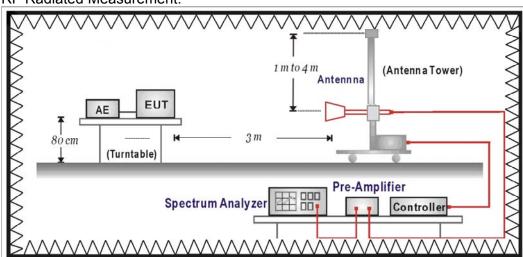
6. Radiated Emission Band Edge

6.1. Test Equipment


The following test equipments are used during the test:

Band Edge / CB1

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Horn Antenna	Schwarzback	BBHA 9120D	743	2011/03/14
Spectrum Analyzer	Agilent	E4440A	MY46187335	2011/01/14
Coaxial Cable	Huber+Suhner	Sucoflex 102	25623/2	2011/04/07
	AG			

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

6.2. Test Setup

RF Radiated Measurement:

QuieTek

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

6.4. Test Procedure

The EUT was setup according to ANSI C63.4: 2009 and tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements. The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

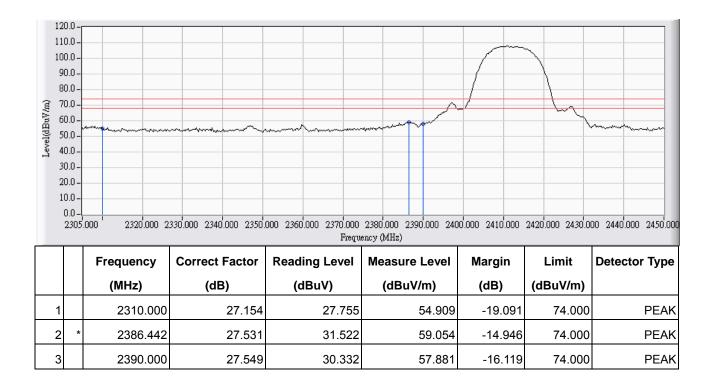
The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.4: 2009 on radiated measurement.

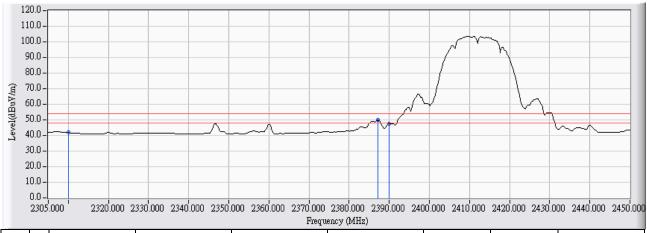
6.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247: 2011

6.6. Uncertainty

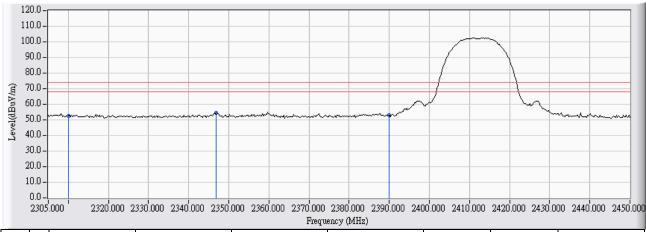

The measurement uncertainty ± 3.9 dB above 1GHz

6.7. Test Result


Radiated is defined as

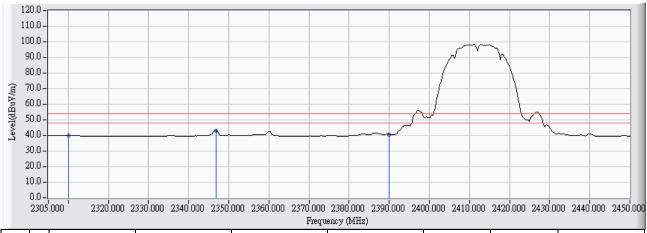
Site : CB1	Time : 2010/10/08 - 15:40
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : FCC_EFS_1-18G - HORIZONTAL	Power : AC 120V/60Hz
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit
	(Adapter: AMS1-0501200FU) -802.11b-2412MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2010/10/08 - 15:39
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : FCC_EFS_1-18G - HORIZONTAL	Power : AC 120V/60Hz
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit
	(Adapter: AMS1-0501200FU) -802.11b-2412MHz

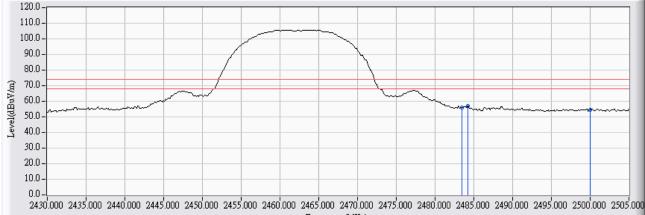
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	27.154	14.740	41.894	-12.106	54.000	AVERAGE
2	*	2387.167	27.535	22.271	49.806	-4.194	54.000	AVERAGE
3		2390.000	27.549	19.925	47.474	-6.526	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2010/10/08 - 17:24
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : FCC_EFS_1-18G - VERTICAL	Power : AC 120V/60Hz
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit
	(Adapter: AMS1-0501200FU) -802.11b-2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	27.780	24.874	52.654	-21.346	74.000	PEAK
2	*	2346.808	27.595	26.705	54.300	-19.700	74.000	PEAK
3		2390.000	27.371	25.646	53.016	-20.984	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2010/10/08 - 17:26
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : FCC_EFS_1-18G - VERTICAL	Power : AC 120V/60Hz
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit
	(Adapter: AMS1-0501200FU) -802.11b-2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	27.780	12.178	39.958	-14.042	54.000	AVERAGE
2	*	2346.808	27.595	15.515	43.110	-10.890	54.000	AVERAGE
3		2390.000	27.371	13.335	40.705	-13.295	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

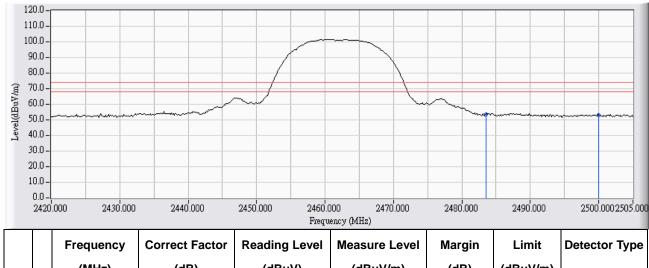
Site : CB1	Time : 2010/10/08 - 17:44
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : FCC_EFS_1-18G - HORIZONTAL	Power : AC 120V/60Hz
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit
	(Adapter: AMS1-0501200FU) -802.11b-2462MHz

Frequency (MHz)

		Frequency Correct Factor Reading Level Measure Level Ma				Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2483.500	28.018	27.857	55.875	-18.125	74.000	PEAK
2	*	2484.250	28.022	29.102	57.124	-16.876	74.000	PEAK
3		2500.000	28.097	26.628	54.725	-19.275	74.000	PEAK

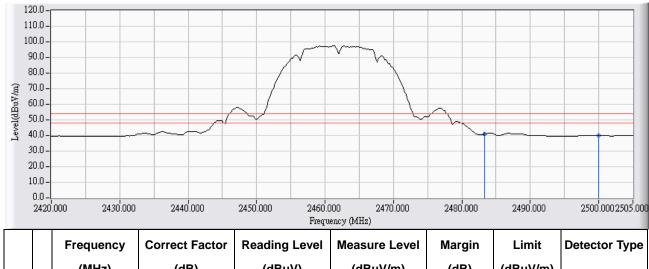
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

QuieTek


Site : CB1	Time : 2010/10/08 - 17:45
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : FCC_EFS_1-18G - HORIZONTAL	Power : AC 120V/60Hz
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit
	(Adapter: AMS1-0501200FU) -802.11b-2462MHz

-	• ••••								
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type	
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)		
1	*	2483.500	28.018	15.122	43.140	-10.860	54.000	AVERAGE	
2		2484.250	28.022	14.714	42.736	-11.264	54.000	AVERAGE	
3		2500.000	28.097	12.944	41.041	-12.959	54.000	AVERAGE	

