Report No.: T111219304-RP1

FCC 47 CFR PART 15 SUBPART C AND ANSI C63.4:2003 TEST REPORT

For

WIRELESS N 150 CLOUD ROUTER

Model: DIR-600L

Data Applies To: DIR-900L

Trade Name: D-Link

Issued for

D-Link Corporation

No.289, Sinhu 3rd Rd., Neihu District, Taipei City 114, Taiwan, R.O.C.

Issued by

Compliance Certification Services Inc. Hsinchu Lab.

NO. 989-1 Wen Shan Rd., Shang Shan Village, Qionglin Shiang Hsinchu County 30741, Taiwan, R.O.C

TEL: +886-3-5921698 FAX: +886-3-5921108

http://www.ccsrf.com E-Mail : service@ccsrf.com Issued Date: December 26, 2011

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

Report No.: T111219304-RP1

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	12/26/2011	Initial Issue	All Page 103	Kelly Tsai

Report No.: T111219304-RP1

TABLE OF CONTENTS

TITLE PAGE NO. 1. TEST REPORT CERTIFICATION4 2. EUT DESCRIPTION5 3. DESCRIPTION OF TEST MODES6-7 4. TEST METHODOLOGY8 5. FACILITIES AND ACCREDITATION8 5.3 MEASUREMENT UNCERTAINTY9 6. SETUP OF EQUIPMENT UNDER TEST......10-11 7. FCC PART 15.247 REQUIREMENTS12 7.5 CONDUCTED SPURIOUS EMISSION47-55 7.7 CONDUCTED EMISSION.......91-97 APPENDIX I MAXIMUM PERMISSIBLE EXPOSURE.......98-99 APPENDIX II SETUP PHOTOS100-103

Report No.: T111219304-RP1

1. TEST REPORT CERTIFICATION

Applicant : D-Link Corporation

Address : No.289, Sinhu 3rd Rd., Neihu District,

Taipei City 114, Taiwan, R.O.C.

Equipment Under Test: WIRELESS N 150 CLOUD ROUTER

Model : DIR-600L

Data Applies To : DIR-900L

Trade Name : D-Link

Tested Date : July 16 ~ August 06, 2010 ; December 19 ~ 23, 2011

APPLICABLE STANDARD			
Standard	Test Result		
FCC Part 15 Subpart C AND ANSI C63.4:2003	PASS		

WE HEREBY CERTIFY THAT: The above equipment has been tested by Compliance Certification Services Inc., and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

Sb. Lu

Sr. Engineer

Reviewed by:

Gundam Lin Sr. Engineer **ervices inc.** Refer No. : T100716302 KA2IR600LA1 Report No. : T111219304-RP1

2. EUT DESCRIPTION

Product Name	WIRELESS N 150 CLOUD ROUTER		
Model Number	DIR-600L		
Data Applies To	DIR-900L		
Identify Number	T111219304		
Received Date	July 16, 2010		
F D	IEEE 802.11b/g, 802.11n HT20 : 2412MHz∼2462MHz		
Frequency Range	IEEE 802.11n HT40 : 2422MHz∼2452MHz		
	IEEE 802.11b : 19.30dBm (0.0851W)		
T	IEEE 802.11g : 19.38dBm (0.0867W)		
Transmit Power	IEEE 802.11n HT20 : 19.31dBm (0.0853W)		
	IEEE 802.11n HT40 : 18.74dBm (0.0748W)		
Channel Spacing	IEEE 802.11b/g, 802.11n HT20/HT40 : 5MHz		
Channel Number	IEEE 802.11b/g : 11 Channels		
Channel Number	IEEE 802.11n HT40 : 7 Channels		
	IEEE 802.11b : 11, 5.5, 2, 1 Mbps		
	IEEE 802.11g : 54, 48, 36, 24, 18, 12, 9, 6 Mbps		
Transmit Data Rate	IEEE 802.11n HT20 : 72.2, 65, 58.5, 57.8, 52, 43.3, 39, 28.9, 26, 21.7, 19.5, 14.4, 13, 7.2, 6.5 Mbps		
	IEEE 802.11n HT40 : 150, 135, 121.5, 120, 108, 90, 81, 60, 54, 45, 40.5, 30, 27, 15, 13.5 Mbps		
	IEEE 802.11b : DSSS (CCK, DQPSK, DBPSK)		
Type of Modulation	IEEE 802.11g : OFDM (64QAM, 16QAM, QPSK, BPSK)		
Type of infodulation	IEEE 802.11n HT20/40 : OFDM (64QAM, 16QAM, QPSK, BPSK)		
Antenna Type	OMNI Antenna , Antenna Gain 4dBi		
DC Power Cord Type	Non-shielded cable 1.5 m (Non-detachable)		
Power Source	5Vdc, 1.0A(From Power Adapter)		
I/O Port	WAN port × 1 · LAN port × 4 · Power port × 1		

Power Adapter:

No.	Manufacturer	Model No.	Power Input	Power Output
1	D-Link	AMS47-0501000FU	100-240Vac, 50/60Hz, 0.2A	5Vdc, 1A
2	D-Link	FPS005USA-050100	100-240Vac, 50/60Hz, 0.2A	5Vdc, 1A

Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. For more details, please refer to the User's manual of the EUT.
- 3. This submittal(s) (test report) is intended for FCC ID: KA2IR600LA1 filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.
- 4. This report is modified from T100716302.
- 5. The model DIR-600L was considered the main model for testing.
- 6. The EUT has two models for the requirement of marketing, there are no differences between two models.

3. DESCRIPTION OF TEST MODES

The EUT is an 802.11n MIMO transceiver in WIRELESS N 150 CLOUD ROUTER form factor. It has one transmitter chains and one receive chains (1 × 1 configurations).

Conducted Emission / Radiated Emission Test (Below 1 GHz)

1. The following test modes were scanned during the preliminary test:

No.	Pre-Test Mode
1	Normal Operating

2. After the preliminary scan, the following test mode was found to produce the highest emission level.

Final Test Mode				
Emission	Radiated Emission	Normal Operating		
LIIIISSIOII	Conducted Emission	Normal Operating		

Remark: Then, the above highest emission mode of the configuration of the EUT and cable was chosen for all final test items.

Report No.: T111219304-RP1

Conducted / Radiated Emission Test (Above 1 GHz) IEEE 802.11b, 802.11g, 802.11n HT20 mode

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)	
Low	2412	
Middle	2437	
High	2462	

IEEE 802.11b mode: 1Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11g mode: 6Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11n HT20 mode: 6.5Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11n HT40 mode

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)	
Low	2422	
Middle	2437	
High	2452	

IEEE 802.11n HT40 mode: 13.5Mbps data rate (worst case) were chosen for full testing.

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4: 2003 and FCC CFR 47, 15.207, 15.209 and 15.247.

5. FACILITIES AND ACCREDITATION

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

NO. 989-1 Wen Shan Rd., Shang Shan Village, Qionglin Shiang Hsinchu County 30741, Taiwan, R.O.C

The sites are constructed in conformance with the requirements of ANSI C63.4:2003 and CISPR 22. All receiving equipment conforms to CISPR 16-1-1, CISPR 16-1-2, CISPR 16-1-3, CISPR 16-1-4, CISPR 16-1-5.

5.2 ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

Taiwan TAF

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada INDUSTRY CANADA
Japan VCCI
Taiwan BSMI
USA FCC MRA

Copies of granted accreditation certificates are available for downloading from our web site, http:///www.ccsrf.com

5.3 MEASUREMENT UNCERTAINTY

The following table is for the measurement uncertainty, which is calculated as per the document CISPR 16-4-2.

PARAMETER	UNCERTAINTY
Semi Anechoic Chamber (966 Chamber) / Radiated Emission, 30 to 200 MHz	+/- 3.6878
Semi Anechoic Chamber (966 Chamber) / Radiated Emission, 200 to 1000 MHz	+/- 3.0885
Semi Anechoic Chamber (966 Chamber) / Radiated Emission, 1 to 26.5GHz	+/- 3.2000
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 30 to 1000 MHz	+/- 3.5189
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 1 to 18GHz	+/- 2.5164
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 18 to 26 GHz	+/- 2.4967
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 26 to 40 GHz	+/- 2.7655
Conducted Emission (Mains Terminals), 9kHz to 30MHz	+/- 1.5923

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Consistent with industry standard (e.g. CISPR 22: 2006, clause 11, Measurement Uncertainty) determining compliance with the limits shall be base on the results of the compliance measurement. Consequently the measure emissions being less than the maximum allowed emission result in this be a compliant test or passing test.

The acceptable measurement uncertainty value without requiring revision of the compliance statement is base on conducted and radiated emissions being less than U_{CISPR} which is 3.6dB and 5.2dB respectively. CCS values (called U_{Lab} in CISPR 16-4-2) is less than U_{CISPR} as shown in the table above. Therefore, MU need not be considered for compliance.

6. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

No.	Product	Manufacturer	Model No.	Serial No.	FCC ID
1	Notebook PC	DELL	Latitude D610	CN-0XD762-48643-6 37-1743	E2K24BNHM
2	Notebook PC	Lenovo ideaPad	S10e_4068-R Z1	L3CEV2D	HFS-FL
3	Notebook PC	IBM	ThinkPad T61 7663-AS6	L3F3864	
4	Ethernet Switch	ASUS	GX1008B	90-Q872AN1N0NAM A0-88QSA1003522	

No.	Signal Cable Description
1	Non-shielded RJ-45 cable, 10m × 2
2	Non-shielded RJ-45 cable, 1m × 3

SETUP DIAGRAM FOR TESTS

EUT & peripherals setup diagram is shown in appendix setup photos.

EUT OPERATING CONDITION

RF Mode

1. Set up all computers like the setup diagram.

TX Mode:

⇒ Tx Data Rate: 1Mbps Bandwidth 20 (IEEE 802.11b mode)

6Mbps Bandwidth 20 (IEEE 802.11g mode)

MCS=0 Bandwidth 20 (IEEE 802.11n HT20 mode)

MCS=0 Bandwidth 40 (IEEE 802.11n HT40 mode)

⇒ Power control

IEEE 802.11b Channel Low (2412MHz) TX Power=45

IEEE 802.11b Channel Mid (2437MHz) TX Power=41

IEEE 802.11b Channel High (2462MHz) TX Power=44

IEEE 802.11g Channel Low (2412MHz) TX Power=52

IEEE 802.11g Channel Mid (2437MHz) TX Power=52

IEEE 802.11g Channel High (2462MHz) TX Power=51

Report No.: T111219304-RP1

IEEE 802.11n HT20 Channel Low (2412MHz) TX Power=49

IEEE 802.11n HT20 Channel Mid (2437MHz) TX Power=49

IEEE 802.11n HT20 Channel High (2462MHz) TX Power=49

IEEE 802.11n HT40 Channel Low (2422MHz) TX Power=49

IEEE 802.11n HT40 Channel Mid (2437MHz) TX Power=49

IEEE 802.11n HT40 Channel High (2452MHz) TX Power=49

- 2. All of the functions are under run.
- 3. Start test.

Normal Mode

- 1. Setup whole system for test as shown on diagram.
- 2. Power on all equipments.
- 3. Notebook PC_ping(with WinTG2.0.exe 10% packet) EUT IP 192.168.1.166 through WAN connected by RJ-45 cable.
- 4. Notebook PC_ping(with WinTG2.0.exe 10% packet) EUT IP 192.168.0.1 through LAN connected by RJ-45 cable.
- 5. Notebook PC ping EUT IP 192.168.0.1 through wireless LAN.
- 6. LAN 2~3 port link ethernet switch load.
- 8. Start test.

Report No.: T111219304-RP1

7. FCC PART 15.247 REQUIREMENTS

7.1 6dB BANDWIDTH

LIMITS

§ 15.247(a) (2) For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	AGILENT	E4446A	MY43360132	06/20/2011
Spectrum Analyzer	AGILENT	E4446A	MY46180323	05/02/2011

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The transmitter output was connected to a spectrum analyzer. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

TEST RESULTS

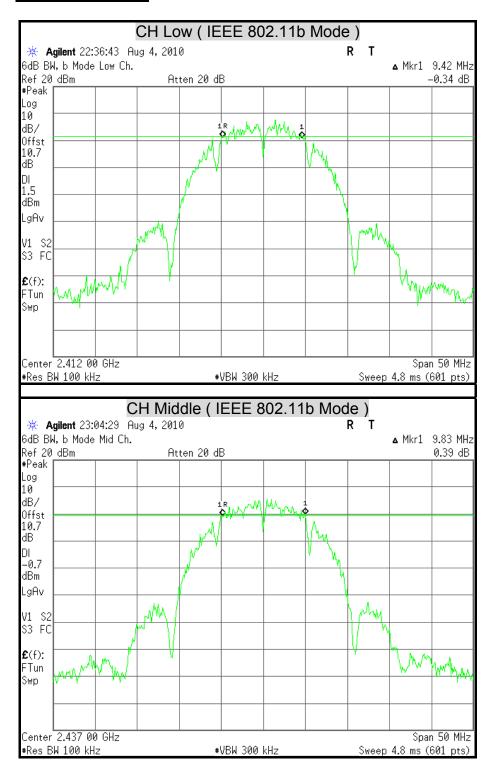
IEEE 802.11b Mode

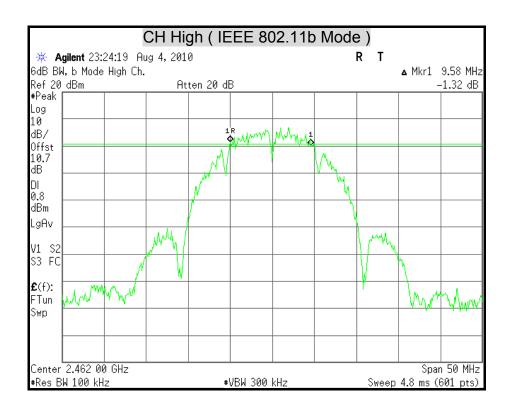
Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	9.42	500	PASS
Middle	2437	9.83	500	PASS
High	2462	9.58	500	PASS

