

FCC CFR47 PART 15 SUBPART C CERTIFICATION

TEST REPORT

FOR

2.4GHZ WIRELESS ROUTER

MODEL NUMBER: DI-524

FCC ID: KA2DI524C1

REPORT NUMBER: 04U2807-1

ISSUE DATE: JULY 1, 2004

Prepared for D-LINK CORPORATION 2F, NO. 233-2, PAO-CHIAO RD., HSIN-TEIN 231 TAIPEI TAIWAN, R.O.C.

Prepared by COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA TEL: (408) 463-0885 FAX: (408) 463-0888

TABLE OF CONTENTS

1.		TEST	T RESULT CERTIFICATION	;
2.		EUT	DESCRIPTION4	ŀ
3.		TEST	T METHODOLOGY5	;
4.		FACI	ILITIES AND ACCREDITATION5	;
5.		CALI	IBRATION AND UNCERTAINTY6	ĵ
	5.	1. N	MEASURING INSTRUMENT CALIBRATION	5
	5.2	2. N	MEASUREMENT UNCERTAINTY	5
	5.3	3. 7	TEST AND MEASUREMENT EQUIPMENT7	7
6.		SETU	UP OF EQUIPMENT UNDER TEST8	;
7.		APPL	LICABLE LIMITS AND TEST RESULTS12)
	7	1. 6	6 dB BANDWIDTH	,
	7.2	2. 9	99% BANDWIDTH)
	7.	3. F	PEAK OUTPUT POWER	}
	7.4	4. N	MAXIMUM PERMISSIBLE EXPOSURE	7
	7.:	5. A	AVERAGE POWER)
	7.0	6. I	PEAK POWER SPECTRAL DENSITY	'
	7.7	7. C	CONDUCTED SPURIOUS EMISSIONS)
		8. K 7.8.1. 7.8.2. 7.8.3.	. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ, PCB Monopole Antenna. 67	 7
8.		WOR	RST-CASE RADIATED EMISSIONS BELOW 1 GHz105	;
	8	1. F	POWERLINE CONDUCTED EMISSIONS)
9.		SETU	UP PHOTOS)

Page 2 of 118

1. TEST RESULT CERTIFICATION

COMPANY NAME:	D-LINK CORPORATION 2F, NO. 233-2, PAO-CHIAO RD., HSIN-TEIN 231 TAIPEI TAIWAN, R.O.C.
EUT DESCRIPTION:	802.11b/g 2.4GHz Wireless Router
MODEL:	DI-524
DATE TESTED:	JUNE 11 – 29, 2004

APPLICABLE STANDARDS				
STANDARD	TEST RESULTS			
FCC PART 15 SUBPART C	NO NON-COMPLIANCE NOTED			

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document.

Approved & Released For CCS By:

Tested By:

All K:

NEELESH RAJ EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

Chin Pany

CHIN PANG EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 3 of 118

2. EUT DESCRIPTION

The EUT is a high speed 2.4 GHz (802.11b/g/g Turbo) wireless router. It operates in the 2400-2483.5 MHz band.

The transmitter has a maximum peak conducted output power as follows:

Frequency Band	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2412 - 2462	802.11b	21.83	152.41
2412 - 2462	802.11g	21.89	154.53
2437	802.11g Turbo	21.74	149.28

The radio utilizes one dipole antenna, with a maximum gain of 1.8 dBi, and one printed circuit board monopole antenna, with a maximum gain of 0 dBi.

Page 4 of 118

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4/2001, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

4. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

Page 5 of 118

5. CALIBRATION AND UNCERTAINTY

5.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

5.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 118

5.3. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

	TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	Cal Due			
Spectrum Analyzer 20 Hz ~ 44 GHz	Agilent	E4446A	US42070220	4/1/2005			
Preamplifier, 1 ~ 26 GHz	Miteq	NSP10023988	646456	4/25/2005			
Antenna, Horn 1 ~ 18 GHz	EMCO	3117	29301	12/26/2004			
EMI Test Receiver	R & S	ESHS 20	827129/006	7/17/2004			
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	8379443	10/13/2004			
Site A Line Stabilizer / Conditioner	Tripplite	LC-1800a	A0051681	CNR			
LISN, 10 kHz ~ 30 MHz	FCC	50/250-25-2	114	10/13/2004			
EMI Test Receiver	R & S	ESIB40	100192	11/21/2004			
30MHz 2Ghz	Sunol Sciences	JB1 Antenna	A121003	12/22/2004			
EMI Receiver, 9 kHz ~ 2.9 GHz	HP	8542E	3942A00286	11/21/2004			
RF Filter Section	HP	85420E	3705A00256	11/21/2004			
Antenna, Horn 1 ~ 18 GHz	EMCO	3117	29310	2/4/2005			
4.6GHz HPF	FSY Microwave	FM-4570-9SS	3	CNR			
Amplifier 1-26GHz	MITEQ	NSP2600-SP	924341	4/25/2005			

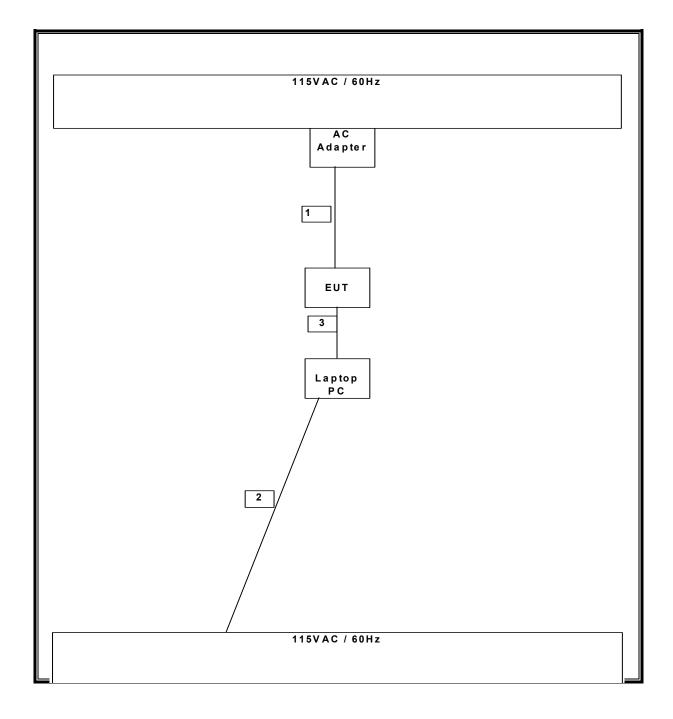
Page 7 of 118

6. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST								
Description Manufacturer Model Serial Number FCC ID								
Laptop PC	IBM	R40	FX-28550	DOC				
AC Adapter	Jentec	JTA 0302B	N/A	N/A				

I/O CABLES


	I/O CABLE LIST								
Cable	Cable Port # of Connector Cable Cable Remarks								
No.		Identical	Туре	Туре	Length				
		Ports							
1	DC	1	IEC	Unshielded	1.5m	no			
2	DC	2	IEC	Unshielded	1.5m	no			
3	LAN	5	RJ-45	Unshielded	2 m	yes			

TEST SETUP

The EUT is a standalone unit and is connected to a PC via an RJ45 LAN cable.

Page 8 of 118

SETUP DIAGRAM FOR TESTS

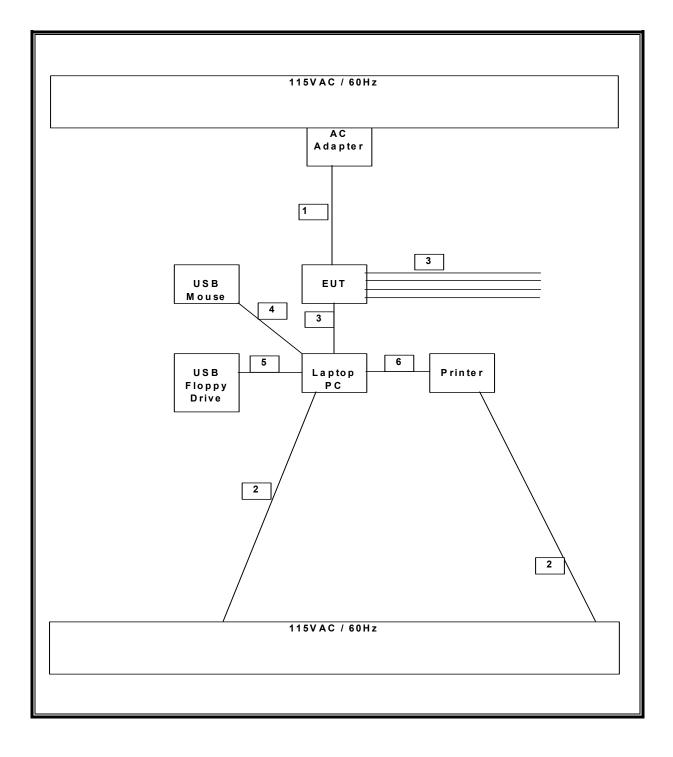
Page 9 of 118

SETUP FOR DIGITAL DEVICE TESTS

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST									
Description Manufacturer Model Serial Number FCC ID									
Printer	HP	2225C	2930852614	DS16XU2225					
Laptop PC	IBM	R40	FX-28550	DOC					
USB Floppy Drive	Mitsumi	D353FUE	3M11HT0282	DOC					
USB Mouse	Logitech	M-E58	HCA24201816	DOC					
AC Adapter	Jentec	JTA 0302B	N/A	N/A					

I/O CABLES


	I/O CABLE LIST							
Cable	Port	# of	Connector	Cable	Cable	Remarks		
No.		Identical	Туре	Туре	Length			
		Ports						
1	DC	1	IEC	Unshielded	1.5m	no		
2	DC	2	IEC	Unshielded	1.5m	no		
3	LAN	5	RJ-45	Unshielded	2 m	yes		
4	USB	1	USB	Shielded	1.5m	yes		
5	USB	1	USB	Shielded	1.5m	yes		
6	Parallel	1	25pin	Shielded	1.5m	yes		
			_					

TEST SETUP

The EUT is a standalone unit and is connected to a PC via an RJ45 LAN cable.

Page 10 of 118

SETUP DIAGRAM FOR DIGITAL DEVICE TESTS

Page 11 of 118

7. APPLICABLE LIMITS AND TEST RESULTS

7.1. 6 dB BANDWIDTH

<u>LIMIT</u>

§15.247 (a) (2) For direct sequence systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

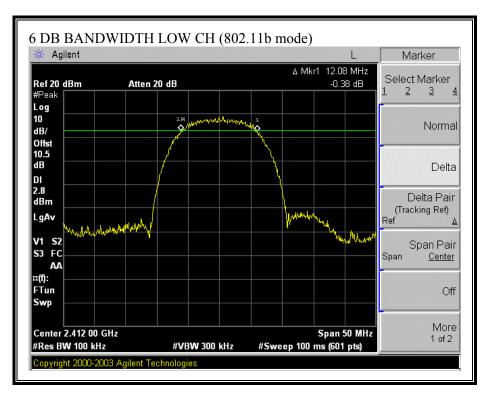
<u>RESULTS</u>

No non-compliance noted:

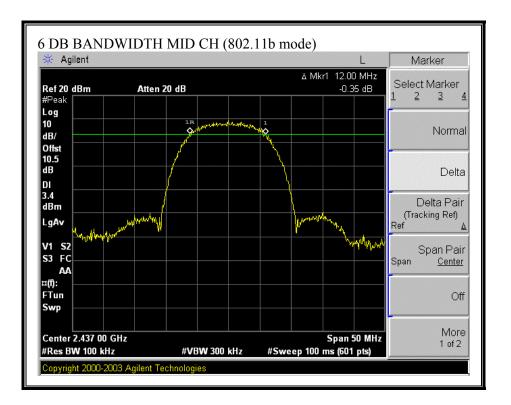
802.11b Mode

Channel	Frequency	6 dB Bandwidth	Minimum Limit	Margin
	(MHz)	(kHz)	(kHz)	(kHz)
Low	2412	12080	500	11580
Middle	2437	12000	500	11500
High	2462	12250	500	11750