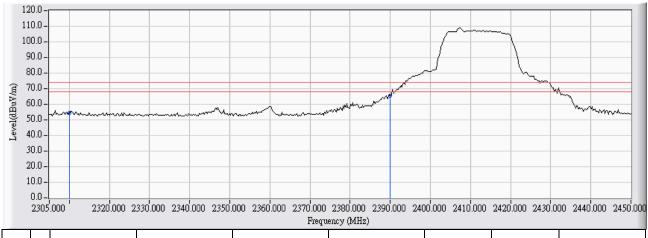
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2010/10/08 - 19:05
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : FCC_EFS_1-18G - VERTICAL	Power : AC 120V/60Hz
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit
	(Adapter: AMS1-0501200FU) -802.11b-2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	2483.500	26.896	26.780	53.677	-20.323	74.000	PEAK
2		2500.000	26.834	26.149	52.983	-21.017	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2010/10/08 - 19:08
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : FCC_EFS_1-18G - VERTICAL	Power : AC 120V/60Hz
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit
	(Adapter: AMS1-0501200FU) -802.11b-2462MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	2483.350	26.897	13.964	40.861	-13.139	54.000	AVERAGE
2		2500.000	26.834	13.045	39.879	-14.121	54.000	AVERAGE

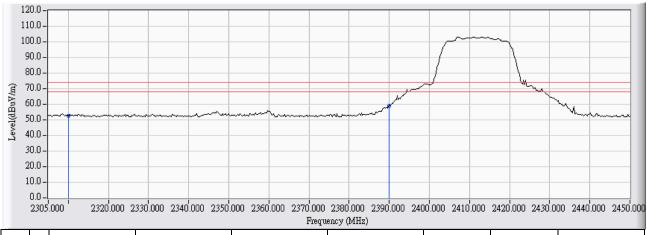
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

QuieTek

Site : CB1	Time : 2010/10/08 - 15:42
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : FCC_EFS_1-18G - HORIZONTAL	Power : AC 120V/60Hz
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit
	(Adapter: AMS1-0501200FU) -802.11g-2412MHz

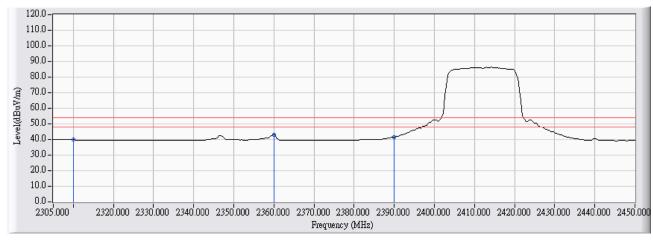
	Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	2310.000	27.154	27.131	54.285	-19.715	74.000	PEAK
2 *	2390.000	27.549	38.186	65.735	-8.265	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2010/10/08 - 15:44
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : FCC_EFS_1-18G - HORIZONTAL	Power : AC 120V/60Hz
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit
	(Adapter: AMS1-0501200FU) -802.11g-2412MHz

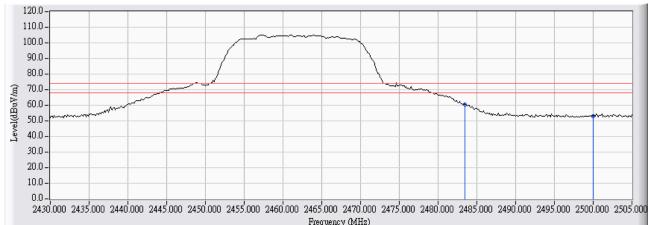
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	27.154	13.893	41.047	-12.953	54.000	AVERAGE
2		2360.100	27.394	19.928	47.323	-6.677	54.000	AVERAGE
3	*	2390.000	27.549	20.680	48.229	-5.771	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2010/10/08 - 17:29
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : FCC_EFS_1-18G - VERTICAL	Power : AC 120V/60Hz
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit
	(Adapter: AMS1-0501200FU) -802.11g-2412MHz

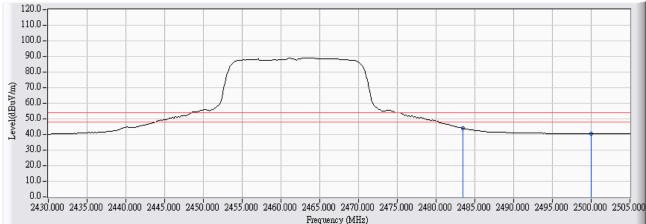
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	27.780	24.529	52.309	-21.691	74.000	PEAK
2	*	2390.000	27.371	31.763	59.133	-14.867	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2010/10/08 - 17:32
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : FCC_EFS_1-18G - VERTICAL	Power : AC 120V/60Hz
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit
	(Adapter: AMS1-0501200FU) -802.11g-2412MHz

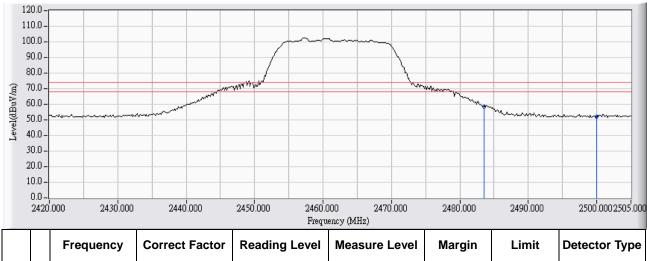
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	27.780	11.992	39.772	-14.228	54.000	AVERAGE
2	*	2360.100	27.517	15.611	43.128	-10.872	54.000	AVERAGE
3		2390.000	27.371	14.300	41.670	-12.330	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2010/10/08 - 17:47
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : FCC_EFS_1-18G - HORIZONTAL	Power : AC 120V/60Hz
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit
	(Adapter: AMS1-0501200FU) -802.11g-2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	2483.500	28.018	32.470	60.488	-13.512	74.000	PEAK
2		2500.000	28.097	24.689	52.786	-21.214	74.000	PEAK

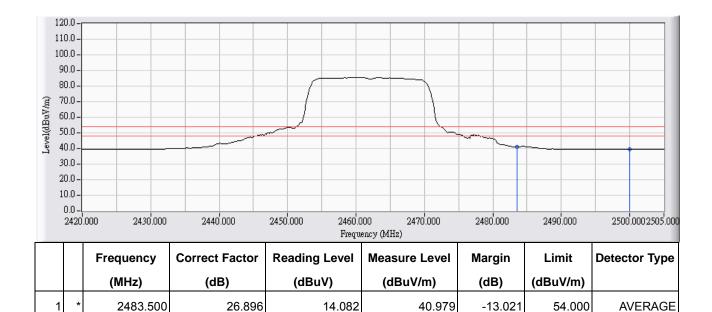
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2010/10/08 - 17:48
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : FCC_EFS_1-18G - HORIZONTAL	Power : AC 120V/60Hz
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit
	(Adapter: AMS1-0501200FU) -802.11g-2462MHz

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Detector Type
1	*	2483.500	28.018	15.972	43.990	-10.010	54.000	AVERAGE
2		2500.000	28.097	12.522	40.619	-13.381	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2010/10/08 - 19:00
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : FCC_EFS_1-18G - VERTICAL	Power : AC 120V/60Hz
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit
	(Adapter: AMS1-0501200FU) -802.11g-2462MHz


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	2483.500	26.896	31.658	58.555	-15.445	74.000	PEAK
2		2500.000	26.834	25.122	51.956	-22.044	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

54.000

AVERAGE

Site : CB1	Time : 2010/10/08 - 19:02
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : FCC_EFS_1-18G - VERTICAL	Power : AC 120V/60Hz
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit
	(Adapter: AMS1-0501200FU) -802.11g-2462MHz

Note:

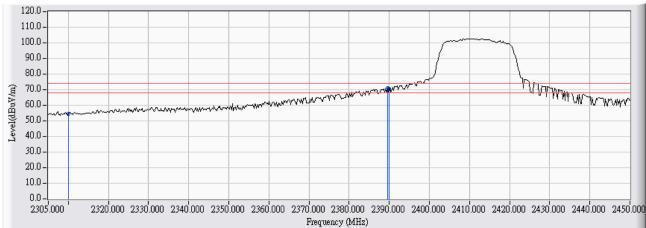
2

2500.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

12.623

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.


