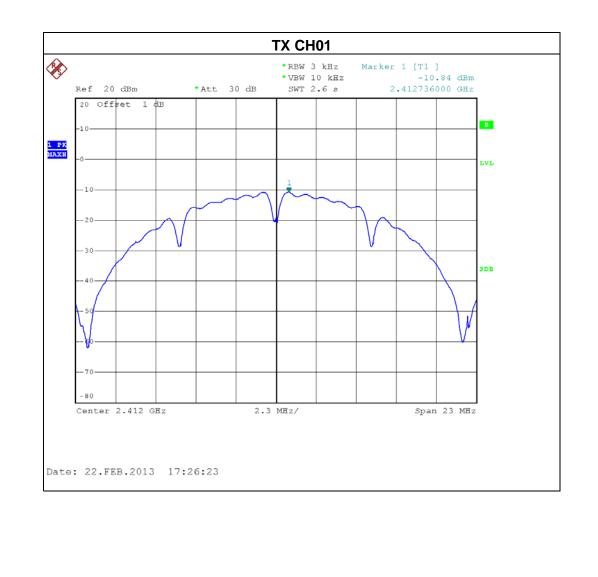
#### 8.1.3 DEVIATION FROM STANDARD

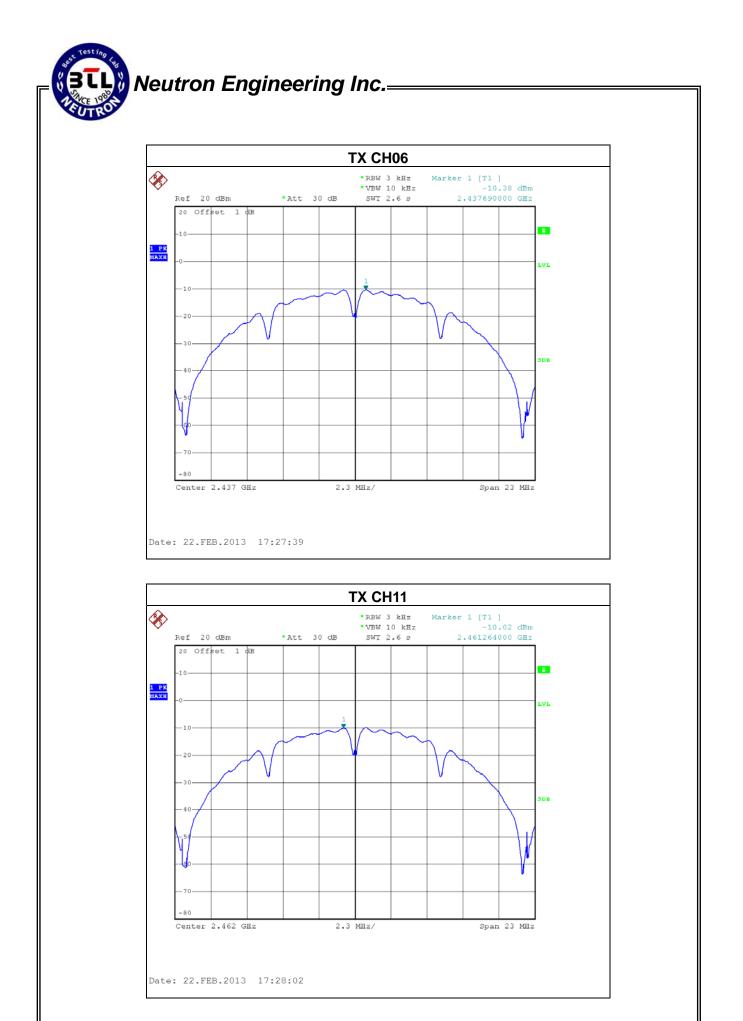
No deviation.

