FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 1 of 143

FCC 47 CFR PART 15 SUBPART C AND ANSI C63.4: 2003

TEST REPORT

For

Wireless N Router

Model: DIR-615

Trade Name: D-Link

Issued for

D-Link Corporation

No. 289, Sinhu 3rd Rd., Neihu District, Taipei City 114, Taiwan, R.O.C.

Issued by

Compliance Certification Services Inc. Hsinchu Lab.

NO. 989-1 Wen Shan Rd., Shang Shan Village, Qionglin Shiang Hsinchu County 30741, Taiwan, R.O.C

> TEL: +886-3-5921698 FAX: +886-3-5921108

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 2 of 143

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	07/13/2009	Initial Issue	All Page 143	Alex Chiu

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1

Page 3 of 143

TABLE OF CONTENTS

TITLE	PAGE NO.
1. TEST REPORT CERTIFICATION	4
2. EUT DESCRIPTION	5
2.1 DESCRIPTION OF EUT & POWER	5
3. DESCRIPTION OF TEST MODES	6
4. TEST METHODOLOGY	6
5. FACILITIES AND ACCREDITATIONS	7
5.1 FACILITIES	7
5.2 EQUIPMENT	7
5.3 LABORATORY ACCREDITATIONS LISTINGS	7
5.4 TABLE OF ACCREDITATIONS AND LISTINGS	8
6. CALIBRATION AND UNCERTAINTY	9
6.1 MEASURING INSTRUMENT CALIBRATION	9
6.2 MEASUREMENT UNCERTAINTY	9
7. SETUP OF EQUIPMENT UNDER TEST	
8. APPLICABLE LIMITS AND TEST RESULTS	
8.1 6dB BANDWIDTH	
8.2 99% BANDWIDTH	
8.3 MAXIMUM PEAK OUTPUT POWER	
8.4 MAXIMUM PERMISSIBLE EXPOSURE	55-56
8.5 AVERAGE POWER	57-59
8.6 POWER SPECTRAL DENSITY	60-79
8.7 CONDUCTED SPURIOUS EMISSION	80-96
8.8 RADIATED EMISSIONS	97
8.8.1 TRANSMITTER RADIATED SUPURIOUS EMSSIONS	97-100
8.8.2 WORST-CASE RADIATED EMISSION BELOW 1 GHz	
8.8.3 TRANSMITTER RADIATED EMISSION ABOVE 1 GHz	103-114
8.8.4 RESTRICTED BAND EDGES	
8.9 POWERLINE CONDUCTED EMISSIONS	
ADDENDIV CETUD DILOTOC	127 14

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1

Page ___4 of ___143

1. TEST REPORT CERTIFICATION

Applicant : D-Link Corporation

Address : No. 289, Sinhu 3rd Rd., Neihu District, Taipei City 114,

Taiwan, R.O.C.

Equipment Under Test: Wireless N Router

Model : DIR-615

Trade Name : D-Link

Tested Date : June 19 ~ July 10, 2009

APPLICABLE STANDARD				
STANDARD	TEST RESULT			
FCC Part 15 Subpart C AND ANSI C63.4:2003	PASS			

Approved by:

Reviewed by:

Alan Fan

Alex Chiu

Director Section Manager

WE HEREBY CERTIFY THAT: The measurements shown in the attachment were made in accordance with the procedures indicated, and the energy emitted by the equipment was found to be within the limits applicable. We assume full responsibility for the accuracy and completeness of these measurements and vouch for the qualifications of all persons taking them.

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page ___5 __ of ___143

2. EUT DESCRIPTION

2.1 DESCRIPTION OF EUT & POWER

Product Name	Wireless N Router
Model Number	DIR-615
E	IEEE 802.11b/g, 802.11n HT20 : 2412MHz ~ 2462MHz
Frequency Range	IEEE 802.11n HT40 : 2422MHz ~ 2452MHz
	IEEE 802.11b: 23.47dBm
T	IEEE 802.11g: 21.29dBm
Transmit Power	IEEE 802.11n HT20 : 23.22dBm
	IEEE 802.11n HT40 : 22.76dBm
Channel Spacing	IEEE 802.11b/g, 802.11n HT20/HT40 : 5MHz
Charact Namehan	IEEE 802.11b/g, 802.11n HT20 : 11 Channels
Channel Number	IEEE 802.11n HT40 : 7 Channels
	IEEE 802.11b: 11, 5.5, 2, 1 Mbps
	IEEE 802.11g: 54, 48, 36, 24, 18, 12, 9, 6 Mbps
Transmit Data Rate	IEEE 802.11n HT20 : 144.444, 130, 117, 115.556, 104, 86.667, 78, 72.2, 65, 58.5, 57.778, 52, 43.333, 39, 28.9, 26, 19.5, 21.7, 14.4, 13, 7.2, 6.5Mbps
	IEEE 802.11n HT40 : 300, 270, 243, 240, 216, 180, 162, 150, 135, 121.5, 120, 108, 90, 81, 60, 54, 45, 40.5, 30, 27, 15, 13.5Mbps
	IEEE 802.11b : DSSS (CCK, DQPSK, DBPSK)
Type of Modulation	IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK)
	IEEE 802.11n HT20/40 : OFDM (64QAM, 16QAM, QPSK, BPSK)
Frequency Selection	by software / firmware
Antenna Type	Dipole Antenna × 2, Antenna Gain 1.8dBi
Power Source	5VDC, 2.5A (From Power Adapter)
I/O Port	WAN port × 1, LAN port × 4, Power port × 1
Note	Ralink RF Module Model:RT3052F

Power Adapter:

No.	Manufacturer	Model No.	Power Input	Power Output
1	D-Link	AMS3-0502500SU	100-120VAC , 60Hz , 0.5A/28VA	5V, 2.5A
2	D-Link	AMS3-0502500FU	100-240VAC, 50/60Hz, 0.5A/28VA	5V, 2.5A

Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: KA2DIR615G1 filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.
- 3. For more details, please refer to the User's manual of the EUT.

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1

Page 6 of 143

3. DESCRIPTION OF TEST MODES

The EUT is an 802.11n MIMO transceiver in Wireless N Router form factor. It has two transmitter chains and two receive chains $(2 \times 2 \text{ configurations})$. The $2 \times 2 \text{ configuration}$ is implemented with two outside chains (Chain 0 and 1).

11b/g mode, only examines Chain 0, because only Chain 0 is functional according to the user diver of Ralink. The power is transmitted from TX0 only at 11b/g normal mode in Ralink solution.

The RF chipset is manufactured by Ralink Technology, Corp.

IEEE 802.11 b, 802.11g, 802.11n HT20 mode

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)
Low	2412
Middle	2437
High	2462

IEEE 802.11b mode: 1Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11g mode: 54Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11n HT20 mode: 6.5Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11n HT40 mode

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)
Low	2422
Middle	2437
High	2452

IEEE 802.11n HT40 mode: 13.5Mbps data rate (worst case) were chosen for full testing.

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4:2003 and FCC CRF 47 15.207, 15.209 and 15.247.

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page ___7 __of ___143

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

NO. 989-1 Wen Shan Rd., Shang Shan Village, Qionglin Shiang Hsinchu County 30741, Taiwan, R.O.C

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4: 2003 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS LISTINGS

The test facilities used to perform radiated and conducted emissions tests are accredited by Taiwan Accreditation Foundation for the specific scope of accreditation under Lab Code: 0240 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by TAF or any agency of the Government. In addition, the test facilities are listed with Federal Communications Commission (registration no: 90585 and 90584).

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1

Page <u>8</u> of <u>143</u>

5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FC 90585, 90584
Taiwan	TAF	FCC Method-47 CFR Part 15 Subpart C,D,E CISPR 11, FCC METHOD-47 CFR Part 18, EN 55011, CNS 13803, CISPR 13, CNS 13439, FCC Method-47 CFR Part 15 Subpart B, CISPR 14-1, EN 55014-1, CNS 13783-1, EN 55015, CNS 14115, CISPR 22, EN 55022, VCCI CNS 13438, EN 61000-4-2/3/4/5/6/8/11	Testing Laboratory 0240
Taiwan	BSMI	CNS 13803, CNS 13438, CNS 13439, CNS 13783-1, CNS 14115	SL2-IS-E-0002 SL2-IN-E-0002 SL2-A1-E-0002 SL2-R1-E-0002 SL2-R2-E-0002 SL2-L1-E-0002

^{*} No part of this report may be used to claim or imply product endorsement by TAF or any agency of the US Government.

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1

Page 9 of 143

6. CALIBRATION AND UNCERTAINTY

6.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

6.2 MEASUREMENT UNCERTAINTY

The following table is for the measurement uncertainty, which is calculated as per the document CISPR 16-4.

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 1000 MHz	+/- 3.2 dB
Radiated Emission, 1 to 26.5GHz	+/- 3.2 dB
Power Line Conducted Emission	+/- 2.1 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 10 of 143

7. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

No.	Product	Manufacturer	Model No.	Serial No.	FCC ID
1	Notebook PC	DELL	Latitude D610	CN-0C4708-48643-625-5565	E2K24BNHM
2	Notebook PC	HP	nx6130	CNU543274R	CNTWM3B2200BGA
3	Notebook PC	IBM (LENOVO)	7663-AS6	L3F3864	DoC
4	SW HUB	ASUS	GX1008B	90-Q872AN1N0NAMA0-88Q SA1003522	DoC
5	Flash disk	SanDisk	SDSDM-1024	BB07251CTE	

SETUP DIAGRAM FOR TESTS

EUT & peripherals setup diagram is shown in appendix setup photos.

EUT OPERATING CONDITION

RF

- 1. Set up all computers like the setup diagram.
- The "Ralink QA Test Program for RT 3052 QA Firmware:Release Version 00.00/RT3502 QA UI:Release Version 1.0.0.2" software was used for testing(RF Type:RT3022 2T2R).
 - (1) TX Mode:
 - ⇒ Tx Data Rate: MCS=0; LP 1Mbps Bandwidth 20 (IEEE 802.11b mode)

MCS=7; 54Mbps Bandwidth 20 (IEEE 802.11g mode)

MCS=0; 6.5Mbps Bandwidth 20 (IEEE 802.11n HT20 mode)

MCS=0; 13.5Mbps Bandwidth 40 (IEEE 802.11n HT40 mode)

⇒ Power control

IEEE 802.11b Channel Low (2412MHz) TX Power0 1F (only chain0 TX)

IEEE 802.11b Channel Mid (2437MHz) TX Power0 1F (only chain0 TX)

IEEE 802.11b Channel High (2462MHz) TX Power0 1A (only chain0 TX)

IEEE 802.11g Channel Low (2412MHz) TX Power0 1F (only chain0 TX)

IEEE 802.11g Channel Mid (2437MHz) TX Power0 1F (only chain0 TX)

IEEE 802.11g Channel High (2462MHz) TX Power0 1F (only chain0 TX)

FCC ID : KA2DIR615G1
Report No. : 90619302-RP1
Page ____11 ___of ____143

IEEE 802.11n HT20 Channel Low (2412MHz) TX Power0 1A /TX Power1 19 IEEE 802.11n HT20 Channel Mid (2437MHz) TX Power0 1E /TX Power1 1F IEEE 802.11n HT20 Channel High (2462MHz) TX Power0 1E /TX Power1 1F IEEE 802.11n HT40 Channel Low (2422MHz) TX Power0 18 /TX Power1 18 IEEE 802.11n HT40 Channel Mid (2437MHz) TX Power0 1E /TX Power1 1F IEEE 802.11n HT40 Channel High (2452MHz) TX Power0 1B /TX Power1 1C

- 3. All of the function are under run.
- 4. Start test.

For Normal operating:

- 1. Set up all computers like the setup diagram.
- 2. All of the function are under run.
- 3. Notebook PC (1)(2)(3) ping 192.168.0.1 –t to EUT.
- 4. Notebook PC (1) ping –t to Notebook PC (3).
- 5. Start test.

FCC ID : KA2DIR615G1
Report No. : 90619302-RP1
Page 12 of 143

8. APPLICABLE LIMITS AND TEST RESULTS

8.1 6dB BANDWIDTH

LIMIT

§ 15.207(a) (2) For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
SPECTRUM ANALYZER	AGILENT	E4446A	MY43360132	06/09/2010
SPECTRUM ANALYZER	AGILENT	E4446A	MY46180323	05/26/2010

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The transmitter output was connected to a spectrum analyzer. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

FCC ID : KA2DIR615G1
Report No. : 90619302-RP1
Page 13 of 143

TEST RESULTS

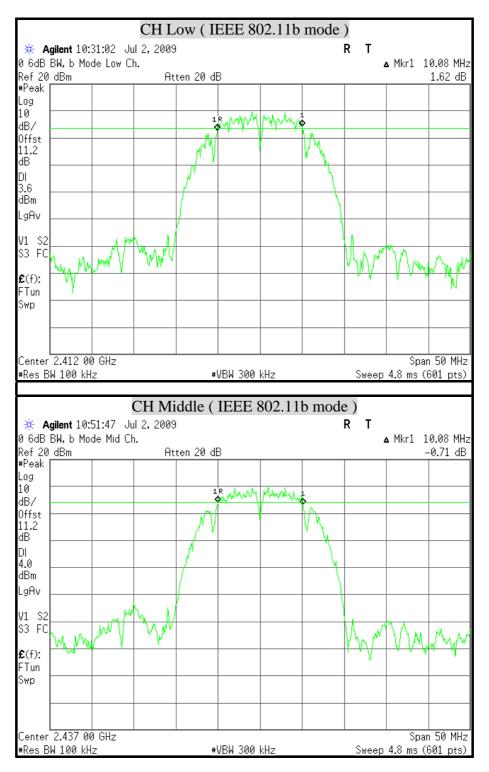
IEEE 802.11b mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	10.08	500	PASS
Middle	2437	10.08	500	PASS
High	2462	10.17	500	PASS

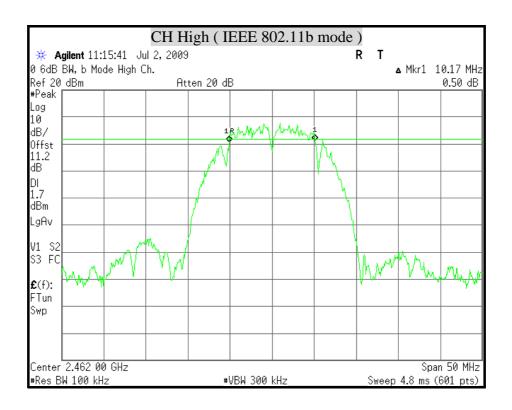
IEEE 802.11g mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	16.42	500	PASS
Middle	2437	16.42	500	PASS
High	2462	16.42	500	PASS

IEEE 802.11n HT20 mode (Two TX)

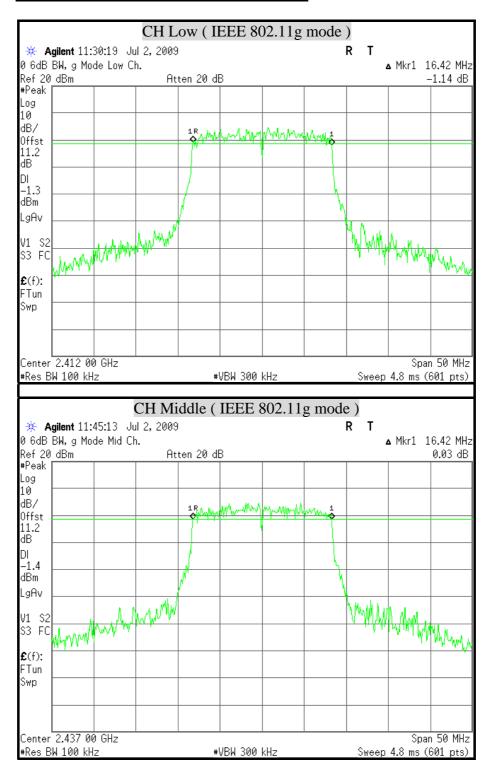

Channel	Channel Frequency	6dB Bandwidth (MHz)		Minimum Limit	Pass / Fail
	(MHz)	Chain 0	Chain 1	(kHz)	
Low	2412	15.67	15.75	500	PASS
Middle	2437	16.83	16.00	500	PASS
High	2462	17.08	16.50	500	PASS

IEEE 802.11n HT40 mode (Two TX)

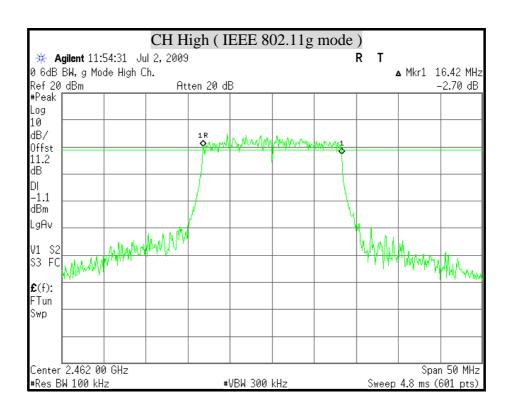

Channel	Channel Frequency	6dB Bandwidth (MHz)		Minimum Limit	Pass / Fail
	(MHz)	Chain 0	Chain 1	(kHz)	
Low	2422	32.83	34.50	500	PASS
Middle	2437	33.58	34.17	500	PASS
High	2452	34.75	34.33	500	PASS

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 14 of 143

6dB BANDWIDTH (IEEE 802.11b mode)