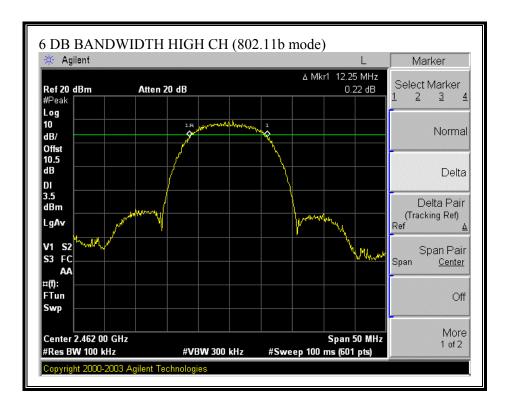
802.11g Mode


Channel	Frequency (MHz)	6 dB Bandwidth (kHz)	Minimum Limit (kHz)	Margin (kHz)
Low	2412	16580	500	16080
Middle	2437	16580	500	16080
High	2462	16580	500	16080

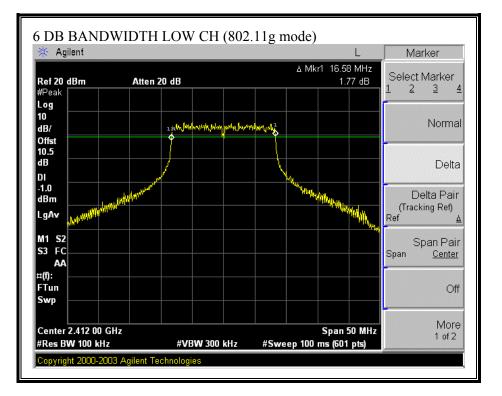
802.11g Turbo Mode


Channel	Frequency	6 dB Bandwidth	Minimum Limit	Margin
	(MHz)	(kHz)	(kHz)	(kHz)
Middle	2437	32000	500	31500

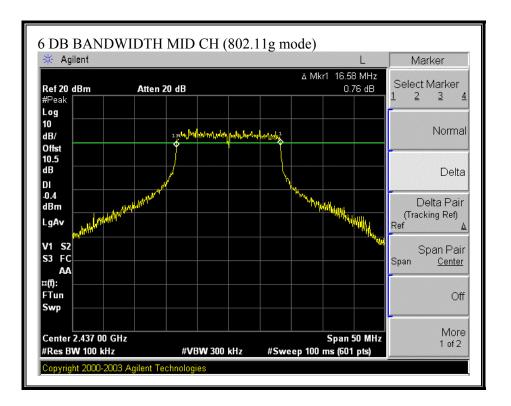
Page 12 of 118


6 DB BANDWIDTH (802.11b MODE)

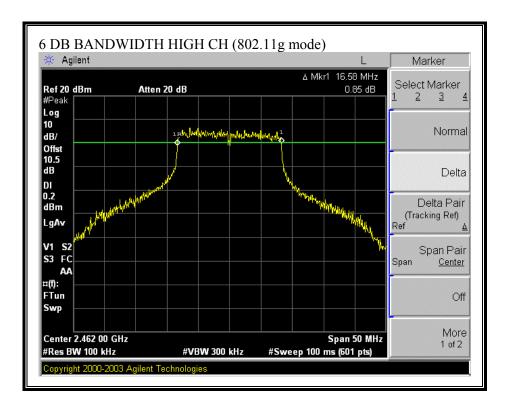
Page 13 of 118



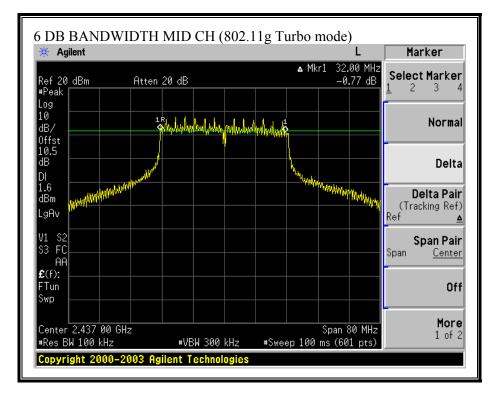
Page 14 of 118



Page 15 of 118


6 DB BANDWIDTH (802.11g MODE)

Page 16 of 118



Page 17 of 118

Page 18 of 118

6 DB BANDWIDTH (802.11g TURBO MODE)

Page 19 of 118

7.2. 99% **BANDWIDTH**

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

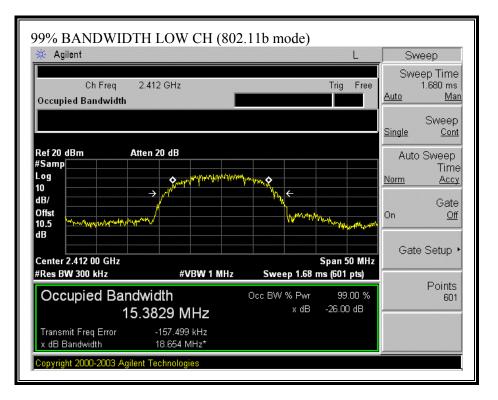
RESULTS

No non-compliance noted:

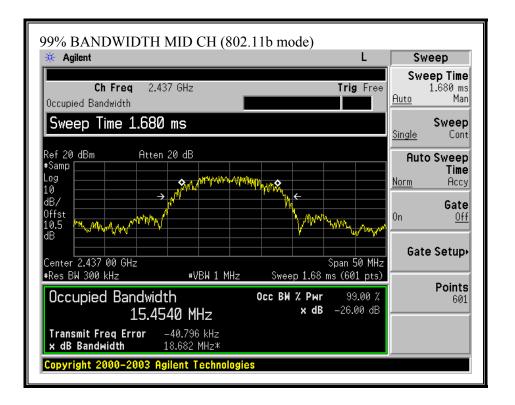
802.11b Mode				
Channel	Frequency	99% Bandwidth		
	(MHz)	(MHz)		

0	11090000	<i>>></i> / • D • • • • • • • • • • • • • • • • • • •
	(MHz)	(MHz)
Low	2412	15.3829
Middle	2437	15.454
High	2462	15.3979

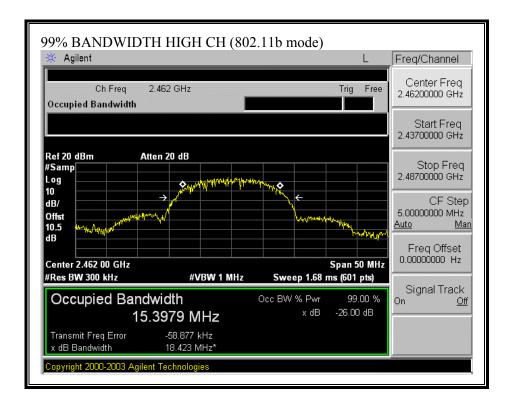
802.11g Mode


Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	16.4706
Middle	2437	16.5235
High	2462	16.6129

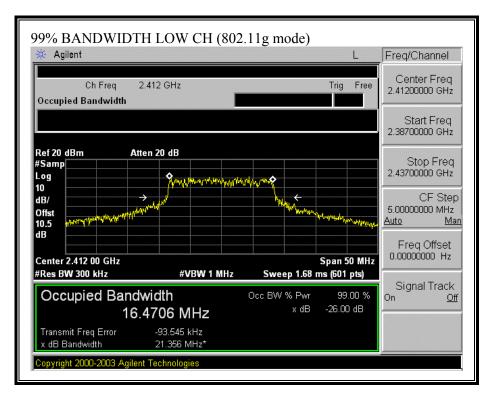
802.11g Turbo Mode


Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Middle 2437		32.6917

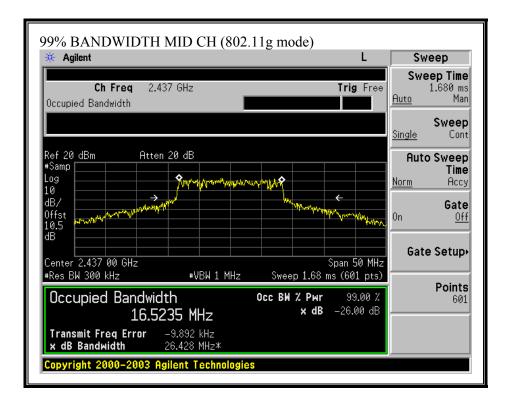
Page 20 of 118


99% BANDWIDTH (802.11b MODE)

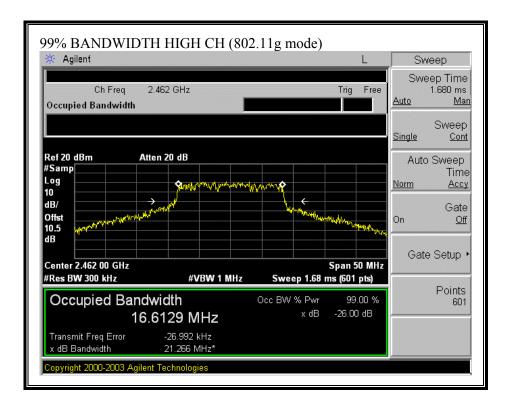
Page 21 of 118



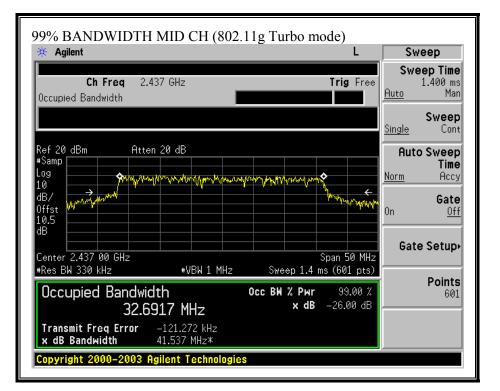
Page 22 of 118



Page 23 of 118


99% BANDWIDTH (802.11g MODE)

Page 24 of 118



Page 25 of 118

Page 26 of 118

99% BANDWIDTH (802.11g TURBO MODE)

Page 27 of 118

7.3. PEAK OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz , and 5725-5850 MHz bands: 1 watt.

\$15.247 (b) (4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is 1.8 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer and the analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth.

Page 28 of 118

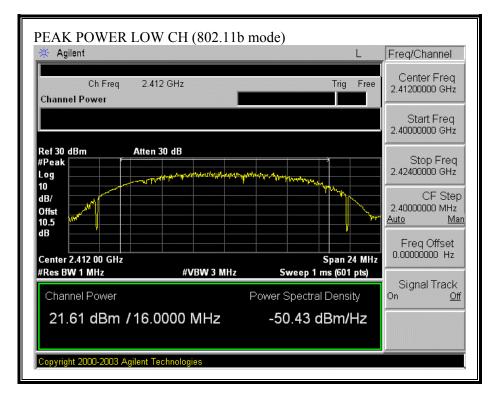
RESULTS

No non-compliance noted:

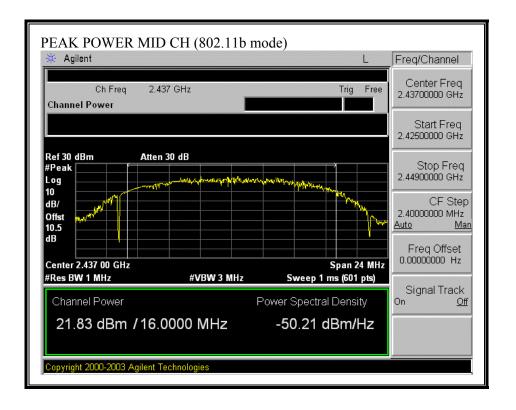
802.11b Mode

Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	21.61	30	-8.39
Middle	2437	21.83	30	-8.17
High	2462	21.39	30	-8.61

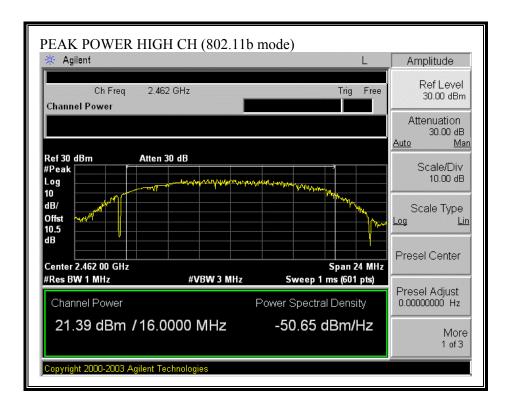
802.11g Mode


Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	19.70	30	-10.30
Middle	2437	21.89	30	-8.11
High	2462	19.99	30	-10.01

