

# FCC 47 CFR PART 15 SUBPART E

# TEST REPORT

For

# Wireless AC Day/Night HD Mini Bullet Cloud Camera

Model: DCS-7000L

## Trade Name: D-Link

Issued to

D-Link Corporation NO. 289, Sinhu 3rd Rd., Neihu District, Taipei City114, Taiwan, R.O.C.

Issued by

Compliance Certification Services Inc. No.81-1, Lane 210, Bade 2nd Rd., Lujhu Township, Taoyuan County 33841, Taiwan, R.O.C. TEL: 886-3-324-0332 FAX: 886-3-324-5235 http://www.ccsrf.com service@ccsrf.com



**Note:** This report shall not be reproduced except in tuil, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, A2LA, NIST or any government agencies. The test results in the report only apply to the tested sample.



# **Revision History**

| Rev. | Issue<br>Date      | Revisions     | Effect<br>Page | Revised By |
|------|--------------------|---------------|----------------|------------|
| 00   | September 17, 2014 | Initial Issue | All            | Iren Wang  |
|      |                    |               |                |            |
|      |                    |               |                |            |
|      |                    |               |                |            |



# TABLE OF CONTENTS

| 1. TE | ST RESULT CERTIFICATION                        | 4  |
|-------|------------------------------------------------|----|
|       | JT DESCRIPTION                                 |    |
| 3. TE | ST METHODOLOGY                                 | 9  |
| 3.1   | EUT CONFIGURATION                              |    |
| 3.2   | EUT EXERCISE                                   | 9  |
| 3.3   | GENERAL TEST PROCEDURES                        | 9  |
| 3.4   | FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS |    |
| 3.5   | ○DESCRIPTION OF TEST MODES                     | 11 |
| 4. IN | STRUMENT CALIBRATION                           | 13 |
| 4.1   | MEASURING INSTRUMENT CALIBRATION               | 13 |
| 4.2   | MEASUREMENT EQUIPMENT USED                     | 13 |
| 4.3   | MEASUREMENT UNCERTAINTY                        | 14 |
| 5. FA | CILITIES AND ACCREDITATIONS                    | 15 |
| 5.1   | FACILITIES                                     | 15 |
| 5.2   | EQUIPMENT                                      |    |
| 5.3   | LABORATORY ACCREDITATIONS AND LISTING          | 15 |
| 5.4   | TABLE OF ACCREDITATIONS AND LISTINGS           |    |
| 6. SE | TUP OF EQUIPMENT UNDER TEST                    | 17 |
| 6.1   | SETUP CONFIGURATION OF EUT                     |    |
| 6.2   | SUPPORT EQUIPMENT                              | 17 |
| 7. FC | C PART 15 REQUIREMENTS                         |    |
| 7.1   | 26 DB EMISSION BANDWIDTH                       |    |
| 7.2   | 6DB BANDWIDTH                                  |    |
| 7.3   | MAXIMUM CONDUCTED OUTPUT POWER                 |    |
| 7.4   | BAND EDGES MEASUREMENT                         |    |
| 7.5   | PEAK POWER SPECTRAL DENSITY                    |    |
| 7.6   | RADIATED UNDESIRABLE EMISSION                  |    |
| 7.7   | POWERLINE CONDUCTED EMISSIONS                  |    |
| 7.8   | FREQUENCY STABILITY                            |    |
|       | PPENDIX I PHOTOGRAPHS OF TEST SETUP            |    |
| 9. AF | PPENDIX II: PHOTOGRAPHS OF EUT                 |    |



# 1. TEST RESULT CERTIFICATION

| Applicant:            | <b>D-Link Corporation</b><br>NO. 289, Sinhu 3rd Rd., Neihu District, Taipei City114, Taiwan, R.O.C.       |
|-----------------------|-----------------------------------------------------------------------------------------------------------|
| Manufacturer:         | <b>APPRO Technology Inc.</b><br>13F, No. 66, Zhongzheng Rd., Xinzhuang Dist., New Taipei City,<br>Taiwan. |
| Equipment Under Test: | Wireless AC Day/Night HD Mini Bullet Cloud Camera                                                         |
| Trade Name:           | D-Link                                                                                                    |
| Model:                | DCS-7000L                                                                                                 |
| Date of Test:         | June 17 ~ September 5, 2014                                                                               |

| APPLICABLE STANDARDS         |                         |  |  |  |
|------------------------------|-------------------------|--|--|--|
| STANDARD                     | TEST RESULT             |  |  |  |
| FCC 47 CFR Part 15 SUBPART E | No non-compliance noted |  |  |  |

## We hereby certify that:

Compliance Certification Services Inc. tested the above equipment. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in **ANSI C63.4: 2009** and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.407.

The test results of this report relate only to the tested sample identified in this report.