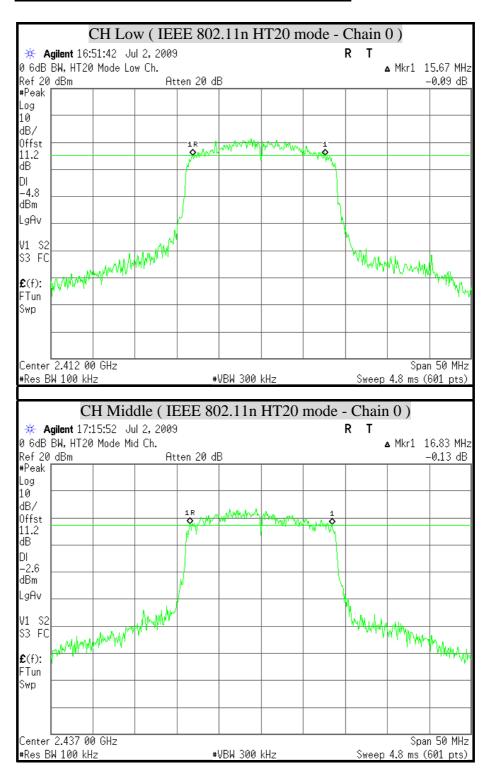


FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 15 of 143

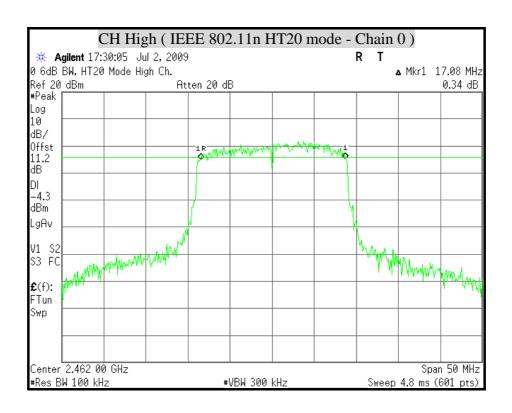


FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 16 of 143

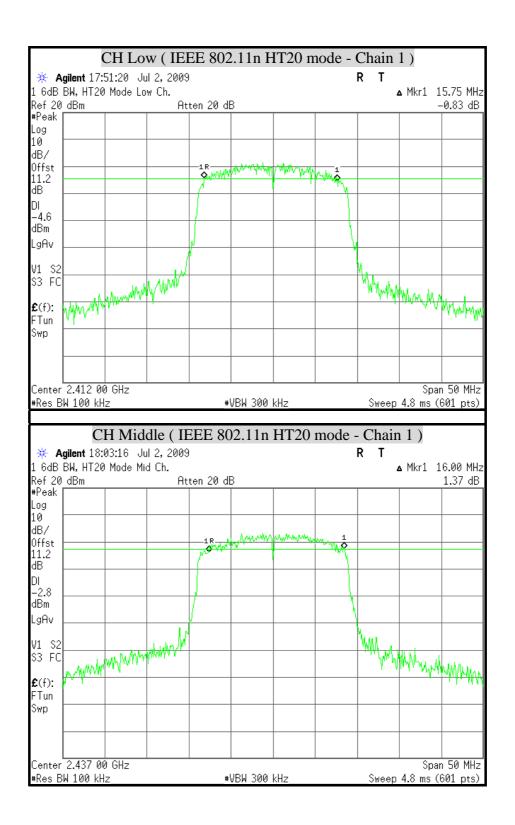
6dB BANDWIDTH (IEEE 802.11g mode)

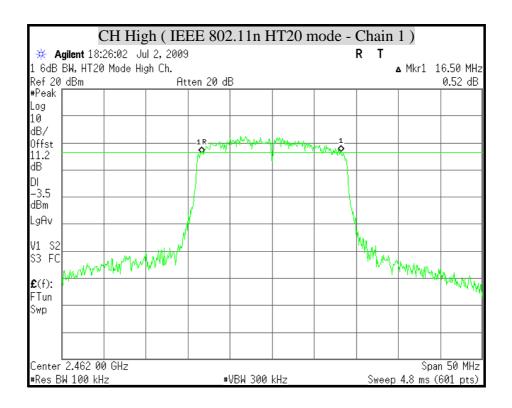


FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page ____17 __of ____143

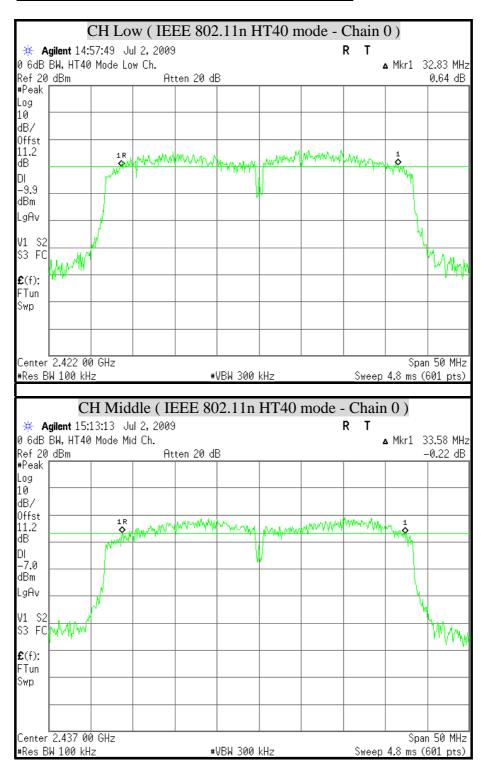


FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 18 of 143

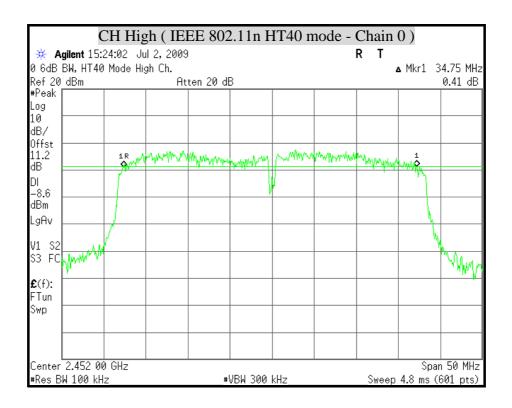

6dB BANDWIDTH (IEEE 802.11n HT20 mode)


FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 19 of 143

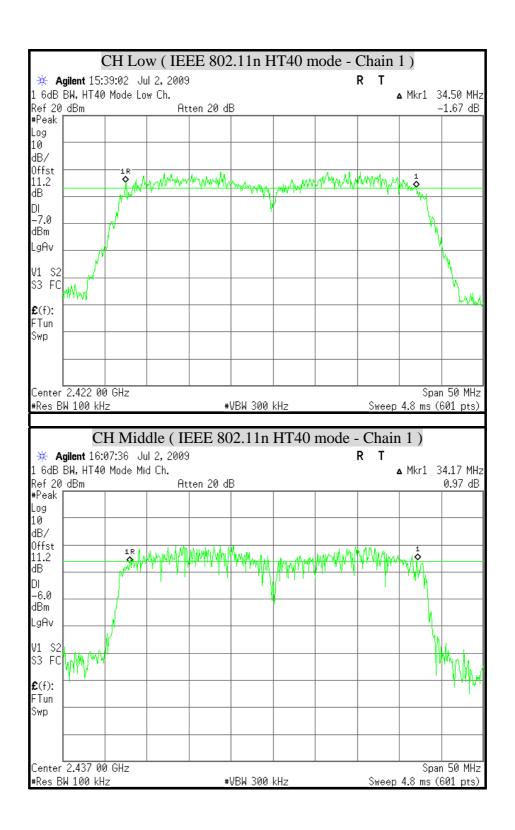
FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 20 of 143

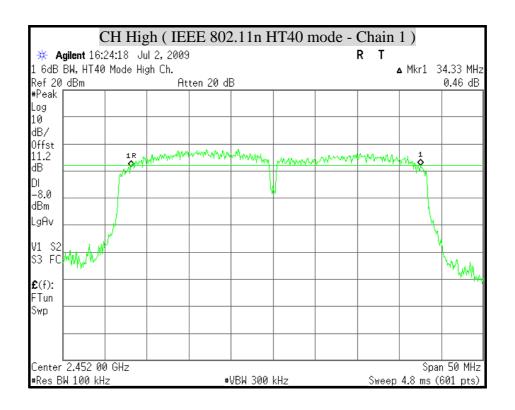


FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 21 of 143



FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 22 of 143


6dB BANDWIDTH (IEEE 802.11n HT40 mode)


FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 23 of 143

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 24 of 143

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page ___25___of ___143

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 26 of 143

8.2 99% BANDWIDTH

LIMIT

None; for reporting purposes only.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
SPECTRUM ANALYZER	AGILENT	E4446A	MY43360132	06/09/2010
SPECTRUM ANALYZER	AGILENT	E4446A	MY46180323	05/26/2010

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

1. The spectrum shall be set as follows:

Span : The minimum span to fully display the emission and approximately 20dB below peak level.

RBW: The set to 1% to 3% of the approximate emission width.

- 2. Compute the combined power of all signal responses contained in the trace by covering all the data points.
- 3. For 99% occupied BW, place the markers at the frequency at which 0.5% of the power lies to the right of the right marker and 0.5% of the power lies to the left of the left marker.
- 4. The 99% BW is the bandwidth between the right and left markers.

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1

Page <u>27</u> of <u>143</u>

TEST RESULTS

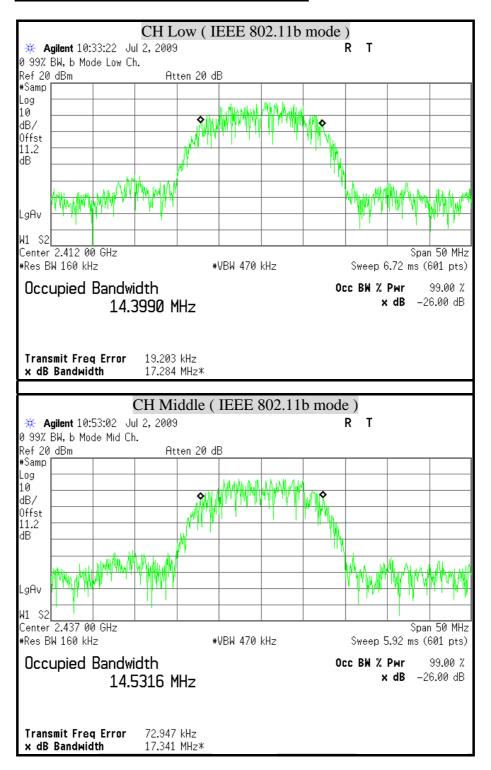
IEEE 802.11b mode

Channel	Channel Frequency (MHz)	99% Occupied power bandwidth (MHz)
Low	2412	14.399
Middle	2437	14.531
High	2462	14.500

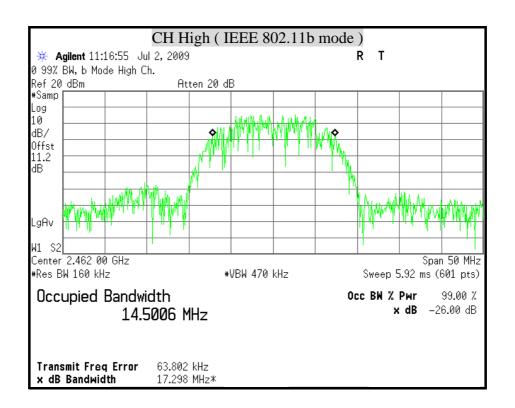
IEEE 802.11g mode

Channel	Channel Frequency (MHz)	99% Occupied power bandwidth (MHz)
Low	2412	16.189
Middle	2437	16.405
High	2462	16.368

IEEE 802.11n HT20 mode (Two TX)

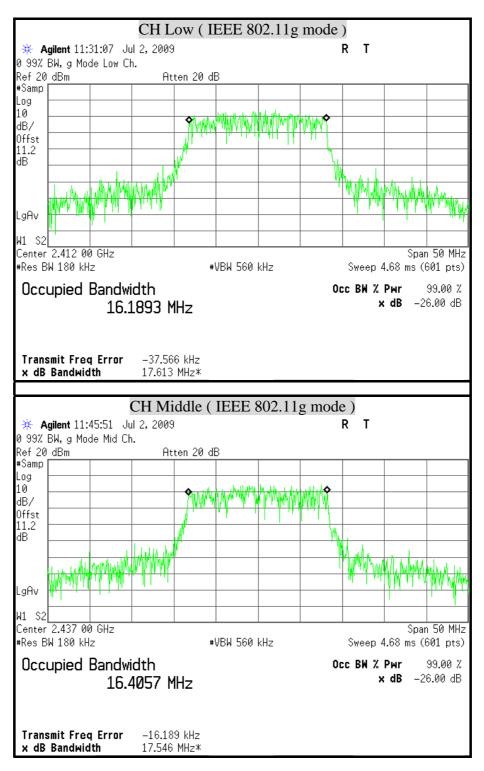

Channel	Channel Frequency (MHz)	99% Occupied power bandwidth (MHz)	
	(IVIIIZ)	Chain 0	Chain 1
Low	2412	16.927	17.050
Middle	2437	17.294	17.365
High	2462	17.405	17.410

IEEE 802.11n HT40 mode (Two TX)

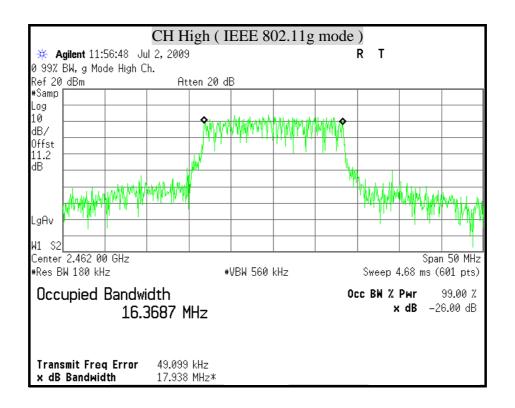

Channel	Channel Frequency (MHz)	99% Occupied power bandwidth (MHz)	
	(IVIIIZ)	Chain 0 Chain 1	
Low	2422	35.089	35.723
Middle	2437	35.222	35.317
High	2452	35.672	35.274

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 28 of 143

99% BANDWIDTH (IEEE 802.11b mode)

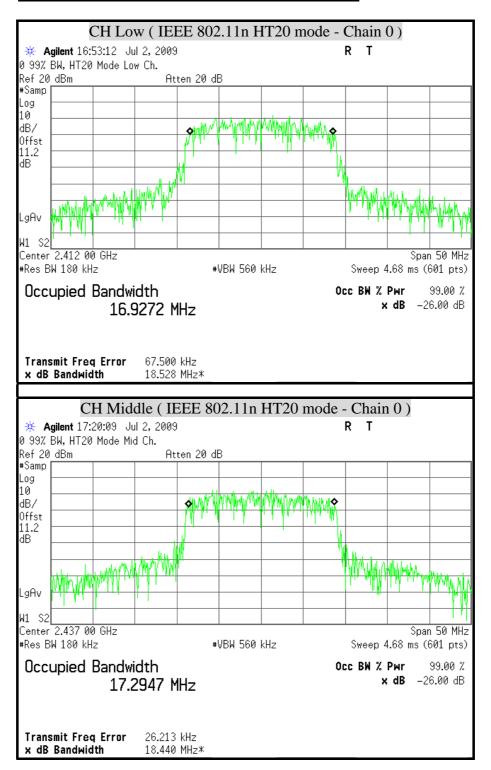


FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page ___29 __of ___143

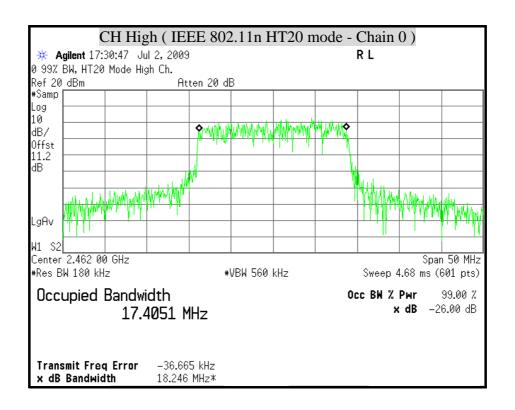


FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 30 of 143

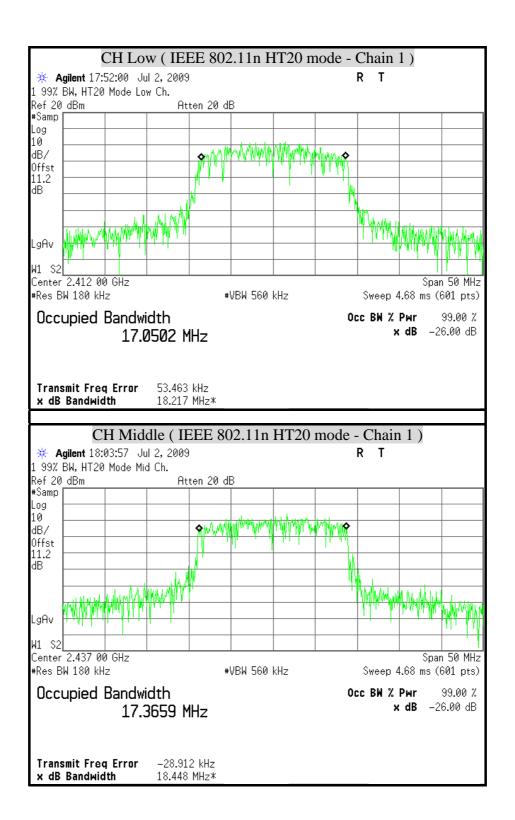
99% BANDWIDTH (IEEE 802.11g mode)

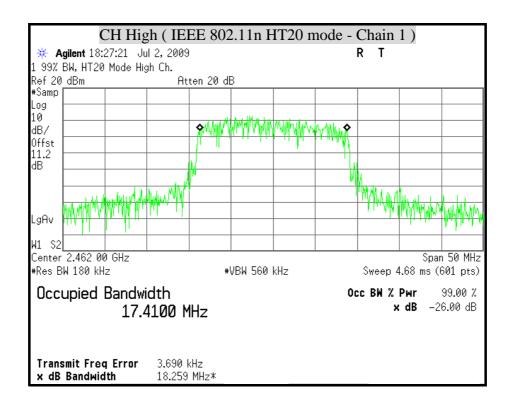


FCC ID : KA2DIR615G1
Report No. : 90619302-RP1
Page 31 of 143

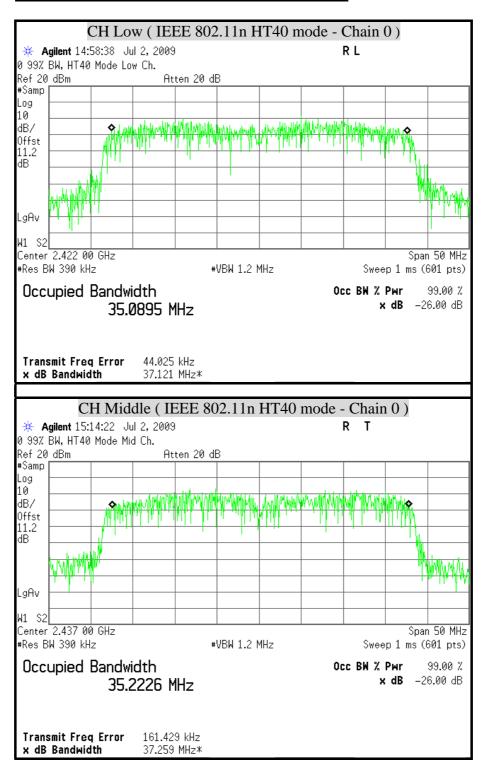


FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 32 of 143

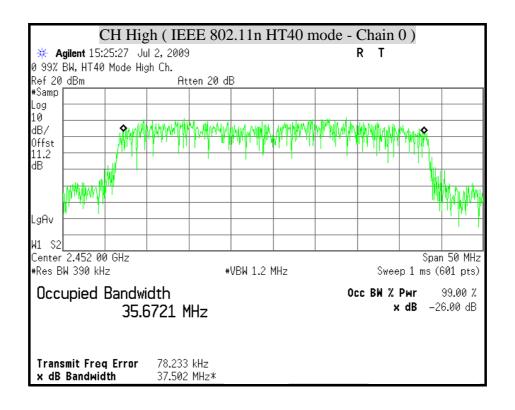

99% BANDWIDTH (IEEE 802.11n HT20 mode)


FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 33 of 143

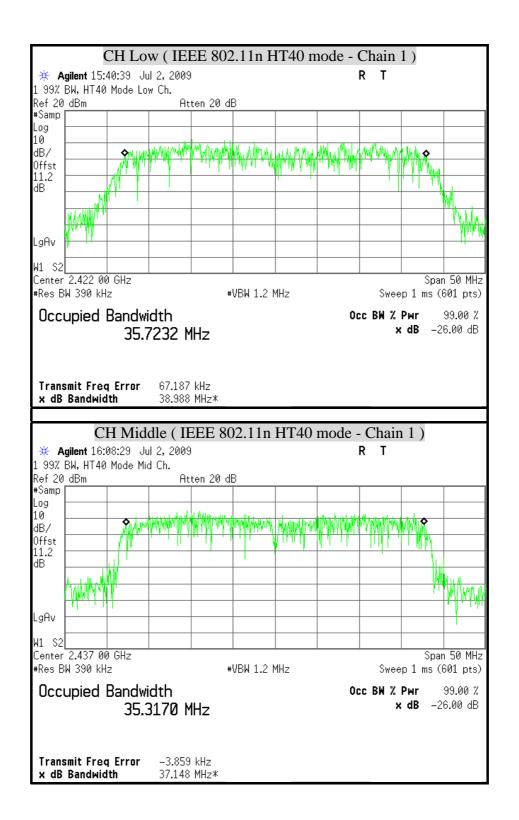
FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 34 of 143

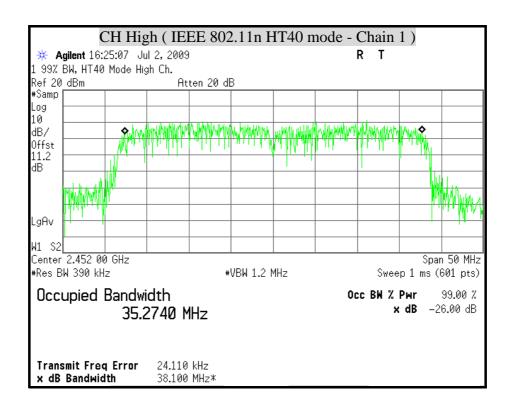


FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 35 of 143



FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 36 of 143


99% BANDWIDTH (IEEE 802.11n HT40 mode)


FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 37 of 143

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 38 of 143

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 39 of 143

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 40 of 143

8.3 MAXIMUM PEAK OUTPUT POWER

LIMIT

§ 15.247(b) The maximum peak output power of the intentional radiator shall not exceed the following :

§ 15.247(b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands : 1 watt.

§ 15.247(b) (4) Except as shown in paragraphs (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
SPECTRUM ANALYZER	AGILENT	E4446A	MY43360132	06/09/2010
SPECTRUM ANALYZER	AGILENT	E4446A	MY46180323	05/26/2010

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

1. The spectrum shall be set as follows:

Span: 1.5 times channel integration bandwidth.

RBW: 1MHz VBW: 3MHz Detector: Peak Sweep: Single trace

- 2. Compute the combined power of all signal responses contained in the trace by covering all the data points.
- 3. For 99% occupied BW, place the markers at the frequency at which 0.5% of the power lies to the right of the right marker and 0.5% of the power lies to the left of the left marker.
- 4. The peak output power is the channel power integrated over 99% bandwidth.

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 41 of 143

TEST RESULTS

Total peak power calculation formula:

10 log (10[^] (Chain 0 Power / 10) + 10[^] (Chain 1 Power / 10)).

The maximum antenna gain is 1.8 dBi, therefore the limit is 30 dBm. In the legacy mode, the effective antenna gain is $1.8 + 10 \times \text{Log}(2) = 4.81 \text{ dBi}$.

IEEE 802.11b mode

Channel	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power Limit (dBm)	Pass / Fail
Low	2412	23.36	30	PASS
Middle	2437	23.47	30	PASS
High	2462	21.31	30	PASS

Remark:

- 1. At finial test to get the worst-case emission at 1Mbps.
- 2. The cable assembly insertion loss of 11.2dB (including 10 dB pad and 1.2 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11g mode

Channel	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power Limit (dBm)	Pass / Fail
Low	2412	21.06	30	PASS
Middle	2437	21.25	30	PASS
High	2462	21.29	30	PASS

- 1. At finial test to get the worst-case emission at 54Mbps.
- 2. The cable assembly insertion loss of 11.2dB (including 10 dB pad and 1.2 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

FCC ID : KA2DIR615G1
Report No. : 90619302-RP1
Page 42 of 143

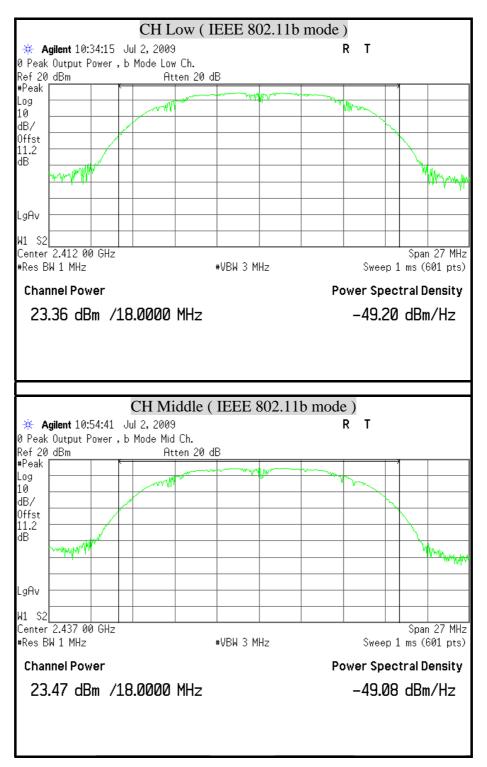
IEEE 802.11n HT20 mode (Two TX)

Channel	Channel Frequency		Power Bm)	Peak Power		Pass / Fail
Chamier	(MHz)	Chain 0	Chain 1			Tuss / Tun
Low	2412	18.17	18.99	21.60	30.00	PASS
Middle	2437	19.81	20.59	23.22	30.00	PASS
High	2462	19.37	19.57	22.48	30.00	PASS

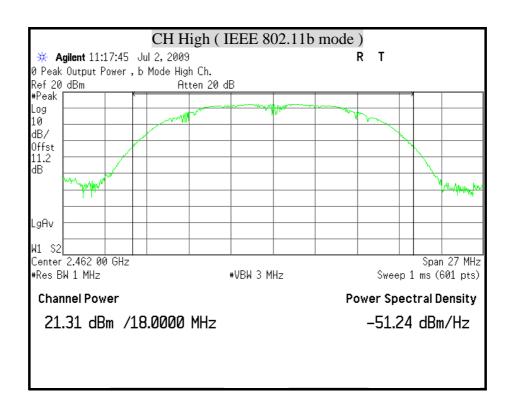
Remark:

- 1. At finial test to get the worst-case emission at 6.5Mbps.
- 2. The cable assembly insertion loss of 11.2dB (including 10 dB pad and 1.2 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT40 mode (Two TX)

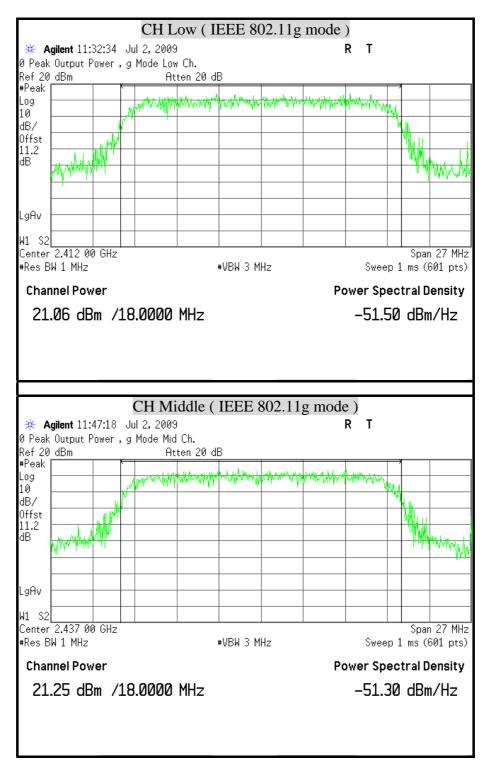

Channel	Channel Frequency Peak Power (dBm) Peak Power Total		lannel (dRm)		Peak Power	Pass / Fail
Chamier	(MHz)	Chain 0	Chain 1	(dBm)	Limit (dBm)	T dss / T dii
Low	2422	16.24	17.57	19.96	30.00	PASS
Middle	2437	18.96	20.43	22.76	30.00	PASS
High	2452	17.78	18.02	20.91	30.00	PASS

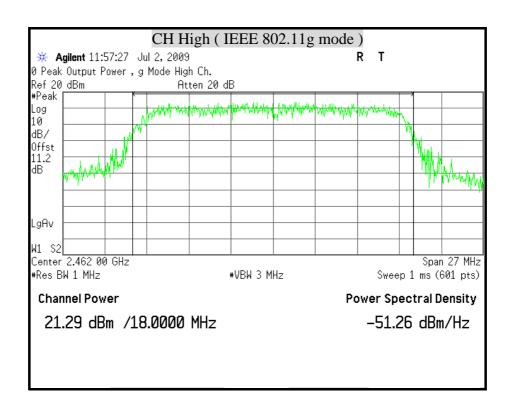
- 1. At finial test to get the worst-case emission at 13.5Mbps.
- 2. The cable assembly insertion loss of 11.2dB (including 10 dB pad and 1.2 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.



FCC ID : KA2DIR615G1
Report No. : 90619302-RP1
Page 43 of 143

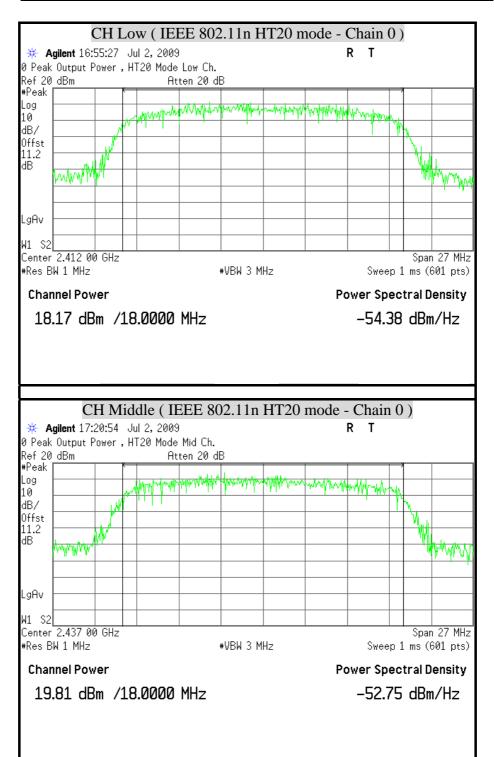
MAXIMUM PEAK OUTPUT POWER (IEEE 802.11b mode)

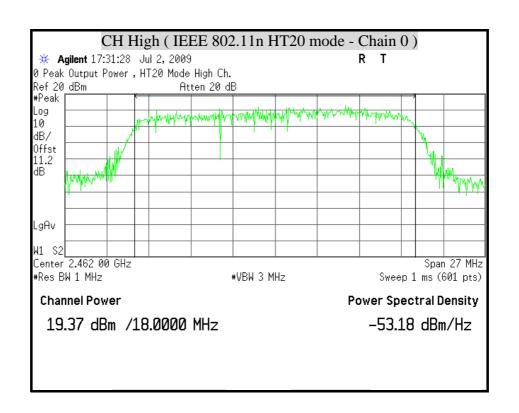

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 44 of 143



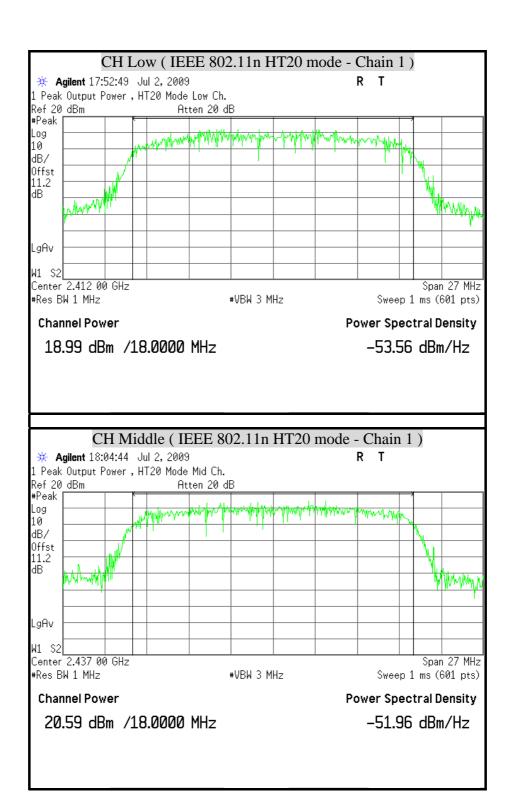
FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 45 of 143

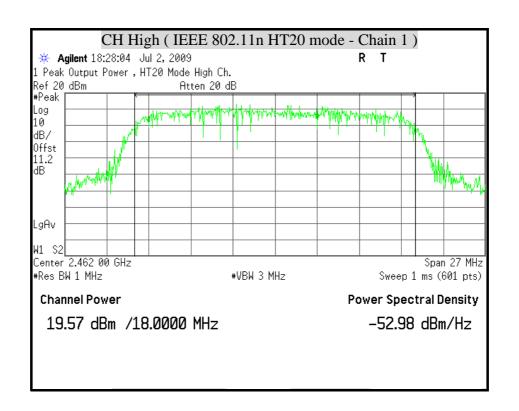
MAXIMUM PEAK OUTPUT POWER (IEEE 802.11g mode)


FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 46 of 143

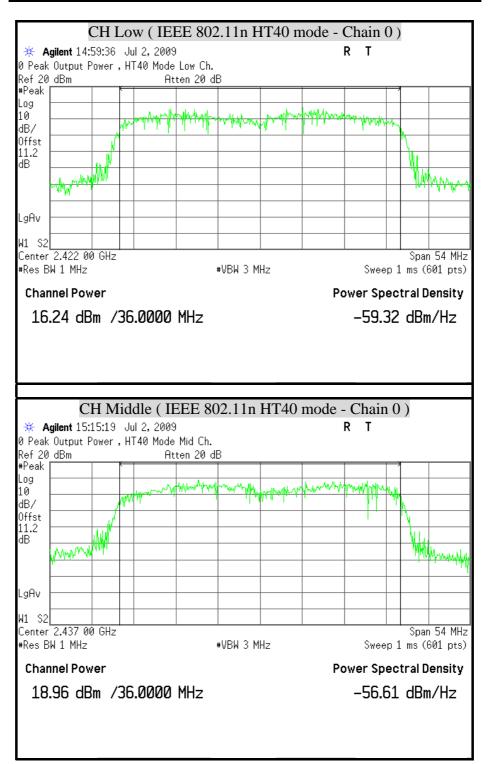


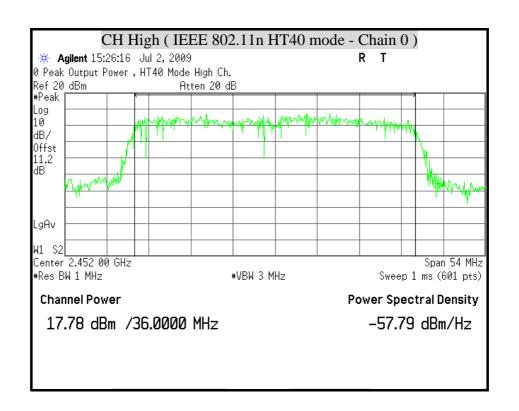
FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 47 of 143

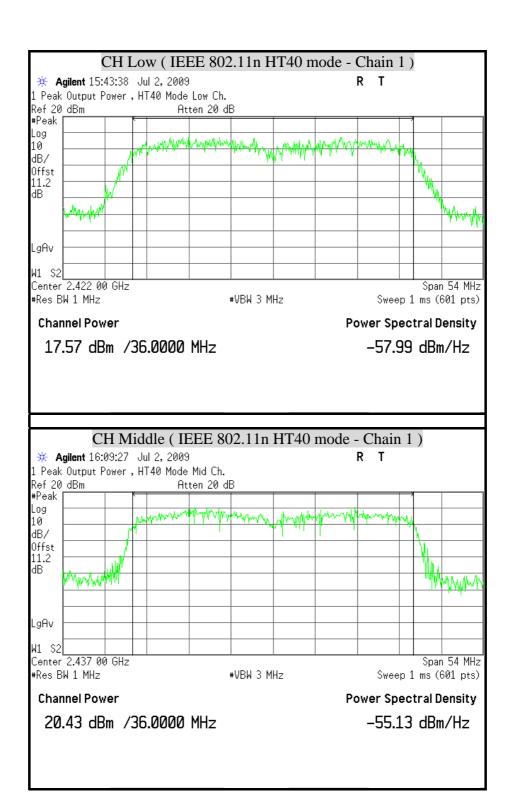

MAXIMUM PEAK OUTPUT POWER (IEEE 802.11n HT20 mode)


FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 48 of 143

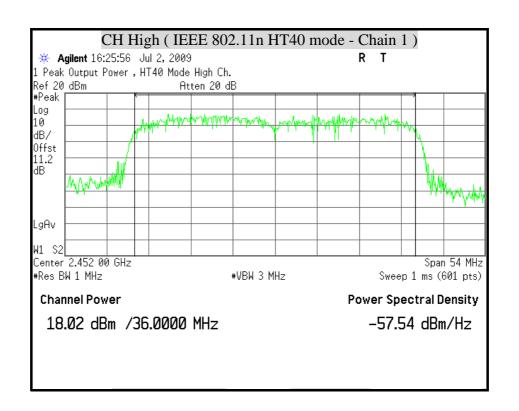
FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 49 of 143


FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page ____50 ___of ___143




FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page ___51 __of ___143

MAXIMUM PEAK OUTPUT POWER (IEEE 802.11n HT40 mode)



FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page ___53 __of ___143

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page ___54 __of ___143

FCC ID : KA2DIR615G1 Report No.: 90619302-RP1

Page <u>55</u> of <u>143</u>

8.4 MAXIMUM PERMISSIBLE EXPOSURE

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate theenvironment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Average Time	
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm^2)	Average Time	
(A) Limits for Occupational / Control Exposures					
300-1,500			F/300	6	
1,500-100,000			5	6	
(B) Limits for General Population / Uncontrol Exposures					
300-1,500			F/1500	6	
1,500-100,000			1	30	

CALCULATIONS

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{3770}$$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and

$$d(cm) = d(m) / 100$$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$

Where d = Distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW/cm^2$

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1

Page <u>56</u> of <u>143</u>

LIMIT

Power Density Limit, S=1.0mW/cm²

TEST RESULTS

Mode	Antenna Gain (dBi)	Minimum separation distance (cm)	Output Power (dBm)	Numeric antenna gain (dB)	Power Density Limit (mW/cm²)	Power Density at 20cm (mW/cm ²)
IEEE 802.11b	1.8	20.0	23.47	1.51	1.00	0.066945
IEEE 802.11g	1.8	20.0	21.29	1.51	1.00	0.040525
IEEE 802.11n HT20	1.8	20.0	23.22	1.51	1.00	0.063200
IEEE 802.11n HT40	1.8	20.0	22.76	1.51	1.00	0.056849

Remark: For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page ____57 ___of ____143

8.5 AVERAGE POWER

LIMIT

None; for reporting purposes only.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
SPECTRUM ANALYZER	AGILENT	E4446A	MY43360132	06/09/2010
SPECTRUM ANALYZER	AGILENT	E4446A	MY46180323	05/26/2010

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer.