#### 8.1.4 TEST SETUP



## 8.1.5 EUT OPERATION CONDITIONS

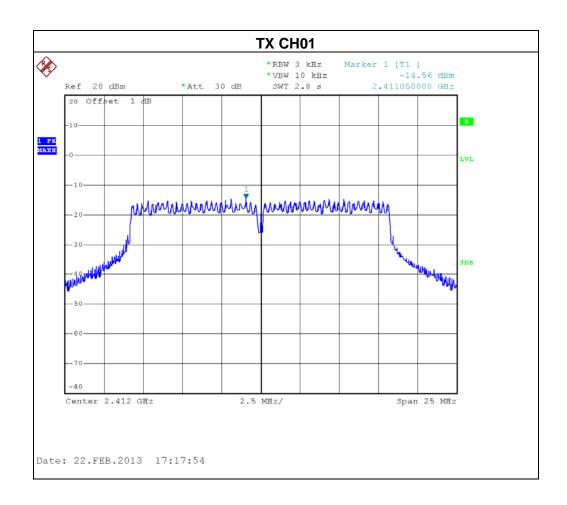

The EUT tested system was configured as the statements of 4.1.6 Unless otherwise a special operating condition is specified in the follows during the testing.

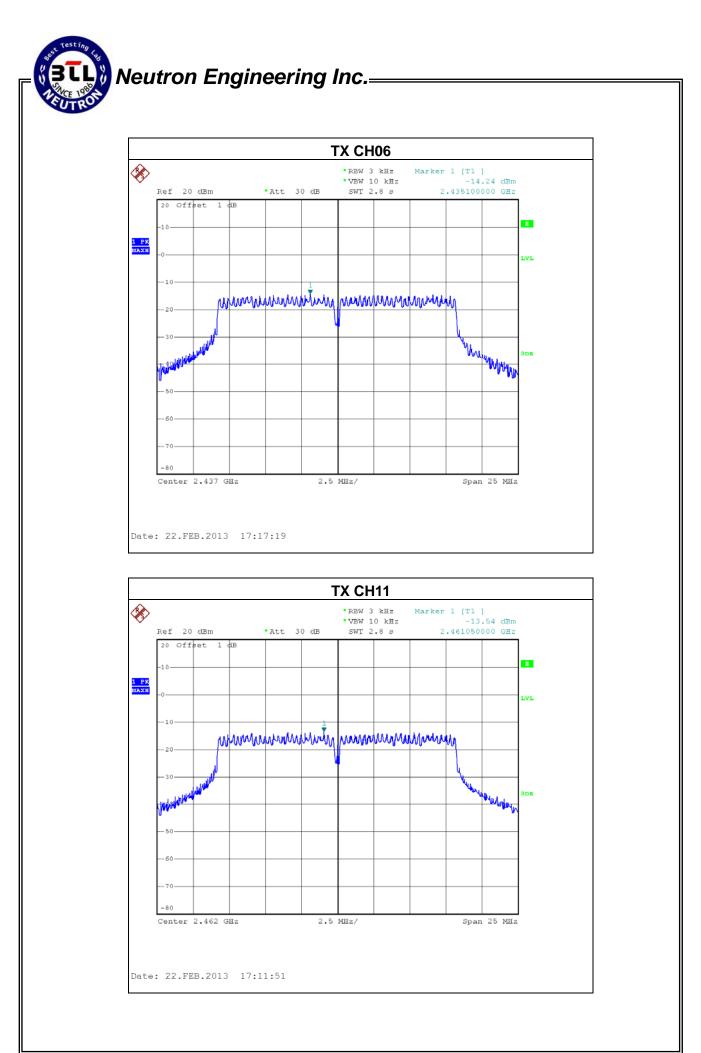



# 8.1.6 TEST RESULTS

EUT :	Wireless N150 Cloud Router	Model Name :	DIR-600L
Temperature :	<b>24</b> ℃	Relative Humidity :	60 %
Pressure :	1016 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX B MODE /CH01, CH06, CH11		

Test Channel	Frequency (MHz)	Power Density (dBm)	LIMIT (dBm)
CH01	2412 MHz	-10.84	8
CH06	2437 MHz	-10.38	8
CH11	2462 MHz	-10.02	8