26.834

- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

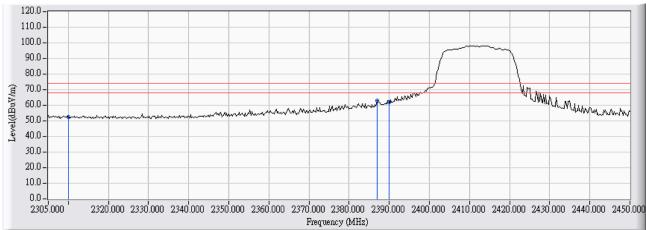
39.457

-14.543


Site : CB1	Time : 2010/10/08 - 16:14
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : FCC_EFS_1-18G - HORIZONTAL	Power : AC 120V/60Hz
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit
	(Adapter: AMS1-0501200FU) -802.11n(20M)-2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	27.154	27.377	54.531	-19.469	74.000	PEAK
2	*	2389.583	27.547	43.622	71.169	-2.831	74.000	PEAK
3		2390.000	27.549	42.941	70.490	-3.510	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2010/10/08 - 16:18
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : FCC_EFS_1-18G - HORIZONTAL	Power : AC 120V/60Hz
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit
	(Adapter: AMS1-0501200FU) -802.11n(20M)-2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	27.154	12.919	40.073	-13.927	54.000	AVERAGE
2	*	2359.858	27.393	19.023	46.417	-7.583	54.000	AVERAGE
3		2390.000	27.549	14.295	41.844	-12.156	54.000	AVERAGE

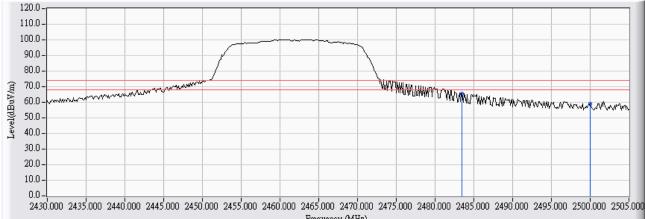
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2010/10/08 - 17:37
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : FCC_EFS_1-18G - VERTICAL	Power : AC 120V/60Hz
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit
	(Adapter: AMS1-0501200FU) -802.11n(20M)-2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	27.780	24.566	52.346	-21.654	74.000	PEAK
2	*	2386.925	27.387	35.417	62.804	-11.196	74.000	PEAK
3		2390.000	27.371	34.460	61.830	-12.170	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2010/10/08 - 17:38				
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6				
Probe : FCC_EFS_1-18G - VERTICAL	Power : AC 120V/60Hz				
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit				
	(Adapter: AMS1-0501200FU) -802.11n(20M)-2412MHz				



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	27.780	12.268	40.048	-13.952	54.000	AVERAGE
2	*	2360.100	27.517	15.286	42.803	-11.197	54.000	AVERAGE
3		2390.000	27.371	12.764	40.134	-13.866	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

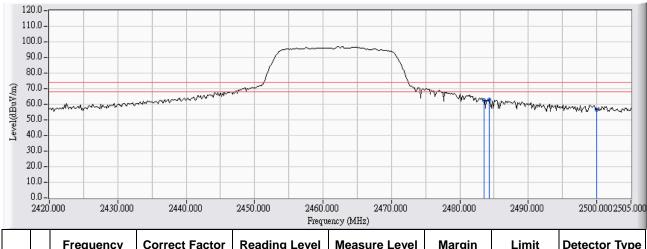
QuieTek

Site : CB1	Time : 2010/10/08 - 17:50		
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6		
Probe : FCC_EFS_1-18G - HORIZONTAL	Power : AC 120V/60Hz		
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit		
	(Adapter: AMS1-0501200FU) -802.11n(20M)-2462MHz		

Frequency (MHz)

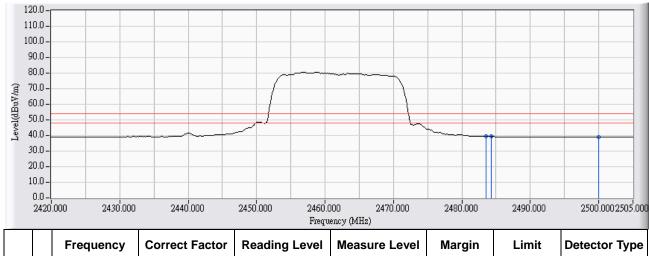
		Frequency	Correct Factor	Reading Level		Margin	Limit	Detector Type
1	*	(MHz) 2483.500	(dB) 28.018	(dBuV) 37.411	(dBuV/m) 65.429	(dB) -8.571	(dBuV/m) 74.000	PEAK
				-				
2		2500.000	28.097	30.823	58.920	-15.080	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. " * ", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2010/10/08 - 17:51				
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6				
Probe : FCC_EFS_1-18G - HORIZONTAL	Power : AC 120V/60Hz				
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit				
	(Adapter: AMS1-0501200FU) -802.11n(20M)-2462MHz				

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Detector Type
1	*	2483.500	28.018	12.661	40.679	-13.321	54.000	AVERAGE
2		2500.000	28.097	12.278	40.375	-13.625	54.000	AVERAGE

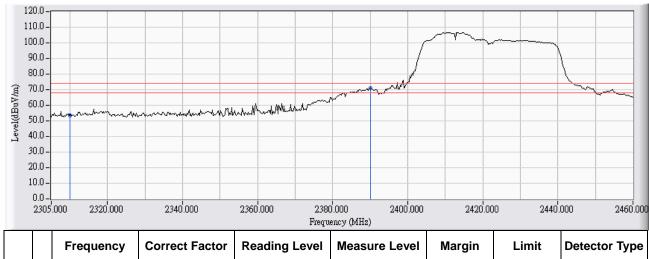
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2010/10/08 - 18:56		
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6		
Probe : FCC_EFS_1-18G - VERTICAL	Power : AC 120V/60Hz		
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit		
	(Adapter: AMS1-0501200FU) -802.11n(20M)-2462MHz		

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2483.500	26.896	35.675	62.572	-11.428	74.000	PEAK
2	*	2484.317	26.892	35.901	62.793	-11.207	74.000	PEAK
3		2500.000	26.834	29.755	56.589	-17.411	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

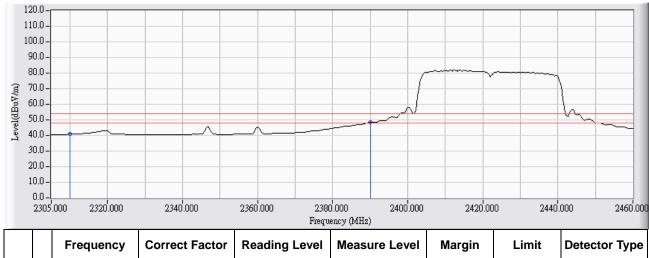
Site : CB1	Time : 2010/10/08 - 18:57				
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6				
Probe : FCC_EFS_1-18G - VERTICAL	Power : AC 120V/60Hz				
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit				
	(Adapter: AMS1-0501200FU) -802.11n(20M)-2462MHz				



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	2483.500	26.896	12.497	39.394	-14.606	54.000	AVERAGE
2		2484.317	26.892	12.362	39.254	-14.746	54.000	AVERAGE
3		2500.000	26.834	12.260	39.094	-14.906	54.000	AVERAGE

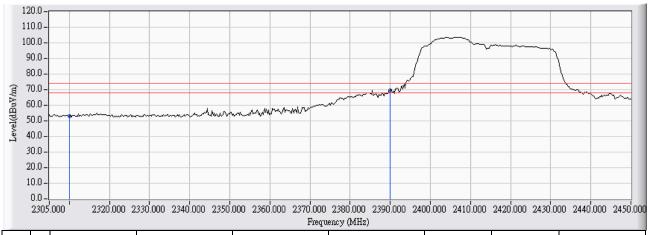
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

QuieTek


Site : CB1	Time : 2010/10/08 - 16:32		
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6		
Probe : FCC_EFS_1-18G - HORIZONTAL	Power : AC 120V/60Hz		
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit		
	(Adapter: AMS1-0501200FU) -802.11n(40M)-2422MHz		

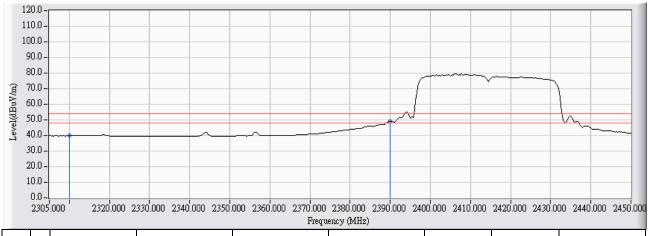
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	27.154	26.124	53.278	-20.722	74.000	PEAK
2	*	2390.000	27.549	43.410	70.959	-3.041	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2010/10/08 - 16:33
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : FCC_EFS_1-18G - HORIZONTAL	Power : AC 120V/60Hz
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit
	(Adapter: AMS1-0501200FU) -802.11n(40M)-2422MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	27.154	13.649	40.803	-13.197	54.000	AVERAGE
2	*	2390.000	27.549	21.034	48.583	-5.417	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2010/10/08 - 16:40				
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6				
Probe : FCC_EFS_1-18G - VERTICAL	Power : AC 120V/60Hz				
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit				
	(Adapter: AMS1-0501200FU) -802.11n(40M)-2422MHz				

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	27.780	25.158	52.938	-21.062	74.000	PEAK
2	*	2390.000	27.371	42.041	69.411	-4.589	74.000	PEAK