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1

Page ____58__of ___143_

TEST RESULTS

Total avg power calculation formula: 10 log (10[^] (Chain 0 Power / 10) + 10[^] (Chain 1 Power / 10)).

IEEE 802.11b mode

Channel	Channel Frequency (MHz)	Average Power Output (dBm)
Low	2412	20.58
Middle	2437	20.75
High	2462	18.61

Remark:

- 1. At finial test to get the worst-case emission at 1Mbps.
- 2. The cable assembly insertion loss of 11.2dB (including 10 dB pad and 1.2 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11g mode

Channel	Channel Frequency (MHz)	Average Power Output (dBm)
Low	2412	17.17
Middle	2437	17.80
High	2462	17.37

- 1. At finial test to get the worst-case emission at 54Mbps.
- 2. The cable assembly insertion loss of 11.2dB (including 10 dB pad and 1.2 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1

Page ____59 __of ___143

IEEE 802.11n HT20 mode (Two TX)

Channel	Channel Frequency	Average Power (dBm) Chain 0 Chain 1		Average Power Total
	(MHz)			(dBm)
Low	2412	14.82	15.48	18.17
Middle	2437	16.29	17.32	19.84
High	2462	15.84	16.10	18.98

Remark:

- 1. At finial test to get the worst-case emission at 6.5Mbps.
- 2. The cable assembly insertion loss of 11.2dB (including 10 dB pad and 1.2 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT40 mode (Two TX)

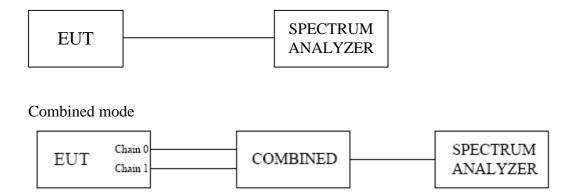
Channel	Channel Frequency	Average Power (dBm)		Average Power Total
	(MHz)	Chain 0	Chain 1	(dBm)
Low	2422	13.07	14.11	16.63
Middle	2437	15.54	16.57	19.09
High	2452	14.25	14.70	17.49

- 1. At finial test to get the worst-case emission at 13.5Mbps.
- 2. The cable assembly insertion loss of 11.2dB (including 10 dB pad and 1.2 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 60 of 143

8.6 POWER SPECTRAL DENSITY

LIMIT


§ 15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
SPECTRUM ANALYZER	AGILENT	E4446A	MY43360132	06/09/2010
SPECTRUM ANALYZER	AGILENT	E4446A	MY46180323	05/26/2010

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer, the bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW = 3KHz and VBW RBW, set sweep time = span / 3KHz.

The power spectral density was measured and recorded.

The sweep time is allowed to be longer than span / 3KHz for a full response of the mixer in the spectrum analyzer.

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1

Page 61 of 143

TEST RESULTS

Total peak power calculation formula: 10 log (10^ (Chain 0 PPSD / 10) + 10^ (Chain 1 PPSD / 10))

IEEE 802.11b mode

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Maxmum Limit (dBm)	Pass / Fail
Low	2412	-8.40	8	PASS
Middle	2437	-8.60	8	PASS
High	2462	-10.27	8	PASS

Remark:

- 1. At finial test to get the worst-case emission at 1Mbps.
- 2. The cable assembly insertion loss of 11.2dB (including 10 dB pad and 1.2 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11g mode

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Maxmum Limit (dBm)	Pass / Fail
Low	2412	-8.84	8	PASS
Middle	2437	-8.93	8	PASS
High	2462	-8.71	8	PASS

- 1. At finial test to get the worst-case emission at 54Mbps.
- 2. The cable assembly insertion loss of 11.2dB (including 10 dB pad and 1.2 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 62 of 143

IEEE 802.11n HT20 mode (Two TX)

Channel	Channel Frequency (MHz)	Level in 3KHz BW Total		Level in 3KHz BW PPSD Maxmun Total Limit		Pass / Fail	
	(IVIIIZ)	Chain 0	Chain 1		(uDIII)		
Low	2412	-13.04	-11.31	-9.07	8	PASS	
Middle	2437	-10.48	-10.57	-7.51	8	PASS	
High	2462	-11.95	-10.31	-8.04	8	PASS	

Remark:

- 1. At finial test to get the worst-case emission at 6.5Mbps.
- 2. The cable assembly insertion loss of 11.2dB (including 10 dB pad and 1.2 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT20 Combined mode (Two TX)

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Maxmum Limit (dBm)	Pass / Fail
Low	2412	-7.81	8	PASS
Middle	2437	-4.89	8	PASS
High	2462	-4.64	8	PASS

- 1. At finial test to get the worst-case emission at 6.5Mbps.
- 2. The cable assembly insertion loss of 14.7dB (including 10 dB pad and 4.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

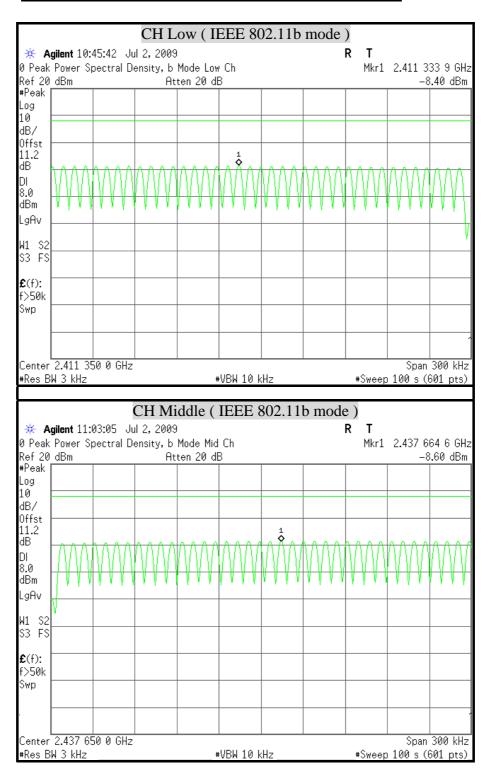
FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 63 of 143

IEEE 802.11n HT40 mode (Two TX)

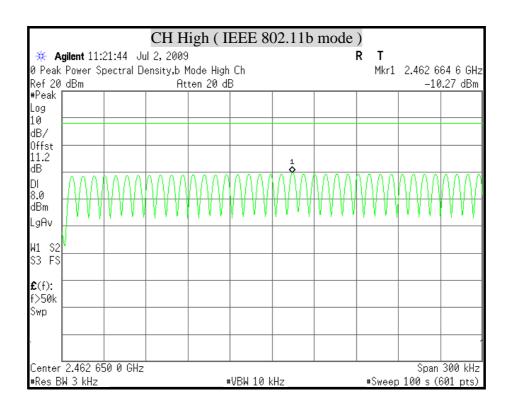
Channel	Channel Frequency (MHz)	Level in 3	F Power BKHz BW Bm)	PPSD Total (dBm)	Maxmum Limit (dBm)	Pass / Fail
	(IVIIIZ)	Chain 0	Chain 1		(ubiii)	
Low	2422	-15.96	-14.97	-12.42	8	PASS
Middle	2437	-13.67	-12.97	-10.29	8	PASS
High	2452	-15.62	-14.70	-12.12	8	PASS

Remark:

- 1. At finial test to get the worst-case emission at 13.5Mbps.
- 2. The cable assembly insertion loss of 11.2dB (including 10 dB pad and 1.2 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

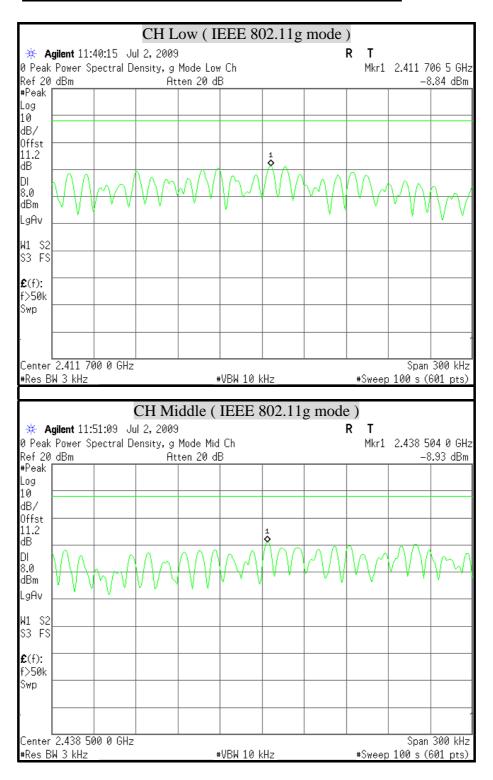

IEEE 802.11n HT40 Combined mode (Two TX)

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Maxmum Limit (dBm)	Pass / Fail
Low	2422	-10.76	8	PASS
Middle	2437	-8.02	8	PASS
High	2452	-9.81	8	PASS

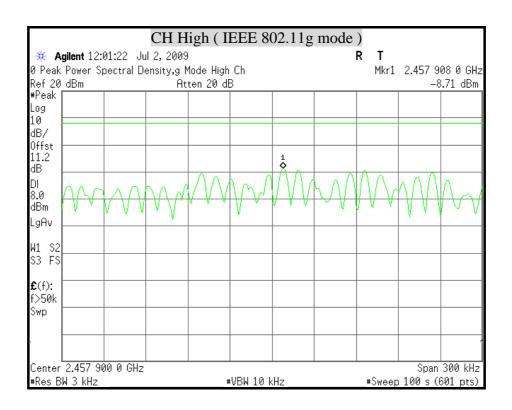

- 1. At finial test to get the worst-case emission at 13.5Mbps.
- 2. The cable assembly insertion loss of 14.7dB (including 10 dB pad and 4.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 64 of 143

POWER SPECTRAL DENSITY (IEEE 802.11b mode)

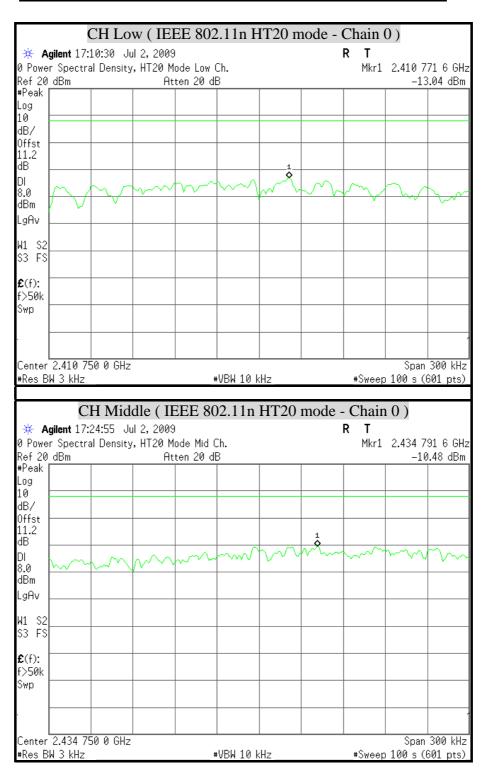


FCC ID : KA2DIR615G1
Report No. : 90619302-RP1
Page ___65 __of ___143

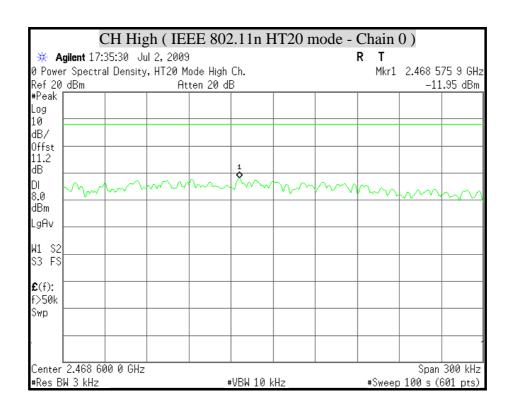


FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 66 of 143

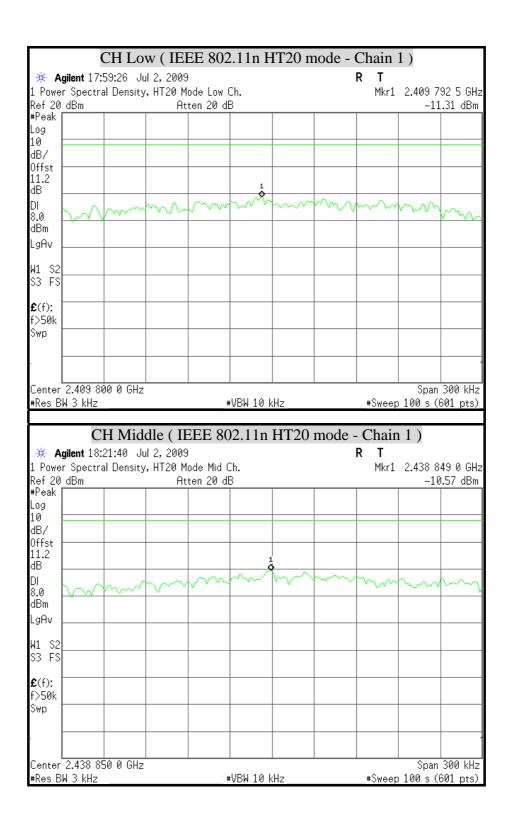
POWER SPECTRAL DENSITY (IEEE 802.11g mode)

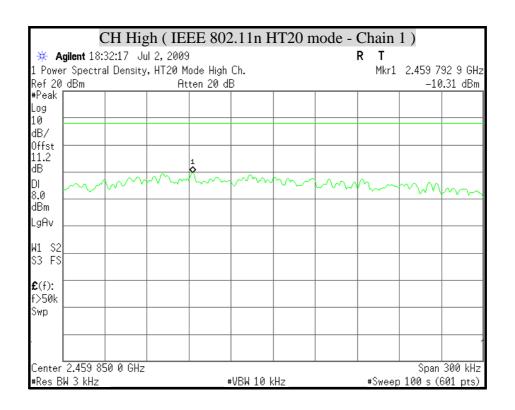


FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 67 of 143

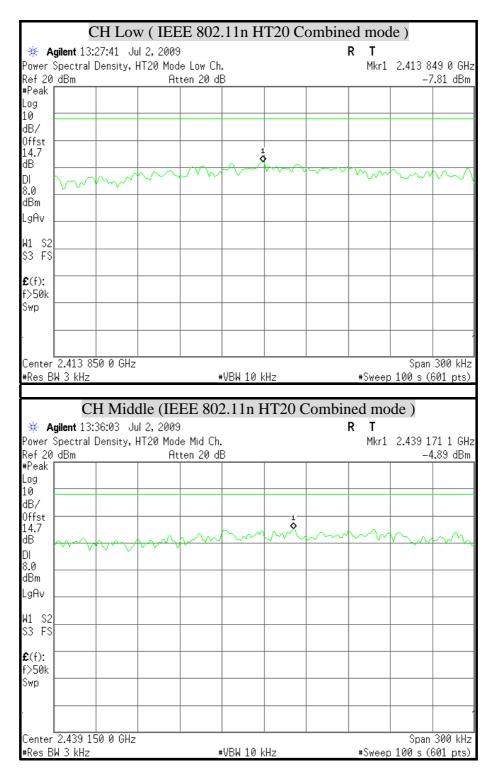


FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 68 of 143

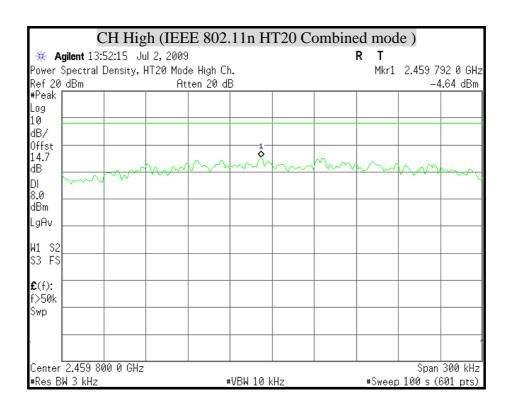

POWER SPECTRAL DENSITY (IEEE 802.11n HT20 mode)


FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 69 of 143

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page ____70___of ____143

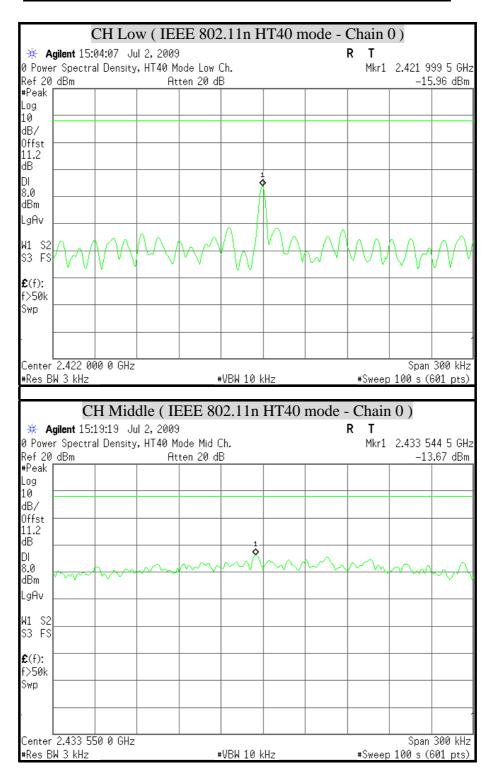


FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page ___71 __of ___143

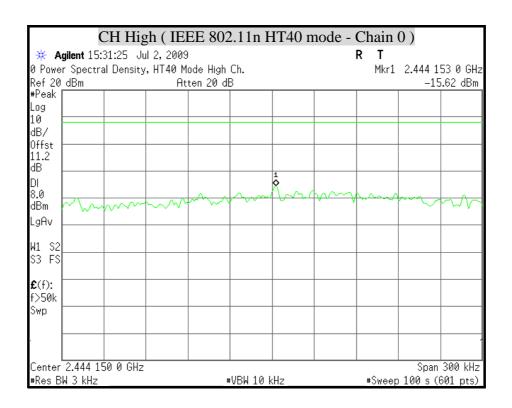


FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 72 of 143

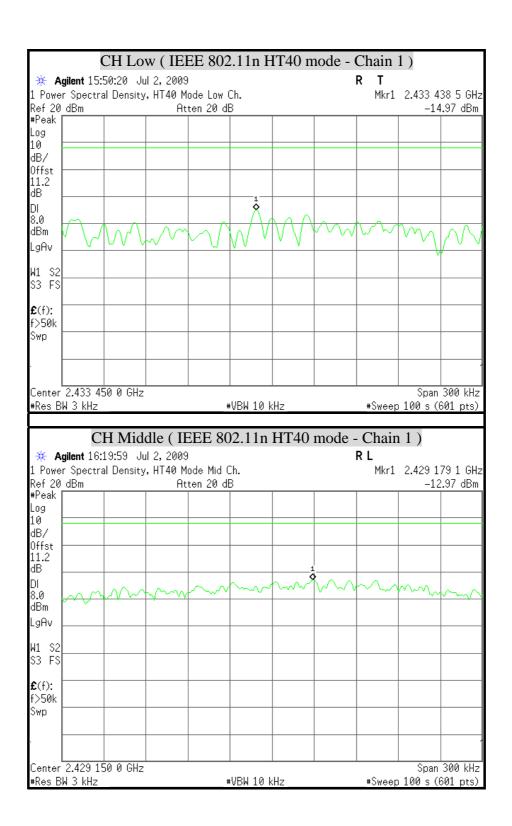
POWER SPECTRAL DENSITY (IEEE 802.11n HT20 Combined mode)

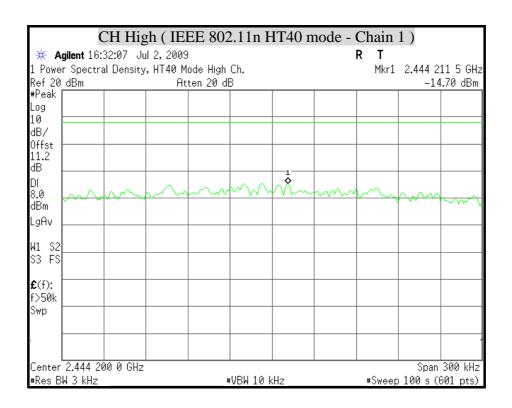


FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page ___73 __of ___143



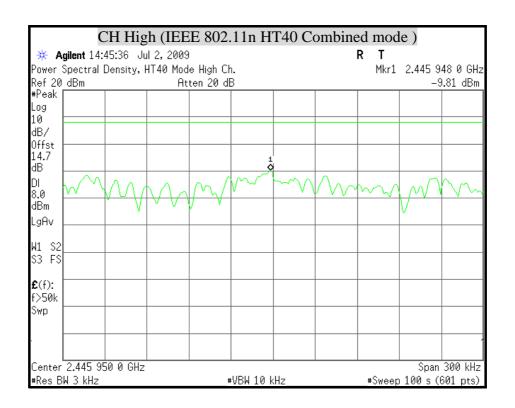
FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 74 of 143


POWER SPECTRAL DENSITY (IEEE 802.11n HT40 mode)


FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page ___75__of ___143

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page ____76___of ____143




FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page ____77 ___of ____143

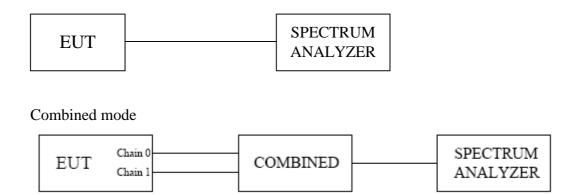
FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page ___78 __of ___143

POWER SPECTRAL DENSITY (IEEE 802.11n HT40 Combined mode)

FCC ID : KA2DIR615G1
Report No. : 90619302-RP1
Page 80 of 143

8.7 CONDUCTED SPURIOUS EMISSION

LIMITS


§ 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the and that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

TEST EQUIPMENT

Name of Equipment	f Equipment Manufacturer		Serial Number	Calibration Due	
SPECTRUM ANALYZER	AGILENT	E4446A	MY43360132	06/09/2010	
SPECTRUM ANALYZER	AGILENT	E4446A	MY46180323	05/26/2010	

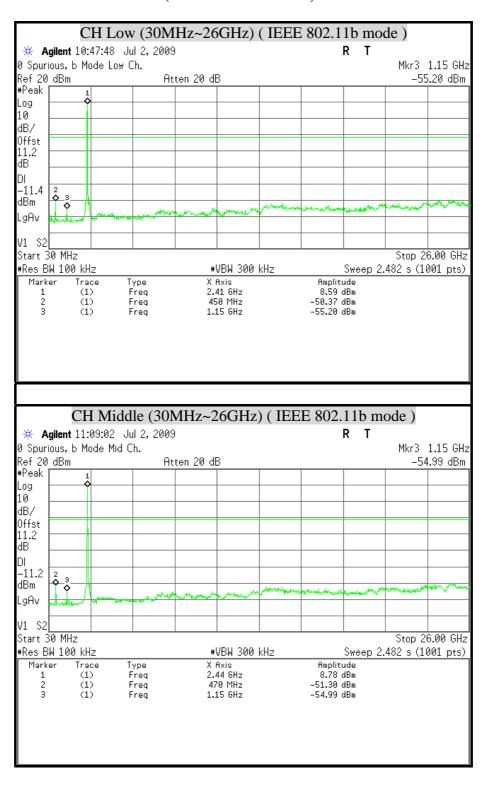
Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

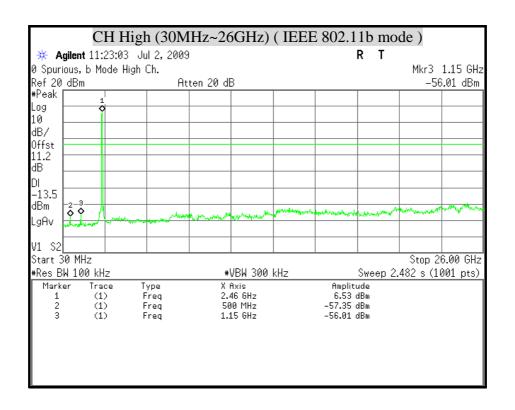
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.


FCC ID : KA2DIR615G1 Report No. : 90619302-RP1

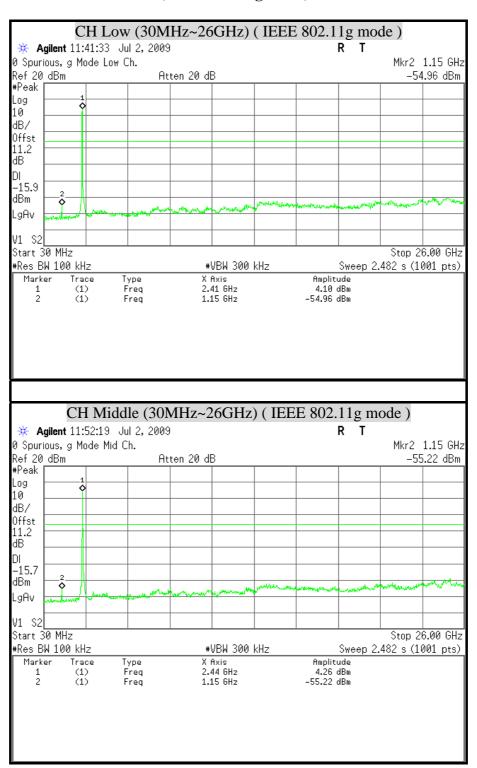
Page 81 of 143


TEST RESULTS

OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT

(IEEE 802.11b mode)

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 82 of 143

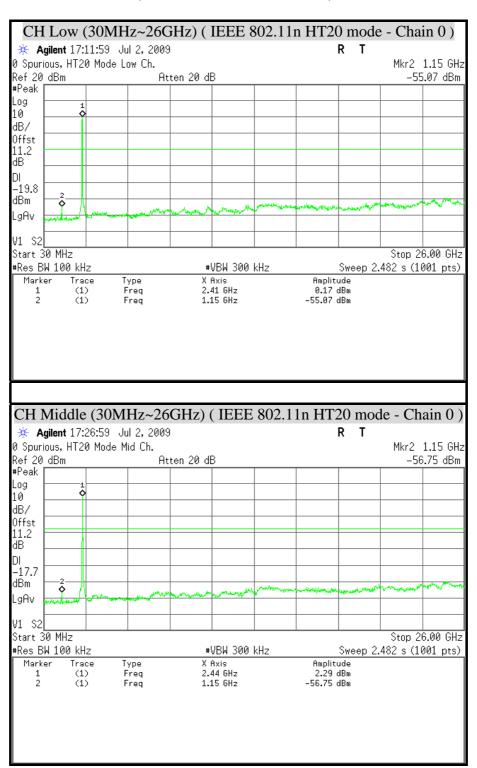


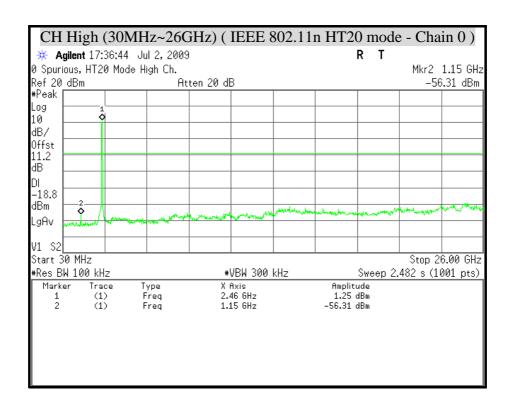
FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 83 of 143

OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT

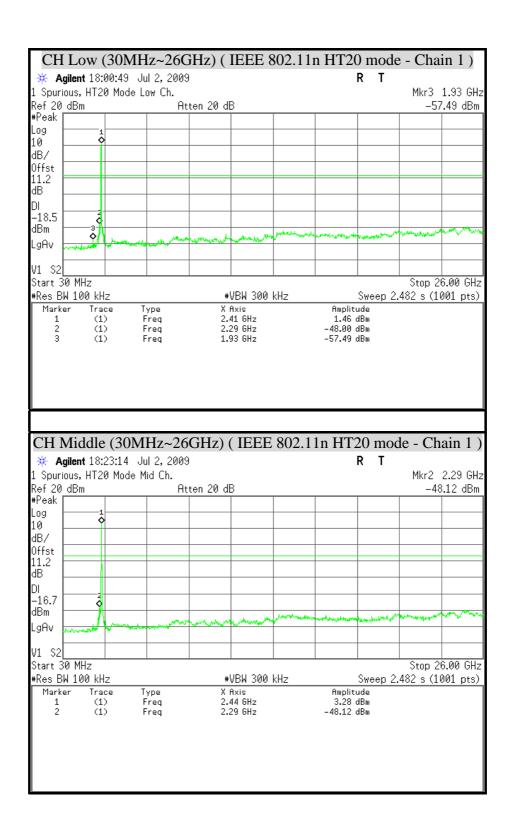
(IEEE 802.11g mode)

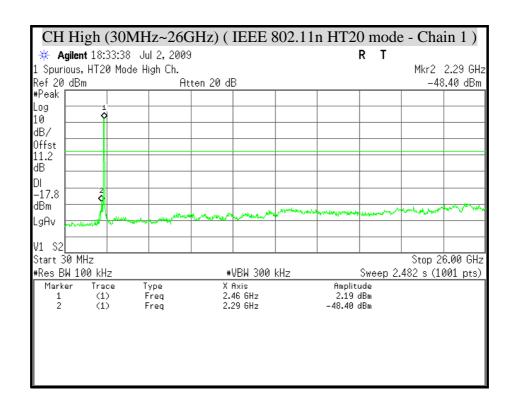
FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 84 of 143




FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 85 of 143

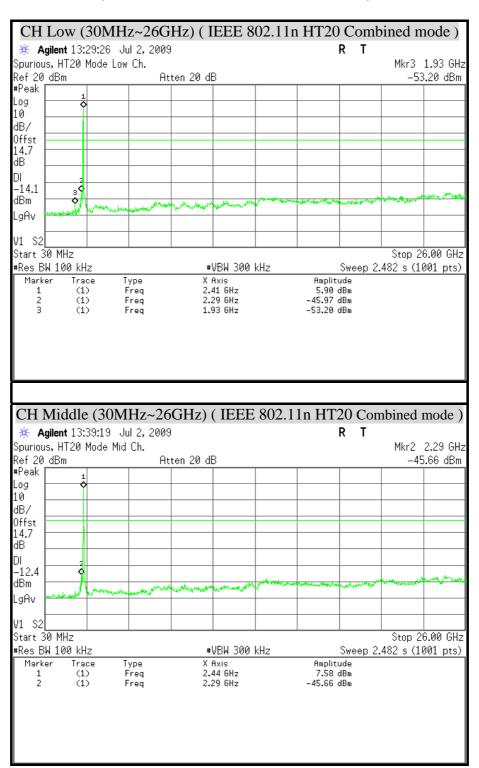
OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT


(IEEE 802.11n HT20 mode)

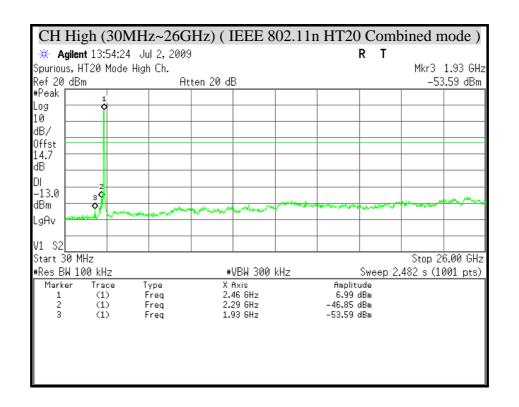

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page <u>86</u> of <u>143</u>

FCC ID : KA2DIR615G1
Report No. : 90619302-RP1
Page 87 of 143

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page <u>88</u> of <u>143</u>



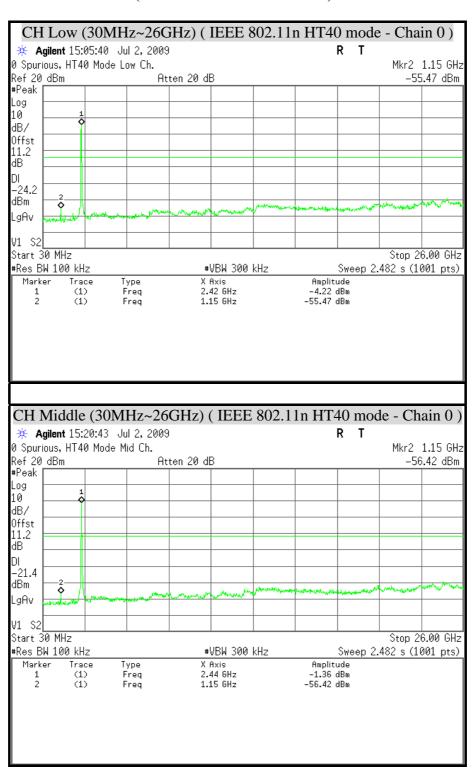
FCC ID : KA2DIR615G1 Report No. : 90619302-RP1


Page 89 of 143

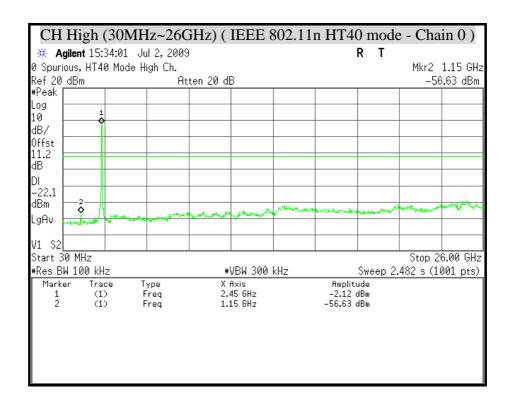
OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT

(IEEE 802.11n HT20 Combined mode)

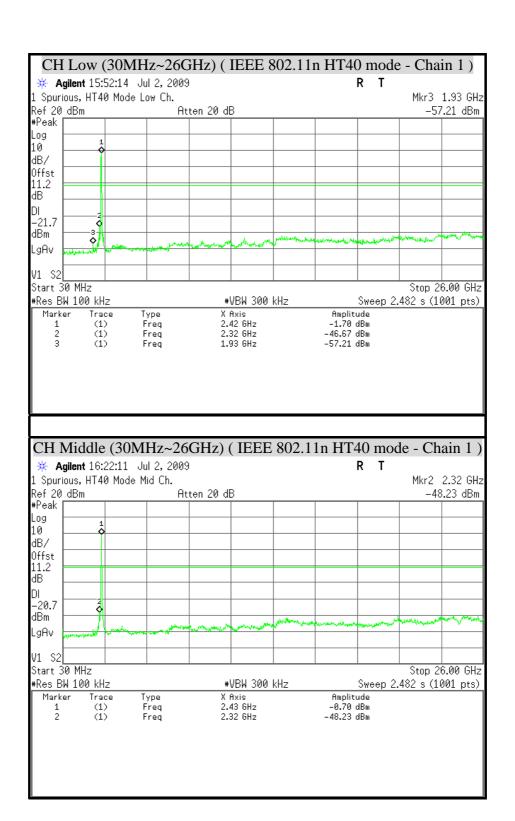
FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 90 of 143