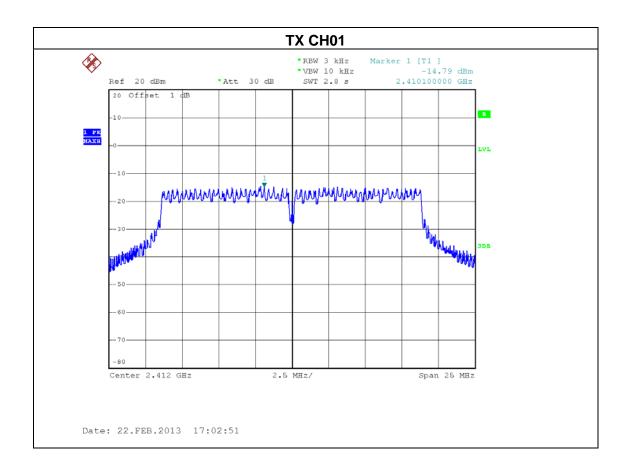


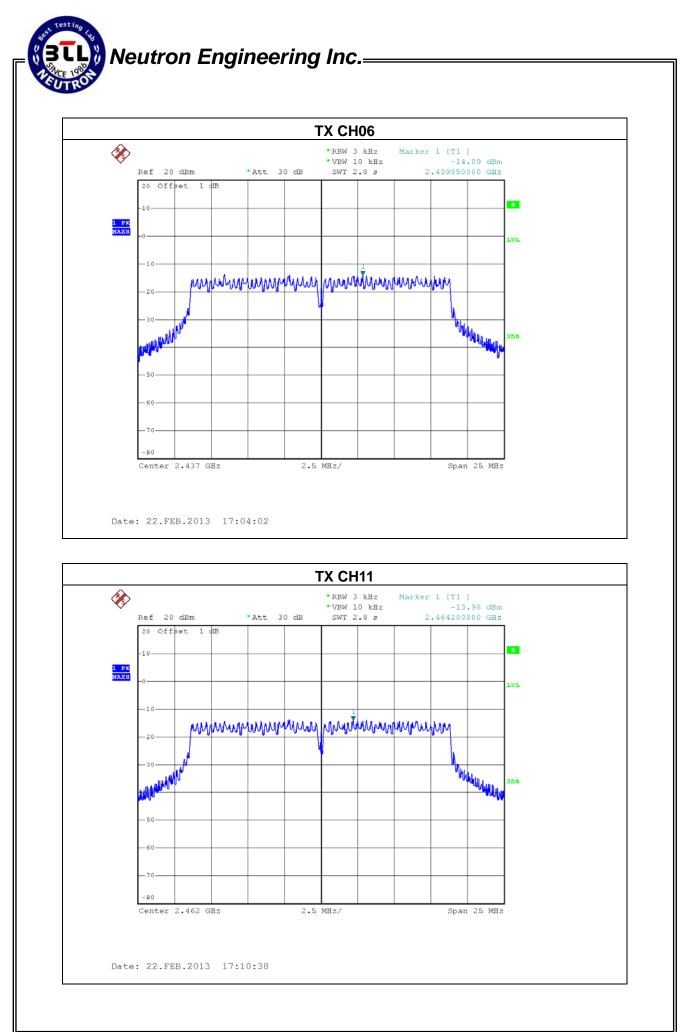






EUT :	Wireless N150 Cloud Router	Model Name :	DIR-600L
Temperature :	<b>24</b> ℃	Relative Humidity :	60 %
Pressure :	1016 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX G MODE /CH01, CH06, CH11		

Test Channel	Frequency (MHz)	Power Density (dBm)	LIMIT (dBm)
CH01	2412 MHz	-14.56	8
CH06	2437 MHz	-14.24	8
CH11	2462 MHz	-13.54	8