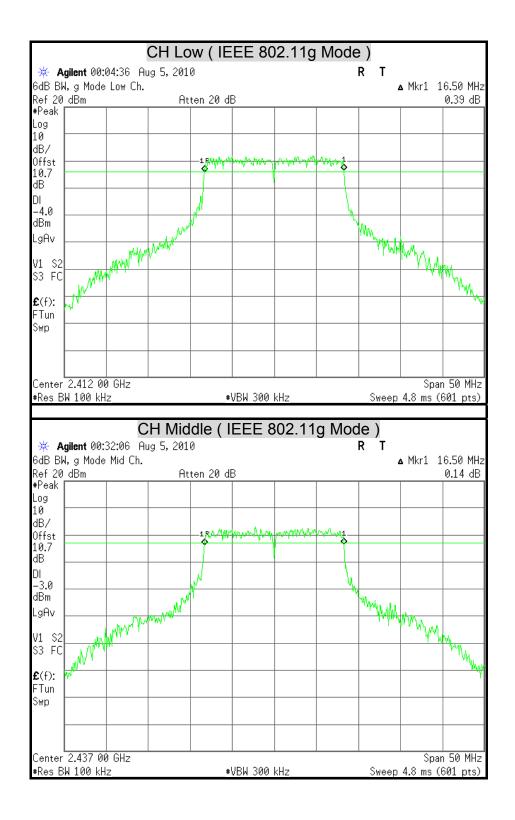
IEEE 802.11g Mode

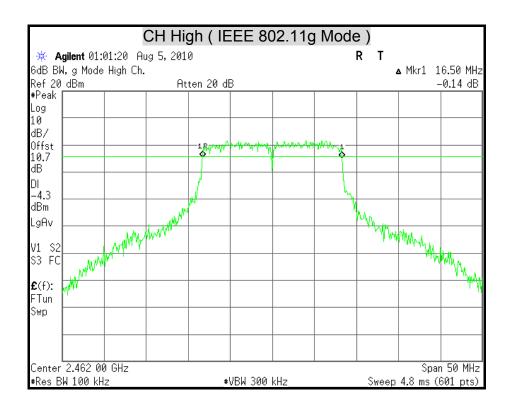
Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	16.50	500	PASS
Middle	2437	16.50	500	PASS
High	2462	16.50	500	PASS

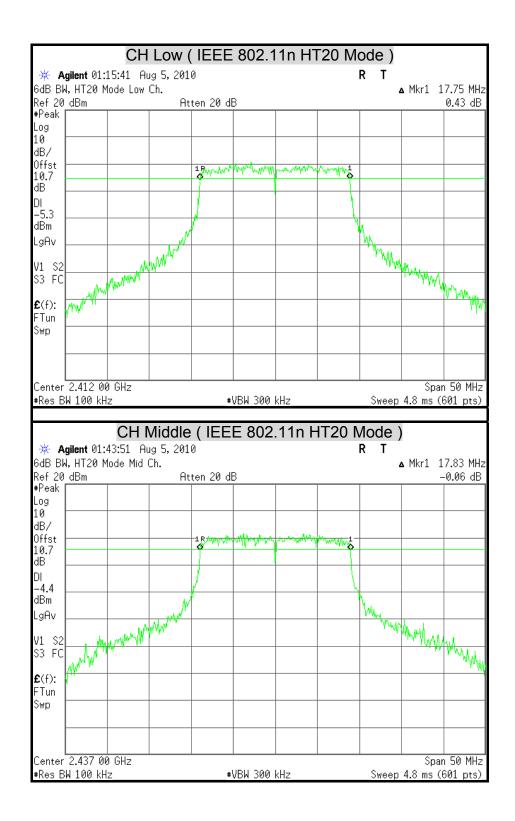
IEEE 802.11n HT20 mode

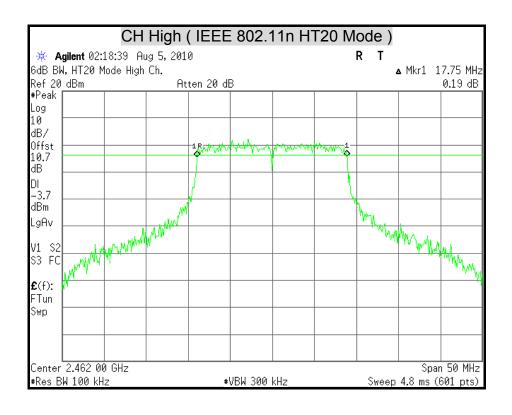

Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	17.75	500	PASS
Middle	2437	17.83	500	PASS
High	2462	17.75	500	PASS

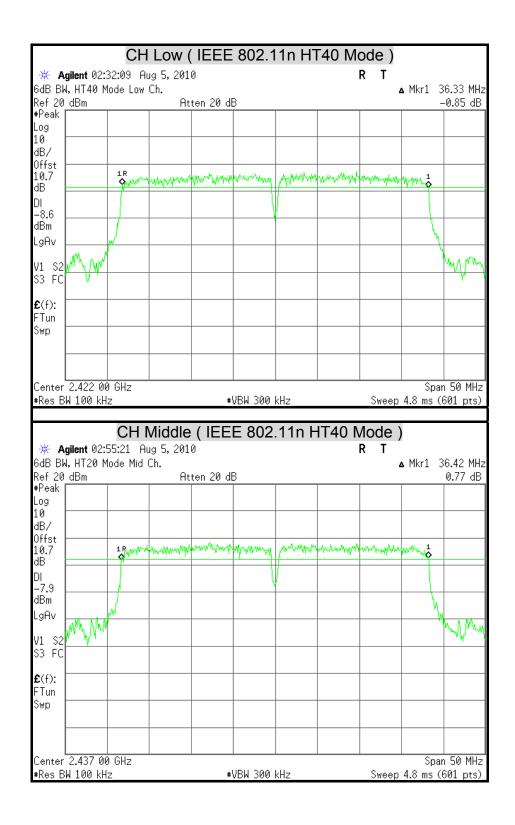

IEEE 802.11n HT40 mode

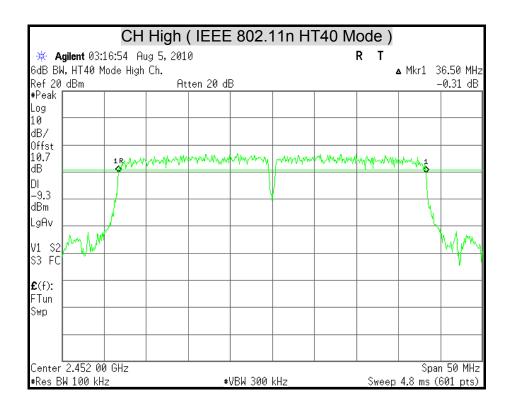

Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Pass / Fail
Low	2422	36.33	500	PASS
Middle	2437	36.42	500	PASS
High	2452	36.50	500	PASS


Report No.: T111219304-RP1


6dB BANDWIDTH







cation Services Inc. Refer No. : T100716302 FCC ID : KA2IR600LA1 Report No. : T111219304-RP1

7.2 MAXIMUM PEAK OUTPUT POWER

LIMITS

§ 15.247(b) The maximum peak output power of the intentional radiator shall not exceed the following:

§ 15.247(b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands : 1 watt.

§ 15.247(b) (4) Except as shown in paragraphs (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	AGILENT	E4446A	MY43360132	06/20/2011
Spectrum Analyzer	AGILENT	E4446A	MY46180323	05/02/2011

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

1. The spectrum shall be set as follows:

Span: 1.5 times channel integration bandwidth.

RBW: 1MHz VBW: 3MHz Detector: Peak Sweep: Single trace

2. Compute the combined power of all signal responses contained in the trace by covering

all the data points.

3. The peak output power is the channel power integrated over 26dB bandwidth.

TEST RESULTS

IEEE 802.11b Mode

Channel	Channel	Channel Peak Power Frequency		Peak Power Limit		Pass / Fail
Cilaililei	(MHz)	(dBm)	(W)	(dBm)	(W)	rass/I all
Low	2412	19.29	0.0849	30	1	PASS
Middle	2437	18.39	0.0690	30	1	PASS
High	2462	19.30	0.0851	30	1	PASS

Remark:

- 1. At finial test to get the worst-case emission at 1Mbps.
- 2. The cable assembly insertion loss of 10.7dB (including 10 dB pad and 0.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11g Mode

Channel	Channel	Peak Power		Peak Power Limit		Pass / Fail
Chamie	Frequency (MHz)	(dBm)	(W)	(dBm)	(W)	rass/i ali
Low	2412	18.66	0.0735	30	1	PASS
Middle	2437	19.38	0.0867	30	1	PASS
High	2462	18.62	0.0728	30	1	PASS

Remark:

- 1. At finial test to get the worst-case emission at 6Mbps.
- 2. The cable assembly insertion loss of 10.7dB (including 10 dB pad and 0.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

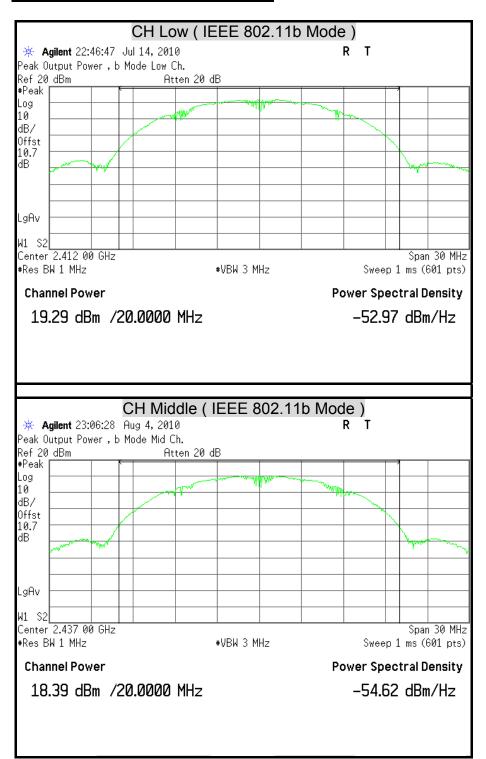
IEEE 802.11n HT20 mode

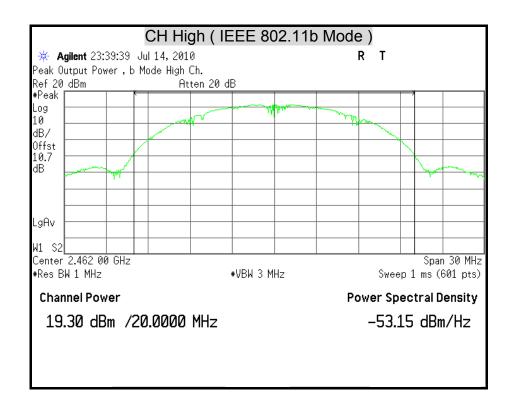
Channel	Channel Peak Power hannel Frequency		Peak Pov	Pass / Fail		
Chamie	(MHz)	(dBm)	(W)	(dBm)	(W)	Pass/Fall
Low	2412	17.16	0.0520	30	1	PASS
Middle	2437	19.31	0.0853	30	1	PASS
High	2462	18.63	0.0729	30	1	PASS

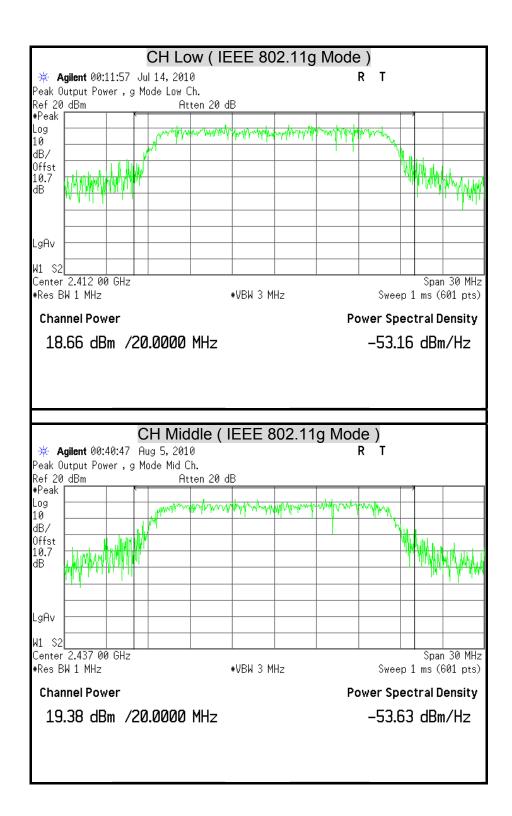
Remark:

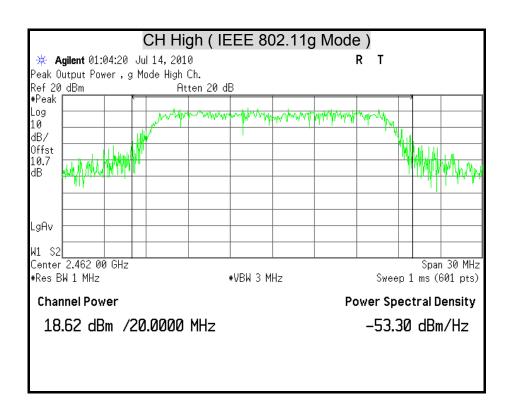
- 1. At finial test to get the worst-case emission at 6.5Mbps.
- 2. The cable assembly insertion loss of 10.7dB (including 10 dB pad and 0.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

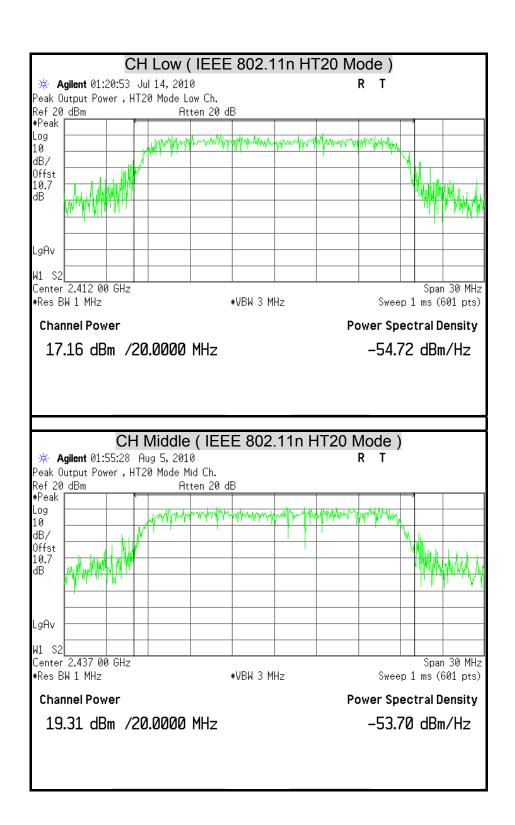
IEEE 802.11n HT40 mode

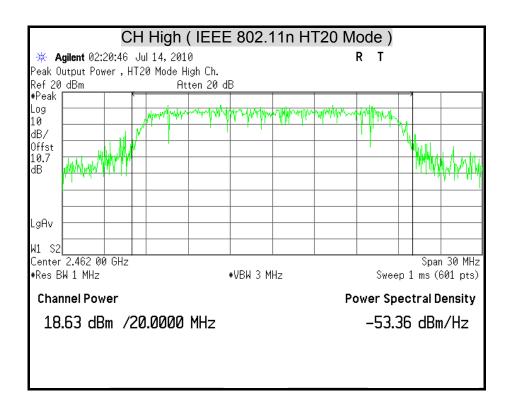

Channel			ak Power Peak Po		wer Limit	Pass / Fail
Chamie	Frequency (MHz)	(dBm)	(W)	(dBm)	(W)	rass/i ali
Low	2422	16.86	0.0485	30	1	PASS
Middle	2437	18.74	0.0748	30	1	PASS
High	2452	17.18	0.0522	30	1	PASS