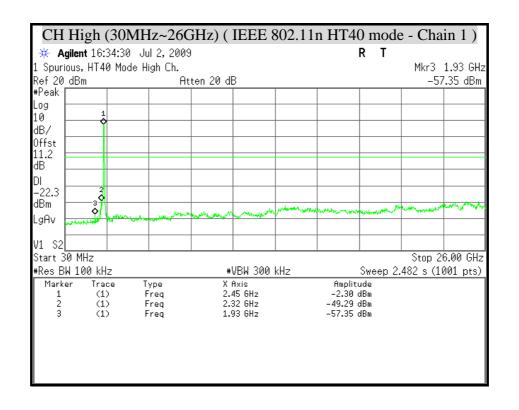


FCC ID : KA2DIR615G1 Report No. : 90619302-RP1


Page 91 of 143

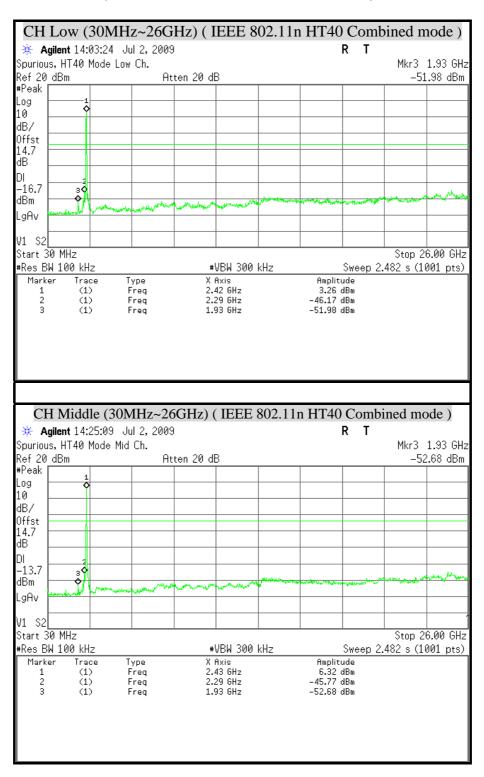
OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT


(IEEE 802.11n HT40 mode)

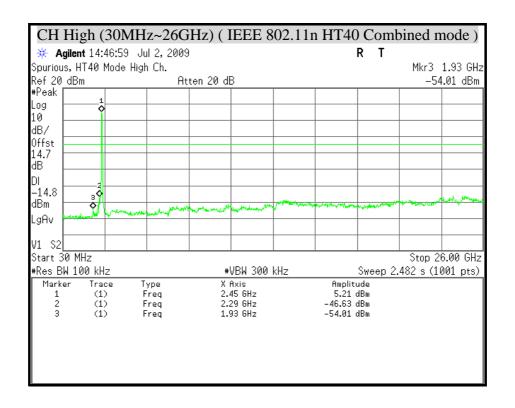

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 92 of 143

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 93 of 143

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 94 of 143



FCC ID : KA2DIR615G1 Report No. : 90619302-RP1


Page 95 of 143

OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT

(IEEE 802.11n HT40 Combined mode)

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 96 of 143

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 97 of 143

8.8 RADIATED EMISSIONS

8.8.1 TRANSMITTER RADIATED SUPURIOUS EMSSIONS

LIMITS

§ 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 -1710	10.6 -12.7
6.26775 - 6.26825	108 -121.94	1718.8 - 1722.2	13.25 -13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 – 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 -16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3338	36.43 - 36.5
12.57675 - 12.57725	322 -335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

§ 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

² Above 38.6

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 98 of 143

§ 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

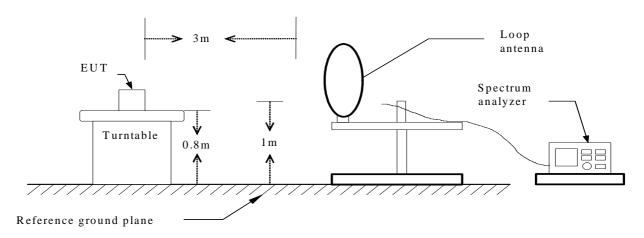
^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz, However, operation within these frequency bands is permitted under other sections of this Part, e-g, Sections 15.231 and 15.241.

§ 15.209 (b) In the emission table above, the tighter limit applies at the band edges.

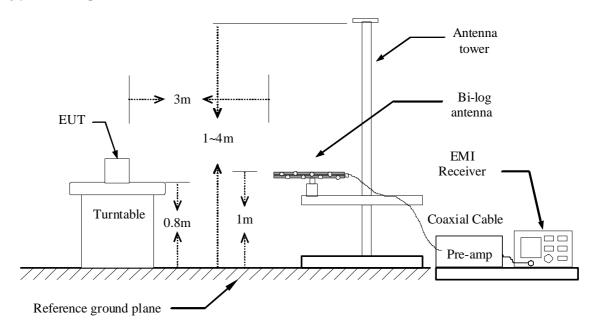
TEST EQUIPMENT

Name of Equipment	ame of Equipment Manufacturer		Serial Number	Calibration Due
SPECTRUM ANALYZER	AGILENT	E4446A	MY46180323	06/09/2010
EMI TEST RECEIVER	R & S	ESCI	100211	05/17/2010
BILOG ANTENNA	SCHWARZBECK	VULB9168	9168_249	09/17/2009
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00078732	06/30/2010
PRE-AMPLIFIER	EM	EM30265	07032612	05/21/2010
Notch Filters Band Reject	Micro-Tronics	BRM50702-01	009	N.C.R.
RF COAXIAL CABLE	HUBERSUHNER	SUCOFLEX 104PEA	SN31350	07/21/2009
LOOP ANTENNA	EMCO	6502	2356	05/28/2010

Remark: 1. Each piece of equipment is scheduled for calibration once a year.


2. $N.C.R = No\ Calibration\ Request.$

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 99 of 143


TEST SETUP

The diagram below shows the test setup that is utilized to make the measurements for emission from below 1GHz.

9kHz ~ 30MHz

30MHz ~ 1GHz

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 100 of 143

The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz.

TEST PROCEDURE

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. White measuring the radiated emission below 1GHz, the EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. White measuring the radiated emission above 1GHz, the EUT was set 3 meters away from the interference-receiving antenna
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarization of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

FCC ID : KA2DIR615G1
Report No. : 90619302-RP1
Page 101 of 143

8.8.2 WORST-CASE RADIATED EMISSION BELOW 1 GHz

BELOW 1 GHz (9kHz ~ 30MHz)

No emission found between lowest internal used/generated frequency to 30MHz.

BELOW 1 GHz (30MHz ~ 1GHz)

Product Name Wireless N Router		Test Date	2009/07/02
Model	DIR-615	Test By	Rueyyan Lin
Test Mode	Normal operating (worst-case) Power Adapter (1)	TEMP & Humidity	24.9°C, 54%

Horizontal								
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark		
45.52	56.34	-30.20	26.15	40.00	-13.85	Peak		
127.97	59.90	-32.92	26.98	43.50	-16.52	Peak		
172.59	57.91	-31.56	26.35	43.50	-17.15	Peak		
250.19	60.88	-30.29	30.59	46.00	-15.41	Peak		
500.45	56.08	-25.16	30.92	46.00	-15.08	Peak		
512.09	55.45	-24.96	30.49	46.00	-15.51	Peak		
640.13	53.36	-22.76	30.61	46.00	-15.39	Peak		
896.21	51.57	-19.06	32.51	46.00	-13.49	Peak		
			Vertical					
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark		
89.17	63.28	-36.37	26.91	43.50	-16.59	Peak		
188.11	59.60	-32.59	27.01	43.50	-16.49	Peak		
250.19	61.76	-30.29	31.47	46.00	-14.53	Peak		
450.01	54.33	-25.97	28.35	46.00	-17.65	Peak		
500.45	54.28	-25.16	29.12	46.00	-16.88	Peak		
640.13	54.74	-22.76	31.99	46.00	-14.01	Peak		
768.17	51.29	-20.60	30.69	46.00	-15.31	Peak		
896.21	51.07	-19.06	32.01	46.00	-13.99	Peak		

Remark:

- 1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.
- 2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. $Correction\ Factor\ (dB/m) = Antenna\ Factor\ (dB/m) + Cable\ Loss\ (dB) PreAmp.Gain\ (dB)$
- 4. Result(dBuV/m) = Reading(dBuV) + Correction Factor(dB/m)
- 5. $Margin(dB) = Remark \ result(dBuV/m) Quasi-peak \ limit(dBuV/m)$.

FCC ID : KA2DIR615G1
Report No. : 90619302-RP1
Page 102 of 143

Product Name Wireless N Router		Test Date	2009/07/02
Model	DIR-615	Test By	Rueyyan Lin
Test Mode	Normal operating (worst-case) Power Adapter (2)	TEMP & Humidity	24.9°C, 54%

			Horizontal			
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
46.49	56.18	-30.21	25.97	40.00	-14.03	Peak
172.59	58.86	-31.56	27.30	43.50	-16.20	Peak
250.19	60.99	-30.29	30.70	46.00	-15.30	Peak
384.05	57.16	-27.19	29.97	46.00	-16.03	Peak
500.45	55.49	-25.16	30.33	46.00	-15.67	Peak
512.09	53.78	-24.96	28.82	46.00	-17.18	Peak
640.13	53.67	-22.76	30.92	46.00	-15.08	Peak
896.21	50.98	-19.06	31.92	46.00	-14.08	Peak
			Vertical			
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
43.58	58.16	-30.31	27.86	40.00	-12.14	Peak
89.17	64.50	-36.37	28.14	43.50	-15.36	Peak
198.78	59.26	-33.14	26.11	43.50	-17.39	Peak
250.19	61.86	-30.29	31.57	46.00	-14.43	Peak
500.45	55.33	-25.16	30.17	46.00	-15.83	Peak
512.09	57.29	-24.96	32.34	46.00	-13.66	Peak
640.13	55.55	-22.76	32.80	46.00	-13.20	Peak
896.21	50.30	-19.06	31.25	46.00	-14.75	Peak

Remark:

- 1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.
- 2. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Correction Factor $(dB/m) = Antenna\ Factor\ (dB/m) + Cable\ Loss\ (dB) PreAmp.Gain\ (dB)$
- 4. Result(dBuV/m) = Reading(dBuV) + Correction Factor(dB/m)
- 5. Margin(dB) = Remark result(dBuV/m) Quasi-peak limit(dBuV/m).

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 103 of 143

8.8.3 TRANSMITTER RADIATED EMISSION ABOVE 1 GHz

Product Name	Wireless N Router	Test Date	2009/07/02
Model	DIR-615	Test By	Rueyyan Lin
Test Mode	IEEE 802.11b TX (CH Low)	TEMP & Humidity	24.9°C, 54%

	Horizontal								
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
2412.00	103.35	100.17	-8.95	94.40	91.22				Carrier
4935.00	50.39		-4.27	46.12		74.00	54.00	-7.88	Peak
6547.50	49.89		-2.08	47.81		74.00	54.00	-6.19	Peak
8370.00	48.77		0.86	49.63		74.00	54.00	-4.37	Peak
9690.00	47.53		2.57	50.11		74.00	54.00	-3.89	Peak
11782.50	47.27	33.86	6.36	53.63	40.22	74.00	54.00	-13.78	AVG

	Vertical								
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)		Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
2412.00	106.90	103.06	-8.95	97.95	94.11				Carrier
3405.00	51.93		-7.51	44.42		74.00	54.00	-9.58	Peak
4822.50	49.28		-4.56	44.72		74.00	54.00	-9.28	Peak
6060.00	49.52		-2.66	46.86		74.00	54.00	-7.14	Peak
8265.00	47.56		0.73	48.28		74.00	54.00	-5.72	Peak
9645.00	56.51	53.23	2.51	59.02	55.74	77.95	74.11	-18.37	20dBc AVG Fundamental

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(AV)$

FCC ID : KA2DIR615G1
Report No. : 90619302-RP1
Page 104 of 143

Product Name	Wireless N Router	2009/07/02	
Model	DIR-615	Test By	Rueyyan Lin
Test Mode	IEEE 802.11b TX (CH Middle)	TEMP & Humidity	24.9°C, 54%

				Horizont	al				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
2438.00	102.96	99.74	-8.92	94.04	90.82				Carrier
3195.00	51.54		-7.82	43.72		74.00	54.00	-10.28	Peak
3360.00	51.92		-7.58	44.34		74.00	54.00	-9.66	Peak
4897.50	50.19		-4.37	45.82		74.00	54.00	-8.18	Peak
7410.00	49.01		-0.77	48.25		74.00	54.00	-5.75	Peak
9330.00	48.55		2.20	50.75		74.00	54.00	-3.25	Peak
				Vertical	l				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
2434.00	107.12	103.63	-8.92	98.20	94.71				Carrier
4875.00	51.44		-4.42	47.01		74.00	54.00	-6.99	Peak
5940.00	49.30		-2.79	46.51		74.00	54.00	-7.49	Peak
7350.00	49.24		-0.81	48.43		74.00	54.00	-5.57	Peak
8190.00	48.29		0.63	48.92		74.00	54.00	-5.08	Peak
9750.00	54.57	51.62	2.66	57.23	54.28	78.20	74.71	-20.43	20dBc AVG

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(AV)$

FCC ID : KA2DIR615G1
Report No. : 90619302-RP1
Page 105 of 143

Product Name	duct Name Wireless N Router		2009/07/02	
Model	Model DIR-615		Rueyyan Lin	
Test Mode	IEEE 802.11b TX (CH High)	TEMP & Humidity	24.9°C, 54%	

	Horizontal											
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	$\begin{array}{c} Result-AV \\ (dB\mu V/m) \end{array}$	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark			
2462.00	100.90	97.16	-8.89	92.01	88.27				Carrier			
4912.50	49.21		-4.33	44.89		74.00	54.00	-9.11	Peak			
5662.50	50.29		-3.10	47.19		74.00	54.00	-6.81	Peak			
8160.00	48.35		0.60	48.94		74.00	54.00	-5.06	Peak			
10485.00	48.90	34.96	3.34	52.24	38.30	74.00	54.00	-1.76	Peak			
11970.00	45.88	33.23	6.74	52.62	39.97	74.00	54.00	-1.38	Peak			
13995.00	44.63	31.21	10.95	55.58	42.16	74.00	54.00	-11.84	AVG			

				Vertica	l				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
2462.00	106.77	103.23	-8.89	97.88	94.34				Carrier
4132.50	51.51		-6.31	45.20		74.00	54.00	-8.80	Peak
4927.50	51.54		-4.29	47.25		74.00	54.00	-6.75	Peak
9337.50	48.24		2.20	50.44		74.00	54.00	-3.56	Peak
10485.00	47.69		3.34	51.03		74.00	54.00	-2.97	Peak
14872.50	44.46	30.96	11.25	55.71	42.21	74.00	54.00	-11.79	AVG

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(AV)$

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 106 of 143

Product Name	Wireless N Router	Test Date	2009/07/02
Model DIR-615		Test By	Rueyyan Lin
Test Mode	IEEE 802.11g TX (CH Low)	TEMP & Humidity	24.9°C, 54%

				Horizont	al				
Frequency (MHz)	Reading-PK (dBμV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
2414.00	103.47	94.98	-8.94	94.52	86.04				Carrier
4815.00	50.25		-4.58	45.67		74.00	54.00	-8.33	Peak
6502.50	49.99		-2.18	47.81		74.00	54.00	-6.19	Peak
7755.00	47.88		-0.14	47.74		74.00	54.00	-6.26	Peak
9367.50	48.47		2.22	50.69		74.00	54.00	-3.31	Peak
10117.50	48.33		3.10	51.43		74.00	54.00	-2.57	Peak
				Vertical					
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
2418.00	108.40	97.87	-8.94	99.46	88.93				Carrier
4935.00	50.87		-4.27	46.60		74.00	54.00	-7.40	Peak
6735.00	49.89		-1.66	48.23		74.00	54.00	-5.77	Peak
7635.00	49.42		-0.41	49.01		74.00	54.00	-4.99	Peak
9667.50	47.74		2.54	50.29		74.00	54.00	-3.71	Peak
10162.50	47.97		3.13	51.10		74.00	54.00	-2.90	Peak

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(AV)$

FCC ID : KA2DIR615G1
Report No. : 90619302-RP1
Page 107 of 143

Product Name	Wireless N Router	Test Date	2009/07/02	
Model	DIR-615	Test By	Rueyyan Lin	
Test Mode	IEEE 802.11g TX (CH Middle)	TEMP & Humidity	24.9°C, 54%	

	Horizontal										
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark		
2440.00	102.56	93.96	-8.92	93.65	85.04				Carrier		
3660.00	51.56		-7.14	44.42		74.00	54.00	-9.58	Peak		
4957.50	51.84		-4.21	47.63		74.00	54.00	-6.37	Peak		
6825.00	48.97		-1.45	47.51		74.00	54.00	-6.49	Peak		
9382.50	47.75		2.23	49.98		74.00	54.00	-4.02	Peak		
11707.50	47.13	34.20	6.20	53.34	40.40	74.00	54.00	-13.60	AVG		
				Vertical	l						
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark		
2432.00	107.49	97.86	-8.92	98.57	88.94				Carrier		
4942.50	50.35		-4.25	46.10		74.00	54.00	-7.90	Peak		
5760.00	50.12		-2.99	47.13		74.00	54.00	-6.87	Peak		
7447.50	48.36		-0.74	47.62		74.00	54.00	-6.38	Peak		
10155.00	49.17	34.85	3.12	52.30	37.97	74.00	54.00	-17.97	AVG		
11272.50	48.18	34.07	4.85	53.03	38.92	74.00	54.00	-15.08	AVG		

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(AV)$

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 108 of 143

Product Name Wireless N Router		Test Date	2009/07/02	
Model	DIR-615	Test By	Rueyyan Lin	
Test Mode	IEEE 802.11g TX (CH High)	TEMP & Humidity	24.9°C, 54%	

	Horizontal										
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark		
2456.00	102.84	94.17	-8.90	93.95	85.27				Carrier		
4147.50	51.39		-6.28	45.11		74.00	54.00	-8.89	Peak		
4950.00	49.67		-4.23	45.44		74.00	54.00	-8.56	Peak		
5977.50	49.89		-2.75	47.14		74.00	54.00	-6.86	Peak		
8025.00	48.16		0.43	48.59		74.00	54.00	-5.41	Peak		
9210.00	48.40		2.12	50.52		74.00	54.00	-3.48	Peak		
14707.50	44.41	30.98	11.44	55.85	42.42	74.00	54.00	-11.58	AVG		
									•		
				Vertical	1						
Frequency	Reading-PK	Reading-AV	Correction	Result-PK	Result-AV	Limit-PK	I imit-AV	Margin			

				Vertical	l				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	$\begin{array}{c} Limit\text{-}AV\\ (dB\mu V/m) \end{array}$	Margin (dB)	Remark
2464.00	109.08	99.48	-8.89	100.19	90.59				Carrier
4950.00	50.49		-4.23	46.26		74.00	54.00	-7.74	Peak
7380.00	48.41		-0.79	47.63		74.00	54.00	-6.37	Peak
9112.50	48.15		2.06	50.21		74.00	54.00	-3.79	Peak
11722.50	46.74	30.51	6.23	52.98	36.74	74.00	54.00	-17.26	AVG
15645.00	45.18	31.27	11.38	56.56	42.65	74.00	54.00	-11.35	AVG