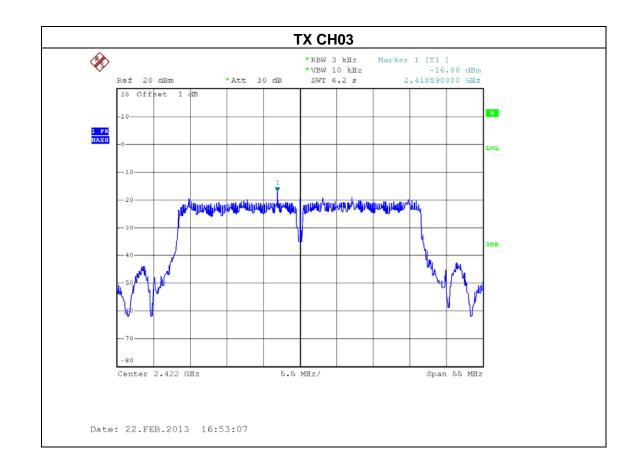


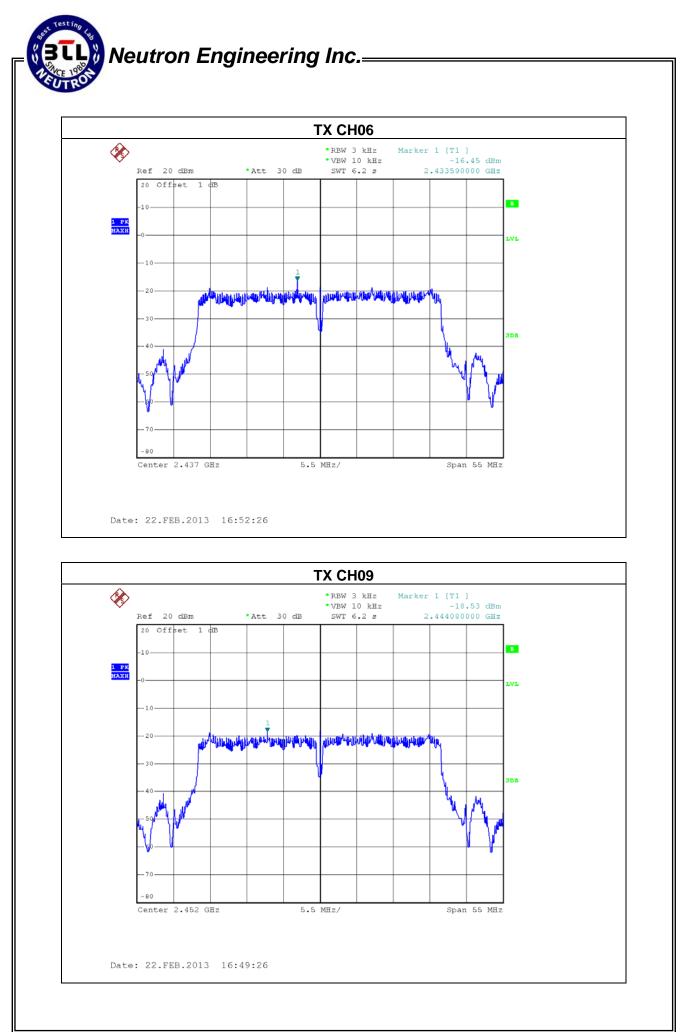






EUT :	Wireless N150 Cloud Router	Model Name :	DIR-600L
Temperature :	<b>24</b> ℃	Relative Humidity :	60 %
Pressure :	1016 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX N MODE-20MHz /CH01, CH06, CH11		

Test Channel	Frequency (MHz)	Power Density (dBm)	LIMIT (dBm)
CH01	2412 MHz	-14.79	8
CH06	2437 MHz	-14.09	8
CH11	2462 MHz	-13.98	8






EUT :	Wireless N150 Cloud Router	Model Name :	DIR-600L
Temperature :	<b>24</b> ℃	Relative Humidity :	60 %
Pressure :	1016 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX N MODE-40MHz /CH03, CH06, CH09		

Test Channel	Frequency	Power Density	LIMIT
	(MHz)	(dBm)	(dBm)
CH03	2422 MHz	-16.88	8
CH06	2437 MHz	-16.45	8
CH09	2452 MHz	-18.53	8

