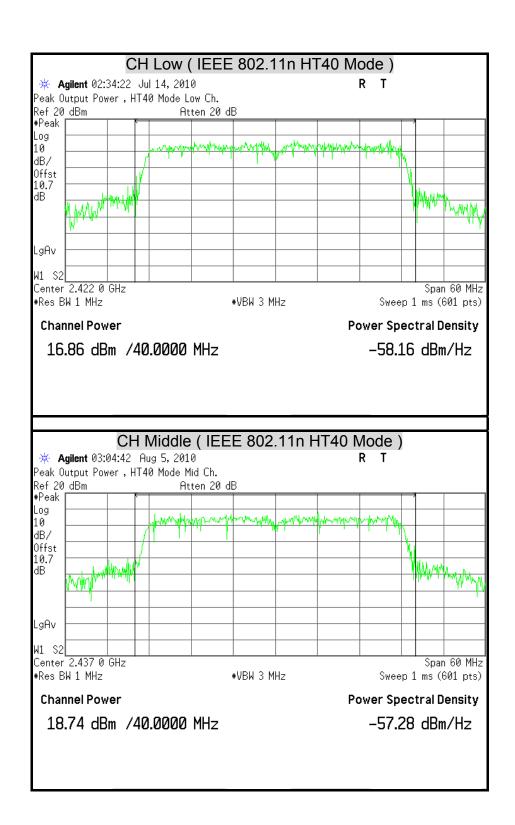

Remark:

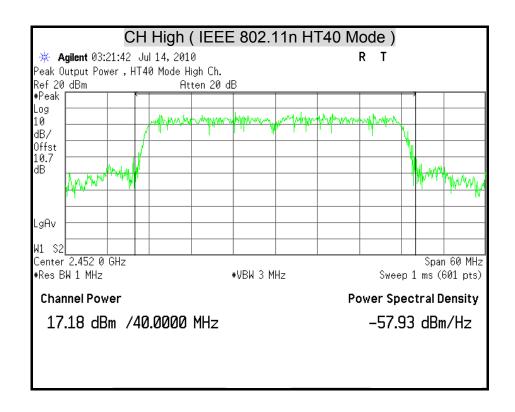

- 1. At finial test to get the worst-case emission at 13.5Mbps.
- 2. The cable assembly insertion loss of 10.7dB (including 10 dB pad and 0.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.


Report No.: T111219304-RP1


MAXIMUM PEAK OUTPUT POWER







Report No.: T111219304-RP1

7.3 AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	AGILENT	E4446A	MY43360132	06/20/2011
Spectrum Analyzer	AGILENT	E4446A	MY46180323	05/02/2011

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The spectrum analyzer is set to the average power detection.

Report No.: T111219304-RP1

TEST RESULTS

IEEE 802.11b Mode

Channel	Channel Frequency (MHz)	Average Power Output (dBm)
Low	2412	17.09
Middle	2437	15.72
High	2462	16.98

Remark:

- 1. At finial test to get the worst-case emission at 1Mbps.
- 2. The cable assembly insertion loss of 10.7dB (including 10 dB pad and 0.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11g Mode

Channel	Channel Frequency (MHz)	Average Power Output (dBm)
Low	2412	15.96
Middle	2437	16.42
High	2462	15.86

Remark:

- 1. At finial test to get the worst-case emission at 6Mbps.
- 2. The cable assembly insertion loss of 10.7dB (including 10 dB pad and 0.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

Report No.: T111219304-RP1

IEEE 802.11n HT20 mode

Channel	Channel Frequency (MHz)	Average Power Output (dBm)
Low	2412	14.47
Middle	2437	15.57
High	2462	15.82

Remark:

- 1. At finial test to get the worst-case emission at 6.5Mbps.
- 2. The cable assembly insertion loss of 10.7dB (including 10 dB pad and 0.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT40 mode

Channel	Channel Frequency (MHz)	Average Power Output (dBm)
Low	2422	14.01
Middle	2437	15.26
High	2452	14.36

Remark:

- 1. At finial test to get the worst-case emission at 13.5Mbps.
- 2. The cable assembly insertion loss of 10.7dB (including 10 dB pad and 0.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

Report No.: T111219304-RP1

7.4 POWER SPECTRAL DENSITY

LIMITS

§ 15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	AGILENT	E4446A	MY43360132	06/20/2011
Spectrum Analyzer	AGILENT	E4446A	MY46180323	05/02/2011

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer, the bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW=3KHz and VBW≧RBW, set sweep time=span / 3KHz.

The power spectral density was measured and recorded.

The sweep time is allowed to be longer than span / 3KHz for a full response of the mixer in the spectrum analyzer.

Report No.: T111219304-RP1

TEST RESULTS

IEEE 802.11b Mode

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Minimum Limit (dBm)	Pass / Fail
Low	2412	-12.96	8	PASS
Middle	2437	-14.69	8	PASS
High	2462	-13.35	8	PASS

Remark:

- 1. At finial test to get the worst-case emission at 1Mbps.
- 2. The cable assembly insertion loss of 10.7dB (including 10 dB pad and 0.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11g Mode

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Minimum Limit (dBm)	Pass / Fail
Low	2412	-12.12	8	PASS
Middle	2437	-11.67	8	PASS
High	2462	-12.54	8	PASS

- 1. At finial test to get the worst-case emission at 6Mbps.
- 2. The cable assembly insertion loss of 10.7dB (including 10 dB pad and 0.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

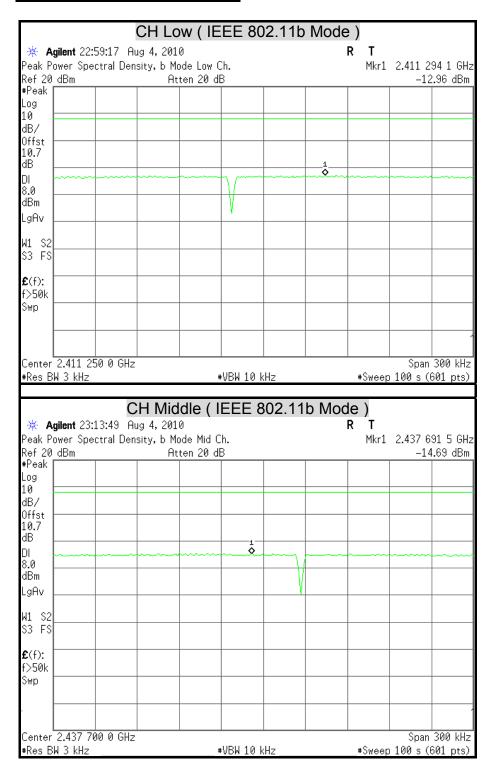
Report No.: T111219304-RP1

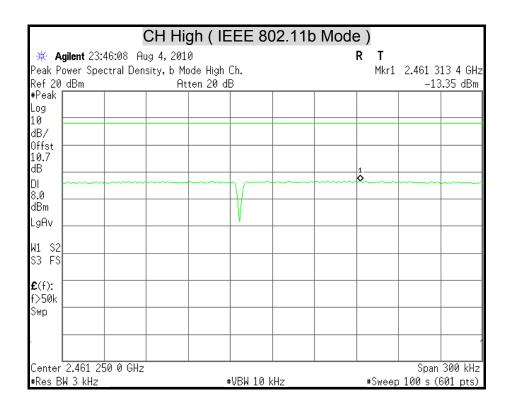
IEEE 802.11n HT20 mode

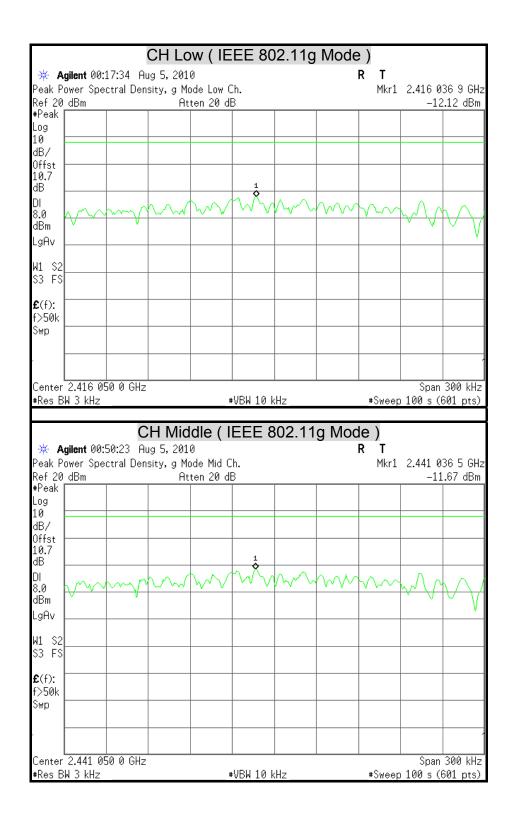
Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Minimum Limit (dBm)	Pass / Fail
Low	2412	-13.55	8	PASS
Middle	2437	-12.68	8	PASS
High	2462	-12.23	8	PASS

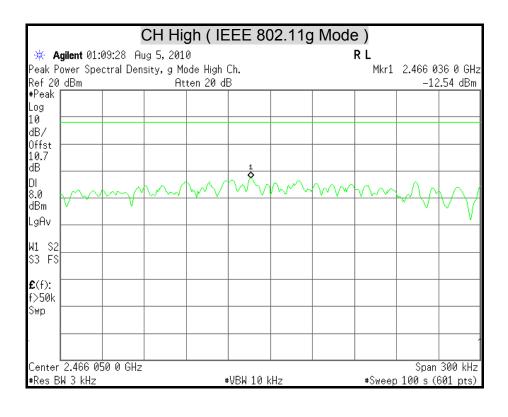
Remark:

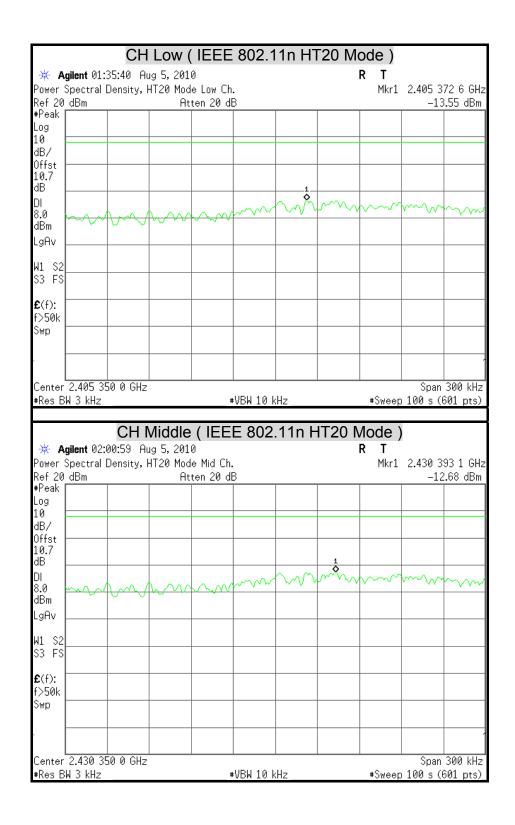
- 1. At finial test to get the worst-case emission at 6.5Mbps.
- 2. The cable assembly insertion loss of 10.7dB (including 10 dB pad and 0.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

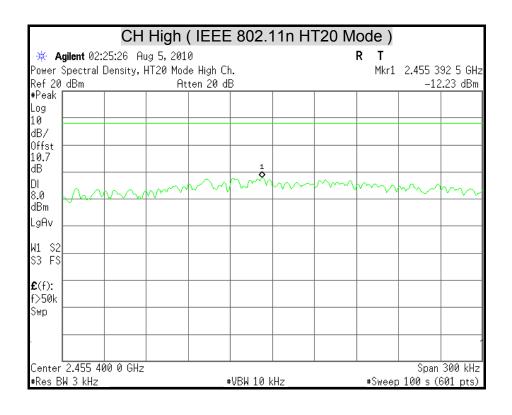

IEEE 802.11n HT40 mode

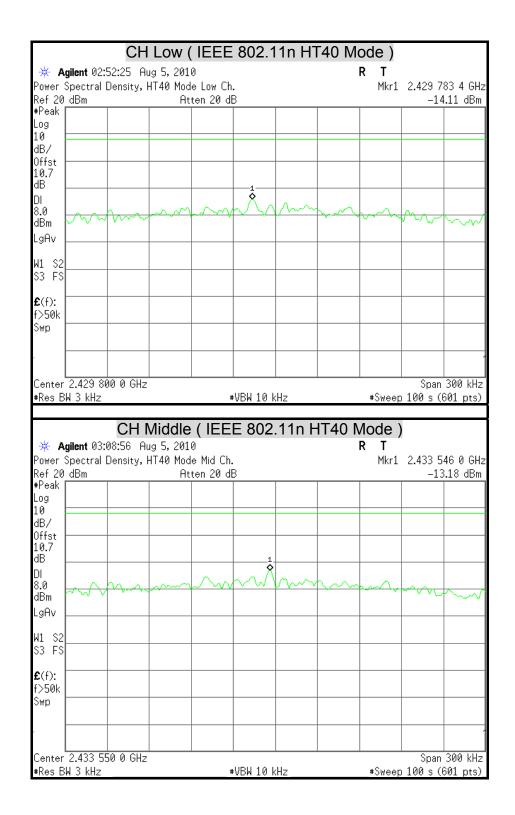

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Minimum Limit (dBm)	Pass / Fail
Low	2422	-14.11	8	PASS
Middle	2437	-13.18	8	PASS
High	2452	-14.03	8	PASS

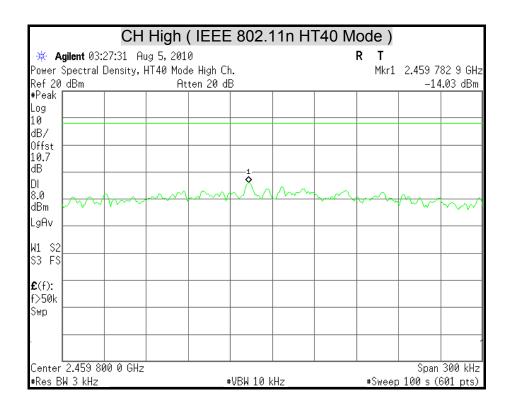

- 1. At finial test to get the worst-case emission at 13.5Mbps.
- 2. The cable assembly insertion loss of 10.7dB (including 10 dB pad and 0.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.