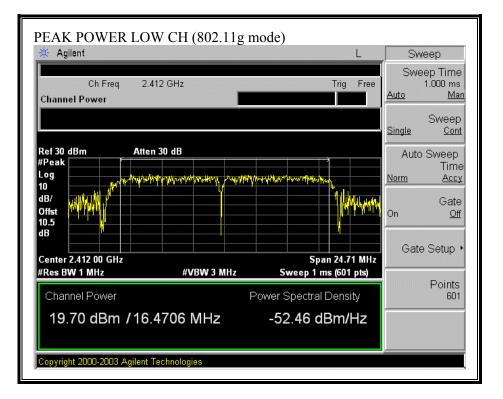
802.11g Turbo Mode


Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Middle	2437	21.74	30	-8.26

Page 29 of 118

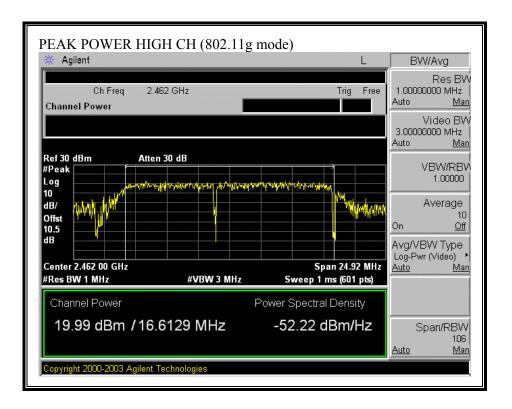

OUTPUT POWER (802.11b MODE)

Page 30 of 118



Page 31 of 118

Page 32 of 118


OUTPUT POWER (802.11g MODE)

Page 33 of 118

🔆 Agilent			L	Det/Demod
Ch Freq 2.437 Channel Power	'GHz	Tr	ig Free	Detector Peak∙ Auto <u>Man</u>
Ref 20 dBm Atten 2 *Peak Log 10 dB/ offst 10,5	20 dB ***** ~*******************************		444aaaaaaa	
dB Center 2.437 00 GHz #Res BW 1 MHz Channel Power	#VBW 3 MHz			
21.89 dBm /16.52	235 MHz	-50.29 dBm	/Hz	

Page 34 of 118

Page 35 of 118

OUTPUT POWER (802.11g TURBO MODE)

PEAK POWER (802.11g Turbo mode)	
₩ Agilent L	Det/Demod
Ch Freq 2.437 GHz Trig Fr Channel Power	ee Detector Peak↓ Auto Man
Ref 20 dBm Atten 20 dB *Peak Log 10 dB/ 0ffst 10.5 dB	······································
Center 2.437 00 GHz Span 49.04 M #Res BW 1 MHz #VBW 3 MHz Sweep 1 ms (601 pr	
Channel Power Power Spectral Densit	y
21.74 dBm /32.6917 MHz -53.41 dBm/Hz	
Copyright 2000-2003 Agilent Technologies	

Page 36 of 118

7.4. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	/Controlled Exposu	res	
0.3–3.0 3.0–30	614 1842/f	1.63 4.89/f	*(100) *(900/f²)	6
30–300 300–1500	61.4	0.163	1.0 f/300	6
1500–100,000			5	6
(B) Limits	for General Populati	on/Uncontrolled Exp	posure	
0.3–1.34 1.34–30	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz) Electric fiel strength (V/m)		Magnetic field strength (A/m)	Power density Averaging ti (mW/cm²) (minutes)	
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

f = frequency in MHz * = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposed are the exposed as a consequence of their employment may not be fully aware of the potential for

exposure or can not exercise control over their exposure.

Page 37 of 118

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

 $S = E^{2}/3770$

where

and

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P(mW) = P(W) / 1000 and d(cm) = 100 * d(m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW/cm^2

Substituting the logarithmic form of power and gain using:

P (mW) = 10 ^ (P (dBm) / 10) and G (numeric) = 10 ^ (G (dBi) / 10) yields $d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$ Equation (1) where d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi $S = Power Density Limit in mW/cm^2$

Equation (1) and the measured peak power is used to calculate the MPE distance.

Page 38 of 118

LIMITS

From §1.1310 Table 1 (B), S = 1.0 mW/cm^2

RESULTS

No non-compliance noted:

Mode	Mode Power Density Outp Limit Power		Antenna Gain	MPE Distance
	(mW/cm^2)	(dBm)	(dBi)	(cm)
802.11b	1.0	21.83	1.80	4.28
802.11g	1.0	21.89	1.80	4.31
802.11g Turbo	1.0	21.74	1.80	4.24

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Page 39 of 118

7.5. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

<u>RESULTS</u>

No non-compliance noted:

The cable assembly insertion loss of 10.5dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

802.11b Mode

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	18.60
Middle	2437	19.00
High	2462	18.30

802.11g Mode

Channel	Frequency (MHz)	Power (dBm)
Low	2412	17.00
Middle	2437	18.20
High	2462	17.10

802.11g Turbo Mode

Channel	Frequency	Power
	(MHz)	(dBm)
Middle	2437	18.40

Page 40 of 118

7.6. PEAK POWER SPECTRAL DENSITY

<u>LIMIT</u>

§15.247 (d) For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer, the maximum level in a 3 kHz bandwidth is measured with the spectrum analyzer using RBW = 3 kHz and VBW > 3 kHz, sweep time = span / 3 kHz, and video averaging is turned off. The PPSD is the highest level found across the emission in any 3 kHz band.

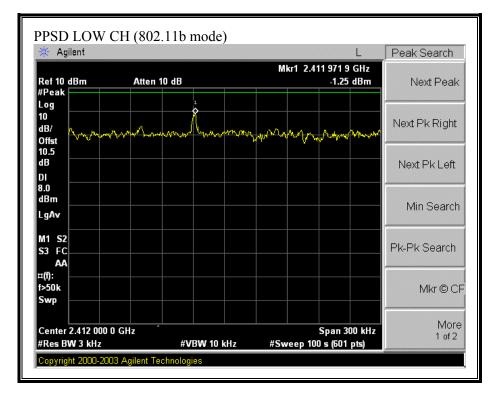
RESULTS

No non-compliance noted:

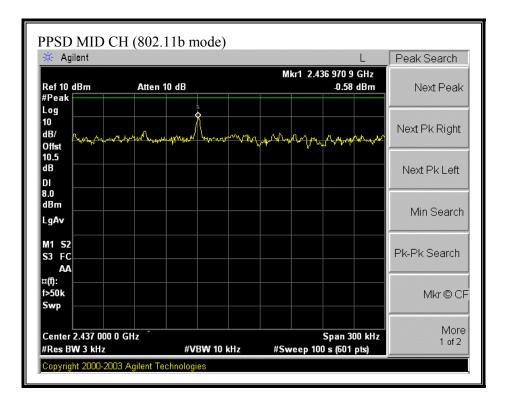
802.11b Mode

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dB)
Low	2412	-1.25	8	-9.25
Middle	2437	-0.58	8	-8.58
High	2462	-0.33	8	-8.33

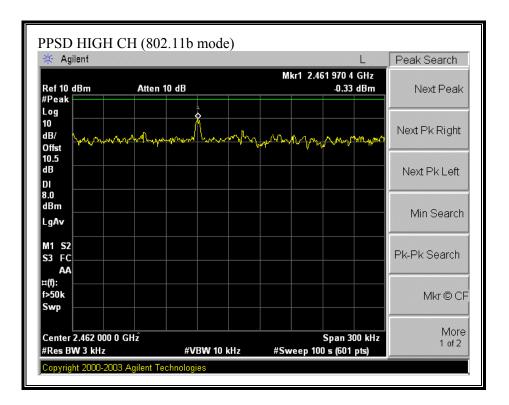
802.11g Mode


Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-3.69	8	-11.69
Middle	2437	-1.69	8	-9.69
High	2462	-2.78	8	-10.78

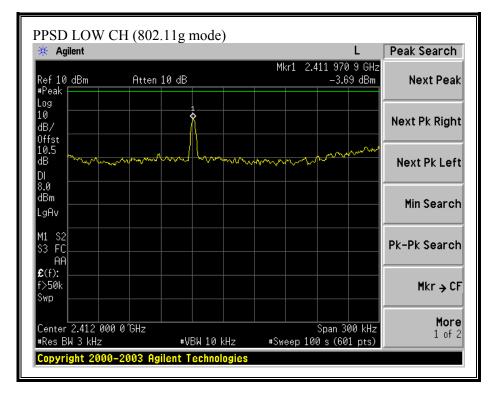
802.11g Turbo Mode


Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Middle	2437	-1.43	8	-9.43

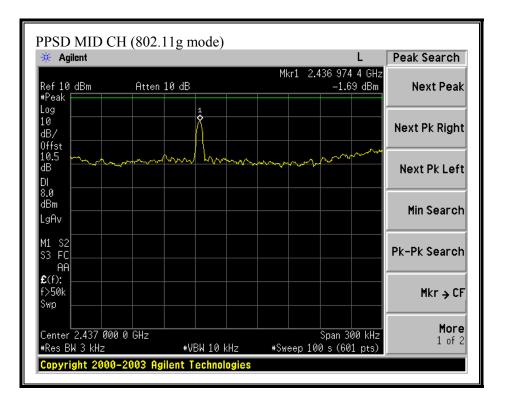
Page 41 of 118


PEAK POWER SPECTRAL DENSITY (802.11b MODE)

Page 42 of 118



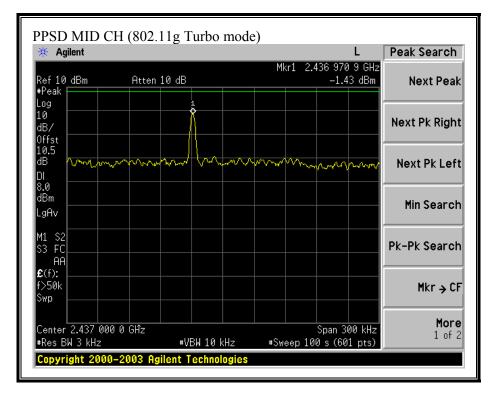
Page 43 of 118



Page 44 of 118

PEAK POWER SPECTRAL DENSITY (802.11g MODE)

Page 45 of 118



Page 46 of 118

🔆 Agilen	t								L	Peak Search
Ref 10 dE #Peak ⊨	3m	Atten	10 dB			M	kr1 2.4		01 GHz 78 dBm	Next Peak
Log 10 dB/										Next Pk Right
0ffst 10.5 /~- dB DI	m	~~~~		ᡣᡨ᠕	\sim	et an	Maray	www	ww	Next Pk Left
8.0 dBm LgAv										Min Search
M1 S2 S3 FC AA										Pk-Pk Search
£ (f): f>50k Swp										Mkr → CF
Center 2. #Res BW 3	461 950 0 3 kHz	GHz	#11	 	<hz< td=""><td>#Sw</td><td></td><td></td><td>00 kHz 01 pts)</td><td>More 1 of 2</td></hz<>	#Sw			00 kHz 01 pts)	More 1 of 2

Page 47 of 118

PEAK POWER SPECTRAL DENSITY (802.11g TURBO MODE)

Page 48 of 118

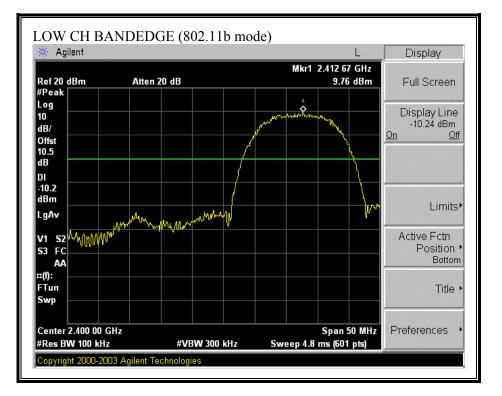
7.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

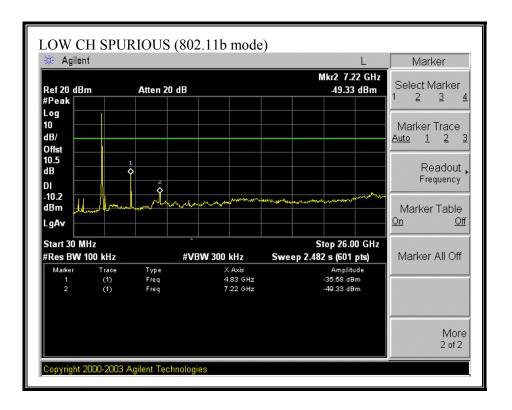
§15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in §15.205(a).