Approved by:

191

Bill Cheng Section Manager

Reviewed by:

Angel Mr

Angel Hu Section Manager



Report No.: T140317J01-RP2 FCC ID: KA2CS7000LA1 Date of Issue: September 17, 2014

# 2. EUT DESCRIPTION

| Product                    | Wireless AC Day/Night HD Mini Bullet Cloud Camera |                                                 |          |                  |                       |                          |                          |
|----------------------------|---------------------------------------------------|-------------------------------------------------|----------|------------------|-----------------------|--------------------------|--------------------------|
| Trade Name                 | D-Link                                            |                                                 |          |                  |                       |                          |                          |
| Model Number               | DCS-7000L                                         |                                                 |          |                  |                       |                          |                          |
| Model Discrepancy          | N/A                                               |                                                 |          |                  |                       |                          |                          |
| EUT Power Rating           | 5VDC, 1.2A                                        |                                                 |          |                  |                       |                          |                          |
| Received Date              | March 17, 20                                      | 14                                              |          |                  |                       |                          |                          |
| Power Adapter              | D-Link <b>Model</b> AMS1-0501200FU                |                                                 |          |                  |                       |                          |                          |
| Power Adapter Power Rating |                                                   | AC, 50/60HZ, 0.2A                               | ANIO     | 1-03012          | .001 0                |                          |                          |
| RF Module Manufacturer     | Reltek                                            | Model                                           | RTL      | 8811AU           |                       |                          |                          |
|                            | Band                                              | Mode                                            | <u>.</u> |                  | cy Range              | Num                      | per of Channels          |
|                            |                                                   | IEEE 802.11a                                    |          |                  | <b>1Hz)</b><br>)-5240 |                          | 4 Channels               |
|                            |                                                   | IEEE 802.11n HT2                                | 20       |                  | )-5240                |                          | 4 Channels               |
|                            | UNII Band I                                       | IEEE 802.11n HT4                                | 0        | 5190             | )-5230                |                          | 2 Channels               |
|                            |                                                   | IEEE 802.11ac HT                                | 80       | -                | 210                   |                          | 1 Channels               |
|                            |                                                   | IEEE 802.11a                                    |          |                  | 0-5320                |                          | 4 Channels               |
| Operating Frequency Range  | UNII Band IIA                                     | IEEE 802.11n HT20 5260                          |          |                  |                       | 4 Channels<br>3 Channels |                          |
| &                          |                                                   | IEEE 802.11n HT40 5270<br>IEEE 802.11ac HT80 52 |          | 290              |                       | 1 Channels               |                          |
| Number of Channels         | UNII Band IIC                                     | IEEE 802.11a                                    | 50       | 5500-5700        |                       |                          | 8 Channels               |
|                            |                                                   | IEEE 802.11n HT20 55                            |          |                  | 500-5700              |                          | 8 Channels               |
|                            |                                                   | IEEE 802.11n HT40                               |          | 5510             | )-5670                |                          | 6 Channels               |
|                            |                                                   | IEEE 802.11ac HT80                              |          | 5                | 530                   |                          | 1 Channels               |
|                            |                                                   | IEEE 802.11a                                    |          | 5745-5825        |                       |                          | 5 Channels               |
|                            | UNII Band III                                     | IEEE 802.11n HT2                                |          |                  | 5-5825                |                          | 5 Channels               |
|                            |                                                   | IEEE 802.11n HT40                               |          |                  | 5-5795<br>775         |                          | 2 Channels<br>1 Channels |
|                            |                                                   | IEEE 802.11ac HT8                               |          | quency           | Output P              |                          | Output Power             |
|                            | Band                                              | Mode                                            |          | ange             | (dBm                  |                          | (W)                      |
|                            |                                                   | IEEE 802.11a                                    |          | 0-5240           | 12.28                 |                          | 0.0169                   |
|                            | UNII Band I                                       | IEEE 802.11n HT20                               | 518      | 0-5240           | 13.33                 | 3                        | 0.0215                   |
|                            |                                                   | IEEE 802.11n HT40                               |          | 0-5230           | 13.01                 |                          | 0.0200                   |
|                            |                                                   | IEEE 802.11ac HT80<br>IEEE 802.11a              |          | 5210             | 12.53                 |                          | 0.0179                   |
|                            |                                                   | IEEE 802.11a                                    |          | 0-5320<br>0-5320 | 14.08<br>13.58        |                          | 0.0256<br>0.0228         |
|                            | UNII Band IIA                                     | IEEE 802.11n HT40                               |          | 0-5310           | 13.95                 |                          | 0.0248                   |
| Transmit Power             |                                                   | IEEE 802.11ac HT80                              |          | 5290             | 13.27                 |                          | 0.0212                   |
|                            |                                                   | IEEE 802.11a                                    |          | 0-5700           | 13.61                 |                          | 0.0230                   |
|                            | UNII Band IIC                                     | IEEE 802.11n HT20                               | 1        | 0-5700           | 13.2                  |                          | 0.0209                   |
|                            |                                                   | IEEE 802.11n HT40                               |          | 0-5670           | 14.53                 |                          | 0.0284                   |
|                            |                                                   | IEEE 802.11ac HT80                              |          | 530              | 13.04                 |                          | 0.0201                   |
|                            |                                                   | IEEE 802.11a<br>IEEE 802.11n HT20               | 1        | 5-5825<br>5-5825 | 17.50<br>16.73        |                          | 0.0570<br>0.0471         |
|                            | UNII Band III                                     | IEEE 802.11n HT40                               | -        | 5-5795           | 16.12                 |                          | 0.0409                   |
|                            |                                                   | IEEE 802.11ac HT80                              |          | 5775             | 15.70                 |                          | 0.0372                   |