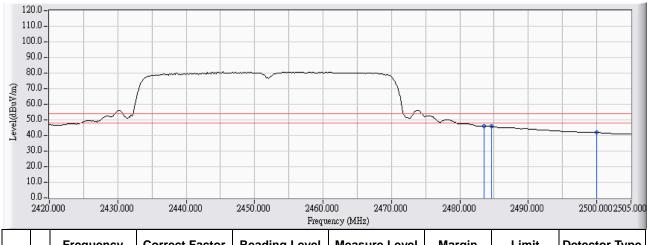
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2010/10/08 - 16:41				
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6				
Probe : FCC_EFS_1-18G - VERTICAL	Power : AC 120V/60Hz				
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit				
	(Adapter: AMS1-0501200FU) -802.11n(40M)-2422MHz				

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	27.780	11.972	39.752	-14.248	54.000	AVERAGE
2	*	2390.000	27.371	21.680	49.050	-4.950	54.000	AVERAGE

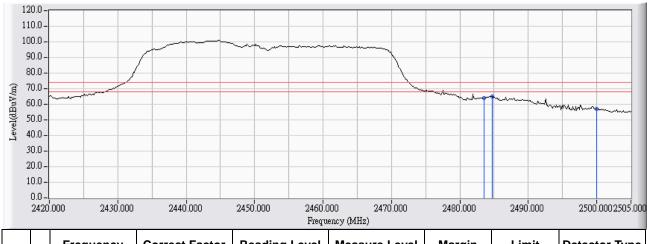
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

QuieTek


Site : CB1	Time : 2010/10/08 - 17:58
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : FCC_EFS_1-18G - HORIZONTAL	Power : AC 120V/60Hz
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit
	(Adapter: AMS1-0501200FU) -802.11n(40M)-2452MHz

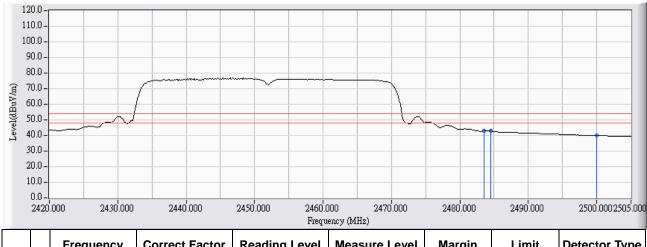
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2483.500	28.018	39.956	67.974	-6.026	74.000	PEAK
2	*	2484.600	28.023	41.023	69.047	-4.953	74.000	PEAK
3	5	2500.000	28.097	30.415	58.512	-15.488	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2010/10/08 - 17:59		
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6		
Probe : FCC_EFS_1-18G - HORIZONTAL	Power : AC 120V/60Hz		
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit		
	(Adapter: AMS1-0501200FU) -802.11n(40M)-2452MHz		

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	2483.500	28.018	17.956	45.974	-8.026	54.000	AVERAGE
2		2484.600	28.023	17.792	45.816	-8.184	54.000	AVERAGE
3	5	2500.000	28.097	13.766	41.863	-12.137	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2010/10/08 - 18:37				
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6				
Probe : FCC_EFS_1-18G - VERTICAL	Power : AC 120V/60Hz				
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit				
	(Adapter: AMS1-0501200FU) -802.11n(40M)-2452MHz				

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2483.500	26.896	37.060	63.957	-10.043	74.000	PEAK
2	*	2484.742	26.890	38.076	64.965	-9.035	74.000	PEAK
3		2500.000	26.834	30.205	57.039	-16.961	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

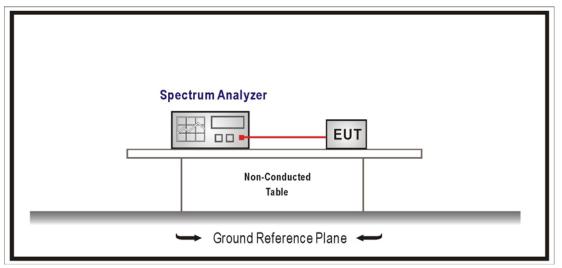
Site : CB1	Time : 2010/10/08 - 18:39
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : FCC_EFS_1-18G - VERTICAL	Power : AC 120V/60Hz
EUT : Wireless N Home Networks Camera	Note : Mode 1: Transmit
	(Adapter: AMS1-0501200FU) -802.11n(40M)-2452MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	2483.500	26.896	15.943	42.840	-11.160	54.000	AVERAGE
2		2484.472	26.891	15.884	42.775	-11.225	54.000	AVERAGE
3		2500.000	26.834	13.182	40.016	-13.984	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. Occupied Bandwidth

7.1. Test Equipment


The following test equipment is used during the test:

Occupied Bandwidth / SR7

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Spectrum Analyzer	R&S	FSP	100561	2013/02/19

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

7.2. Test Setup

7.3. Test Procedures

The EUT was setup according to ANSI C63.4: 2009; tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 1-5 % of the emission bandwidth (EBW).

7.4. Limits

The 6 dB bandwidth must be greater than 500 kHz.

7.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247: 2011

7.6. Uncertainty

The measurement uncertainty is defined as ± 150 Hz

7.7. Test Result

Product Wireless N Home Networks Camera						
Test Item	Occupied Bandwidth					
Test Mode	Transmit					
Date of Test	2012/04/06	Test Site	SR7			

802.11 b								
Channel No.	Frequency (MHz)	Measurement Level (MHz)	Required Limit (MHz)	Result				
1	2412	10.33	≧500	Pass				
6	2437	12.23	≧500	Pass				
11	2462	10.33	≧500	Pass				

			<u> </u>	nannei i					
Agilent Spectru	um Analyzer - Occupie	ed BW							
	50 Ω		AC SENSE		ALIGN AUTO		PM Apr 11, 2012		BW
BW 300.0			Center Freq	: 2.412000000 GH		Radio Sto	l: None		DW
	Input: RF				lold:>10/10 ain: -2.50 dB	Radio De	uiaa: BTC		Res B
		#IFGain:Low	#Atten: 30 dl	5 2210	am2.50 dB	Radio De	vice. B15		300.00 k
								Auto	300.00 K
dB/div	Ref 40 dBm							Auto	<u>IV</u>
g							1		
0	14 (A 14)								Video E
									910.00
0			· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	Auto	<u>N</u>
0									
		m	pmp	mm	m.				
0		\sim			- Www				
ō	~				<u>س</u>	n			
	\sim					5			
						- ~~~			
	m w						m_{1}		
ິ . 1							41		
0 0	-						4		
0									
Ů.									
									ilter Typ
nter 2.41				040 LUL-		Spa	an 26 MHz		Gaussia
es BW 30	UU KHZ		#VBW	910 kHz		SW	eep 1 ms		
Occupie	ed Bandwidt	th	т	otal Power	22.2	2 dBm			
oooupie									
	14	4.266 M	HZ						
Transmit	Freq Error	2.905	kHz C	BW Power	9	9.00 %			
		10.00							
x dB Ban	ndwidth	10.33 M	VIHZ X	dB	-b.	00 dB			
i					STATUS				

Channel 1

<u>Channel 6</u>

	nit Freq E andwidth		14.048 12.23		OBW I x dB	Power		9.00 % 00 dB			
	bied Ban	14	.854 N		Total F			7 dBm			
enter 2. Res BW	437 GHz 300 kHz			#\	VBW 910			Sw	n 26 MHz eep 1 ms		Gaussiar
-50											ilter Typ
30 ^M M / A	hawine"								^{ւ,} , , , , , , , , , , , , , , , , , ,		
20				0				Wy y			
0							v		2		
20 10										Auto	<u>N</u>
30											Video E 910.00 k
) dB/div	Ref 40) dBm	#IFGall.LUW	Pricen		Latoun	. 1.00 40	Tradio De		Auto	300.00 k
BW 300	0.00 kHz	Input: RF	ر #IFGain:Low	Trig: F	Freq: 2.4370 ree Run : 30 dB	Avg Hold	l:>10/10 ∶-2.50 dB	Radio Std			ResE
	50 Ω			AC	SENSE:INT		ALIGN AUTO		PM Apr 11, 2012		BW