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

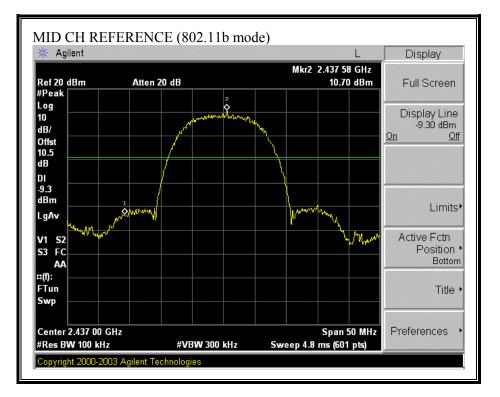

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

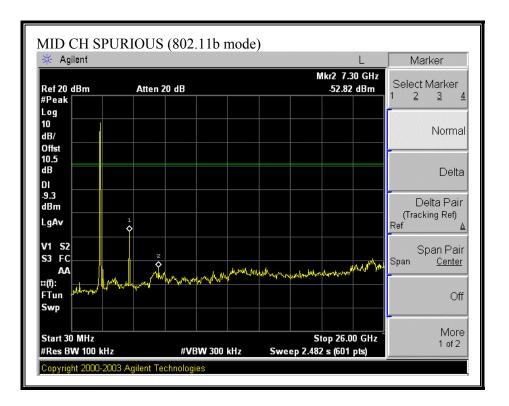

No non-compliance noted:

Page 49 of 118

SPURIOUS EMISSIONS, LOW CHANNEL (802.11b MODE)



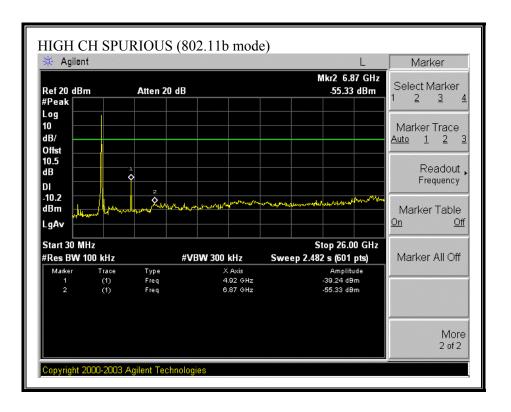
Page 50 of 118



Page 51 of 118

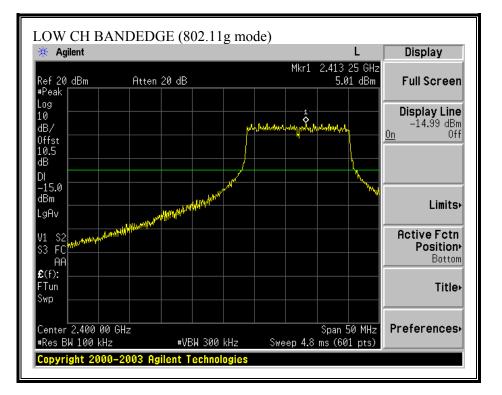
SPURIOUS EMISSIONS, MID CHANNEL (802.11b MODE)

Page 52 of 118

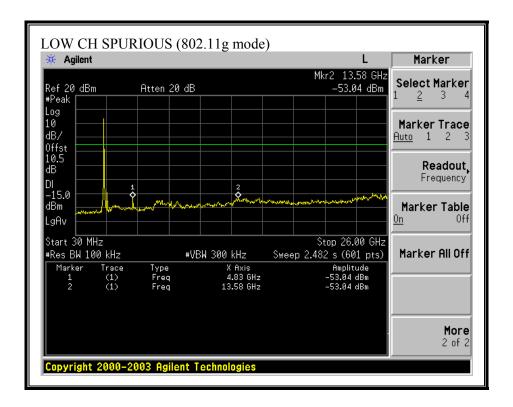


Page 53 of 118

SPURIOUS EMISSIONS, HIGH CHANNEL (802.11b MODE)

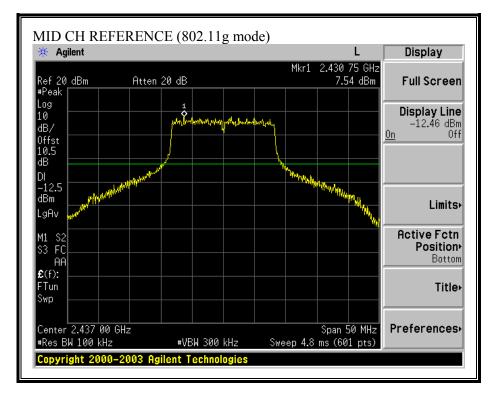


Page 54 of 118

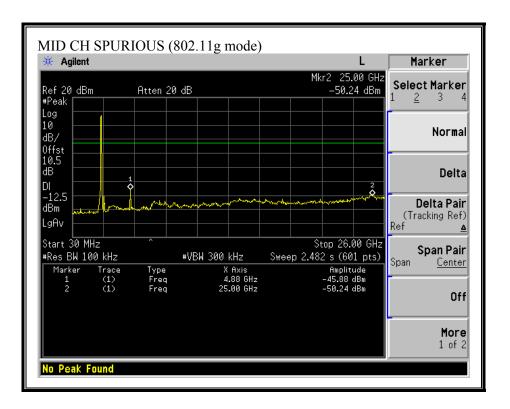


Page 55 of 118

SPURIOUS EMISSIONS, LOW CHANNEL (802.11g MODE)

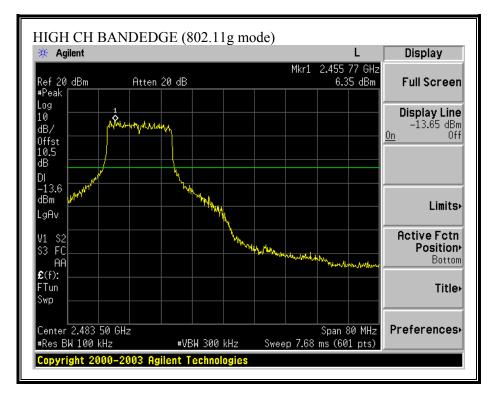


Page 56 of 118

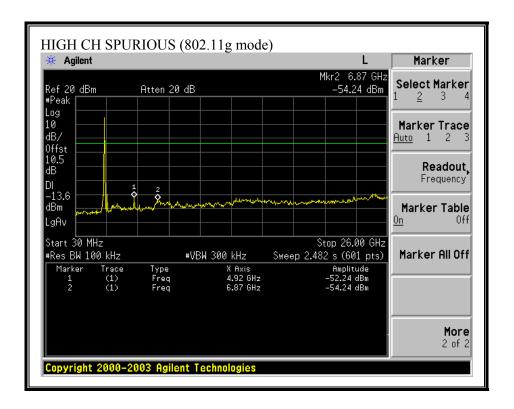


Page 57 of 118

SPURIOUS EMISSIONS, MID CHANNEL (802.11g MODE)

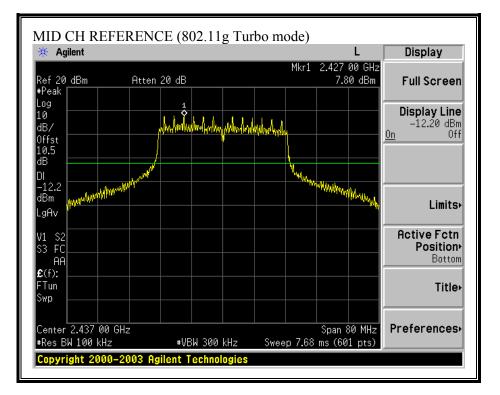


Page 58 of 118

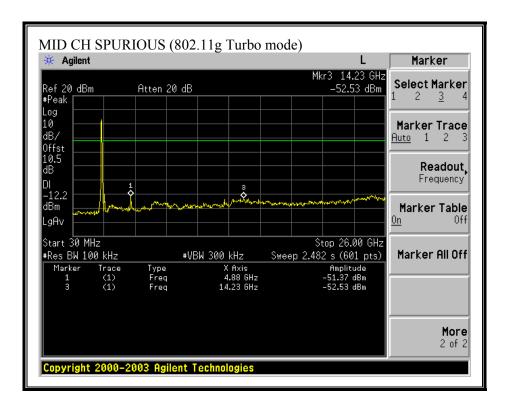


Page 59 of 118

SPURIOUS EMISSIONS, HIGH CHANNEL (802.11g MODE)



Page 60 of 118



Page 61 of 118

SPURIOUS EMISSIONS, MID CHANNEL (802.11g TURBO MODE)

Page 62 of 118

Page 63 of 118

7.8. RADIATED EMISSIONS

7.8.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS

LIMITS

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Page 64 of 118

\$15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Page 65 of 118

TEST PROCEDURE

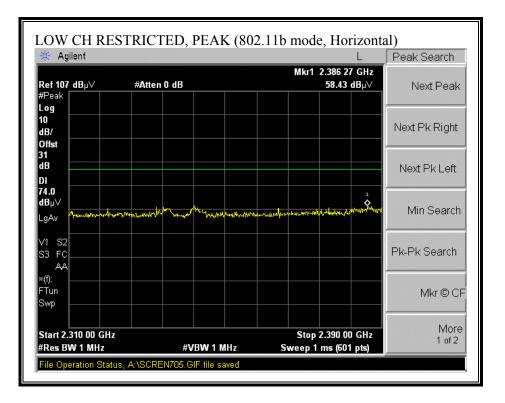
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

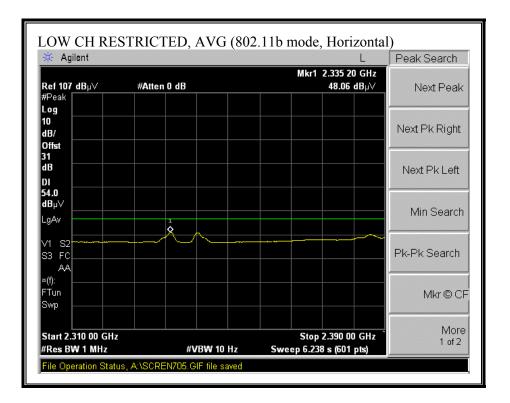
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

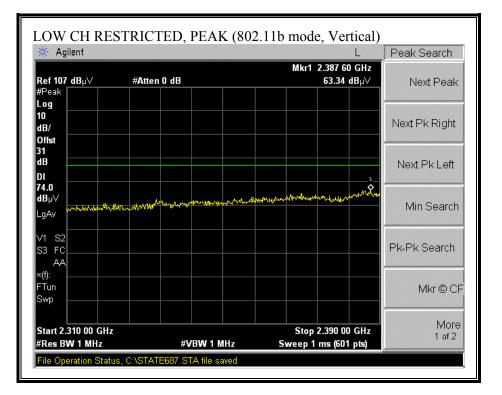

RESULTS

No non-compliance noted:

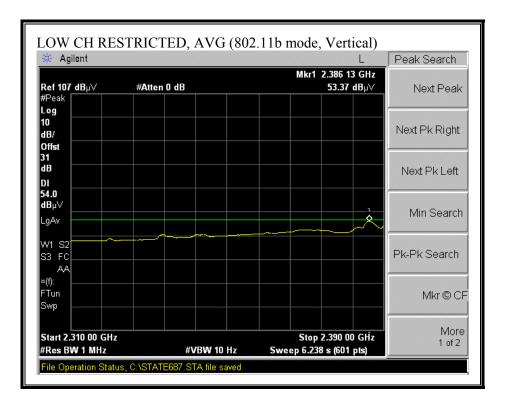

Page 66 of 118

7.8.2. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ, PCB Monopole Antenna