Report No.: T111219304-RP1


POWER SPECTRAL DENSITY







Refer No. : T100716302 Report No.: T111219304-RP1

Report No.: T111219304-RP1

7.5 CONDUCTED SPURIOUS EMISSION

LIMITS

§ 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the and that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

TEST EQUIPMENT

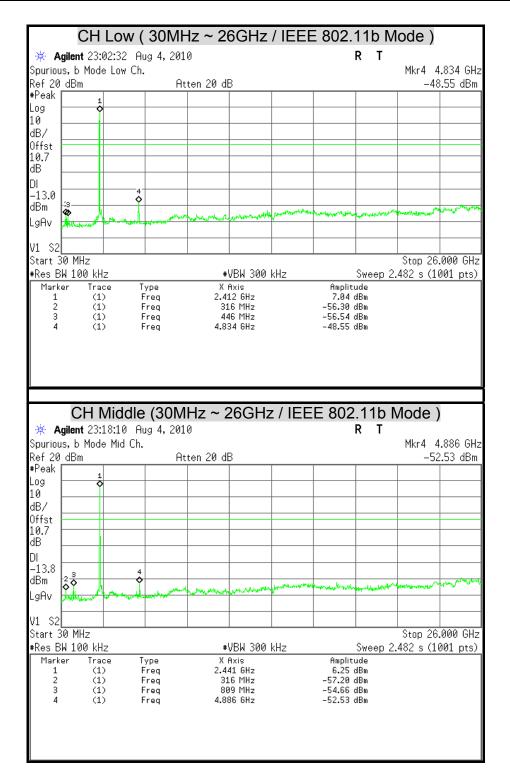
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	AGILENT	E4446A	MY43360132	06/20/2011
Spectrum Analyzer	AGILENT	E4446A	MY46180323	05/02/2011

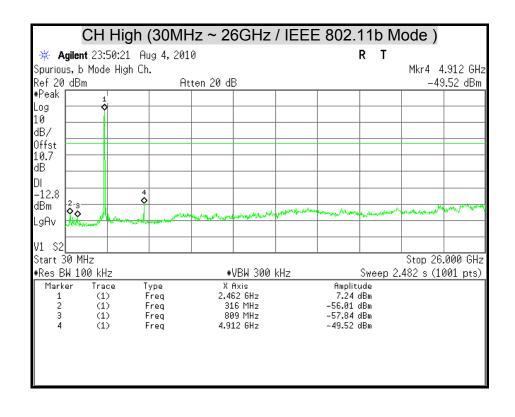
Remark: Each piece of equipment is scheduled for calibration once a year.

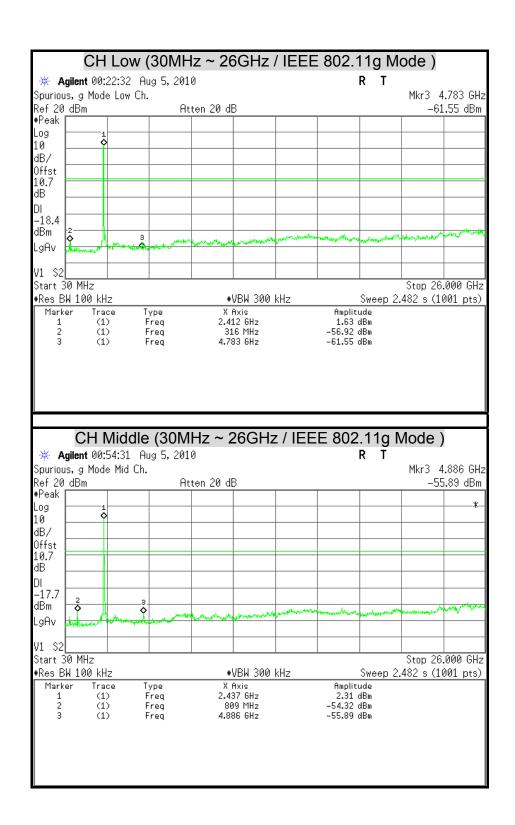
TEST SETUP

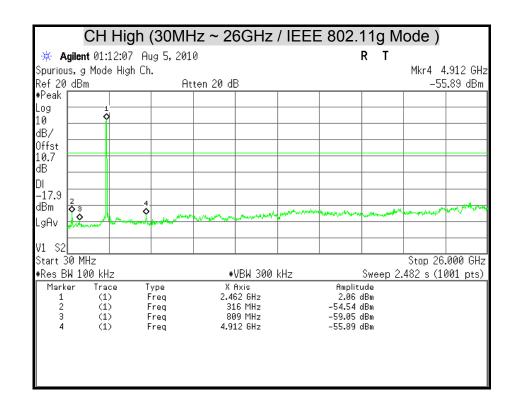
TEST PROCEDURE

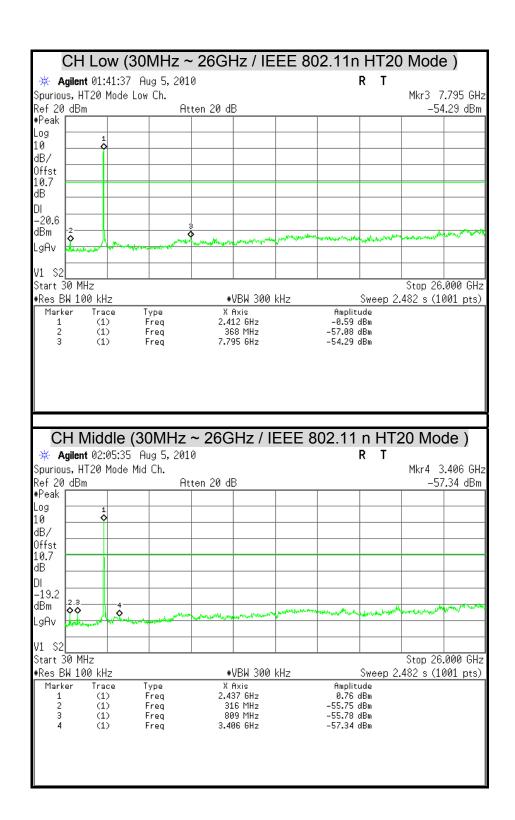
The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

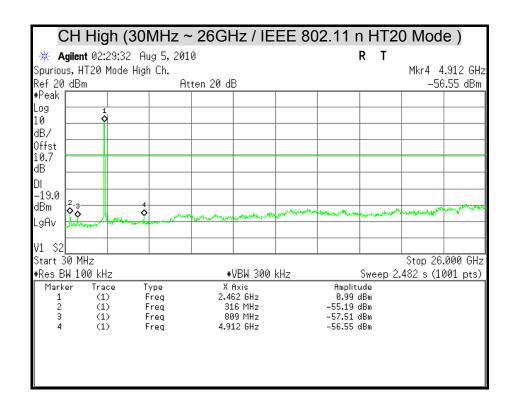

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

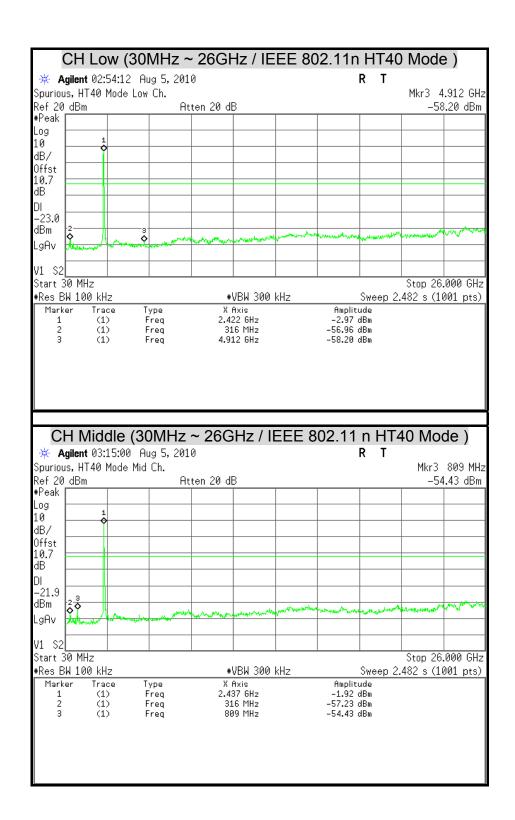

Ces Inc. Refer No. : T100716302

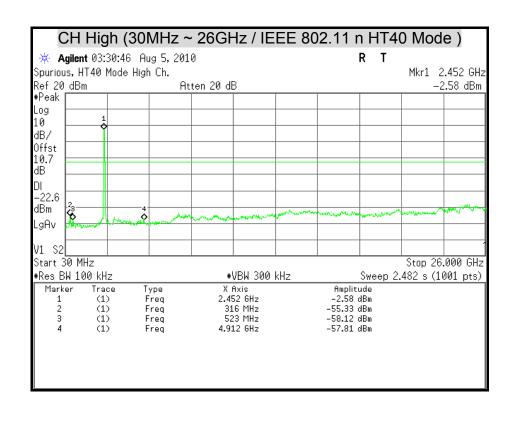

Report No.: T111219304-RP1


TEST RESULTS


OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT







ion Services Inc. Refer No. : T100716302 CC ID : KA2IR600LA1 Report No. : T111219304-RP1

7.6 RADIATED EMISSION

LIMITS

(1) According to § 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 -1710	10.6 -12.7
6.26775 - 6.26825	108 -121.94	1718.8 - 1722.2	13.25 -13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 – 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 -16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3338	36.43 - 36.5
12.57675 - 12.57725	322 -335.4	3600 - 4400	(²)
13.36 - 13.41			

Remark:

(2) According to § 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

^{1. 1} Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

^{2. &}lt;sup>2</sup> Above 38.6

FCC ID : KA2IR600LA1 Report No. : T111219304-RP1

(3) According to § 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(KHz)	300
0.490 – 1.705	24000/F(KHz)	30
1.705 – 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

Remark: **Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

(4) According to § 15.209 (b) In the emission table above, the tighter limit applies at the band edges.

ation Services Inc.Refer No.: T100716302

FCC ID: KA2IR600LA1

Report No.: T111219304-RP1

TEST EQUIPMENT

966Chamber_A

Name of Equipment	Manufacture	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY43360132	06/20/2011
EMI Test Receiver	ROHDE & SCHWARZ	ESCI	100221	05/03/2011
Bilog Antenna	SCHWARZBECK	VULB 9168	9168-249	11/12/2010
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00078732	07/05/2011
Pre-Amplifier	Agilent	8449B	3008A01471	08/02/2011
Pre-Amplifier	HP	8447F	2944A03748	09/24/2010
Horn Antenna	COM-POWER	AH-840	03077	12/12/2011
RF Coaxial Cable	HUBER-SUHNER	SUCOFLEX 104PEA	SN31347	07/21/2011
RF Coaxial Cable	HUBER-SUHNER	SUCOFLEX 104PEA	SN31350	07/21/2011
RF Coaxial Cable	HUBER-SUHNER	SUCOFLEX 104PEA	SN31355	07/21/2011
LOOP Antenna	EMCO	6502	8905-2356	06/09/2011
Notch Filters Band Reject	Micro-Tronics	BRM05702-01	009	N.C.R

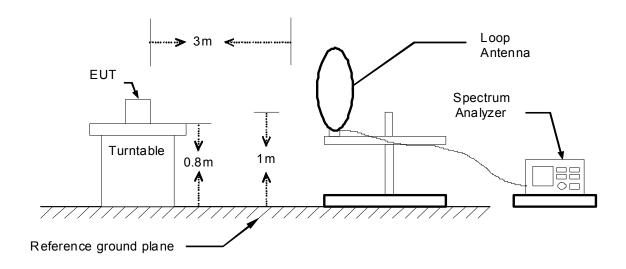
Remark: 1. Each piece of equipment is scheduled for calibration once a year.

2. N.C.R = No Calibration Request.

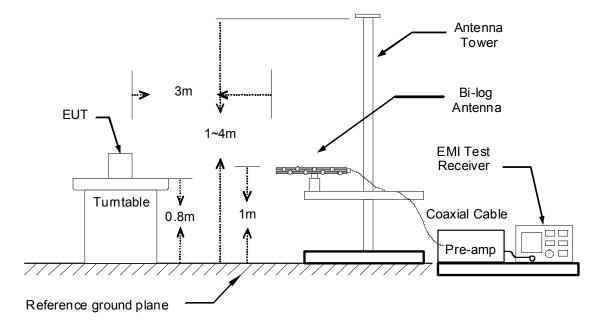
966Chamber B

Name of Equipment	Manufacture	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY43360132	06/19/2012
EMI Receiver	ROHDE & SCHWARZ	ESCI	101131	01/13/2012
Broadband Hybrid Bi-Log Antenna	Sunol Sciences	JB1	A100209-4	10/05/2012
Double-Ridged Waveguide Horn	ETS-LINDGREN	3117	00078732	07/03/2012
Pre-Amplifier	Agilent	8447D	2944A10052	07/19/2012
Pre-Amplifier	Agilent	8449B	3008A01916	09/18/2012
Notch Filters Band Reject	Micro-Tronics	BRM05702-01	026	N.C.R

Remark: 1. Each piece of equipment is scheduled for calibration once a year.

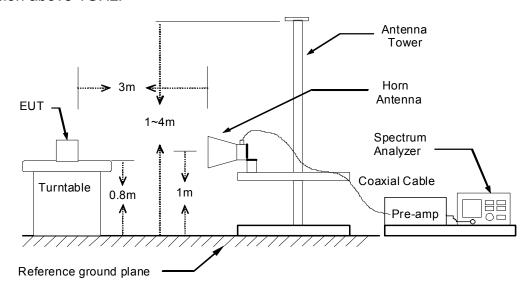

2. N.C.R = No Calibration Request.

Report No.: T111219304-RP1


TEST SETUP

The diagram below shows the test setup that is utilized to make the measurements for emission from below 1GHz.