📕 Agilent Spectru	um Analyzer - Oc	cupied BW									
	50 Ω		4		NSE:INT		ALIGN AUTO		PM Apr 11, 2012		BW
RBW 300.0				T	req: 2.4620			Radio Std	: None		5
	Inpu	t: RF	ain:Low				Avg Hold:>10/10 Ext Gain: -2.50 dB R		Radio Device: BTS		Res B
		#IFG	ain:Luw	Housen. V	0 40	Extoan	2.00 48	Itadio Dei	nce. BTS		300.00 kl
										Auto	300.00 Ki
0 dB/div	Ref 40 dE	3m								Auto	<u>I¥I</u>
og	1 1			10	2						
30		- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10		2	<i>.</i>	2					Video E
50											910.00 k
20				0	0	-				Auto	M
44.14											<u>.</u>
10		- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10		2	25		-				
ō		1	m	ww	$ \sim \sim$	m	γ				
0		M	5 3-3-2 -				M				
-10							- vy	-			
1000								1			
-20	~	N. Y			×.		-	4			
-30	De C							1 mar			
w mu	7722								Wh 2		
-40 4,00				à			-		- m		
100 PA									v		
-50											
				2						F	ilter Typ
enter 2.46	2 GHz							Spa	n 26 MHz		Gaussia
Res BW 30	00 kHz			#VE	3W 910 I	kHz			eep 1 ms		
Occupie	ed Bandw	dth			Total F	ower	18.83	2 dBm			
occupic	La Danaw										
		14.2	54 Mł	z							
Transmit	Freq Erro	r	-3604	Hz	OBW F	Power	99	9.00 %			
	1973		10.00 -				_				
x dB Ban	ndwidth		10.33 N	IHZ	x dB		-6.	00 dB			
-											
G							STATUS	5			

Product	Wireless N Home Networks Camera		
Test Item	Occupied Bandwidth		
Test Mode	Transmit		
Date of Test	2012/04/06	Test Site	SR7

IEEE 802.11g				
Channel No.	Frequency (MHz)	Measurement Level (MHz)	Required Limit (MHz)	Result
1	2412	16.65	≧500	Pass
6	2437	16.56	≧500	Pass
11	2462	16.68	≧500	Pass

<u>Channel 1</u>

	pectrum Analyze	r - Occupied BV									
RBW 3	50 Ω 00.00 kHz		4	Center F	NSE:INT req: 2.41200	0000 GHz Avg Hold		06:19:00 Radio Std	PM Apr 11, 2012 : None		BW
		Input: RF #II	Gain:Low	#Atten: 3		Ext Gain:		Radio Dev	vice: BTS		Res BW 300.00 kHz
10 dB/div	Ref 40) dBm								Auto	Man
20										Auto	Video BW 910.00 kHz
10			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	agran are	- marine	- martine - m	3 ma 19 M m a 47			Auto	<u>Mar</u>
0								N N			
-10 -20 אמינייאי	mart								๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛		
-30		-									
-50 ———										-	ilter Type
	2.412 GHz V 300 kHz	<u>x.</u>		#VE	3W 910 k	Hz			n 26 MHz eep 1 ms		Gaussian
Occu	ipied Ban	dwidth			Total P	ower	24.24	l dBm			
		16.7	720 MH	Ηz							
Trans	smit Freq E	rror	-26430	Hz	OBW P	ower	99	9.00 %			
x dB	Bandwidth	in L	16.65 №	lHz	x dB		-6.	00 dB			
MSG							STATUS				

<u>Channel 6</u>

Agilent Spect	rum Analyzer -	Occupied B	W								
	50 Ω				SENSE:INT		ALIGN AUTO	06:22:40 Radio Sto	PM Apr 11, 2012		BW
BW 300.		nput: RF	.		Freq: 2.4370 ee Run		d·>10/10	Radio Sto	i: None	-	
	Ir		FGain:Low	#Atten:			: -2.50 dB	Radio De	vice: BTS		Res B
		90 90							- 1		300.00 k
										Auto	M
dB/div g	Ref 40	aBm					_				
(1778)											Video E
30						1					910.00
20					_					Auto	510.00 P
10			-	4	A an hi						
0		- Marin - Aller	Lahren Ingen - Andrea	a fares a class	and the second second	hor Unolether w	"how have a straight of	×~~~			
	1										
10	and a							Why.			
20					_				Mile		
	m have										
30											
40					-	-			-		
-											
50											
	27.011-							0	DC MILL	1 1	ilter Typ
enter 2.4 les BW 3				-41	/BW 910				an 26 MHz		Gaussia
Ces DW J	300 KHZ			#\	DW 910			5W	eep 1ms		
Occupi	ied Banc	dwidth			Total F	ower	20.9	7 dBm			
		16.	707 MI	ΗZ							
Transm	it Freq Er	ror	-25066	Hz	OBW I	Power	9	9.00 %			
v dB Ba	ndwidth		16.56 N	1H-2	x dB		-6	.00 dB			
	Individuali		10.001		A GD		Ū	.00 00			
								-			
3							STATU	5			

Agilent Spec	trum Analyze	er - Occupied	BW								
	50 Ω	_		AC	SENSE:INT Freg: 2.4620		ALIGN AUTO	06:26:45 Radio Sto	PM Apr 11, 2012		BW
RBW 300	0.00 KHZ				ree Run		d·> 10/10	Radio Sto	a: None	-	
		Input: RF	#IFGain:Low		30 dB		: -2.50 dB	Radio De	vice: BTS		Res B
											300.00 k
										Auto	M
0 dB/div	Ref 4	0 dBm									1000
og		- 10 11.		9							Midee F
30				-				10.	<u>.</u>		Video E
20										0	910.00
20										Auto	Ν
10					Constant of the second second	1					
0		and the second	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and an and the second s	war marker	a mara	manne	m			
0		/						1			
-10	1	<u> </u>		-			-	- <u>\</u>			
								"h			
-20 10 10 -20	Harlen							ו	month with how for		
-30		- 10- 10-									
-40							-				
-50					-		-				
										1 2	ilter Typ
enter 2.4				5				- Cn	an 26 MHz		
Res BW				#1	/BW 910				eep 1 ms		Gaussia
KES DW	JUU KHZ			#	1044 910			3₩	eep mis		
Occup	ied Ba	ndwidth	1		Total I	ower	21.8	1 dBm			
		16	.710 N	HZ							
Transm	nit Freg	Error	-2763	9 Hz	OBW	Power	9	9.00 %			
	1.5										
x dB Ba	andwidti	n	16.68	WHZ	x dB		-6	00 dB			
_											
SG							STATUS	5			

Product	Wireless N Home Networks Camera		
Test Item	Occupied Bandwidth		
Test Mode	Transmit		
Date of Test	2012/04/06	Test Site	SR7

IEEE 802.11n (201	IEEE 802.11n (20MHz)											
Channel No.	Frequency	Measurement Level	Required Limit	Decult								
Channel No.	(MHz)	(MHz)	(MHz)	Result								
1	2412	17.56	≧500	Pass								
6	2437	17.58	≧500	Pass								
11	2462	17.49	≧500	Pass								

💭 Agilent Spectru		ccupied BW									
RBW 300.0	οΩ I0 kHz		4	Center	ENSE:INT Freq: 2.41200		ALIGN AUTO	06:30:18	PM Apr 11, 2012 : None		BW
		ut: RF #IF(Gain:Low	┘ Trig: Fre #Atten: 3		Avg Hold: Ext Gain:		Radio Dev	vice: BTS	Auto	Res BW 300.00 kHz Man
10 dB/div Log	Ref 40 dl	Зm								Auto	IVIAII
										Auto	Video BW 910.00 kHz <u>Man</u>
10	- Andrew - A	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	when an	᠈ᡏᠬᠬ᠆ᢣᢩ᠕᠊ᢦᢩ᠆ᠺᠺᢦ	Jan Marken Mark	n Martin and a faith of the	-	~			
-20 -30 hydrowelformal	Var Mart								Mourpraphy		
-40 -50										F	ilter Type
Center 2.412 #Res BW 30				#V	BW 910 k	Hz		Spa Swe	n 26 MHz ep 1 ms	-	Gaussian
Occupie	d Bandv		56 MI	۰z	Total P	ower	18.87	′ dBm			
Transmit	Freq Erro	or	-3451	Hz	OBW F	ower	99	9.00 %			
x dB Ban	dwidth		17.56 №	IHz	x dB		-6.	00 dB			
MSG							STATUS				

<u>Channel 6</u>

Agilent Spect	rum Analyzer - Oc	ccupied BV	N								
BW 300	50 Ω		1		BENSE:INT Freq: 2.4370	00000 GHz	ALIGNAUTO	06:34:03 Radio Sto	PM Apr 11, 2012		BW
BVV 300		ut: RF		Trig: Fr		Avg Hold	1:>10/10	Itadio Sto	. Hone	<u> </u>	
	mpe	#II	FGain:Low	#Atten:	30 dB	Ext Gain	: -2.50 dB	Radio De	vice: BTS		Res B
											300.00 kl
0 dB/div	Ref 40 dE	Bm								Auto	Ma
og	Kei 40 di	DIII	3	2							
30					8						Video E
50											910.00 k
20						-	-			Auto	M
10											.85
10								19			
0		why many the		ᠰ᠁ᡁᡣ᠋᠕ᠰ	A Colombach	handler and and	All and a start and a start and a start a star	n-m			
10	1							<u>\</u>			
	N.							h.			
20	2.00 000			1					WWW WWWWWW		
30 my w/w/	- Y 1								ANDA ANAMATY		
40					-		-				
50					_						
										1 7	ilter Typ
enter 2.4	37 GHz							Sna	an 26 MHz	L '	Gaussia
Res BW				#\	/BW 9101	kH7			eep 1 ms		Gaussia
									oop i me		
Occup	ied Bandv	width			Total F	ower	18.7) dBm			
oodap	lou Banar			¥							
		17.0	648 MI	ΗZ							
Transm	it Freq Erro	or	3.430 I	٢Hz	OBW F	Power	9	9.00 %			
x dB Ba	ndwidth		17.58 N	1Hz	x dB		-6	00 dB			
							-				
3							STATUS	2			
1							STATUS				