RESTRICTED BANDEDGE (b MODE, LOW CHANNEL, HORIZONTAL)

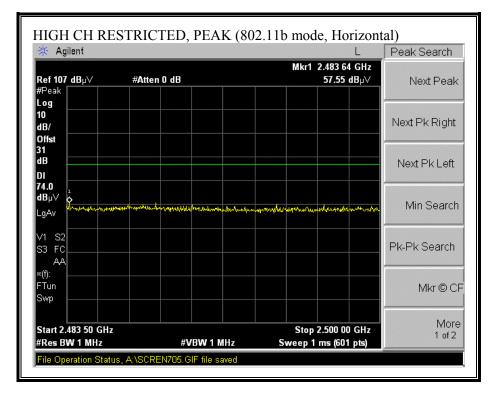


Page 67 of 118

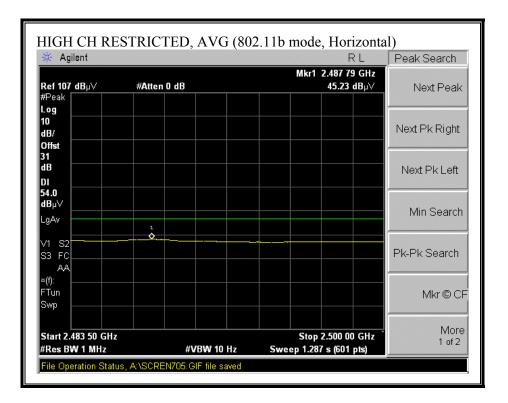


Page 68 of 118

RESTRICTED BANDEDGE (b MODE, LOW CHANNEL, VERTICAL)

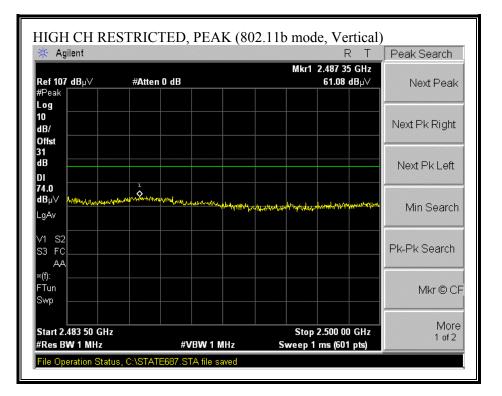


Page 69 of 118

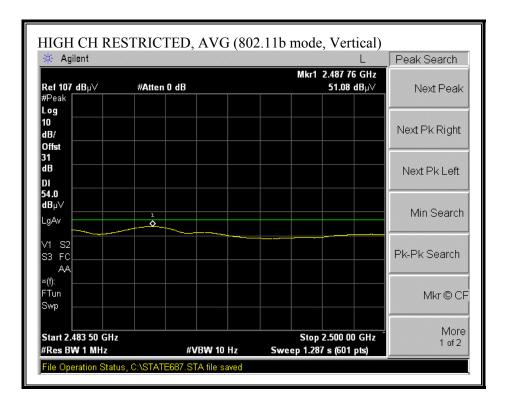


Page 70 of 118

RESTRICTED BANDEDGE (b MODE, HIGH CHANNEL, HORIZONTAL)



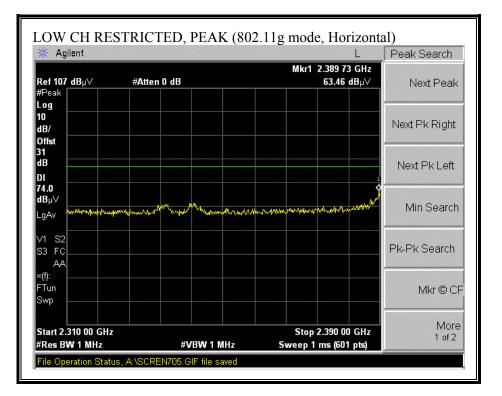
Page 71 of 118



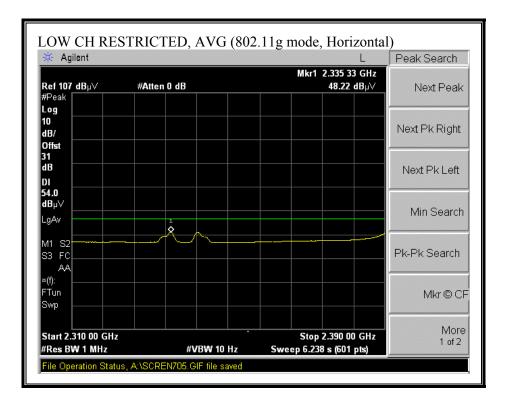
Page 72 of 118

RESTRICTED BANDEDGE (b MODE, HIGH CHANNEL, VERTICAL)

Page 73 of 118

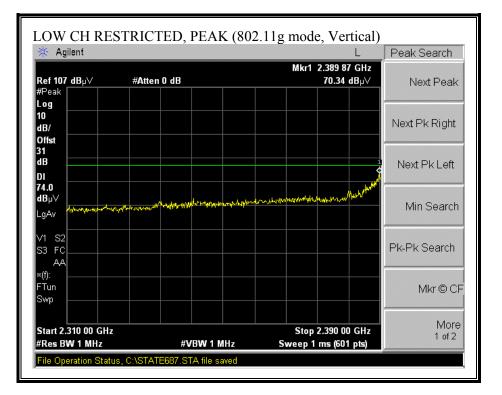

Page 74 of 118

HARMONICS AND SPURIOUS EMISSIONS (b MODE)

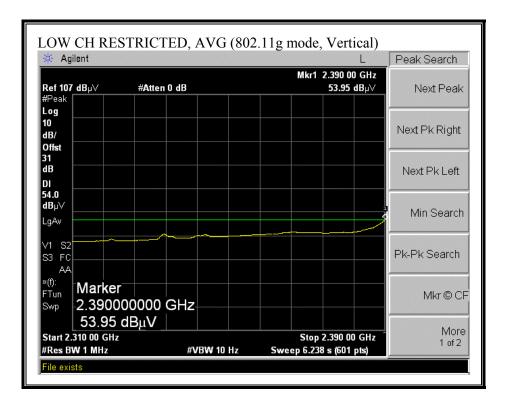

Project # Compan EUT Des EUT M/I Fest Tar	N:CUS5. get:FCC)7-1 os Link 802.11 3	b/g Access P Antenna	oint.											
Fest Equ	ipment:	(
) Horn 1.		Spec Agilent H	trum Ana		_	Pre-am			Pre-am	blifer 26-40G			Horn >1	8GHz
I	N: 6717		Agnent	4440A A	naryzer	•	T63 Mit	eq 6464	56			•			_
(2			(4~6 ft)	🗸 (12 ft)							Peak Meas 1 MHz Reso 1MHz Video	lution Bandw	idth		<u>easurements:</u> lution Bandwidth Bandwidth
f	Dist	Read Pk	Read Avg.		CL	Amp	D Corr	HPF	Peak	Avg		Avg Lim	Pk Mar	Avg Mar	Notes
GHz low ch	feet	dBuV	dBuV	dB/m	dB	dB	dB	1.0	dBuV/m		dBuV/m		dB	dB	V
.824 .824	9.8 9.8	58.9 54.0	51.2 48.7	33.4 33.4	2.9 2.9	-35.3 -35.3	0.0 0.0	1.0 1.0	60.8 55.9	53.1 50.6	74.0 74.0	54.0 54.0	-13.2 -18.1	-0.9 -3.4	V H
nid ch															
.874 .311	9.8 9.8	58.3 51.3	50.7 44.0	33.4 35.8	2.9 3.7	-35.3 -34.6	0.0 0.0	1.0 1.0	60.3 57.2	52.7 49.9	74.0 74.0	54.0 54.0	-13.7 -16.8	-1.3 -4.1	V V
.874	9.8 9.8	52.9 50.4	48.5 43.1	33.4 35.8	2.9	-35.3 -34.6	0.0	1.0	54.9 56.3	50.5 49.0	74.0	54.0 54.0	-19.1 -17.7	-3.5	Н
	9.0	30.4	43.1	35.6	3./	-34.0	0.0	1.0	30.3	47.0	/4.0	34.0	-17.7	-3.0	<u> </u>
igh ch .924	9.8	58.3	49.3	33.5	3.0	-35.3	0.0	1.0	60.4	51.4	74.0	54.0	-13.6	-2.6	v
.386	9.8 9.8	53.1 53.4	42.1 48.1	36.0 33.5	3.7 3.0	-34.5 -35.3	0.0	1.0 1.0	59.2 55.5	48.2 50.2	74.0 74.0	54.0 54.0	-14.8 -18.5	-5.8 -3.8	V H
.386	9.8	45.3	36.0	36.0	3.7	-34.5	0.0	1.0	51.4	42.1	74.0	54.0	-22.6	-11.9	Н
late: No	other em	ssions word	letected above	the syste	mnois	floor		-							
010. 110		issions were t	Acticu above	Life syste	in noise	1001.									
	f Dist Read AF CL	Measureme Distance to Analyzer R Antenna Fa Cable Loss	teading actor	у		Avg Peak	Average	Correct Field S ed Peal	ct to 3 mete Strength @ & Field Stre r	3 m		Pk Lim Avg Mar	Peak Fiel Margin v	Field Streng d Strength L s. Average I s. Peak Limi	.imit .imit

Page 75 of 118

RESTRICTED BANDEDGE (g MODE, LOW CHANNEL, HORIZONTAL)

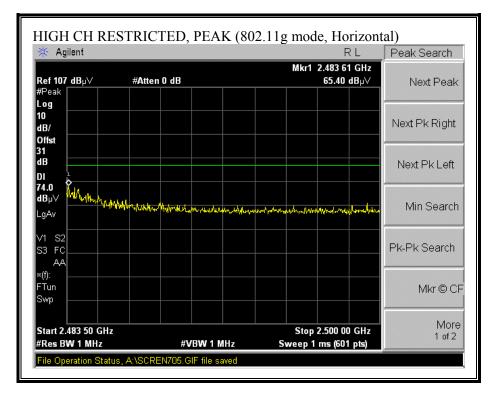


Page 76 of 118

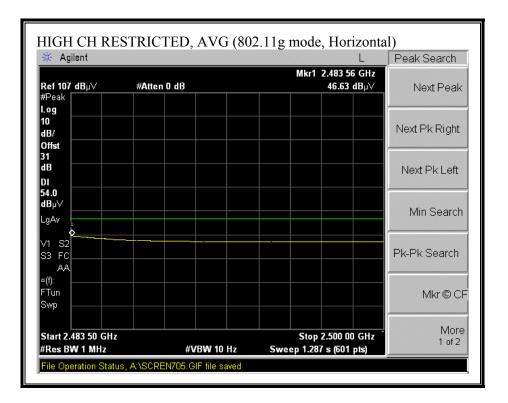


Page 77 of 118

RESTRICTED BANDEDGE (g MODE, LOW CHANNEL, VERTICAL)

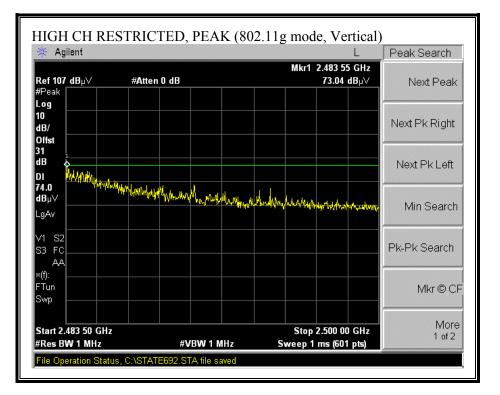


Page 78 of 118



Page 79 of 118

RESTRICTED BANDEDGE (g MODE, HIGH CHANNEL, HORIZONTAL)



Page 80 of 118

Page 81 of 118

RESTRICTED BANDEDGE (g MODE, HIGH CHANNEL, VERTICAL)