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(AV)$

FCC I	$D : K_{A}$	A2DIF	R615G1	
Report	t No.: 90	61930)2-RP1	
Page	109	of _	143	

Product Name	Wireless N Router	Test Date	2009/07/02
Model	DIR-615	Test By	Rueyyan Lin
Test Mode	IEEE 802.11n HT20 TX (CH Low)	TEMP & Humidity	24.9°C, 54%

				Horizont	al				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
2412.00	105.46	96.98	-8.95	96.52	88.03				Carrier
6000.00	49.66		-2.72	46.93		74.00	54.00	-7.07	Peak
7462.50	48.04		-0.73	47.31		74.00	54.00	-6.69	Peak
9255.00	48.36		2.15	50.51		74.00	54.00	-3.49	Peak
10132.50	48.82		3.11	51.93		74.00	54.00	-2.07	Peak
11955.00	45.40	32.69	6.71	52.11	39.40	74.00	54.00	-14.60	AVG
				Vertical	l				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
2414.00	107.93	99.68	-8.94	98.99	90.74				Carrier
4942.50	50.12		-4.25	45.87		74.00	54.00	-8.13	Peak
7440.00	48.12		-0.74	47.38		74.00	54.00	-6.62	Peak
8197.50	47.74		0.64	48.38		74.00	54.00	-5.62	Peak
10747.50	47.56		3.55	51.10		74.00	54.00	-2.90	Peak
	l								AVG

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(AV)$

FCC ID : KA2DIR615G1
Report No. : 90619302-RP1
Page 110 of 143

Product Name	roduct Name Wireless N Router		2009/07/02
Model	DIR-615	Test By	Rueyyan Lin
Test Mode	IEEE 802.11n HT20 TX (CH Middle)	TEMP & Humidity	24.9°C, 54%

				Horizont	al				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
2436.00	105.68	97.40	-8.92	96.76	88.48				Carrier
4065.00	51.49		-6.48	45.00		74.00	54.00	-9.00	Peak
4920.00	49.64		-4.31	45.33		74.00	54.00	-8.67	Peak
6037.50	49.96		-2.68	47.28		74.00	54.00	-6.72	Peak
7740.00	48.14		-0.17	47.96		74.00	54.00	-6.04	Peak
10170.00	48.41		3.13	51.54		74.00	54.00	-2.46	Peak
				Vertical	I				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
2436.00	111.36	103.40	-8.92	102.44	94.48				Carrier
4965.00	50.17		-4.19	45.98		74.00	54.00	-8.02	Peak
6052.50	50.08		-2.67	47.41		74.00	54.00	-6.59	Peak
8340.00	47.44		0.82	48.26		74.00	54.00	-5.74	Peak
9915.00	47.48		2.90	50.38		74.00	54.00	-3.62	Peak
10860.00	47.80		3.64	51.44		74.00	54.00	-2.56	Peak

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(AV)$

FCC ID : KA2DIR615G1
Report No. : 90619302-RP1
Page 111 of 143

Product Name	Wireless N Router	Test Date	2009/07/02
Model	DIR-615	Test By	Rueyyan Lin
Test Mode	IEEE 802.11n HT20 TX (CH High)	TEMP & Humidity	24.9°C, 54%

Horizontal									
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)		Margin (dB)	Remark
2462.00	106.06	97.56	-8.89	97.17	88.67				Carrier
4200.00	50.21		-6.14	44.07		74.00	54.00	-9.93	Peak
4927.50	49.84		-4.29	45.55		74.00	54.00	-8.45	Peak
5362.50	49.49		-3.51	45.98		74.00	54.00	-8.02	Peak
6952.50	48.16		-1.16	47.00		74.00	54.00	-7.00	Peak
9472.50	48.71		2.28	50.99		74.00	54.00	-3.01	Peak
13402.50	43.33	30.23	10.59	53.92	40.82	74.00	54.00	-13.18	AVG
						•			<u>.</u>

				Vertical	l				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	$\begin{array}{c} Limit\text{-}AV\\ (dB\mu V/m) \end{array}$	Margin (dB)	Remark
2464.00	110.86	101.84	-8.89	101.97	92.95				Carrier
4882.50	49.55		-4.40	45.15		74.00	54.00	-8.85	Peak
5595.00	49.94		-3.18	46.76		74.00	54.00	-7.24	Peak
8415.00	47.48		0.92	48.40		74.00	54.00	-5.60	Peak
9667.50	48.18		2.54	50.72		74.00	54.00	-3.28	Peak
10470.00	47.74		3.33	51.07		74.00	54.00	-2.93	Peak

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(AV)$

FCC II	$D : K_{A}$	A2DII	R615G1	
Report	No.: 90	61930)2-RP1	
Page _	112	_of _	143	

Product Name	Wireless N Router	Test Date	2009/07/02
Model	DIR-615	Test By	Rueyyan Lin
Test Mode	IEEE 802.11n HT40 TX (CH Low)	TEMP & Humidity	24.9°C, 54%

				Horizont	al				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
2426.00	101.37	92.12	-8.93	92.43	83.19				Carrier
4845.00	49.11		-4.50	44.60		74.00	54.00	-9.40	Peak
6022.50	50.07		-2.70	47.37		74.00	54.00	-6.63	Peak
				Vertical					
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
2416.00	104.60	96.08	-8.94	95.66	87.14				Carrier
	49.56		-4.58	44.98		74.00	54.00	-9.02	Peak
4815.00	49.50		-4.56	77.70		74.00	31.00	7.02	reak
4815.00 7710.00	48.85		-0.24	48.61		74.00	54.00	-5.39	Peak

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(AV)$

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 113 of 143

Product Name	Product Name Wireless N Router		2009/07/02
Model	DIR-615	Test By	Rueyyan Lin
Test Mode	IEEE 802.11n HT40 TX (CH Middle)	TEMP & Humidity	24.9°C, 54%

Horizontal									
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
2430.00	103.52	94.91	-8.93	94.59	85.98				Carrier
4965.00	49.60		-4.19	45.41		74.00	54.00	-8.59	Peak
5775.00	49.85		-2.98	46.87		74.00	54.00	-7.13	Peak
8235.00	48.27		0.69	48.96		74.00	54.00	-5.04	Peak
	· · · · · ·		<u> </u>	Vertical	<u> </u>	†			
Frequency	Vertical Fraguency Reading RV Reading AV Correction Result AV Limit RV Limit AV Morgin								
requency	Reading-PK	Reading-AV		Result-PK	Result-AV	Limit-PK	Limit-AV	Margin	Damark
(MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Factor (dB/m)	$\begin{array}{c} Result\text{-PK} \\ (dB\mu V/m) \end{array}$	Result-AV (dBµV/m)		$\begin{array}{c} Limit\text{-}AV \\ (dB\mu V/m) \end{array}$	Margin (dB)	Remark
	_	•	Factor					-	Remark Carrier
(MHz)	(dBµV)	(dBµV)	Factor (dB/m)	(dBµV/m)	(dBµV/m)	$(dB\mu V/m)$		(dB)	
(MHz) 2432.00	(dBµV)	(dBμV) 99.53	Factor (dB/m) -8.92	(dBµV/m) 99.94	(dBµV/m) 90.61	(dBµV/m)	(dBμV/m)	(dB)	Carrier
(MHz) 2432.00 3487.50	(dBµV) 108.86 50.96	(dBμV) 99.53	Factor (dB/m) -8.92 -7.39	(dBμV/m) 99.94 43.56	(dBμV/m) 90.61	(dBµV/m) 74.00	(dBµV/m) 54.00	(dB) -10.44	Carrier Peak
(MHz) 2432.00 3487.50 4942.50	(dBµV) 108.86 50.96 50.16	(dBμV) 99.53	Factor (dB/m) -8.92 -7.39 -4.25	(dBµV/m) 99.94 43.56 45.91	(dBµV/m) 90.61	(dBμV/m) 74.00 74.00	(dBµV/m) 54.00 54.00	-10.44 -8.09	Carrier Peak Peak

Remark:

8407.50

10815.00

48.43

47.78

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

0.91

3.60

- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

49.34

51.39

74.00

74.00

54.00

54.00

Peak

Peak

-4.66

-2.61

- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(AV)$

FCC ID : KA2DIR615G1
Report No. : 90619302-RP1
Page 114 of 143

Product Name	Wireless N Router	Test Date	2009/07/02
Model	DIR-615	Test By	Rueyyan Lin
Test Mode	IEEE 802.11n HT40 TX (CH High)	TEMP & Humidity	24.9°C, 54%

				Horizont	al				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
2454.00	100.11	91.32	-8.90	91.21	82.42				Carrier
4935.00	49.47		-4.27	45.20		74.00	54.00	-8.80	Peak
7410.00	48.34		-0.77	47.57		74.00	54.00	-6.43	Peak
10462.50	47.81		3.33	51.14		74.00	54.00	-2.86	Peak
				Vertical	l				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
2454.00	105.26	96.03	-8.90	96.36	87.13				Carrier
4920.00	49.57		-4.31	45.26		74.00	54.00	-8.74	Peak
7327.50	47.69		-0.82	46.87		74.00	54.00	-7.13	Peak

7552.50 *Remark:*

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

-0.59

- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

49.13

74.00

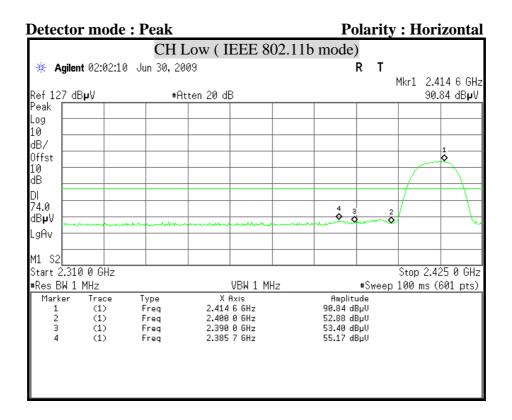
54.00

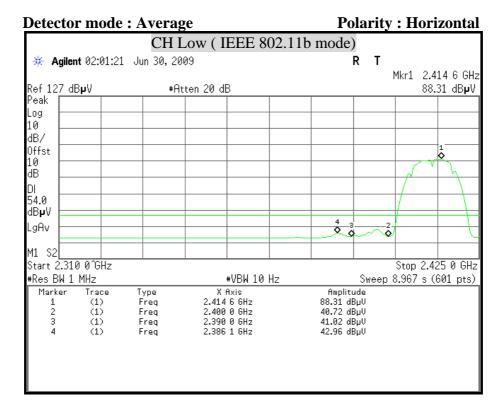
-4.87

Peak

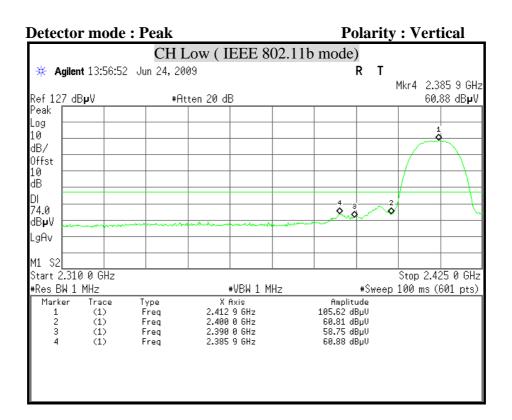
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

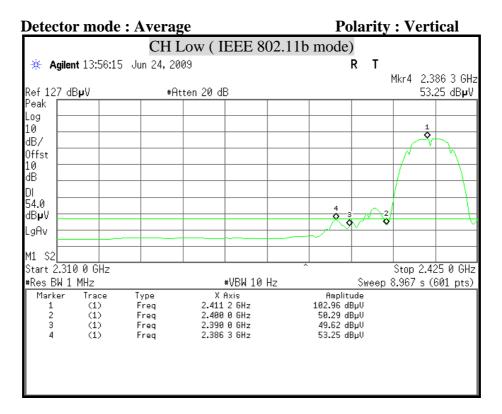
Margin = Result - Limit

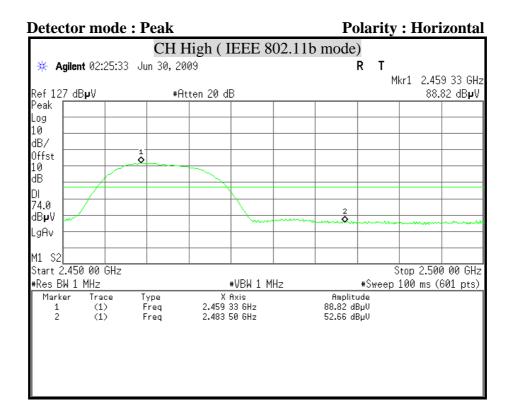

49.72

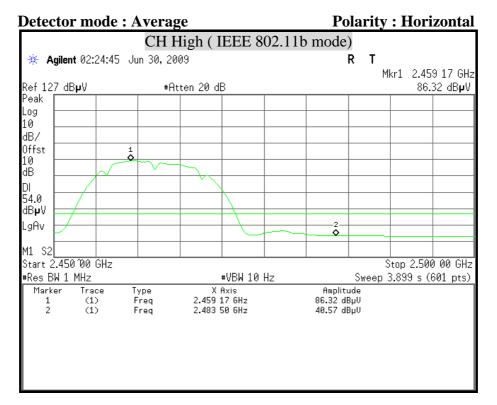

 $Remark\ Peak = Result(PK) - Limit(AV)$

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1

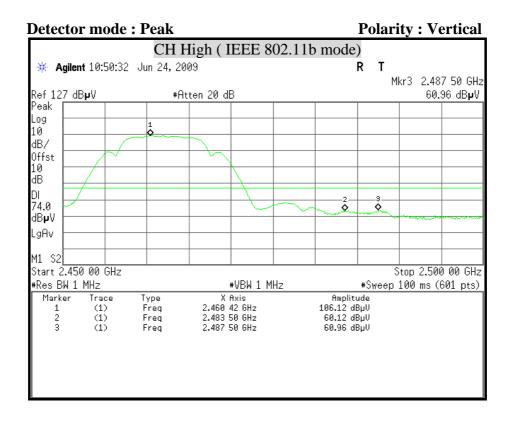

Page <u>115</u> of <u>143</u>

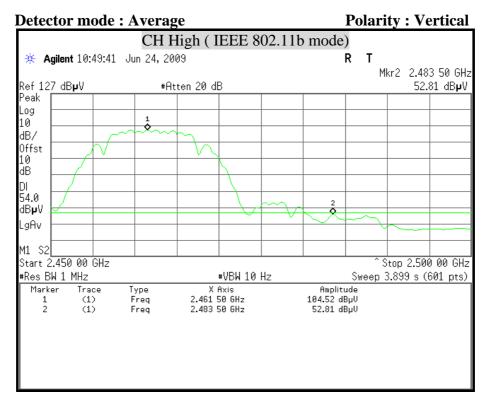

8.8.4 RESTRICTED BAND EDGES



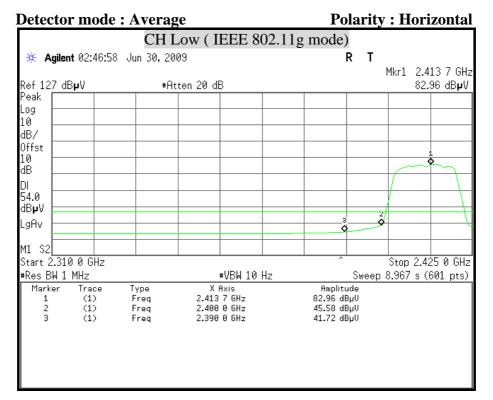


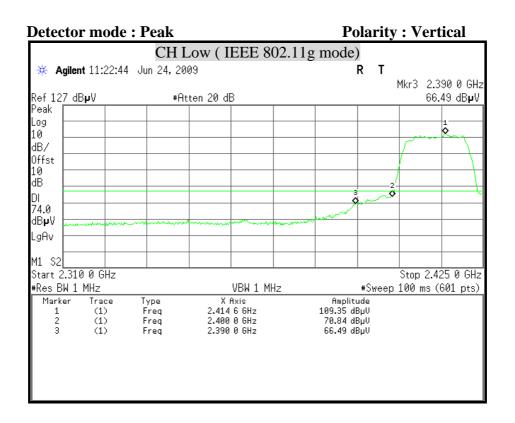
FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 116 of 143