9kHz ~ 30MHz



30MHz ~ 1GHz

Refer No. : T100716302 Report No. : T111219304-RP1

The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz.

TEST PROCEDURE

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. White measuring the radiated emission below 1GHz, the EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. White measuring the radiated emission above 1GHz, the EUT was set 3 meters away from the interference-receiving antenna
- 3. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarization of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

Refer No. : T100716302 Report No.: T111219304-RP1

TEST RESULTS

Below 1 GHz (9kHz ~ 30MHz)

No emission found between lowest internal used/generated frequency to 30MHz.

Below 1 GHz (30MHz ~ 1GHz)

Product Name	WIRELESS N 150 CLOUD ROUTER	Test By	Tommy Chang
Test Model	DIR-600L	Test Date	2011/12/21
Test Mode	Normal Operating / Power Adapter (1)	TEMP & Humidity	22.1°C, 57%

	9	966 Chambei	r_B at 3Mete	r / Horizonta	ıl	
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
108.57	42.40	-15.74	26.66	43.50	-16.84	Peak
156.10	47.48	-14.38	33.11	43.50	-10.39	Peak
305.48	46.28	-11.74	34.54	46.00	-11.46	Peak
320.03	51.21	-11.45	39.77	46.00	-6.23	Peak
359.80	46.60	-10.67	35.93	46.00	-10.07	Peak
479.11	41.01	-8.64	32.37	46.00	-13.63	Peak
742.95	42.21	-4.80	37.41	46.00	-8.59	Peak
849.65	37.74	-3.01	34.73	46.00	-11.27	Peak
		966 Chamb	er_B at 3Met	ter / Vertical		
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
43.58	52.30	-15.72	36.58	40.00	-3.42	QP
108.57	56.11	-15.74	40.37	43.50	-3.13	Peak
139.61	49.86	-13.45	36.40	43.50	-7.10	Peak
156.10	51.87	-14.38	37.49	43.50	-6.01	Peak
292.87	51.75	-11.89	39.86	46.00	-6.14	Peak
320.03	51.81	-11.45	40.37	46.00	-5.63	Peak
458.74	45.55	-9.02	36.52	46.00	-9.48	Peak
530.52	44.68	-8.04	36.63	46.00	-9.37	Peak

- 1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.
- 2. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) PreAmp.Gain (dB)
- 4. Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

Compliance Certification Services Inc. FCC ID: KA2IR600LA1

Product Name	WIRELESS N 150 CLOUD ROUTER	Test By	Tommy Chang
Test Model	DIR-600L	Test Date	2011/12/21
Test Mode	Normal Operating / Power Adapter (2)	TEMP & Humidity	22.1°C, 57%

Refer No. : T100716302 Report No.: T111219304-RP1

		966 Chambei	r R at 3Mete	r / Horizonta	I	
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
108.57	44.95	-15.74	29.21	43.50	-14.29	Peak
156.10	47.41	-14.38	33.04	43.50	-10.46	Peak
280.26	45.41	-11.97	33.44	46.00	-12.56	Peak
305.48	45.46	-11.74	33.72	46.00	-12.28	Peak
320.03	50.43	-11.45	38.98	46.00	-7.02	Peak
359.80	50.15	-10.67	39.48	46.00	-6.52	Peak
500.45	41.40	-8.24	33.17	46.00	-12.83	Peak
749.74	38.72	-4.68	34.04	46.00	-11.96	Peak
		966 Chamb	er_B at 3Met	ter / Vertical		
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
43.58	52.10	-15.72	36.38	40.00	-3.62	QP
54.25	54.44	-19.87	34.57	40.00	-5.43	Peak
108.57	54.11	-15.74	38.37	43.50	-5.13	Peak
256.98	50.88	-13.34	37.54	46.00	-8.46	Peak
320.03	48.40	-11.45	36.96	46.00	-9.04	Peak
359.80	49.92	-10.67	39.25	46.00	-6.75	Peak
514.03	47.37	-8.15	39.22	46.00	-6.78	Peak
527.61	46.13	-8.06	38.06	46.00	-7.94	Peak

- 1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.
- 2. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) PreAmp.Gain (dB)
- 4. Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

ion Services Inc.

Refer No.: T100716302

Report No.: T111219304

FCC ID : KA2IR600LA1 Report No. : T111219304-RP1

Above 1 GHz

Product Name	WIRELESS N 150 CLOUD ROUTER	Test By	Julon Liu
Test Model	DIR-600L	Test Date	2010/08/02
Test Mode	IEEE 802.11b TX / CH Low	TEMP & Humidity	27°C, 56%

	966 Chamber_A at 3Meter / Horizontal												
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark				
1000.00	59.36	43.60	5.40	64.76	49.00	74.00	54.00	-5.00	AVG				
2399.00	64.35	58.54	2.25	66.60	60.79	79.47	76.32	-15.53	20dBc AVG Fundamental				
2412.00	97.20	94.05	2.27	99.47	96.32				Carrier				
3255.00	43.12	-	3.63	46.75		74.00	54.00	-7.25	Peak				
3892.50	42.12		4.93	47.05		74.00	54.00	-6.95	Peak				
4822.50	48.42	43.62	7.24	55.66	50.86	74.00	54.00	-3.14	AVG				

	966 Chamber_A at 3Meter / Vertical												
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark				
2399.00	72.80	68.90	2.25	75.05	71.15	91.79	87.97	-16.82	20dBc AVG Fundamental				
2412.00	109.52	105.70	2.27	111.79	107.97				Carrier				
2490.00	60.49	49.03	2.42	62.91	51.45	74.00	54.00	-2.55	AVG				
3097.50	43.57		3.47	47.04		74.00	54.00	-6.96	Peak				
4822.50	49.16	45.31	7.24	56.40	52.55	74.00	54.00	-1.45	AVG				
7237.50	46.25	38.98	9.49	55.74	48.47	74.00	54.00	-5.53	AVG				

Remark.

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(AV)$

FCC ID: KA2IR600LA1

WIRELESS N 150 CLOUD **Product Name Test By** Julon Liu ROUTER DIR-600L 2010/08/02 **Test Model Test Date** 27°C, 56% IEEE 802.11b TX / CH Middle **Test Mode** TEMP & Humidity

Refer No. : T100716302

Report No.: T111219304-RP1

		96	6 Chambe	er_A at 3	Meter / Ho	rizontal			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
2122.00	53.40	42.30	1.73	55.13	44.03	74.00	54.00	-9.97	AVG
2437.00	99.30		2.33	101.62					Carrier
2522.00	56.50	45.30	2.47	58.97	47.77	74.00	54.00	-6.23	AVG
3240.00	42.48		3.61	46.09		74.00	54.00	-7.91	Peak
4282.50	41.80		6.01	47.81		74.00	54.00	-6.19	Peak
4875.00	49.52	45.11	7.34	56.86	52.45	74.00	54.00	-1.55	AVG
		9	66 Chaml	per_A at 3	3Meter / V	ertical			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
2437.00	110.68		2.33	113.00					Carrier
2520.00	58.95	47.58	2.47	61.42	50.05	74.00	54.00	-3.95	AVG

Remark:

3195.00

4875.00

7312.50

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.

3.57

7.34

9.31

3. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

52.80

44.74

46.13

56.68

54.72

74.00

74.00

74.00

54.00

54.00

54.00

-7.87

-1.20

-9.26

Peak

AVG

AVG

- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

42.56

49.34

45.41

45.46

35.43

Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(AV)$

FCC ID: KA2IR600LA1

Product Name	WIRELESS N 150 CLOUD ROUTER	Test By	Julon Liu
Test Model	DIR-600L	Test Date	2010/08/02
Test Mode	IEEE 802.11b TX / CH High	TEMP & Humidity	27°C, 56%

Refer No. : T100716302

Report No.: T111219304-RP1

	966 Chamber_A at 3Meter / Horizontal												
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)		Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark				
1776.00	56.20	46.21	-0.59	55.61	45.62	74.00	54.00	-8.38	AVG				
2462.00	98.93		2.36	101.30					Carrier				
3030.00	43.07		3.40	46.46		74.00	54.00	-7.54	Peak				
4140.00	40.61		5.61	46.22		74.00	54.00	-7.78	Peak				
4927.50	49.31	45.47	7.44	56.75	52.91	74.00	54.00	-1.09	AVG				
		9	66 Chaml	per_A at 3	BMeter / V	ertical							

	966 Chamber_A at 3Meter / Vertical Frequency Reading- Reading- Correction Result-PK Result-AV Limit-PK Limit-AV Margin Remark												
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark				
2462.00	110.66		2.36	113.02					Carrier				
2542.00	58.01	46.59	2.51	60.52	49.10	74.00	54.00	-4.90	AVG				
3180.00	42.94		3.55	46.50		74.00	54.00	-7.50	Peak				
4927.50	48.29	45.37	7.44	55.73	52.81	74.00	54.00	-1.19	AVG				
7387.50	46.11	38.54	9.14	55.25	47.68	74.00	54.00	-6.32	AVG				

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(AV)

FCC ID: KA2IR600LA1

Product Name	WIRELESS N 150 CLOUD ROUTER	Test By	Julon Liu
Test Model	DIR-600L	Test Date	2010/08/02
Test Mode	IEEE 802.11g TX / CH Low	TEMP & Humidity	27°C, 56%

Refer No. : T100716302

Report No.: T111219304-RP1

	966 Chamber_A at 3Meter / Horizontal											
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark			
2399.00	73.72	53.34	2.25	75.97	55.59	79.29	68.99	-13.40	20dBc AVG Fundamental			
2412.00	97.02	86.72	2.27	99.29	88.99				Carrier			
3135.00	42.81		3.51	46.31		74.00	54.00	-7.69	Peak			
4282.50	41.20		6.01	47.21		74.00	54.00	-6.79	Peak			
4830.00	47.68	33.46	7.25	54.93	40.71	74.00	54.00	-13.29	AVG			
	<u> </u>	•	<u> </u>	•	·	•	<u> </u>	<u>.</u>	·			
		9	66 Cham	ber_A at	3Meter / \	Vertical						
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark			
2399.00	86.54	64.65	2.25	88.79	66.90	89.37	80.93	-14.03	20dBc AVG Fundamental			
2412.00	107.10	98.66	2.27	109.37	100.93				Carrier			
2492.00	56.96	44.78	2.42	59.38	47.20	74.00	54.00	-6.80	AVG			
3210.00	43.93		3.58	47.51		74.00	54.00	-6.49	Peak			
4830.00	51.65	36.36	7.25	58.90	43.61	74.00	54.00	-10.39	AVG			
7237.50	48.87	34.36	9.49	58.36	43.85	74.00	54.00	-10.15	AVG			

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(AV)$

FCC ID: KA2IR600LA1

Product Name	WIRELESS N 150 CLOUD ROUTER	Test By	Julon Liu
Test Model	DIR-600L	Test Date	2010/08/02
Test Mode	IEEE 802.11g TX / CH Middle	TEMP & Humidity	27°C, 56%

Refer No. : T100716302

Report No.: T111219304-RP1

		96	6 Chambe	er_A at 31	/leter / Ho	rizontal			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1000.00	54.40	40.54	5.40	59.80	45.94	74.00	54.00	-8.06	AVG
2437.00	96.04		2.33	98.36					Carrier
3390.00	43.43		3.77	47.20		74.00	54.00	-6.80	Peak
4057.50	42.46		5.38	47.84		74.00	54.00	-6.16	Peak
4867.50	51.35	37.56	7.32	58.67	44.88	74.00	54.00	-9.12	AVG
			•	•			•		
		9	66 Chaml	ber_A at 3	3Meter / V	ertical			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
2437.00	108.83		2.33	111.16					Carrier
2518.00	57.73	45.54	2.47	60.20	48.01	74.00	54.00	-5.99	AVG
3285.00	42.99		3.66	46.65		74.00	54.00	-7.35	Peak
4875.00	53.01	38.47	7.34	60.35	45.81	74.00	54.00	-8.19	AVG
	1	1	1	i e			1		

Remark:

7312.50

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.

9.31

3. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

45.28

74.00

54.00

-8.72

AVG

59.97

- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

50.66

35.97

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(AV)

FCC ID: KA2IR600LA1

WIRELESS N 150 CLOUD **Product Name Test By** Julon Liu ROUTER DIR-600L 2010/08/02 **Test Model Test Date TEMP & Humidity** 27°C, 56% IEEE 802.11g TX / CH High **Test Mode**

Refer No. : T100716302

Report No.: T111219304-RP1

	966 Chamber_A at 3Meter / Horizontal											
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PN	Result-AV (dBuV/m)		Limit-AV (dBuV/m)	Margin (dB)	Remark			
1000.00	56.20	40.21	5.40	61.60	45.61	74.00	54.00	-8.39	AVG			
2462.00	95.77		2.36	98.13					Carrier			
3195.00	43.89	-	3.57	47.46	-	74.00	54.00	-6.54	Peak			
4125.00	41.36		5.57	46.93		74.00	54.00	-7.07	Peak			
4927.50	49.29	35.79	7.44	56.73	43.23	74.00	54.00	-10.77	AVG			
						•						

	966 Chamber_A at 3Meter / Vertical												
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)			Limit-AV (dBuV/m)	Margin (dB)	Remark				
2462.00	106.38		2.36	108.74					Carrier				
2546.00	57.27	45.34	2.52	59.79	47.86	74.00	54.00	-6.14	AVG				
3180.00	43.49		3.55	47.04	-	74.00	54.00	-6.96	Peak				
4920.00	51.64	36.84	7.42	59.06	44.26	74.00	54.00	-9.74	AVG				
7380.00	48.83	34.23	9.16	57.99	43.39	74.00	54.00	-10.61	AVG				

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(AV)

FCC ID: KA2IR600LA1

Product Name	WIRELESS N 150 CLOUD ROUTER	Test By	Julon Liu
Test Model	DIR-600L	Test Date	2010/08/02
Test Mode	IEEE 802.11n HT20 TX / CH Low	TEMP & Humidity	27°C, 56%

Refer No. : T100716302

Report No.: T111219304-RP1

	966 Chamber_A at 3Meter / Horizontal												
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark				
2399.00	74.80	50.40	2.25	77.05	52.65	78.70	68.37	-15.72	20dBc AVG Fundamental				
2412.00	96.43	86.10	2.27	98.70	88.37				Carrier				
3105.00	42.85		3.47	46.32		74.00	54.00	-7.68	Peak				
4222.50	41.44		5.84	47.28		74.00	54.00	-6.72	Peak				
4822.50	42.02		7.24	49.26		74.00	54.00	-4.74	Peak				
		9	66 Chaml	ber_A at	3Meter/	Vertical							
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark				
2399.00	84.70	59.40	2.25	86.95	61.65	89.06	78.57	-16.92	20dBc AVG Fundamental				
2412.00	106.79	96.30	2.27	109.06	98.57				Carrier				
3217.50	42.97		3.59	46.56		74.00	54.00	-7.44	Peak				
4822.50	49.82	32.95	7.24	57.06	40.19	74.00	54.00	-13.81	AVG				
7237.50	42.84		9.49	52.33		74.00	54.00	-1.67	Peak				

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(AV)

FCC ID: KA2IR600LA1

Product Name	WIRELESS N 150 CLOUD ROUTER	Test By	Julon Liu
Test Model	DIR-600L	Test Date	2010/08/02
Test Mode	IEEE 802.11n HT20 TX / CH Middle	TEMP & Humidity	27°C, 56%

Refer No. : T100716302

Report No.: T111219304-RP1

	966 Chamber_A at 3Meter / Horizontal									
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark	
1000.00	54.00	40.10	5.40	59.40	45.50	74.00	54.00	-8.50	AVG	
2437.00	95.67		2.33	97.99					Carrier	
3247.50	43.22		3.62	46.84		74.00	54.00	-7.16	Peak	
4087.50	41.67		5.46	47.14		74.00	54.00	-6.86	Peak	
4867.50	52.82	37.34	7.32	60.14	44.66	74.00	54.00	-9.34	AVG	
		9	66 Chaml	per_A at 3	BMeter / V	ertical				
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark	
1000.00	54.10	40.12	5.40	59.50	45.52	74.00	54.00	-8.48	AVG	
2437.00	106.41		2.33	108.74					Carrier	

Remark:

2522.00

3322.50

4875.00

7320.00

60.12

43.21

55.27

51.97

45.20

39.23

35.86

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.