Page 82 of 118

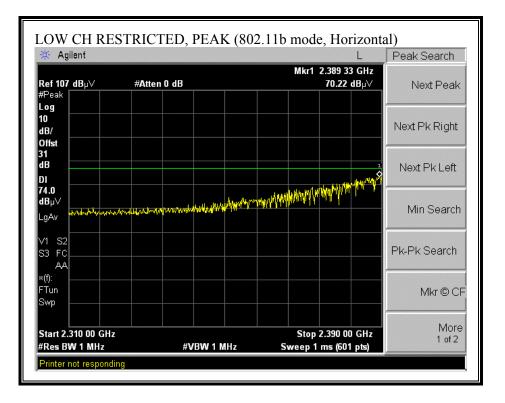
🔆 Agilent			L	File
Ref 107 dB µ∨ #Peak	#Atten 0 dB		Mkr1 2.483 50 GHz 53.98 dBµ∨	
Log 10 dB/ Offst				Save
31 dB DI				Load
54.0 dBµ∨ <u>_</u> LgAv ♦				Delete
V1 S2 S3 FC AA				Сору
*(f): FTun Swp				Rename
Start 2.483 50 GHz #Res BW 1 MHz	#VBW	10 Hz	Stop 2.500 00 GHz Sweep 1.287 s (601 pts)	More 1 of 2

Page 83 of 118

HARMONICS AND SPURIOUS EMISSIONS (g MODE)

Compan EUT Des EUT M/I	:04U280 y:Athros scrip.:D- N:CUS5 get:FCC	s -Link 802.11 3	b/g Access P	'oint.												
	oer:TX,	G Mode, A	Antenna													
) Horn 1-		Spec	trum Ana	dyzer		Pre-amp	lifer 1-3	26GHz	Pre-am	difer 26-40G	Hz		Horn >1	8GHz	1
T73; S/	'N: 6717	@3m 🕌	Agilent H	E4446A A	nalyzer	-	T63 Mit					•				-
(2	ft)	✓ (2 ~ 3 ft)	└ (4 ~ 6 ft)	▼ (12 ft)]	,				Peak Meas 1 MHz Reso 1MHz Video	lution Bandw	idth		<u>easurements:</u> ution Bandwidth Bandwidth	
f	Dist	Read Pk	Read Avg.	AF	CL dB	Amp dB	D Corr	HPF	Peak	Avg	Pk Lim	Avg Lim	Pk Mar dB	Avg Mar dB	Notes	
GHz ow ch	feet	dBuV	dBuV	dB/m	ав	aB	dB	1.0	dBuV/m	dBuV/m	dBuV/m	dBuV/m	aB	aB	v	
1.824 1.824	9.8 9.8	53.6 52.0	38.0 39.2	33.4 33.4	2.9 2.9	-35.3 -35.3	0.0	1.0 1.0	55.6 53.9	39.9 41.1	74.0 74.0	54.0 54.0	-18.4 -20.1	-14.1 -12.9	V H	
	9.8	52.0	39.2	53.4	2.9	-35.3	0.0	1.0	53.9	41.1	/4.0	54.0	-20.1	-12.9	н	
nid ch			20.7	22.4	2.0	25.2	0.0	1.0		40.4	74.0	51 0	20.5	12.4	×7	
1.874 7.311	9.8 9.8	51.5 65.4	38.6 47.8	33.4 35.8	2.9 3.7	-35.3 -34.6	0.0	1.0 1.0	53.5 71.3	40.6 53.7	74.0 74.0	54.0 54.0	-20.5 -2.7	-13.4 -0.3	<u>v</u> v	
.874	9.8	54.0	41.3	33.4	2.9	-35.3	0.0	1.0	56.0	43.3	74.0	54.0	-18.0	-10.7	H	
7.311	9.8	54.3	38.5	35.8	3.7	-34.6	0.0	1.0	60.2	44.4	74.0	54.0	-13.8	-9.6	Н	
nigh ch																
1.924	9.8	54.5 59.5	40.8	33.5	3.0	-35.3	0.0	1.0	56.6	42.9 49.1	74.0 74.0	54.0 54.0	-17.4	-11.1	V V	
1.386 1.924	9.8 9.8	59.5	43.0 40.5	36.0 33.5	3.7	-34.5	0.0	1.0	65.6 55.2	49.1	74.0	54.0 54.0	-8.4 -18.8	-4.9 -11.4	<u>v</u> Н	
.386	9.8	55.7	38.2	36.0	3.7	-34.5	0.0	1.0	61.8	44.3	74.0	54.0	-12.2	-9.7	Н	
													1			
lote: No	other em	issions were o	letected above	the syste	m noise	floor.										
	f Dist Read AF CL	Measureme Distance to Analyzer R Antenna Fa Cable Loss	teading actor	у		Amp D Corr Avg Peak HPF	Average	Correc Field S ed Peak	ct to 3 mete Strength @ c Field Stre	3 m		Pk Lim Avg Mar	Peak Fiel Margin v	Field Streng d Strength L s. Average L s. Peak Limi	.imit .imit	

Page 84 of 118

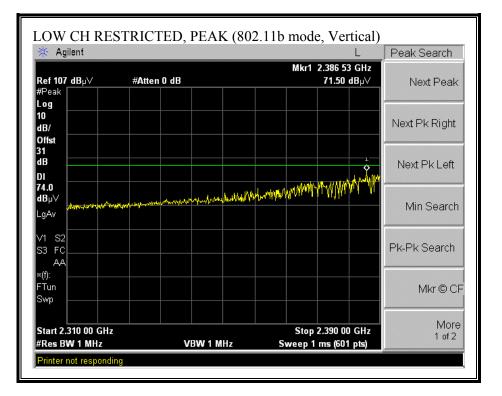

HARMONICS AND SPURIOUS EMISSIONS (g TURBO MODE)

	ipment:) Horn 1-		Spect	rum Ana	lyzer		Pre-am	olifer 1-2	26GHz	Pre-am	blifer 26-40G	Hz		Horn > 18	8GHz
F73; S/	'N: 6717	@3m 💂	Agilent E	4446A Ai	nalyzer	-	T63 Mit					•			•
(2		✓ (2 ~ 3 ft)	□ (4 ~ 6 ft)	✓ (12 ft)							Peak Meas 1 MHz Reso 1MHz Video	lution Bandw	idth	Average Me 1 MHz Resolu 10Hz Video E	e asurements: ation Bandwidth Bandwidth
Antenna f GHz	, G mode Dist feet	Turbo Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes
urbo, mi	id ch														
374	9.8	51.0	38.2	33.4	2.9	-35.3	0.0	1.0	53.0	40.2	74.0	54.0	-21.0	-13.8	v
11 74	9.8 9.8	57.4 50.1	44.6 37.5	35.8 33.4	3.7 2.9	-34.6 -35.3	0.0	1.0 1.0	63.3 52.1	50.5 39.5	74.0 74.0	54.0 54.0	-10.7 -21.9	-3.5 -14.5	V H
11	9.8	49.0	36.0	35.8	3.7	-34.6	0.0	1.0	54.9	41.9	74.0	54.0	-19.1	-12.1	Н
ote: No	other em	issions were	detected above	the system	m noise	floor.									
	f Dist Read AF CL	Measurem Distance to Analyzer F Antenna F Cable Loss	Reading actor	7	1 - 1	D Corr Avg Peak	Average	Correc Field S ed Peak	t to 3 mete strength @ Field Stre	3 m		Pk Lim Avg Mar	Peak Fiel Margin v	Field Strengt d Strength L s. Average L s. Peak Limit	imit imit

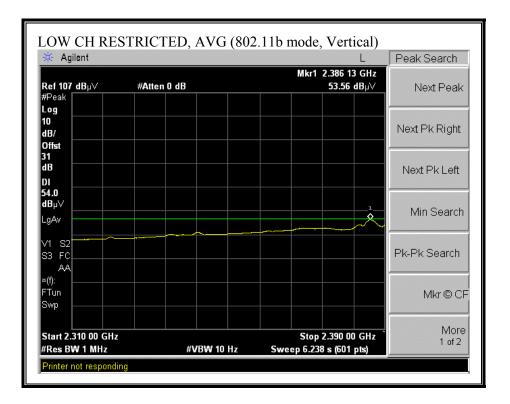

Page 85 of 118

7.8.3. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ, Dipole Antenna

RESTRICTED BANDEDGE (b MODE, LOW CHANNEL, HORIZONTAL)

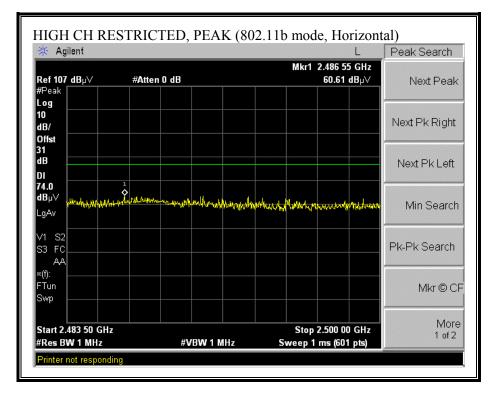


Page 86 of 118



Page 87 of 118

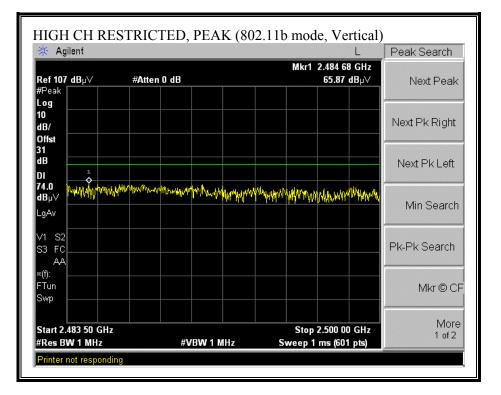
RESTRICTED BANDEDGE (b MODE, LOW CHANNEL, VERTICAL)



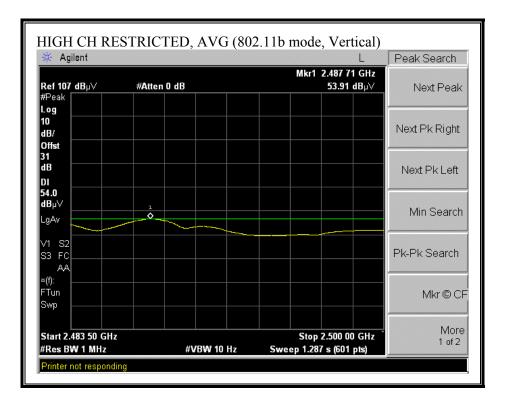
Page 88 of 118

Page 89 of 118

RESTRICTED BANDEDGE (b MODE, HIGH CHANNEL, HORIZONTAL)



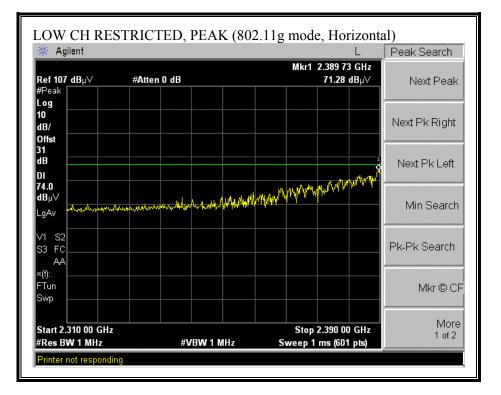
Page 90 of 118


🔆 Agilent				L	Peak Search
Ref 107 dB µ∨ #Peak	#Atten 0 dB		Mkr1 2.487 7 48.99	1 GHz dBµ∨	Next Peak
Log 10 dB/ Offst					Next Pk Right
31 1B DI					Next Pk Left
54.0 dBµ∨ _gAv					Min Search
V1 S2 S3 FC				· · · · · · · · · · · · · · · · · · ·	Pk-Pk Search
×(f): =Tun Swp					Mkr © Cl
Start 2.483 50 GHz #Res BW 1 MHz		≠VBW 10 Hz	Stop 2.500 0 Sweep 1.287 s (601		More 1 of 2

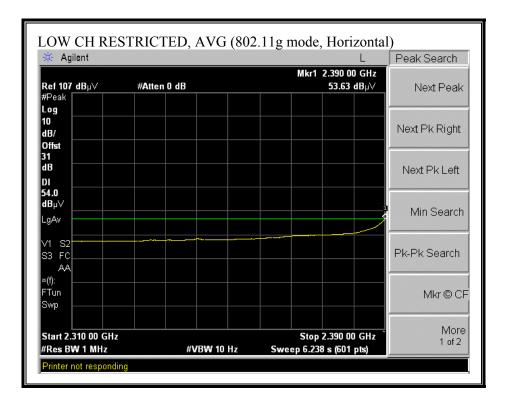
Page 91 of 118

RESTRICTED BANDEDGE (b MODE, HIGH CHANNEL, VERTICAL)