						<u> </u>					
Agilent Spect	trum Analyzer - C	Occupied BV	y								
NI COR	50 Ω				SENSE:INT		ALIGN AUTO	06:44:01 Radio Sto	PM Apr 11, 2012		BW
RBW 300				T	Freq: 2.4620 ee Run	Avg Hold	N-> 10/10	Radio Sto	i: None		2
	Inp	ut: RF #IF	- Gain:Low	#Atten:			: -2.50 dB	Radio De	vice: BTS		Res B
		1922	Gameow								300.00 kł
										Auto	Ma
10 dB/div	Ref 40 d	Bm									10 ⁻¹ -1-1
og										-	
30			11	-		-			a		Video B
20											910.00 k
20										Auto	<u>M</u>
10			-			-	_				
	25.0	6 • · - · · ·			Ja ARy May and						
0	1	e e cherente	ME 10 - 201 F 10					- Carlo	0		
-10	f					_		\rightarrow			
	John I.							h.			
-20	-								M hard has		
-30 MY	N 10								with the many ba		
10 10 10 10 10 10 10 10 10 10 10 10 10 1											
-40					-		-				
-50						_					
										1 2	ilter Typ
enter 2.4	62 CH2							Sna	an 26 MHz		Gaussia
Res BW				#\	/BW 910	kHz			eep 1 ms		Gaussia
	500 KH2			<i>#</i> v	Dvv 910	M12			сер тпіз		
Occup	ied Band	width			Total F	ower	18.2	7 dBm			
oooup	loa Balla			2 V							
		17.6	656 M	Hz							
Transm	it Freq Err	or	3.560	kHz	OBW I	Power	99	9.00 %			
	1.5		17 10				-				
х ав ва	Indwidth		17.49	VIHZ	x dB		-0.	00 dB			
-											
SG							STATUS				

Product	Wireless N Home Networks Camera		
Test Item	Occupied Bandwidth		
Test Mode	Transmit		
Date of Test	2012/04/06	Test Site	SR7

IEEE 802.11n (40MHz)								
Channel No.	Frequency	Measurement Level	Required Limit	Decult				
Channel No.	(MHz)	(MHz)	(MHz)	Result				
3	2422	36.38	≧500	Pass				
6	2437	36.16	≧500	Pass				
9	2452	36.20	≧500	Pass				

<u>Channel 3</u>

💯 Agilent Spectrum Analyzer - Occup						
₩ 50 Ω RBW 510.00 kHz	Center Fr	NSE:INT req: 2.422000000 GHz	Radio St	PM Apr 11, 2012 d: None		BW
Input: R	F Trig: Free #IFGain:Low #Atten: 30			vice: BTS		Res BW 510.00 kHz
10 dB/div Ref 40 dBm					Auto	510.00 kH2 <u>Man</u>
Log 30						Video BW
20					Auto	1.5000 MHz <u>Man</u>
10	Burry and white provide the for the stand of	. In mary and a second				
	<u>`</u>					
-10 -20 proper and -			λ.	Mary way the for		
-30						
-40						
-50					Fil	ter Type
Center 2.422 GHz #Res BW 510 kHz	#VE	SW 1.5 MHz	Sp	an 52 MHz eep 1 ms		Gaussian
Occupied Bandwic		Total Power	23.41 dBm			
and a state to the set of a second state to the	6.713 MHz					
Transmit Freq Error	-335358 Hz	OBW Power	99.00 %			
x dB Bandwidth	36.38 MHz	x dB	-6.00 dB			
MSG			STATUS			
			514105			

<u>Channel 6</u>

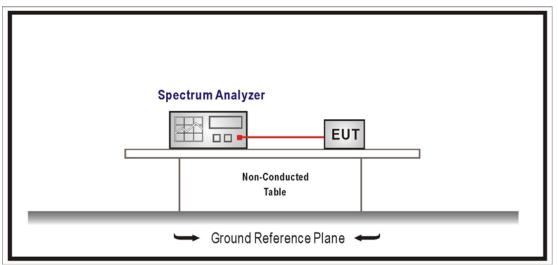
					<u>•</u>						
💴 Agilent Spec	trum Analyzer	- Occupied B	W								
	50 Ω		1		Freq: 2.4370	00000 GH-	ALIGN AUTO	06:53:13 Radio St	3 PM Apr 11, 2012		BW
RBW 510				T	ee Run	Avg Hold	N-> 10/10	Raulo St	a. None	-	
		Input: RF	FGain:Low	#Atten:			: -2.50 dB	Radio De	vice: BTS		Res B
		"	rGam.Low	written.		Extouri	. 2.00 48	Tradio De	1		510.00 kl
										Auto	Ma
10 dB/div	Ref 40	dBm								Auto	III
Log				5				<i></i>			
30				2	-	2					Video B
											1.5000 M
20		1		0		3				Auto	<u>Ma</u>
10					_						
0	- And	at and a star	man	-	1 month man		at a share a sh	working	0 0		
-10	1				~						
2410									1		
-20	f"		4	1	-	-	-	<u> </u>			
-30 4 14 minut	Mr. m P							1	www.		
-30 Maawaa									- the state		
-40					-						
472											
-50					-						
											Filter Type
Center 2.4	137 GHz							Sp	an 52 MHz		Gaussiar
#Res BW	510 kHz			#∖	BW 1.5 N	/Hz			eep 1 ms		
Occur	ied Ban	dwidth			Total F	ower	18.79	dBm			
oooup	loa Ball			¥							
		36.	133 MI	ΗZ							
Transm	nit Freq Ei	rror	7.946 I	κHz	OBW F	ower	99	9.00 %			
	1973						_				
X dB Ba	andwidth		36.16 N	IHZ	x dB		-b.	00 dB			
150							STATUS				
MSG							STATUS	·			

<u>Channel 9</u>

					<u>unan</u>						
🛙 Agilent Spec		- Occupied B	W								
	50 Ω		1		ENSE:INT Freq: 2.4520	0000 GH-	ALIGN AUTO	06:56:08 Radio St	3 PM Apr 11, 2012		BW
RBW 510		Input: RF	<u> </u>	T		Avg Hold	1:> 10/10	Radio St	a. None	-	
		трис кг #	IFGain:Low	#Atten:			: -2.50 dB	Radio De	vice: BTS		Res B
											510.00 kl
	D-6 40	- ID								Auto	M
l0 dB/div _og	Ref 40	abm		5	1	1	4				
1.1100-00											Video B
30								· · · ·			1.5000 M
20				10	0					Auto	N
10											
10											
0		Man mar Min	mann	no manufally	por lan	marken	and an and	Nen Canal			
					Y						
-10	n n		Ť.	-				1			
-20	N				_	-		<u> </u>			
-20 -30 ml/1/ww	Man							1	hand the strategic in		
-30			n in the second								
-40		-	-	-	-	-					
0105											
-50										1	
										1 1	ilter Typ
enter 2.4									an 52 MHz		Gaussia
Res BW	510 KHZ			#V	BW 1.5 N	IHZ		SW	reep 1 ms		
Occup	ied Ban	dwidth			Total F	ower	19.34	1 dBm			
1965 - 1966 - 1			000 84	ĭ							
		36.	066 MI	ΠZ							
Transm	nit Freq E	rror	1.700 I	κHz	OBW F	ower	99	9.00 %			
	andwidth		36.20 N	au -	x dB		c	00 dB			
			30.20 N		хub		-0.	00 UB			
							0717-1				
ŝG							STATUS				

8. Power Density

8.1. Test Equipment


The following test equipment is used during the test:

Power Density / SR7

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Spectrum Analyzer	R&S	FSP	100561	2013/02/19

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

8.2. Test Setup

8.3. Limits

The peak power spectral density conducted from the intentional radiated to the antenna shall not be greater than +8dBm in any 3kHz band during any time interval of continuous transmission.