2.47

3.70

7.34

9.30

3. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

62.59

46.91

62.61

61.27

74.00

74.00

74.00

74.00

47.67

46.57

45.16

54.00

54.00

54.00

54.00

-6.33

-7.09

-7.43

-8.84

AVG

Peak

AVG

AVG

- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(AV)$

FCC ID: KA2IR600LA1 Report No.: T111219304-RP1

Refer No. : T100716302

-11.31

AVG

54.00

Product Name	WIRELESS N 150 CLOUD ROUTER	Test By	Julon Liu
Test Model	DIR-600L	Test Date	2010/08/02
Test Mode	IEEE 802.11n HT20 TX / CH High	TEMP & Humidity	27°C, 56%

966 Chamber_A at 3Meter / Horizontal									
Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)		Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark	
57.30	40.30	5.40	62.70	45.70	74.00	54.00	-8.30	AVG	
92.88		2.36	95.24					Carrier	
42.92		3.57	46.49		74.00	54.00	-7.51	Peak	
41.96		5.27	47.24		74.00	54.00	-6.76	Peak	
51.01	35.10	7.44	58.45	42.54	74.00	54.00	-11.46	AVG	
•					•				
	9	66 Chaml	per_A at 3	BMeter / V	ertical				
Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark	
56.30	40.73	5.40	61.70	46.13	74.00	54.00	-7.87	AVG	
106.35		2.36	108.72					Carrier	
42.89		3.58	46.47		74.00	54.00	-7.53	Peak	
52.72	36.58	7.42	00.44	44.00	74.00	54.00	40.00	AVG	
	PK (dBuV) 57.30 92.88 42.92 41.96 51.01 Reading-PK (dBuV) 56.30 106.35 42.89	Reading- Reading- AV (dBuV) (dBuV) 57.30 40.30 92.88 42.92 51.01 35.10 9 Reading- PK (dBuV) (dBuV) 56.30 40.73 106.35 42.89	Reading-PK (dBuV) (dBuV) (dBuV) Correction Factor (dB/m) 57.30 40.30 5.40 92.88 2.36 42.92 3.57 41.96 5.27 51.01 35.10 7.44 Reading-PK (dBuV) (dBuV) (dBuV) (dB/m) 56.30 40.73 5.40 106.35 2.36 42.89 3.58	Reading-PK (dBuV) (dBuV) (dBuV) (dB/m) Result-PK (dBuV/m) 57.30 40.30 5.40 62.70 92.88 2.36 95.24 42.92 3.57 46.49 41.96 5.27 47.24 51.01 35.10 7.44 58.45 Reading-PK (dBuV) (dBuV) (dBuV) (dB/m) Result-PK (dBuV/m) 56.30 40.73 5.40 61.70 106.35 2.36 108.72 42.89 3.58 46.47	Reading- PK (dBuV) Reading- AV (dBuV) Correction Factor (dB/m) Result-PK (dBuV/m) Result-AV (dBuV/m) 57.30 40.30 5.40 62.70 45.70 92.88 2.36 95.24 42.92 3.57 46.49 41.96 5.27 47.24 51.01 35.10 7.44 58.45 42.54 PK (dBuV) (dBuV) (dBuV) (dBuV) (dBuV) (dBuV/m) Result-PK (dBuV/m) (dBuV/m) Result-AV (dBuV/m) 56.30 40.73 5.40 61.70 46.13 106.35 2.36 108.72 42.89 3.58 46.47	Reading-PK (dBuV) Reading-PK (dBuV) Correction Factor (dB/m) Result-PK (dBuV/m) Result-AV (dBuV/m) Limit-PK (dBuV/m) 57.30 40.30 5.40 62.70 45.70 74.00 92.88 2.36 95.24 42.92 3.57 46.49 74.00 41.96 5.27 47.24 74.00 51.01 35.10 7.44 58.45 42.54 74.00 Reading-PK (dBuV) (dBuV) Result-PK (dBuV/m) Result-AV (dBuV/m) Limit-PK (dBuV/m) 56.30 40.73 5.40 61.70 46.13 74.00 106.35 2.36 108.72 42.89 3.58 46.47 74.00	Reading-PK (dBuV) Correction Factor (dB/m) Result-PK (dBuV/m) Result-AV (dBuV/m) Limit-PK (dBuV/m) Limit-PK (dBuV/m) Limit-AV (dBuV/m) 57.30 40.30 5.40 62.70 45.70 74.00 54.00 92.88 2.36 95.24 42.92 3.57 46.49 74.00 54.00 41.96 5.27 47.24 74.00 54.00 51.01 35.10 7.44 58.45 42.54 74.00 54.00 Reading-PK (dBuV) Result-PK (dBuV/m) Result-PK (dBuV/m) Limit-PK (dBuV/m) Limit-PK (dBuV/m) 56.30 40.73 5.40 61.70 46.13 74.00 54.00 106.35 2.36 108.72 42.89 3.58 46.47 74.00 54.00	Reading-PK (dBuV) Reading-QdBuV) Correction Factor (dB/m) Result-PK (dBuV/m) Result-AV (dBuV/m) Limit-PK (dBuV/m) Limit-AV (dBuV/m) Margin (dB) 57.30 40.30 5.40 62.70 45.70 74.00 54.00 -8.30 92.88 2.36 95.24 42.92 3.57 46.49 74.00 54.00 -7.51 41.96 5.27 47.24 74.00 54.00 -6.76 51.01 35.10 7.44 58.45 42.54 74.00 54.00 -11.46 966 Chamber_A at 3Meter / Vertical Reading-PK (dBuV) Reading-AV (dBuV/m) Result-PK (dBuV/m) Limit-PK (dBuV/m) Limit-AV (dBuV/m) Margin (dB) 56.30 40.73 5.40 61.70 46.13 74.00 54.00 -7.87 106.35 2.36 108.72 74.00 54.00 -7.53 42.89	

Remark:

7380.00

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.

9.16

3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

42.69

74.00

59.36

- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

50.20

33.53

Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(AV)$

FCC ID : KA2IR600LA1 Report No. : T111219304-RP1

Refer No. : T100716302

Product Name	WIRELESS N 150 CLOUD ROUTER	Test By	Julon Liu
Test Model	DIR-600L	Test Date	2010/08/02
Test Mode	IEEE 802.11n HT40 TX / CH Low	TEMP & Humidity	27°C, 56%

	966 Chamber_A at 3Meter / Horizontal											
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark			
1000.00	55.37	41.53	5.40	60.77	46.93	74.00	54.00	-7.07	AVG			
2422.00	90.06		2.29	92.35					Carrier			
3262.50	42.73		3.64	46.36		74.00	54.00	-7.64	Peak			
4245.00	41.87		5.90	47.77		74.00	54.00	-6.23	Peak			
4852.50	41.44		7.29	48.74		74.00	54.00	-5.26	Peak			
		9	66 Chaml	ber_A at 3	3Meter / V	ertical						
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark			
1000.00	56.37	40.70	5.40	61.77	46.10	74.00	54.00	-7.90	AVG			
2422.00	102.20		2.29	104.49					Carrier			
3262.50	42.61		3.64	46.25		74.00	54.00	-7.75	Peak			
3900.00	42.71		4.95	47.66		74.00	54.00	-6.34	Peak			
4852.50	47.56	32.87	7.29	54.85	40.16	74.00	54.00	-13.84	AVG			

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(AV)

Compliance Certification Services Inc.

FCC ID: KA2IR600LA1

Product Name	WIRELESS N 150 CLOUD ROUTER	Test By	Julon Liu
Test Model	DIR-600L	Test Date	2010/08/02
Test Mode	IEEE 802.11n HT40 TX / CH Middle	TEMP & Humidity	27°C, 56%

Refer No. : T100716302

Report No.: T111219304-RP1

	966 Chamber_A at 3Meter / Horizontal								
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1000.00	55.42	41.43	5.40	60.82	46.83	74.00	54.00	-7.17	AVG
2437.00	90.46		2.33	92.79					Carrier
3255.00	42.49		3.63	46.12		74.00	54.00	-7.88	Peak
4882.50	43.20		7.35	50.55		74.00	54.00	-3.45	Peak
7350.00	41.60		9.23	50.83		74.00	54.00	-3.17	Peak
		9	66 Cham	ber_A at 3	BMeter / V	ertical			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1000.00	54.42	40.43	5.40	59.82	45.83	74.00	54.00	-8.17	AVG
2437.00	104.01		2.33	106.34					Carrier
						= 4 00	5400		
3480.00	42.82		3.86	46.68		74.00	54.00	-7.32	Peak
3480.00 4875.00	42.82 48.71	36.36	3.86 7.34	46.68 56.05	43.70	74.00	54.00	-7.32 -10.30	Peak AVG

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(AV)$

 $Remark\ AVG = Result(AV) - Limit(AV)$

Compliance Certification Services Inc.

FCC ID: KA2IR600LA1

Product Name	WIRELESS N 150 CLOUD ROUTER	Test By	Julon Liu
Test Model	DIR-600L	Test Date	2010/08/02
Test Mode	IEEE 802.11n HT40 TX / CH High	TEMP & Humidity	27°C, 56%

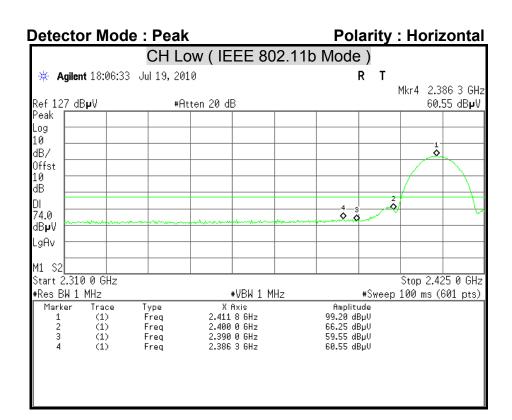
Refer No. : T100716302

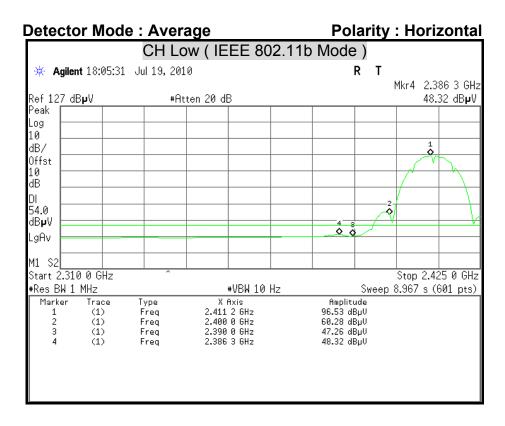
Report No.: T111219304-RP1

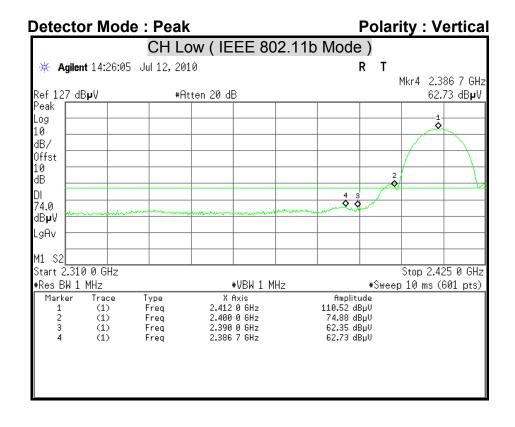
	966 Chamber_A at 3Meter / Horizontal								
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
2452.00	88.34		2.34	90.69					Carrier
3187.50	42.67		3.56	46.23		74.00	54.00	-7.77	Peak
3990.00	41.54		5.19	46.73		74.00	54.00	-7.27	Peak
4912.50	40.94	-	7.41	48.35	-	74.00	54.00	-5.65	Peak
		9	66 Chaml	per_A at 3	3Meter / V	ertical			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
2452.00	103.43		2.34	105.77					Carrier
3135.00	43.02		3.51	46.52		74.00	54.00	-7.48	Peak
4140.00	41.93		5.61	47.54		74.00	54.00	-6.46	Peak
4905.00	42.78		7.40	50.18		74.00	54.00	-3.82	Peak

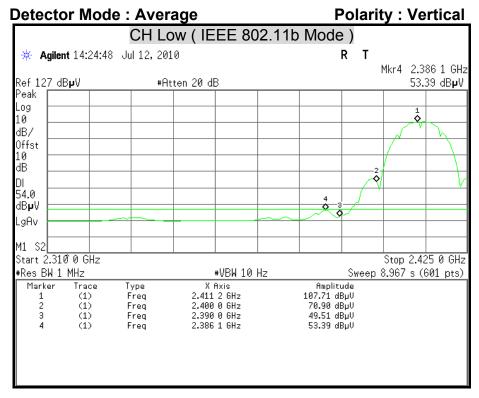
Remark:

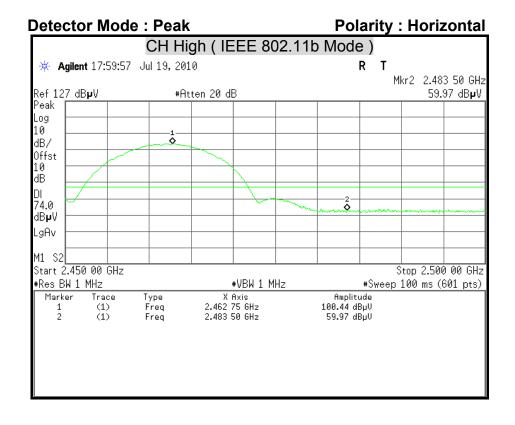
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

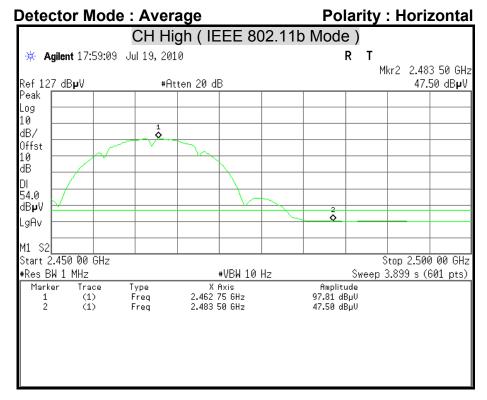

Margin = Result - Limit

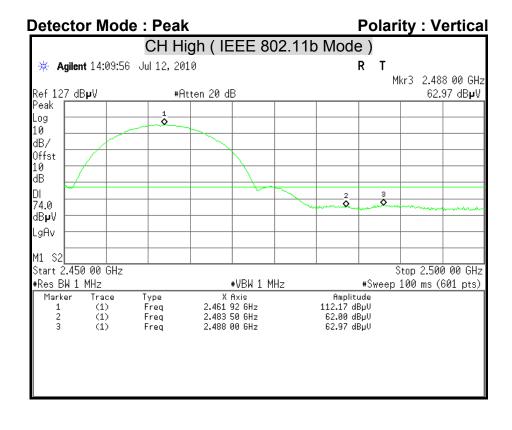

Remark Peak = Result(PK) - Limit(AV)

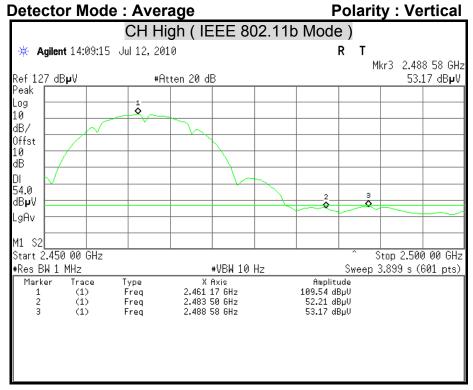

Remark AVG = Result(AV) - Limit(AV)