Page 92 of 118

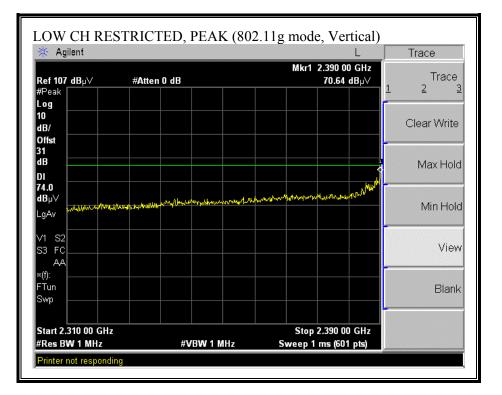

Page 93 of 118

HARMONICS AND SPURIOUS EMISSIONS (b MODE)


Project # Company CUT Des CUT M/P Cest Tary	N:CUS5 get:FCC	07-1 os -Link 802.11	b/g Access P ntenna.	oint											
'est Equ	ipment	<u>.</u>													
EMCC) Horn 1	-18GHz	Spec	trum Ana	ılyzer		Pre-am	olifer 1-2	26GHz	Pre-am	difer 26-40G	Hz		Horn >18GF	łz
T73; S/	N: 6717	@3m 🖕	Agilent E	4446A A	nalyzer	•	T63 Mit	eq 6464	56 🚽			-			-
Hi Freq			└ (4 ~ 6 ft) J	▼ (12 ft)							Peak Meas 1 MHz Reso 1MHz Video	lution Bandw	ridth	Average Measu 1 MHz Resolution 10Hz Video Band	n Bandwidth
f GHz	Dist	Read Pk	Read Avg. dBuV	AF	CL dB	Amp	D Corr	HPF	Peak dBuV/m	Avg	Pk Lim dBuV/m	Avg Lim	Pk Mar dB	Avg Mar dB	Notes
ow ch	feet	dBuV		dB/m		dB	dB							aв	
.824	9.8 9.8	56.0 53.0	51.6 48.4	33.4 33.4	2.9 2.9	-35.3 -35.3	0.0	1.0 1.0	57.9 54.9	53.5 50.3	74.0 74.0	54.0 54.0	-16.1 -19.1	-0.5 -3.7	V H
.824	9.8	53.0	48.4	33.4	2.9	-35.3	0.0	1.0	54.9	50.5	/4.0	54.0	-19.1	-3.7	н
nid ch															
.874	9.8 9.8	55.5 54.6	51.5 47.8	33.4 35.8	2.9 3.7	-35.3 -34.6	0.0	1.0 1.0	57.5 60.5	53.5 53.7	74.0 74.0	54.0 54.0	-16.5 -13.5	-0.5 -0.3	v v
.874	9.8	54.0	50.8	33.4	2.9	-34.0	0.0	1.0	56.0	52.8	74.0	54.0	-13.5	-0.3	н
.311	9.8	48.1	41.0	35.8	3.7	-34.6	0.0	1.0	54.0	46.9	74.0	54.0	-20.0	-7.1	v
igh ch .924	9.8	55.2	51.0	33.5	3.0	-35.3	0.0	1.0	57.3	53.1	74.0	54.0	-16.7	-0.9	v
.386	9.8	53.9	47.3	36.0	3.7	-34.5	0.0	1.0	60.0	53.4	74.0	54.0	-14.0	-0.6	v
1.924	9.8	53.0	48.3	33.5	3.0	-35.3	0.0	1.0	55.1	50.4	74.0	54.0	-18.9	-3.6	Н
.386	9.8	46.0	36.0	36.0	3.7	-34.5	0.0	1.0	52.1	42.1	74.0	54.0	-21.9	-11.9	Н
Note: No	other em	issions were	detected above	the syste	m noise	floor									
	f Dist Read AF CL	Measurem Distance to Analyzer F Antenna F Cable Loss	Reading actor	y	1	Amp D Corr Avg Peak HPF	Average	Correc Field S ed Peal	ct to 3 mete Strength @ c Field Stre r	3 m		Pk Lim Avg Mar	Peak Fiel Margin v	Field Strength L d Strength Limi s. Average Limi s. Peak Limit	t

Page 94 of 118

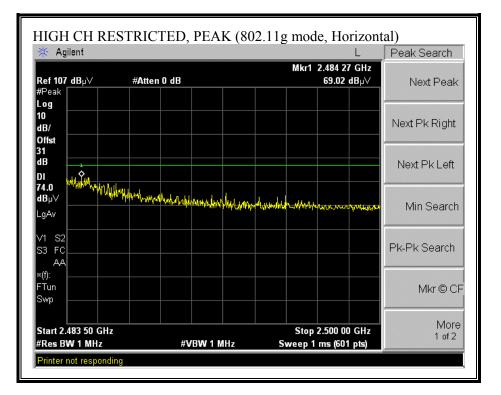
RESTRICTED BANDEDGE (g MODE, LOW CHANNEL, HORIZONTAL)



Page 95 of 118

Page 96 of 118

RESTRICTED BANDEDGE (g MODE, LOW CHANNEL, VERTICAL)

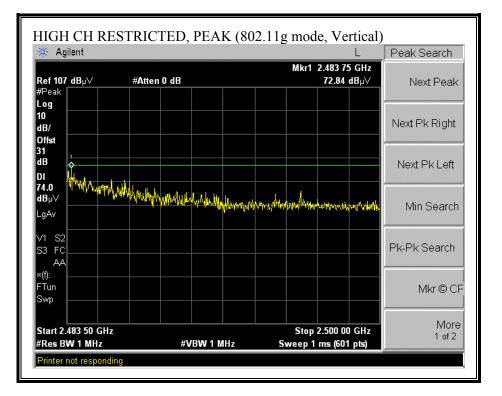


Page 97 of 118

🔆 Agilent			RT	Peak Search
Ref 107 dB µ∨ #Peak	#Atten 0 dB		Mkr1 2.390 00 GH; 53.58 dBµ∨	
Log 10 dB/ Offst				Next Pk Right
31 dB DI				Next Pk Left
54.0 dBµ∨ LgAv				Min Search
V1 S2				Pk-Pk Search
«(f): =Tun Swp				Mkr © Cf
Start 2.310 00 GHz #Res BW 1 MHz		/BW 10 Hz	Stop 2.390 00 GHz Sweep 6.238 s (601 pts)	More 1 of 2

Page 98 of 118

RESTRICTED BANDEDGE (g MODE, HIGH CHANNEL, HORIZONTAL)



Page 99 of 118

🔆 Agilent				L Peak Search
Ref 107 dBµ∨ #Peak	#Atten 0 dB		Mkr1 2.483 53 49.75 d	
Log 10 dB/ Offst				Next Pk Right
31 dB DI				Next Pk Left
54.0 dBµ∨ Lg ^{Av}				Min Search
V1 S2 S3 FC AA				Pk-Pk Search
∝(f): =Tun Swp				Mkr © C
Start 2.483 50 GHz #Res BW 1 MHz		'BW 10 Hz	Stop 2.500 00 Sweep 1.287 s (601 p	

Page 100 of 118

RESTRICTED BANDEDGE (g MODE, HIGH CHANNEL, VERTICAL)

Page 101 of 118

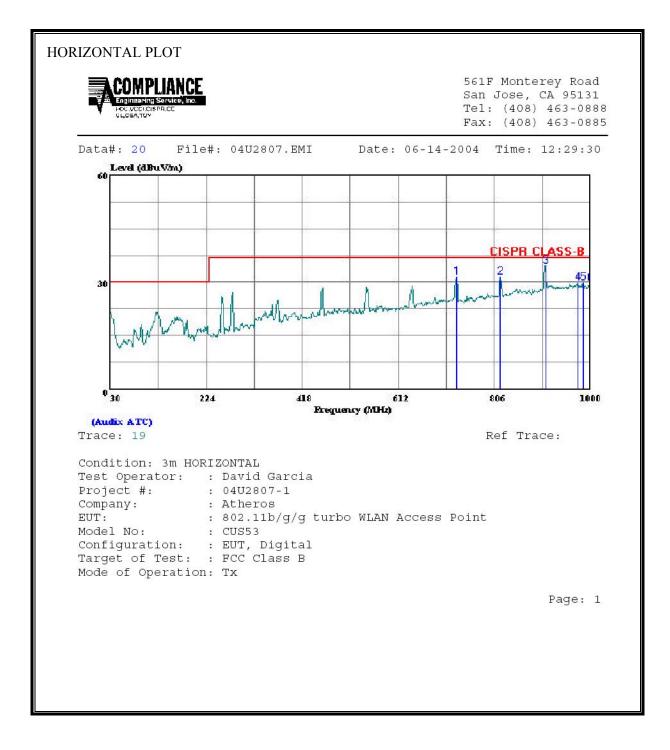
🔆 Agilent				L	Trace
Ref 107 dB µ∨ #Peak	#Atten 0 dB		Mkr1 2.48 53	3 50 GHz .00 dBµ∨	Trace
Log 10 dB/					Clear Write
Offst 31 dB DI					Max Hold
54.0 dBµ∨ LgAv					Min Hold
V1 S2 S3 FC					View
≈(f): FTun Swp					Blank
Start 2.483 50 GHz #Res BW 1 MHz	#VBW 1	I0 H7	Stop 2.50 Sweep 1.287 s (

Page 102 of 118

HARMONICS AND SPURIOUS EMISSIONS (g MODE)

EUT M/N Fest Targ	y:Ather crip.:D- N:CUS5 get:FCC	os -Lonk 802.1 3	1 b/g Access I antenna.	Point											
ſest Equ															
EMCO	Horn 1	-18GHz	Spec	trum Ana	lyzer		Pre-amp	olifer 1-2	26GHz	Pre-amp	difer 26-40G	Hz		Horn > 18	8GHz
T73; S/	N: 6717	@3m 🖕	Agilent F	4446A A	nalyzer	-	T63 Mit	eq 6464	56 🗕			-			-
(2			☐ (4 ~ 6 ft)	▼ (12 ft)							Peak Meas 1 MHz Reso 1MHz Video	lution Bandw	ridth		e asurements: ution Bandwidth Bandwidth
f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes
ow ch 4.824	9.8	53.2	41.1	33.4	2.9	-35.3	0.0	1.0	55.1	43.0	74.0	54.0	-18.9	-11.0	V
.824	9.8	53.0	41.0	33.4	2.9	-35.3	0.0	1.0	54.9	42.9	74.0	54.0	-19.1	-11.0	Н
nid ch															
1.874 7.311	9.8 9.8	53.0 61.6	39.1 47.5	33.4 35.8	2.9 3.7	-35.3 -34.6	0.0	1.0 1.0	55.0 67.5	41.1 53.4	74.0 74.0	54.0 54.0	-19.0 -6.5	-12.9 -0.6	V V
1.874	9.8	49.8	37.0	33.4	2.9	-35.3	0.0	1.0	51.8	39.0	74.0	54.0	-22.2	-15.0	Н
7.311	9.8	53.0	36.8	35.8	3.7	-34.6	0.0	1.0	58.9	42.7	74.0	54.0	-15.1	-11.3	Н
nigh ch															
1.924 7.386	9.8 9.8	54.0 65.0	41.0 47.5	33.5 36.0	3.0 3.7	-35.3 -34.5	0.0	1.0	56.1 71.1	43.1 53.6	74.0 74.0	54.0 54.0	-17.9 -2.9	-10.9 -0.4	V V
1.924	9.8 9.8	65.0 53.5	47.5	36.0	3.7	-34.5	0.0	1.0 1.0	55.6	42.6	74.0	54.0	-2.9	-0.4	<u>v</u> Н
.386	9.8	52.0	38.0	36.0	3.7	-34.5	0.0	1.0	58.1	44.1	74.0	54.0	-15.9	-9.9	Н
Note: No o	other em	issions were o	letected above	the syste	m noise	floor.									
	f Dist Read AF CL	Measureme Distance to Analyzer R Antenna Fa Cable Loss	teading actor	y		Amp D Corr Avg Peak HPF	Average	Correc Field S ed Peal	ct to 3 mete Strength @ c Field Stre	3 m		Pk Lim Avg Mar	Peak Field Margin vs	Field Strengt d Strength L 3. Average L 3. Peak Limit	imit imit