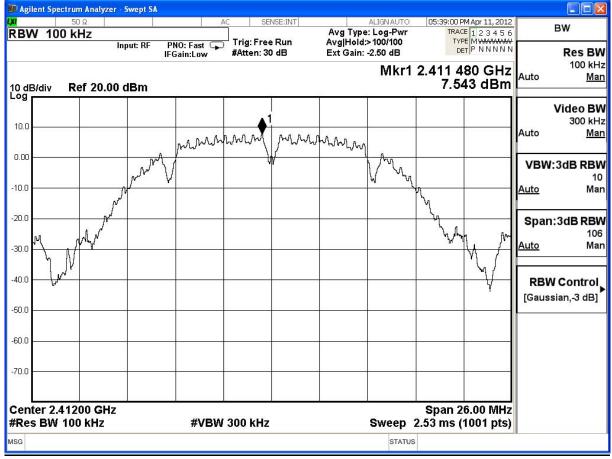
8.4. Test Procedures

The EUT was setup according to ANSI C63.4: 2009; tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW= 100 kHz, Set VBW= 300 kHz, Sweep time=Auto, Set detector=Peak detector

8.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247: 2011

8.6. Uncertainty


The measurement uncertainty is defined as ± 1.27 dB.

8.7. Test Result

Product	Wireless N Home Networks Camera		
Test Item	Power Density		
Test Mode	Transmit		
Date of Test	2012/04/06	Test Site	SR7

EEE 802.11b								
Channel No.	Frequency (MHz)	Reading Level	Measure Level	Limit (dBm)	Result			
		(dBm)	(dBm)					
1	2412	7.543	-7.657	≦8	Pass			
6	2437	7.442	-7.758	≦8	Pass			
11	2462	4.282	-10.918	≦8	Pass			

* Emission Level = Reading Level + BWCF = Reading Level + 10log(3kHz/10kHz)

	<u>Chann</u>	<u>iel 6</u>		
🗊 Agilent Spectrum Analyzer - Swept SA				
8BW 100 kHz	AC SENSE:INT	ALIGN AUTC Avg Type: Log-Pwr Avg Hold:>100/100	06:14:28 PM Apr 11, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWW	BW
Input: RF	PNO: Fast Frig: Free Run IFGain:Low #Atten: 30 dB	Ext Gain: -2.50 dB	DET P N N N N N	Res BW 100 kHz
10 dB/div Ref 20.00 dBm		Mkr	l 2.437 000 GHz 7.442 dBm	Auto <u>Mar</u>
	1			Video BW 300 kH
10.0	Mr. Margaran Margara	Mr. mr. M.		Auto <u>Mar</u>
0.00	man war and why and	a. a. orad Month Maryle	м	VBW:3dB RBV 10
-10.0				<u>Auto</u> Mar
20.0				Span:3dB RBV 106 Auto Mar
-30.0 MMMMM			hay the part of the second sec	
40.0				RBW Control [Gaussian,-3 dB]
50.0				
60.0				
-70.0				
Center 2.43700 GHz #Res BW 100 kHz	#VBW 300 kHz	Sweep	Span 26.00 MHz 2.53 ms (1001 pts)	
MSG		STATU		1

	<u>Chan</u>	<u>nel 11</u>		
🗊 Agilent Spectrum Analyzer - Swep	ot SA			
50 Ω RBW 100 kHz Input:	RF PNO: Fast IFGain:Low #Atten: 30 dB	ALIGNAUTO Avg Type: Log-Pwr Avg Hold:>100/100 Ext Gain: -2.50 dB	06:16:47 PM Apr 11, 2012 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N	BW Res BW
10 dB/div Ref 20.00 dBr	in Guinie Gw		.461 506 GHz 4.282 dBm	100 kHz Auto <u>Man</u>
10.0	mananananananana	hhhring		Video BW 300 kHz Auto <u>Man</u>
-10.0	Multine William	www.sal		VBW:3dB RBW 10 Auto Man
-20.0			A A A A A A A A A A A A A A A A A A A	Span:3dB RBW 106 <u>Auto</u> Man
-40.0			Why!	RBW Control [Gaussian,-3 dB]
-60.0				
-70.0				
Center 2.46200 GHz #Res BW 100 kHz	#VBW 300 kHz		Span 26.00 MHz 53 ms (1001 pts)	
MSG		STATUS		<u>, </u>

Product	Wireless N Home Networks Camera		
Test Item	Power Density		
Test Mode	Transmit		
Date of Test	2012/04/06	Test Site	SR7

IEEE 802.11g					
Channel No.	Frequency (MHz)	Reading Level (dBm)	Measure Level (dBm)	Limit (dBm)	Result
1	2412	3.380	-11.820	≦8	Pass
6	2437	3.356	-11.844	≦8	Pass
11	2462	3.667	-11.533	≦8	Pass

* Emission Level = Reading Level + BWCF = Reading Level + 10log(3kHz/10kHz)

	onani			
Agilent Spectrum Analyzer - Swept S	54			
50 Ω	AC SENSE:INT	ALIGN AUTO	06:20:16 PM Apr 11, 2012	BW
8BW 100 kHz	PNO: East Trig: Free Run	Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 1 2 3 4 5 6 TYPE MWWWWW	BW
Input: RF	PNO: Fast Frig: Free Run IFGain:Low #Atten: 30 dB	Ext Gain: -2.50 dB	DET P N N N N N	Res B
			0 442 074 011-	100 ki
		IVIKET	2.413 274 GHz	Auto <u>M</u>
dB/div Ref 20.00 dBm		10. 32 55	3.380 dBm	
29				Video E
				300 k
0.0	1			Auto M
				1. A.
00 a Mada	alorally and a should be alor a start and the second start and the secon	p-volo hout	54	VBW:3dB RE
10.000	τ. VN .		Ύ	V DVV.JUD RE
0.0				Auto M
م			Ą	
0.0 A			ν(
of 1			<i>Ч</i> .	Span:3dB RE
an flm. AL M			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10 Auto M
D.O approver for a			In Million	Auto
0.0		1		RBW Contro
				[Gaussian,-3 dE
0.0				•
(6.46),				
0.0				
0.0				
enter 2.41200 GHz			Span 26.00 MHz	
Res BW 100 kHz	#VBW 300 kHz	Sween	2.53 ms (1001 pts)	
G		STATUS		

<u>Channel 1</u>

	<u>Chann</u>	<u>el 6</u>		
DAgilent Spectrum Analyzer - Swept SA				
	AC SENSE:INT NO: Fast Trig: Free Run Gain:Low #Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:> 100/100 Ext Gain: -2.50 dB	06:23:53 PM Apr 11, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	BW Res BW
10 dB/div Ref 20.00 dBm		Mkr1	2.438 248 GHz 3.356 dBm	100 kHz Auto <u>Man</u>
	how have post by the	Mr. Briterly out on the other		Video BW 300 kHz Auto <u>Man</u>
-10.0				VBW:3dB RBW 10 <u>Auto</u> Man Span:3dB RBW
-20.0			Wand with a lenger	106 <u>Auto</u> Man RBW Control
-50.0				[Gaussian,-3 dB]
-60.0				
-70.0				
Center 2.43700 GHz #Res BW 100 kHz	#VBW 300 kHz	Sweep	Span 26.00 MHz 2.53 ms (1001 pts)	
MSG		STATUS	3	

~. . .

Mkr1 2.463 274 GHz 10 dB/div Ref 20.00 dBm 3.667 dBm	W Res BW 100 kHz <u>Man</u>
RBW 100 kHz Avg Type: Log-Pwr Avg Hold:>100/100 Trig: Free Run Avg Type: Log-Pwr Avg Hold:>100/100 Tree I 2 3 4 5 6 Type: Mwwwww Det P N N N N Mkr1 2.463 274 GHz 3.667 dBm BV	Res BW 100 kHz
10 dB/div Ref 20.00 dBm	100 kHz
10 dB/div Ref 20.00 dBm 3.667 dBm	Man
	i deo BW 300 kHz <u>Man</u>
0.00	d B RBW 10 Man
-20.0 -30.0 - M/M	dB RBW 106 Man
	n,-3 dB]
60.0	
Center 2.46200 GHz Span 26.00 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.53 ms (1001 pts)	
ASG STATUS	

Product	Wireless N Home Networks Camera		
Test Item	Power Density		
Test Mode	Transmit		
Date of Test	2012/04/06	Test Site	SR7

IEEE 802.11n (20M)					
Channel No.	Frequency (MHz)	Reading Level (dBm)	Measure Level (dBm)	Limit (dBm)	Result
1	2412	1.461	-13.739	≦8	Pass
6	2437	1.388	-13.812	≦8	Pass
11	2462	1.135	-14.065	≦8	Pass

* Emission Level = Reading Level + BWCF = Reading Level + 10log(3kHz/10kHz)