| Modulation Technique  | OFDM (BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transmit Data Rate    | IEEE 802.11a: 54, 48, 36, 24, 18, 12, 9, 6 Mbps<br>IEEE 802.11n HT20: OFDM (6.5, 7.2, 13, 14.4, 14.44, 19.5, 21.7, 26, 28.89,<br>28.9, 39, 43.3, 43.33 52, 57.78, 57.8, 58.5, 65.0, 72.2, 78,<br>86.67, 104, 115.56, 117, 130, 144.44 Mbps)<br>IEEE 802.11n HT40: OFDM (13.5, 15, 27, 30, 40.5, 45, 54, 60, 81, 90, 108,<br>120, 121.5, 135, 150, 162, 180, 216, 240, 243, 270, 300<br>Mbps)<br>IEEE 802.11ac HT80: OFDM (29.3, 32.5, 58.5, 65, 87.8, 97.5, 117, 130,<br>175.5, 195, 234, 260, 263.3, 292.5, 292.5, 325, 351, 390,<br>433.3 Mbps) |
| Antenna Specification | PCB Antenna / Gain: 3.97 dBi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



## **Operation Frequency:**

| UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE (U-NII) |      |  |  |  |
|--------------------------------------------------------|------|--|--|--|
| CHANNEL                                                | MHz  |  |  |  |
| 36                                                     | 5180 |  |  |  |
| 38                                                     | 5190 |  |  |  |
| 40                                                     | 5200 |  |  |  |
| 42                                                     | 5210 |  |  |  |
| 44                                                     | 5220 |  |  |  |
| 46                                                     | 5230 |  |  |  |
| 48                                                     | 5240 |  |  |  |
| 52                                                     | 5260 |  |  |  |
| 54                                                     | 5270 |  |  |  |
| 56                                                     | 5280 |  |  |  |
| 58                                                     | 5290 |  |  |  |
| 60                                                     | 5300 |  |  |  |
| 62                                                     | 5310 |  |  |  |
| 64                                                     | 5320 |  |  |  |
| 100                                                    | 5500 |  |  |  |
| 102                                                    | 5510 |  |  |  |
| 104                                                    | 5520 |  |  |  |
| 106                                                    | 5530 |  |  |  |
| 108                                                    | 5540 |  |  |  |
| 110                                                    | 5550 |  |  |  |
| 112                                                    | 5560 |  |  |  |
| 116                                                    | 5580 |  |  |  |
| 118                                                    | 5590 |  |  |  |
| 120                                                    | 5600 |  |  |  |
| 124                                                    | 5620 |  |  |  |
| 126                                                    | 5630 |  |  |  |
| 128                                                    | 5640 |  |  |  |
| 132                                                    | 5660 |  |  |  |
| 134                                                    | 5670 |  |  |  |
| 136                                                    | 5680 |  |  |  |
| 140                                                    | 5700 |  |  |  |
| 149                                                    | 5745 |  |  |  |
| 151                                                    | 5755 |  |  |  |
| 153                                                    | 5765 |  |  |  |
| 155                                                    | 5775 |  |  |  |
| 157                                                    | 5785 |  |  |  |
| 159                                                    | 5795 |  |  |  |
| 161                                                    | 5805 |  |  |  |
| 165                                                    | 5825 |  |  |  |



Remark:

- 1. The sample selected for test was production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: <u>KA2CS7000LA1</u> filing to comply with Section 15.207, 15.209 and 15.407 of the FCC Part 15, Subpart E Rules.
- 3. The test is follow the UNII 15E: KDB 789033 D02, KDB 905462 D06.



# 3. TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.4: 2009 Radiated testing was performed at an antenna to EUT distance 3 meters.