Page 103 of 118

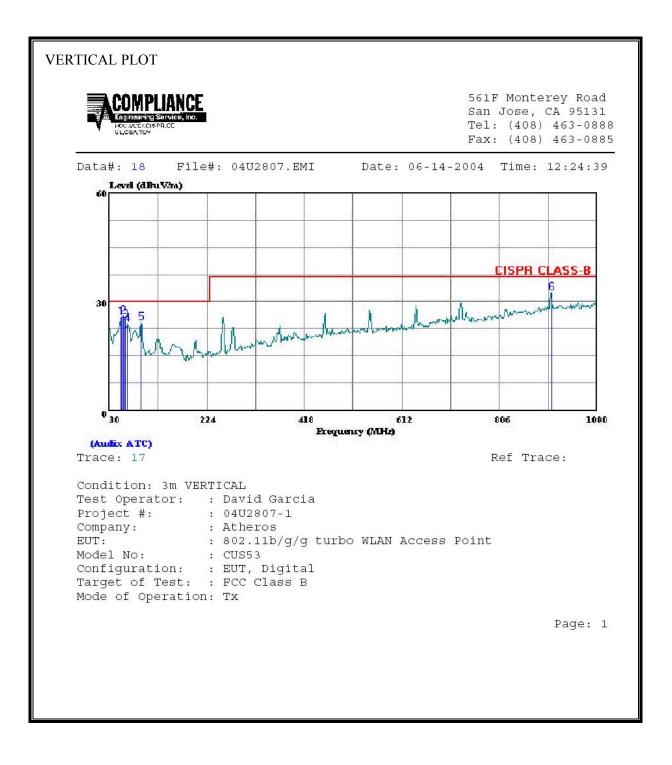

HARMONICS AND SPURIOUS EMISSIONS (g TURBO MODE)

est Target:FCC 15.247 Iode Oper:TX, G mode, T est Equipment: EMCO Horn 1-18GHz T73; S/N: 6717 @3m Hi Frequency Cables C 2 ft) V (2 ~ 3 ft) mode, B antenna f Dist Read PH GHz feet dBuV urbo, Mid Ch	Spectrum Ana Agilent E4446A An (4~6 ft) ▼ (12 ft)	nalyzer	Pre-ampl T63 Mite				olifer 26-40G	Hz T		Horn >180	GHz
EMCO Horn 1-18GHz T73; S/N: 6717 @3m Hi Frequency Cables (2 ft) ♥ (2 ~ 3 ft) mode, B antenna f Dist Read PH GHz feet dBuV	Agilent E4446A A	nalyzer					plifer 26-40G	Hz		Horn >180	
Hi Frequency Cables (2 ft) (2 - 3 ft) mode, B antenna f Dist Read PH GHz feet dBUV	$(4 \sim 6 \text{ ft})$ \checkmark (12 ft)							•			-
$ \overrightarrow{[2 ft]} \overrightarrow{[2 cash]} (2 cash) $ mode, B antenna $ \overrightarrow{[1 ft]} (2 cash) \overrightarrow{[1 cash]} (2 cash) $ $ \overrightarrow{[1 cash]} (2 cash) $						ı					
f Dist Read Pl GHz feet dBuV	(Read Avg. AF						Peak Meas 1 MHz Reso 1 MHz Video	lution Bandw	idth	Average Mea 1 MHz Resoluti 10Hz Video Ba	ion Bandwidth
	dBuV dB/m	CL Amp dB dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes
Irbo, Mia Cii					ubu v/m	ubu v/m	ubu v/m	ubu v/m	ub	ub	
874 9.8 51.6 311 9.8 63.8	40.0 33.4 47.3 35.8	2.9 -35.3 3.7 -34.6	0.0	1.0 1.0	53.6 69.7	42.0 53.2	74.0 74.0	54.0 54.0	-20.4 -4.3	-12.0 -0.8	v v
374 9.8 49.8	38.0 33.4	2.9 -35.3	0.0	1.0	51.8	40.0	74.0	54.0	-22.2	-14.0	Н
311 9.8 52.9	36.5 35.8	3.7 -34.6	0.0	1.0	58.8	42.4	74.0	54.0	-15.2	-11.6	Н
ote: No other emissions were	e detected above the syste	m noise floor.									
	Factor	Amp D Corr Avg Peak HPF		Correc Field S d Peak	Strength @ Field Stre	3 m		Pk Lim Avg Mar	Peak Fiel Margin vs	Field Strength d Strength Lin 3. Average Lir 5. Peak Limit	nit

Page 104 of 118

8. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)



Page 105 of 118

HORIZONT	TAL DATA							
	Freq	Remark	Read Level F	actor	Level		Over Limit	
	MHz		dBuV	dB (dBuV/m	dBuV/m	dB	
1 2	730.340 817.640		7.07 6.32		31.33 31.50			
3	909.790				34.60			
4	909.790 974.780		8.18 2.73		34.60 29.83			
4 5	974.780 984.480					37.00		
5	984.480 1000.000							
6	1000.000	Peak	2.08	27.55	29.63	37.00	- / . 3 /	

Page 106 of 118

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 107 of 118

VERTICAL DATA								
	Fred	Remark	Read	Factor	Level	Limit Lipe	Over	
	TIEG	Nemar K	TGAGT	Factor	Dever	птие	DIMIC	
	MHz		dBuV	dB	dBuV/m	dBuV/m	dB	
1	53.280	Peak	16.72	9.01	25.73	30.00	-4.27	
2	56.190	Peak	17.48	8.51	25.99	30.00	-4.01	
3	61.040	Peak	16.16	8.90	25.06	30.00	-4.94	
4	65.890	Peak	14.60	9.29	23.89	30.00	-6.11	
5	92.080	Peak	14.99	9.08	24.07	30.00	-5.93	
6	909.790	Peak	5.96	26.42	32.38	37.00	-4.62	

Page 108 of 118

8.1. **POWERLINE CONDUCTED EMISSIONS**

<u>LIMIT</u>

\$15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56 °	56 to 46 *		
0.5-5	56	46		
5-30	60	50		

Decreases with the logarithm of the frequency.

TEST PROCEDURE

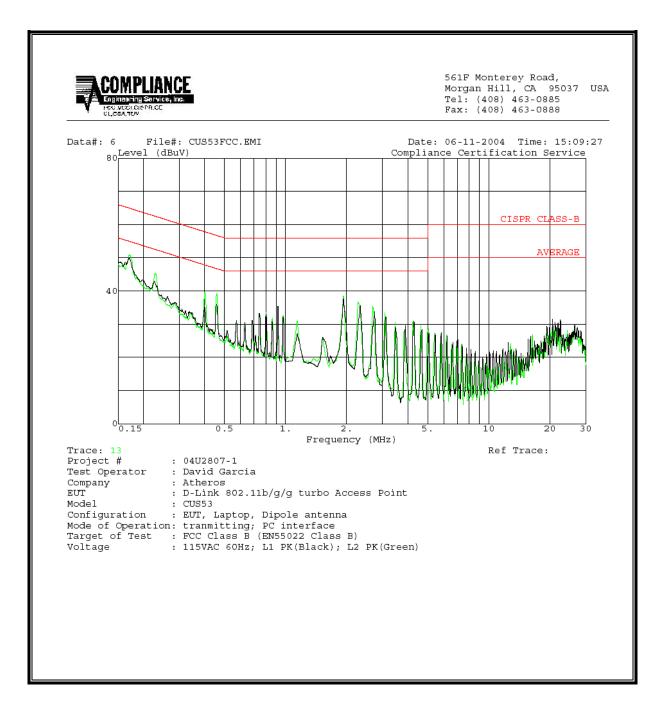
The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

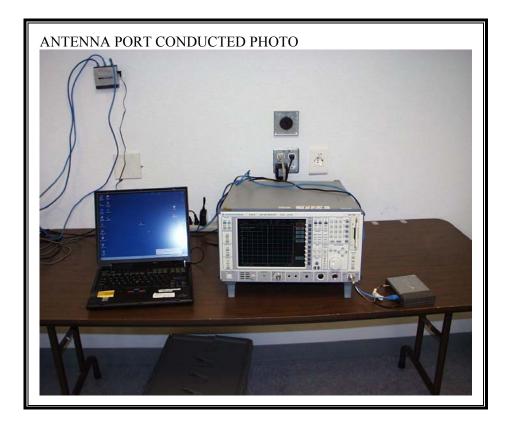
No non-compliance noted:


Page 109 of 118

<u>6 WORST EMISSIONS</u>

CONDUCTED EMISSIONS DATA (115VAC 60Hz)									
Freq.	Reading			Closs	Limit	EN_B	Margin		Remark
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1 / L2
0.17	49.86			0.00	65.46	55.46	-15.60	-5.60	L1
1.93	37.48			0.00	56.00	46.00	-18.52	-8.52	L1
2.33	35.62			0.00	56.00	46.00	-20.38	-10.38	L1
0.17	50.90			0.00	65.40	55.40	-14.50	-4.50	L2
0.23	45.44			0.00	63.77	53.77	-18.33	-8.33	L2
1.93	38.50			0.00	56.00	46.00	-17.50	-7.50	L2
6 Worst]	Data								

Page 110 of 118


LINE 1 AND LINE 2 RESULTS

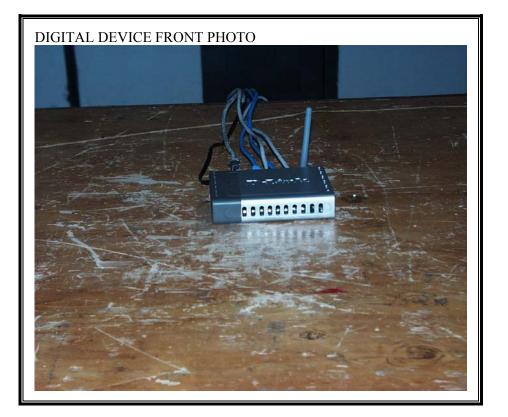
Page 111 of 118

9. SETUP PHOTOS

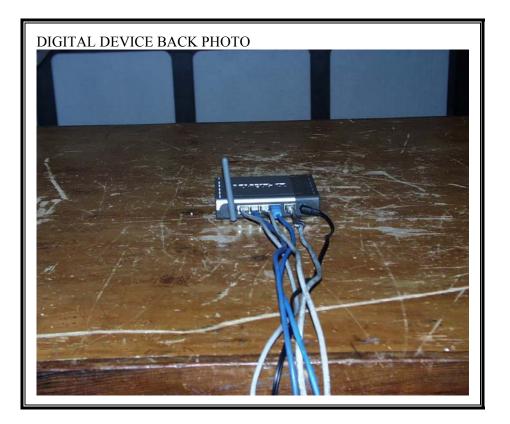
ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP

Page 112 of 118

RADIATED RF MEASUREMENT SETUP

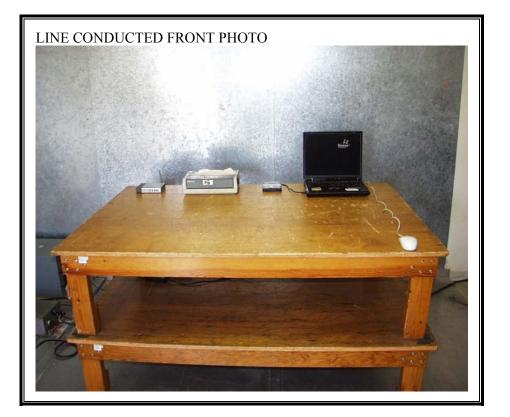


Page 113 of 118



Page 114 of 118

DIGITAL DEVICE RADIATED EMISSIONS SETUP



Page 115 of 118

Page 116 of 118

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP

Page 117 of 118

END OF REPORT

Page 118 of 118