S0 0 AC SENSE INT ALIGNATIO Designed provided in the sense of the sens			Chann			
BW 100 kHz Input: RF PN0: Fast Trig: Free Run Avg Type: Log-PWr		wept SA				
Input: RF PNO: Fast IFGain: 200 Trig: Free Run #Atten: 30 dB Avg Hold>100/100 Ext Gain: 200 dB Mere Munual Res Bi 100 kL 00 Mkr1 2.413 248 GHz 1.461 dBm Mkr1 2.413 248 GHz 1.461 dBm Mkr1 2.413 248 GHz 1.461 dBm 00 Imput: NF Provide Multiple Action (Control (Control (Control (Contro		۵	C SENSE:INT			BW
MKr1 2.413 248 GHZ Auto Ma 1.461 dBm Video Bi 300 kH Auto Ma Video Bi 300 kH Auto Ma VBW:3dB RBi 10 Auto Ma VBW:3dB RBi 10 Auto Ma RBW Control [Gaussian,3 dB] (Gaussian,3 dB] (Gaussian,3 dB] (Gaussian,3 dB] (Gaussian,3 dB] (Gaussian,3 dB] (Gaussian,3 dB] (Control (Gaussian,3 dB] (Control (Ga				Avg Hold:>100/100	TYPE M WWWWW	
Video By 300 kHz Video By 300 kHz VBW:3dB RBI Auto VBW:3dB RBI Auto VBW:3dB RBI Auto Ma VBW:3dB RBI Auto Ma VBW:3dB RBI Auto Ma Span:3dB RBI Auto MA Auto	0 dB/div Ref 20.00 d	IBm		Mkr1	2.413 248 GHz 1.461 dBm	100 k⊢ Auto <u>Ma</u>
VBW:3dB RBI Auto VBW:3dB RBI Auto Matoo Mat	10.0		• • • • • • • • • • • • • • • • • • •			Video B\ 300 k⊢ Auto <u>Ma</u>
Image: Span 26.00 MHz Span 26.00 MHz	10.0	Muntin treation	marger from from	Irun hand hun hannel	My	VBW:3dB RBN 1 Auto Ma
Auto Ma Auto Ma RBW Control [Gaussian, 3 dB] enter 2.41200 GHz Res BW 100 kHz #VBW 300 kHz Sweep 2.53 ms (1001 pts)	لم 20.0				hay -	
0.0 Image: Control of Control o					1	
0.0 0.0 enter 2.41200 GHz Res BW 100 kHz #VBW 300 kHz Sweep 2.53 ms (1001 pts)	50.0					
enter 2.41200 GHz Res BW 100 kHz #VBW 300 kHz Sweep 2.53 ms (1001 pts)	50.0					
Res BW 100 kHz #VBW 300 kHz Sweep 2.53 ms (1001 pts)	0.0					
S STATUS	enter 2.41200 GHz Res BW 100 kHz	#VBW	300 kHz	Sweep		
on too	sg			STATUS	3	

	<u>(</u>	<u>Channel 6</u>		
💭 Agilent Spectrum Analyzer - Swe	ept SA			
RBW 100 kHz Input	RF PNO: Fast Trig: Free F IFGain:Low #Atten: 30 of	Avg Type: Log-Pwr Run Avg Hold:>100/100	06:35:06 PM Apr 11, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	BW Res BW
10 dB/div Ref 20.00 dB			2.438 274 GHz 1.388 dBm	100 kHz Auto <u>Man</u>
10.0		▲ ¹		Video BW 300 kHz Auto <u>Mar</u>
-10.0	maturhanturdurd	untrational untrational		VBW:3dB RBW 10 <u>Auto</u> Mar
-20.0			home though	Span:3dB RBW 106 <u>Auto</u> Mar
-40.0				RBW Control [Gaussian,-3 dB]
-60.0				
-70.0				
Center 2.43700 GHz #Res BW 100 kHz	#VBW 300 kHz	Sweep	Span 26.00 MHz 2.53 ms (1001 pts)	
MSG		STATU	5	

~. . .

		Chanr	nel 11		
🛙 Agilent Spectrum Analyzer - Sw	ept SA				
8BW 100 kHz	A	C SENSE:INT Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	06:44:57 PM Apr 11, 2012 TRACE 1 2 3 4 5 6 TYPE Michaelana	BW
Input	IFGain:Low	#Atten: 30 dB	Ext Gain: -2.50 dB	2.463 274 GHz 1.135 dBm	ites bi
10.0		1			Video BV 300 kH Auto <u>Ma</u>
10.00 NWW	hadranduran	monter portor	where the second second		VBW:3dB RBN 11 Auto Ma
20.0 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.				My Maryong to	Span:3dB RBN 100 <u>Auto</u> Ma
10.0					RBW Control [Gaussian,-3 dB]
60.0					
70.0					
Center 2.46200 GHz #Res BW 100 kHz	#VBW	300 kHz	Sweep	Span 26.00 MHz 2.53 ms (1001 pts)	
SG			STATUS	5	

Product	Wireless N Home Networks Camera		
Test Item	Power Density		
Test Mode	Transmit		
Date of Test	2012/04/06	Test Site	SR7

IEEE 802.11n (40M)						
Channel No.	Frequency (MHz)	Reading Level (dBm)	Measure Level (dBm)	Limit (dBm)	Result	
3	2422	-0.360	-15.560	≦8	Pass	
6	2437	-1.834	-17.034	≦8	Pass	
9	2452	-1.464	-16.664	≦8	Pass	

* Emission Level = Reading Level + BWCF = Reading Level + 10log(3kHz/10kHz)

		<u>Channe</u>	3		
Agilent Spectrum Analyzer - Swe	ot SA				
50 Ω RBW 100 kHz Input:			ALIGNAUTO Avg Type: Log-Pwr Avg Hold:>100/100	06:50:53 PM Apr 11, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWM	BW
Input			Ext Gain: -2.50 dB	2.413 264 GHz	Res BV 100 kH
0 dB/div Ref 20.00 dB	n			-0.360 dBm	Auto <u>Ma</u>
10.0					Video BV 300 kH Auto <u>Ma</u>
	probuste propositional water and	mmy proved without with	halestrangestallysteally	which	VBW:3dB RBI
20.0					Auto Ma
				Wunghal And	10
					RBW Contro [Gaussian,-3 dB]
80.0					
0.0					
enter 2.42200 GHz Res BW 100 kHz	#VBW 300 I	(Hz	Sweep	Span 52.00 MHz 5.00 ms (1001 pts)	
sg			STATUS		

<u>Channel 3</u>

		<u>Chan</u>	<u>nel 6</u>		
🔊 Agilent Spectrum Analyzer - Swej	pt SA				
02 50 Ω RBW 100 kHz Input:	RF PNO: Fast G	SENSE:INT Trig: Free Run #Atten: 30 dB	ALIGNAUTO Avg Type: Log-Pwr Avg Hold>100/100 Ext Gain: -2.50 dB	06:54:24 PM Apr 11, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	BW Res BW
10 dB/div Ref 20.00 dBr		whitem of up		2.428 264 GHz -1.834 dBm	100 kHz Auto <u>Man</u>
10.0					Video BW 300 kHz Auto <u>Man</u>
-10.0	of-salin-haven-level-salin-have	whenly worked	nologitalization	herbruch	VBW:3dB RBW 10 <u>Auto</u> Man
-20.0 -30.0				Wunium Millin	Span:3dB RBW 106 <u>Auto</u> Man
-40.0 -50.0					RBW Control [Gaussian,-3 dB]
-60.0					
-70.0					
Center 2.43700 GHz #Res BW 100 kHz	#VBW	300 kHz	Sweep	Span 52.00 MHz 5.00 ms (1001 pts)	
MSG			STATU	s	

~. . .

				<u>Chann</u>	<u>el 9</u>					
🛙 Agilent Spectrum Analyzer	- Swept SA									
και 50 Ω RBW 100 kHz	Input: RF	AC SENSE:INT PNO: Fast			ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100		06:59:32 PM Apr 11, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWW		BW	
0 dB/div Ref 20.0 0		FGain:Low	#Atten: 30) dB	Ext Gain:		2.443 2	64 GHz 64 dBm	Auto	Res B\ 100 k⊦ <u>Ma</u>
10.0		82.4						2	Auto	Video B 300 kł <u>M</u> a
0.00 10.0	ulushalwood	henradurlandar	hubulun	partentent	hap har has have	nulualization	wherely		VBW	/:3dB RB 1 Ma
0.0				μ					Spar Auto	1:3dB RB
							- ¹ 40	hundry and a second	RBV	V Contro
0.0									Gaus	sian,-3 dB
0.0										
enter 2.45200 GHz Res BW 100 kHz	:	#VBW	300 kHz			Sween	Span 5	2.00 MHz 1001 pts)		
sg						STATU				