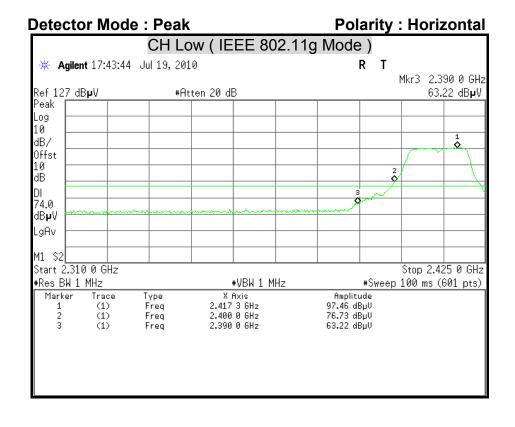

Report No.: T111219304-RP1

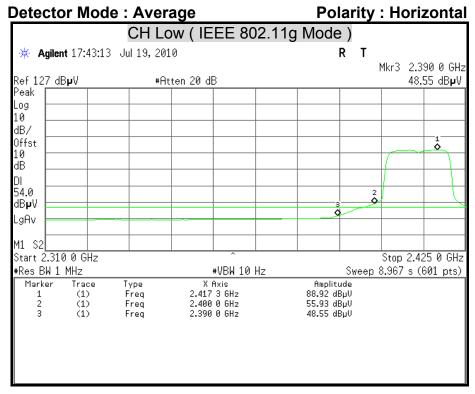

Restricted Band Edges

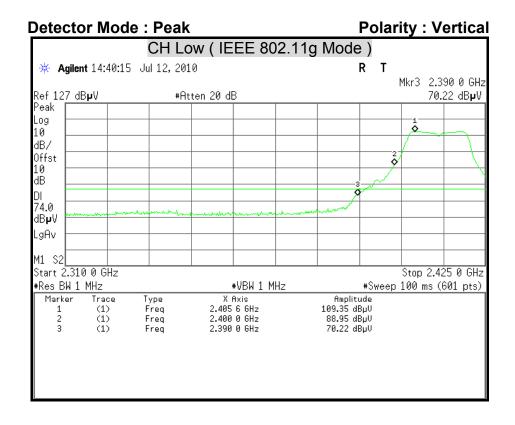


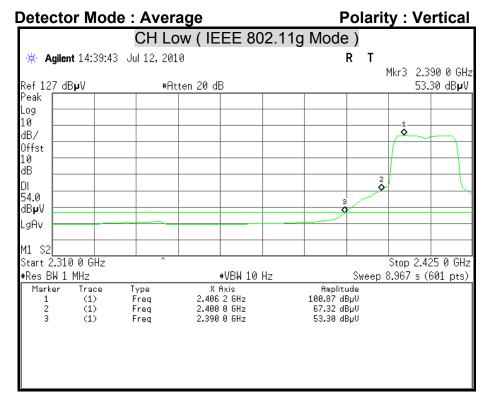


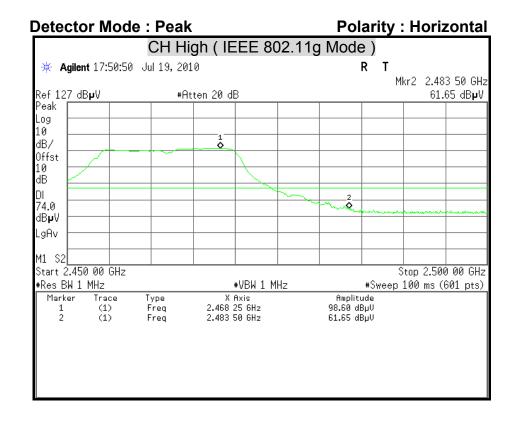


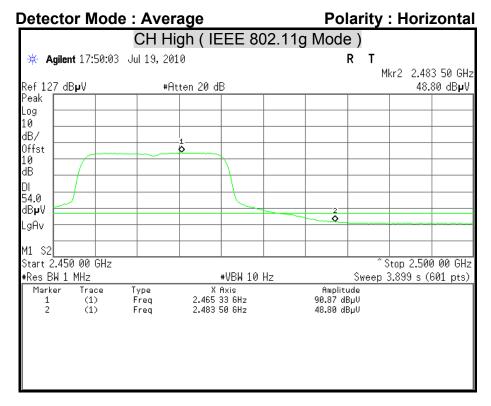


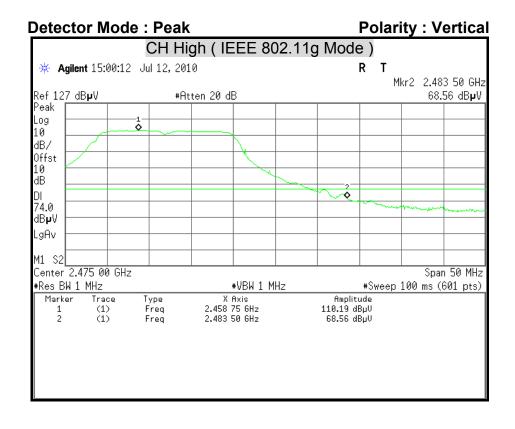


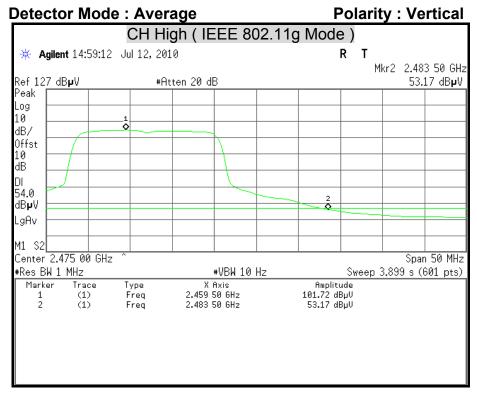


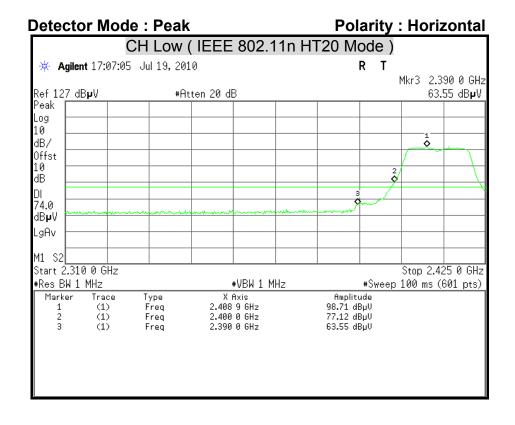


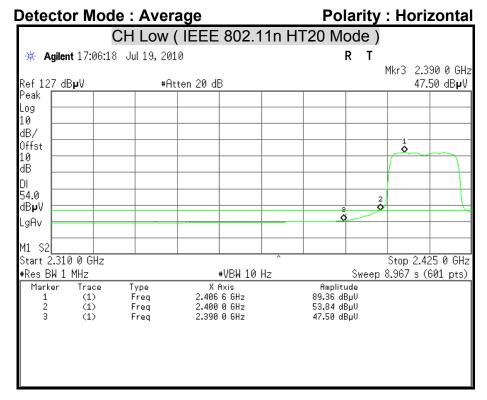


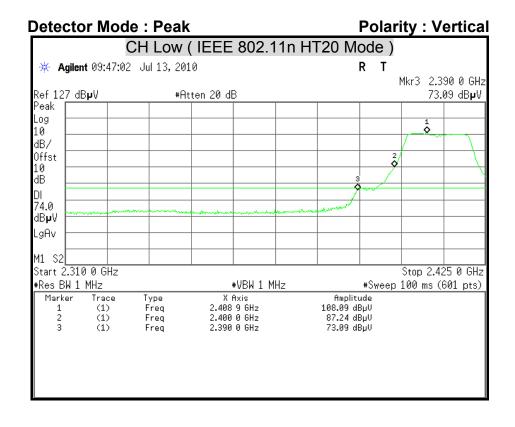


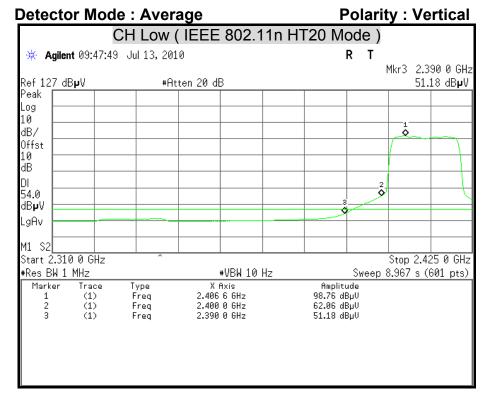


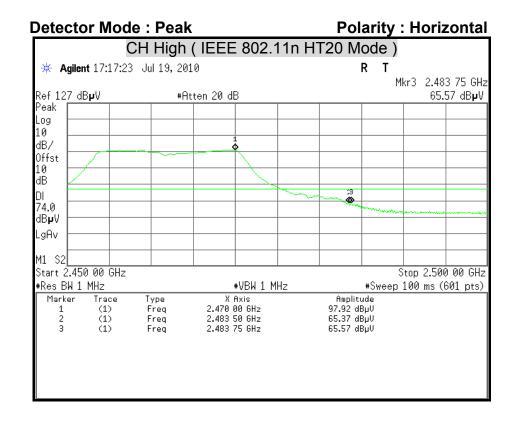


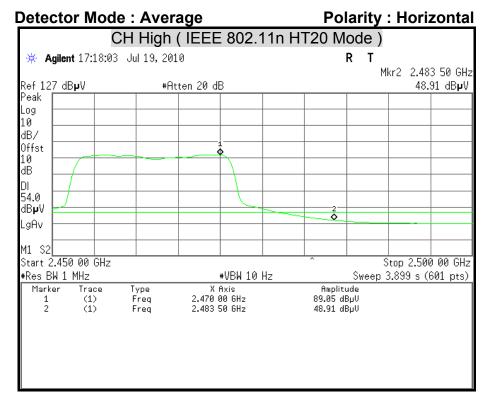


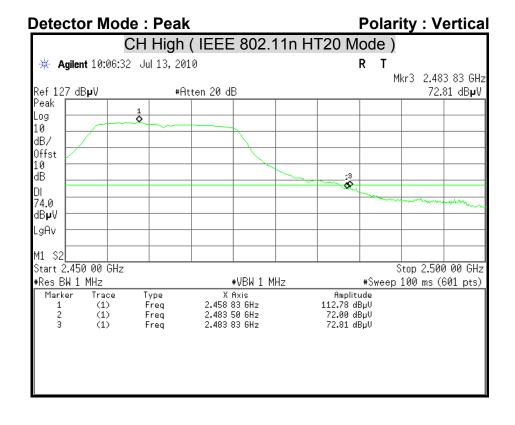


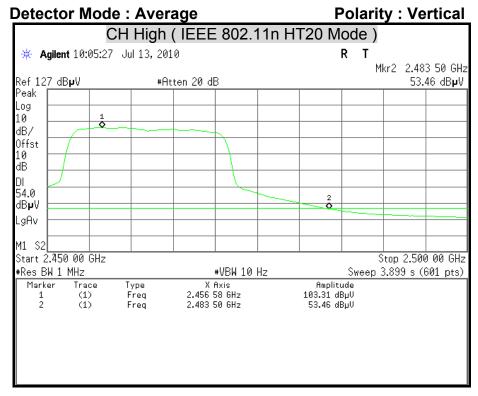


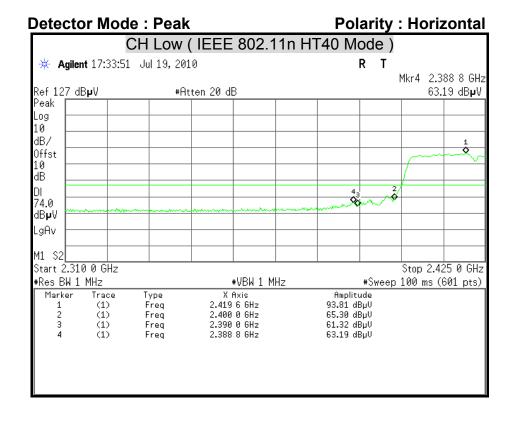


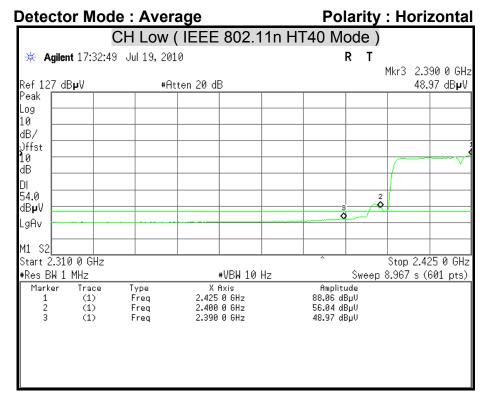


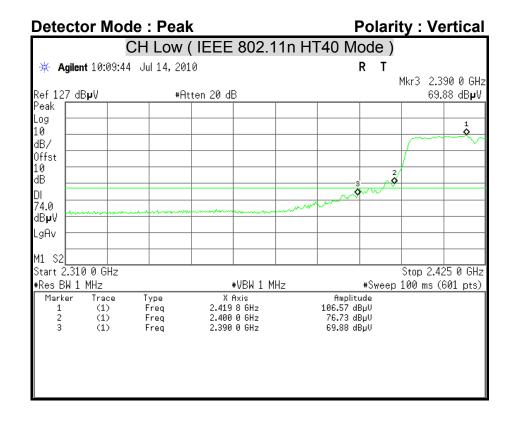


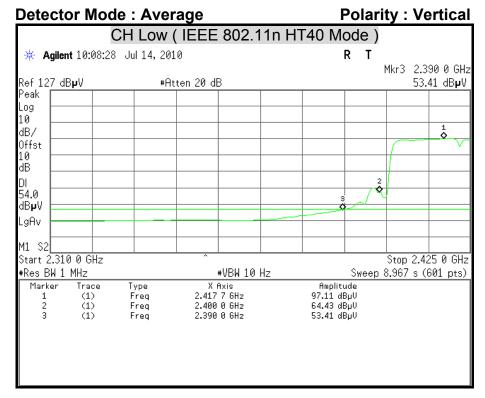


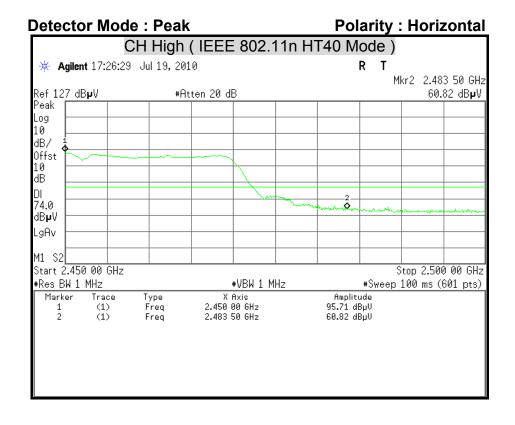


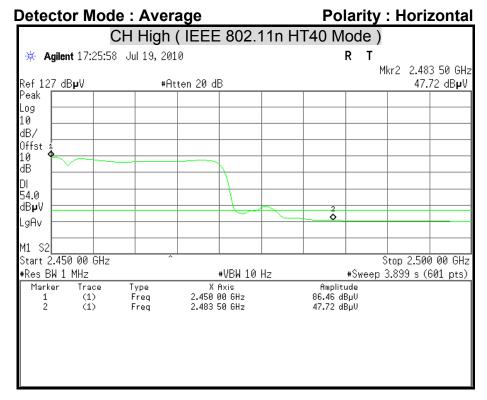


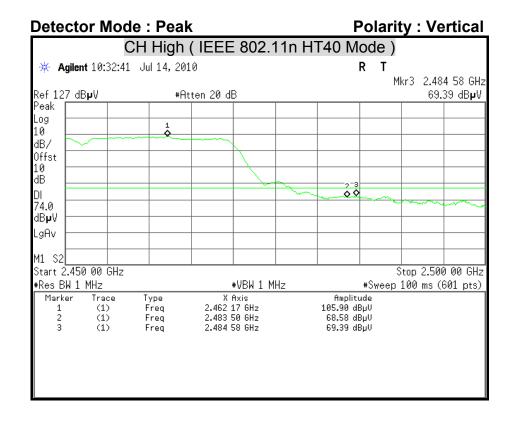


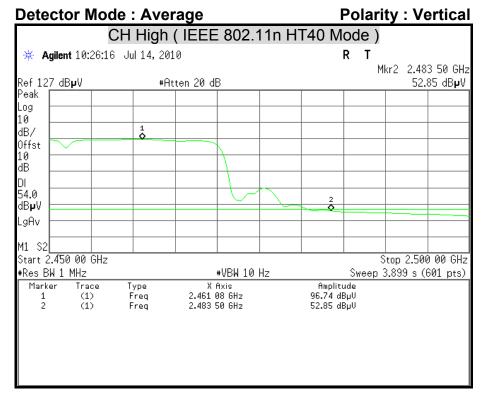












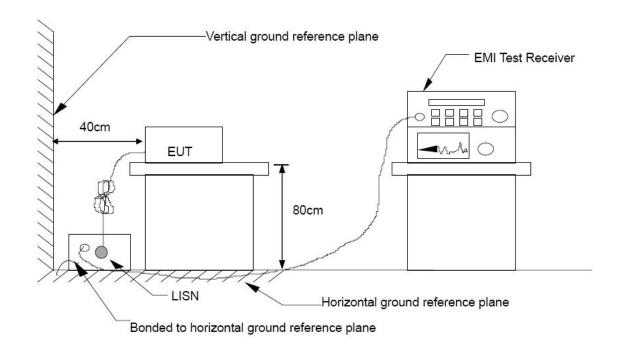
Refer No. : T100716302 Report No. : T111219304-RP1

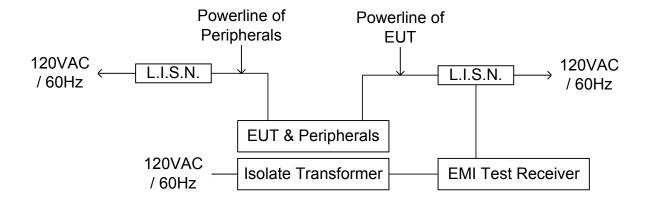
7.7 CONDUCTED EMISSION

LIMITS

§ 15.207 (a) Except as shown in paragraph (b) and (c) this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency Range	Conducted Limit (dBμν)		
(MHz)	Quasi-peak	Average	
0.15 - 0.50	66 to 56	56 to 46	
0.50 - 5.00	56	46	
5.00 - 30.0	60	50	


TEST EQUIPMENT


Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-465	08/09/2012
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-473	03/14/2012
EMI RECEIVER	ROHDE & SCHWARZ	ESCS 30	835418/008	10/14/2012
PULSE LIMITER	ROHDE & SCHWARZ	ESH3-Z2	100117	09/14/2012

Remark: Each piece of equipment is scheduled for calibration once a year.

Report No.: T111219304-RP1

TEST SETUP

Refer No.: T100716302 Report No.: T111219304-RP1

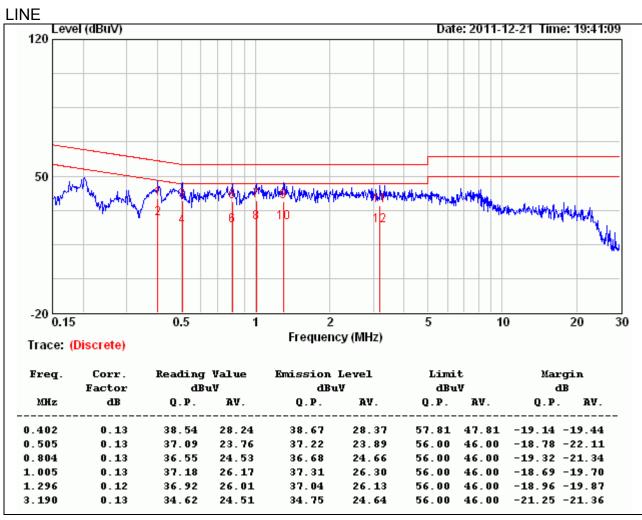
TEST PROCEDURE

The basic test procedure was in accordance with ANSI C63.4:2003.

The test procedure is performed in a 4m × 3m × 2.4m (L×W×H) shielded room.

The EUT along with its peripherals were placed on a 1.0 m (W) \times 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.

The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.

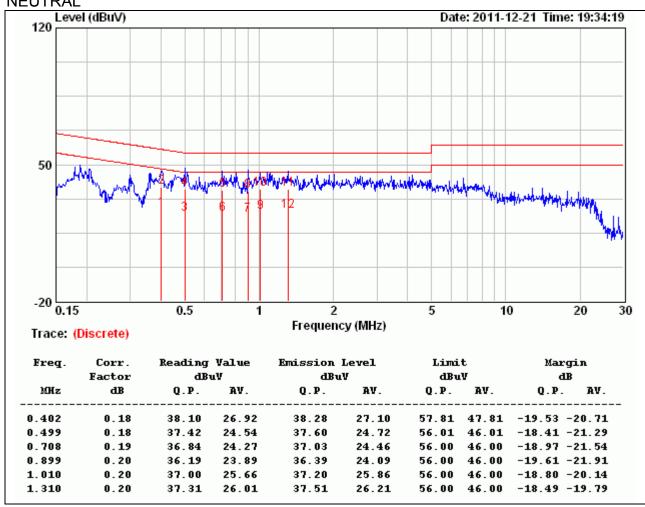

The EUT was located so that the distance between the boundary of the EUT and the closest surface of the LISN is 0.8 m. Where a mains flexible cord was provided by the manufacturer shall be 1 m long, or if in excess of 1 m, the excess cable was folded back and forth as far as possible so as to form a bundle not exceeding 0.4 m in length.

Ces Inc. Refer No. : T100716302

FCC ID : KA2IR600LA1 Report No. : T111219304-RP1

TEST RESULTS

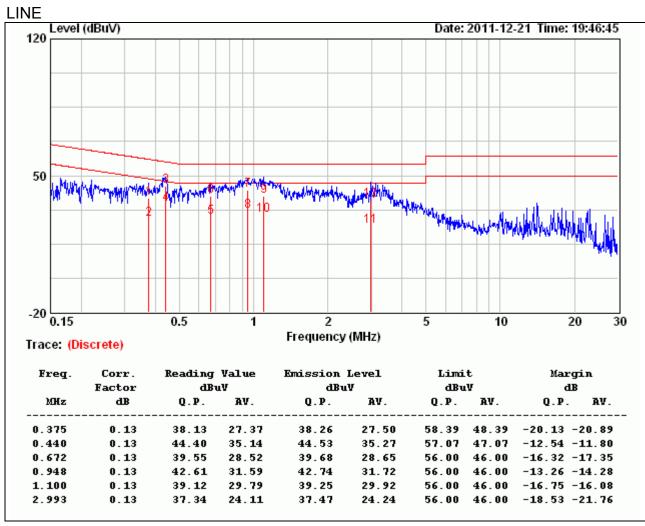
Product Name	WIRELESS N 150 CLOUD ROUTER	Test By	Tommy Chang
Test Model	DIR-600L	Test Date	2011/12/21
Test Mode	Normal Operating / Power Adapter (1)	Temp. & Humidity	22°C, 58%



- 1. Correction Factor = Insertion loss + Cable loss
- 2. Emission level = Reading Value + Correction factor
- 3. Margin value = Emission level Limit value

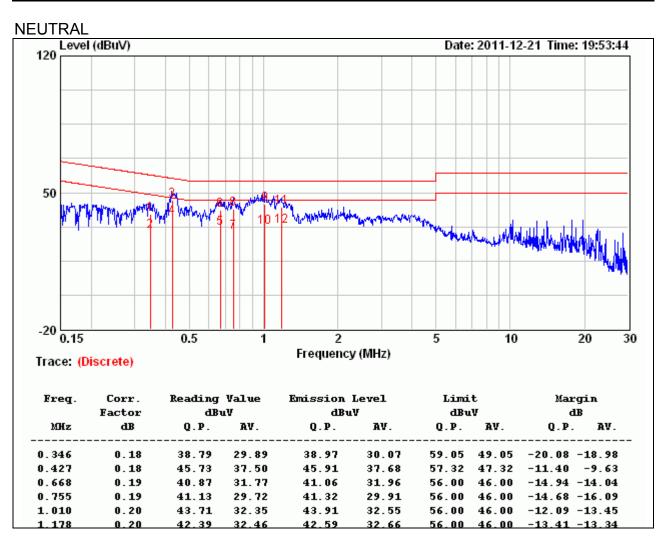
Refer No. : T100716302 Report No.: T111219304-RP1

Product Name	WIRELESS N 150 CLOUD ROUTER	Test By	Tommy Chang
Test Model	DIR-600L	Test Date	2011/12/21
Test Mode	Normal Operating / Power Adapter (1)	Temp. & Humidity	22°C, 58%



- 1. Correction Factor = Insertion loss + Cable loss
- 2. Emission level = Reading Value + Correction factor
- 3. Margin value = Emission level Limit value

Refer No.: T100716302 Report No.: T111219304-RP1


Product Name	WIRELESS N 150 CLOUD ROUTER	Test By	Tommy Chang
Test Model	DIR-600L	Test Date	2011/12/21
Test Mode	Normal Operating / Power Adapter (2)	Temp. & Humidity	22°C, 58%

- 1. Correction Factor = Insertion loss + Cable loss
- 2. Emission level = Reading Value + Correction factor
- 3. Margin value = Emission level Limit value

Refer No.: T100716302 Report No.: T111219304-RP1

Product Name	WIRELESS N 150 CLOUD ROUTER	Test By	Tommy Chang
Test Model	DIR-600L	Test Date	2011/12/21
Test Mode	Normal Operating / Power Adapter (2)	Temp. & Humidity	22°C, 58%

- 1. Correction Factor = Insertion loss + Cable loss
- 2. Emission level = Reading Value + Correction factor
- 3. Margin value = Emission level Limit value