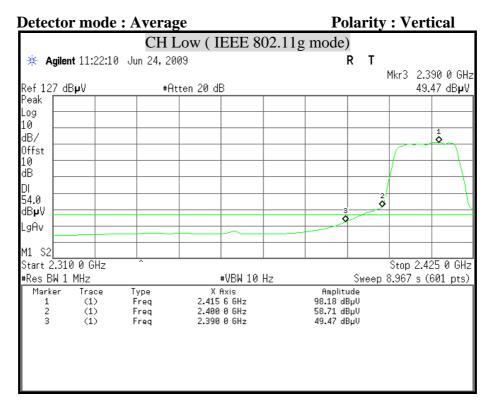




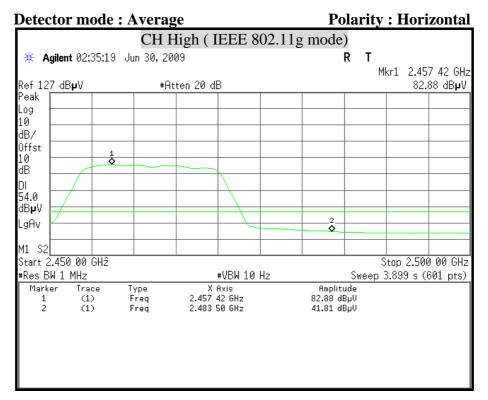


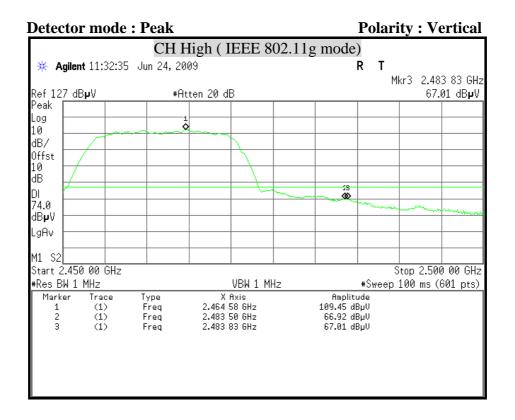

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page ____118___of ___143



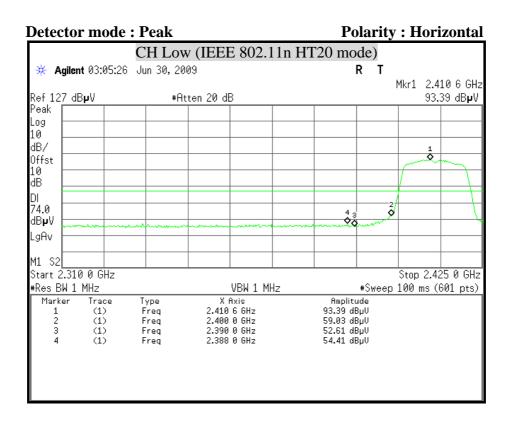

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 119 of 143

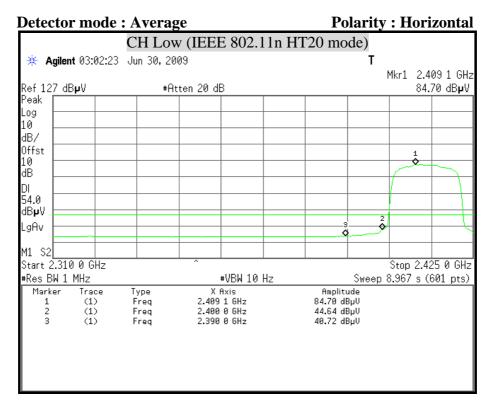


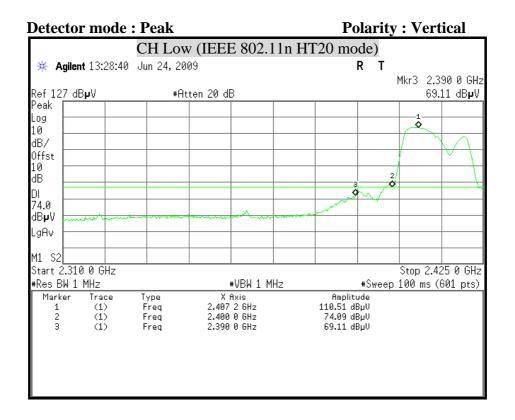

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 120 of 143

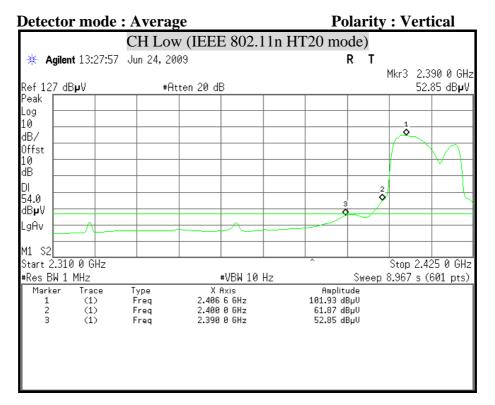


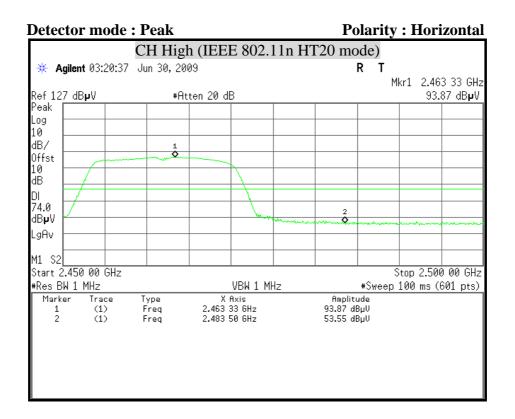
FCC ID : KA2DIR615G1
Report No. : 90619302-RP1
Page 121 of 143

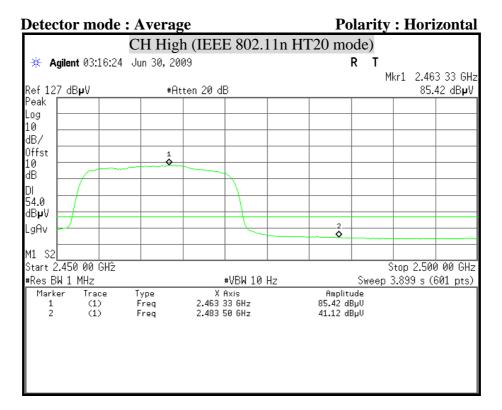


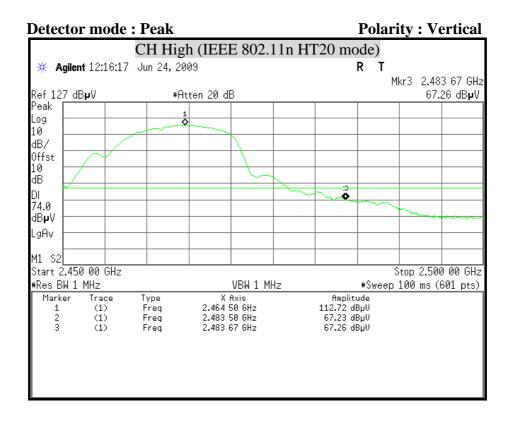

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 122 of 143

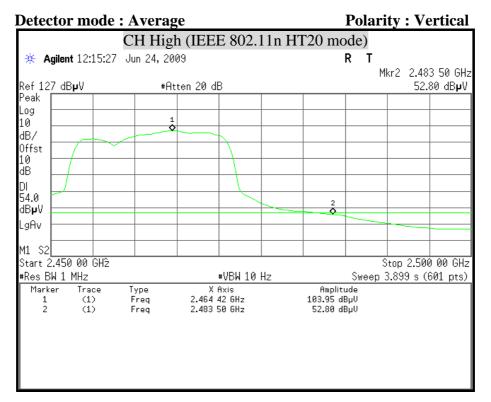


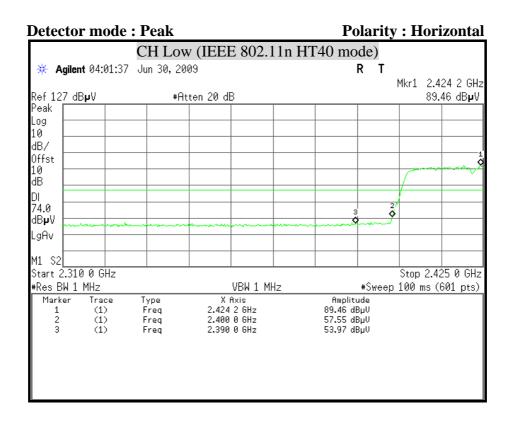

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 123 of 143

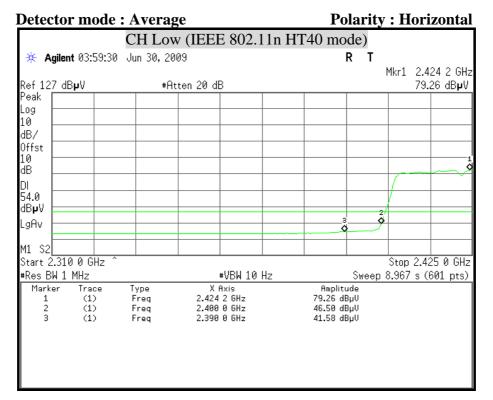


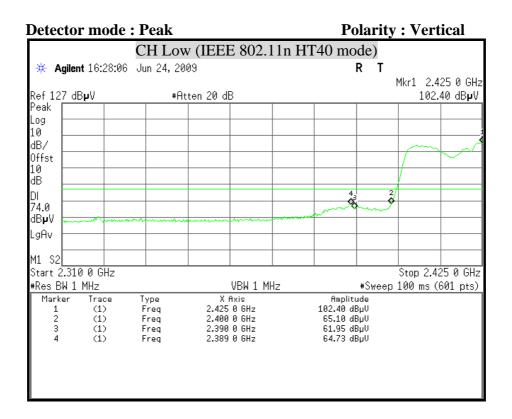

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 124 of 143

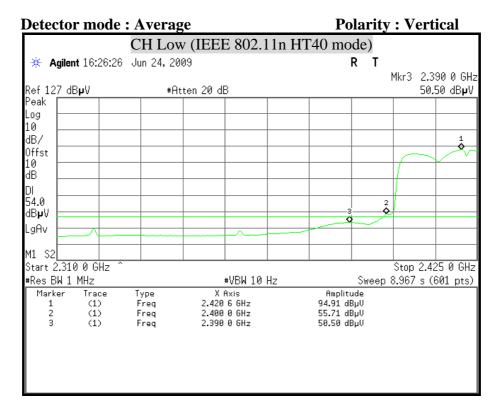


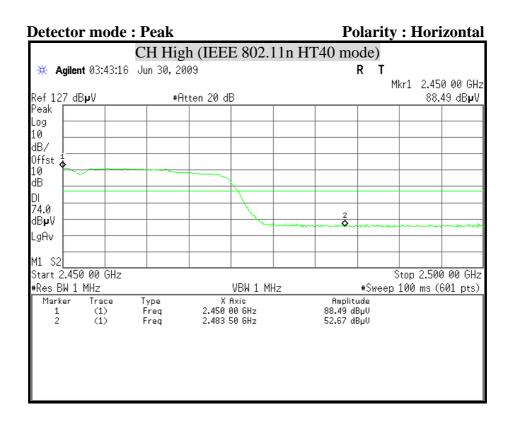

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 125 of 143

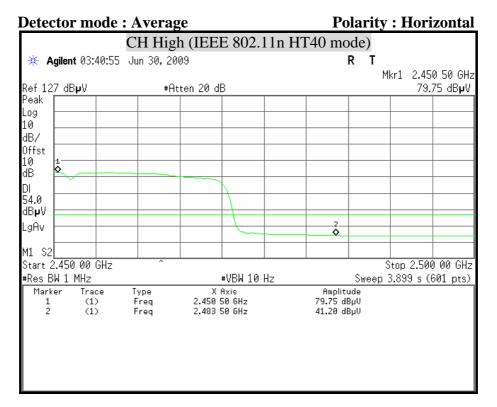


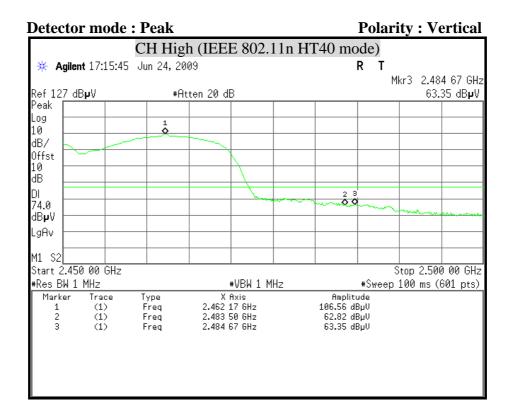

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 126 of 143

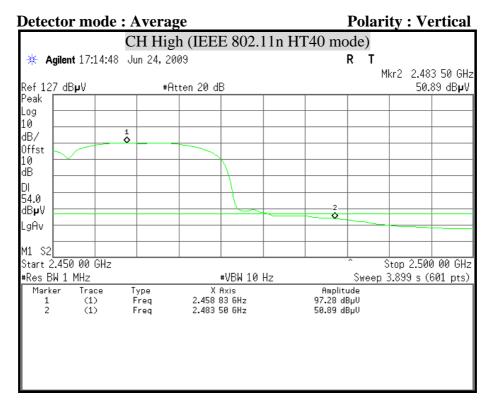



FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 127 of 143




FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 128 of 143




FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 129 of 143

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 130 of 143

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1

Page 131 of 143

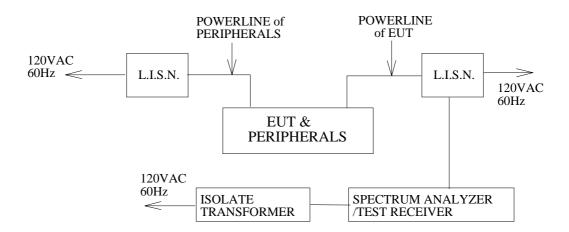
8.9 POWERLINE CONDUCTED EMISSIONS

LIMITS

 \S 15.207 (a) Except as shown in paragraph (b) and (c) this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted limit (dBμv)		
	Quasi-peak	Average	
0.15 - 0.5	66 to 56	56 to 46	
0.5 - 5	56	46	
5 - 30	60	50	


TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-465	08/13/2009
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-473	10/12/2009
TEST RECEIVER	R & S	ESHS30	838550/003	02/02/2010
PULSE LIMIT	R & S	ESH3-Z2	100117	09/23/2009
N TYPE COAXIAL CABLE	BELDEN	8268 M17/164	003	09/13/2009

Remark: Each piece of equipment is scheduled for calibration once a year.

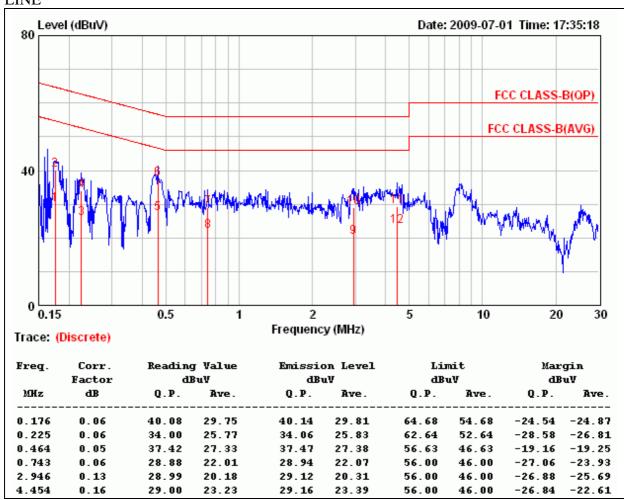
FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 132 of 143

TEST SETUP

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80cm above the horizontal ground plane. The EUT IS CONFIGURED IN ACCORDANCE WITH ANSI C63.4:2003.

The resolution bandwidth is set to 9 kHz for both quasi-peak detection and average detection measurements.

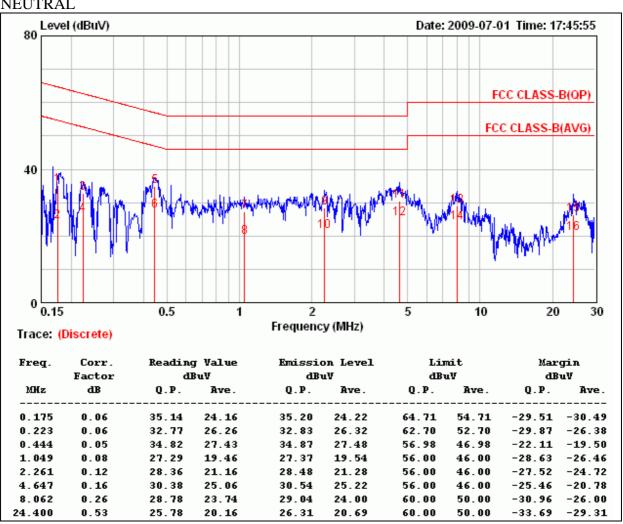

Line conducted data is recorded for both NEUTRAL and LINE.

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page ____133___of ___143

TEST RESULTS

Product Name	Wireless N Router	Test Date	2009/07/01
Model	DIR-615	Test By	Kenghao Hu
Test Mode	Normal operating (worst-case) Power Adapter (1)	TEMP & Humidity	22.8°C, 56%

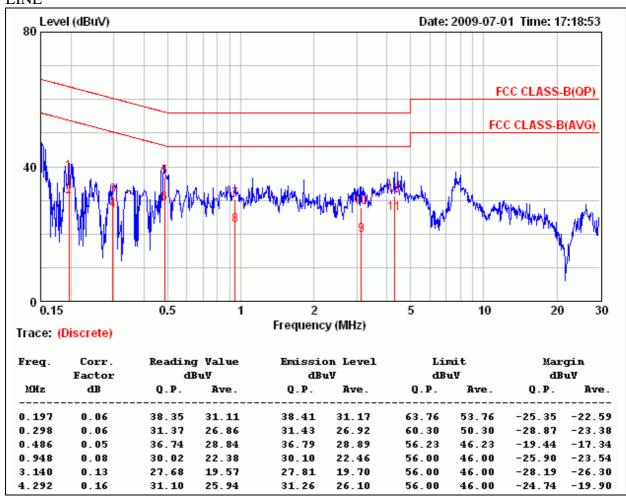
LINE



- 1. $Correction\ Factor = Insertion\ loss + cable\ loss$
- 2. $Margin\ value = Emission\ level Limit\ value$

FCC ID : KA2DIR615G1 Report No.: 90619302-RP1 Page 134 of 143

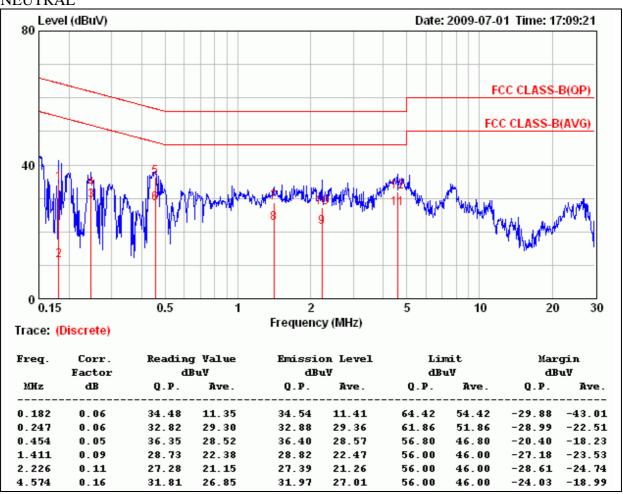
Product Name	Wireless N Router	Test Date	2009/07/01
Model	DIR-615	Test By	Kenghao Hu
Test Mode	Normal operating (worst-case) Power Adapter (1)	TEMP & Humidity	22.8°C, 56%



- 1. $Correction\ Factor = Insertion\ loss + cable\ loss$
- 2. $Margin\ value = Emission\ level Limit\ value$

FCC ID : KA2DIR615G1 Report No.: 90619302-RP1 Page ____135___of ____143_

Product Name	Wireless N Router	Test Date	2009/07/01
Model	DIR-615	Test By	Kenghao Hu
Test Mode	Normal operating (worst-case) Power Adapter (2)	TEMP & Humidity	22.8°C, 56%



- 1. $Correction\ Factor = Insertion\ loss + cable\ loss$
- 2. Margin value = Emission level Limit value

FCC ID : KA2DIR615G1 Report No. : 90619302-RP1 Page 136 of 143

Product Name	Wireless N Router	Test Date	2009/07/01
Model	DIR-615	Test By	Kenghao Hu
Test Mode	Normal operating (worst-case) Power Adapter (2)	TEMP & Humidity	22.8°C, 56%

- 1. $Correction\ Factor = Insertion\ loss + cable\ loss$
- 2. Margin value = Emission level Limit value