The tests documented in this report were performed in accordance with ANSI C63.4: 2009 and FCC CFR 47 Part 15.207, 15.209 and 15.407.

## 3.1 EUT CONFIGURATION

The EUT configuration for testing is installed for RF field strength measurement to meet the Commissions requirement, and is operated in a manner intended to generate the maximum emission in a continuous normal application.

## 3.2 EUT EXERCISE

The EUT is operated in the engineering mode to fix the Tx frequency for the purposes of measurement.

According to its specifications, the EUT must comply with the requirements of Section 15.407 under the FCC Rules Part 15 Subpart E.

## 3.3 GENERAL TEST PROCEDURES

### **Conducted Emissions**

The EUT is placed on the turntable, which is positioned at 0.8 m above the ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4, the conducted emission from the EUT is measured in the frequency range between 0.15 MHz and 30MHz, using the CISPR Quasi-Peak detector mode.

### **Radiated Emissions**

The EUT is placed on the turntable, which is 0.8 m above the ground plane. The turntable is then rotated for 360 degrees to determine the proper orientation for the maximum emission level. The EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission level. And, each emission is to be maximized by changing the horizontal and vertical polarization of the receiving antenna. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4: 2003.



## 3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

| MHz                        | MHz                 | MHz             | GHz              |
|----------------------------|---------------------|-----------------|------------------|
| 0.090 - 0.110              | 16.42 - 16.423      | 399.9 - 410     | 4.5 - 5.15       |
| <sup>1</sup> 0.495 - 0.505 | 16.69475 - 16.69525 | 608 - 614       | 5.35 - 5.46      |
| 2.1735 - 2.1905            | 16.80425 - 16.80475 | 960 - 1240      | 7.25 - 7.75      |
| 4.125 - 4.128              | 25.5 - 25.67        | 1300 - 1427     | 8.025 - 8.5      |
| 4.17725 - 4.17775          | 37.5 - 38.25        | 1435 - 1626.5   | 9.0 - 9.2        |
| 4.20725 - 4.20775          | 73 - 74.6           | 1645.5 - 1646.5 | 9.3 - 9.5        |
| 6.215 - 6.218              | 74.8 - 75.2         | 1660 - 1710     | 10.6 - 12.7      |
| 6.26775 - 6.26825          | 108 - 121.94        | 1718.8 - 1722.2 | 13.25 - 13.4     |
| 6.31175 - 6.31225          | 123 - 138           | 2200 - 2300     | 14.47 - 14.5     |
| 8.291 - 8.294              | 149.9 - 150.05      | 2310 - 2390     | 15.35 - 16.2     |
| 8.362 - 8.366              | 156.52475 -         | 2483.5 - 2500   | 17.7 - 21.4      |
| 8.37625 - 8.38675          | 156.52525           | 2655 - 2900     | 22.01 - 23.12    |
| 8.41425 - 8.41475          | 156.7 - 156.9       | 3260 - 3267     | 23.6 - 24.0      |
| 12.29 - 12.293             | 162.0125 - 167.17   | 3332 - 3339     | 31.2 - 31.8      |
| 12.51975 - 12.52025        | 167.72 - 173.2      | 3345.8 - 3358   | 36.43 - 36.5     |
| 12.57675 - 12.57725        | 240 - 285           | 3600 - 4400     | ( <sup>2</sup> ) |
| 13.36 - 13.41              | 322 - 335.4         |                 |                  |

<sup>1</sup> Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

<sup>2</sup> Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.



# 3.5 **ODESCRIPTION OF TEST MODES**

The EUT (model: DCS-7000L) had been tested under operating condition and had been reported as worst case on this test report.

Software used to control the EUT for staying in continuous transmitting mode was programmed.

The worst case data rate is determined as the data rate with highest output power. After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz and power line conducted emissions below 30MHz, which worst case was in LAN Mode.

The field strength of spurious emission was measured in the following position: EUT stand-up position (Y axis), lie-down position (X, Z axis). The worst emission was found in lie-down position (X axis) and the worst case was recorded.

WIFI Mode & LAN Mode have been pre-scanned during the test, and the LAN Mode was selected as the worst case for final test.

### UNII Band I:

### IEEE 802.11a for 5180-5240MHz:

Channel Low (5180MHz), Channel Mid (5220MHz) and Channel High (5240MHz) with 6Mbps data rate were chosen for full testing.

### IEEE 802.11n HT20 for 5180-5240MHz:

Channel Low (5180MHz), Channel Mid (5220MHz) and Channel High (5240MHz) with 6.5Mbps data rate were chosen for full testing.

### IEEE 802.11n HT40 for 5190-5230MHz:

Channel Low (5190MHz) and Channel High (5230MHz) with 13.5Mbps data rate were chosen for full testing.

### IEEE 802.11ac HT80 for 5210MHz:

Channel (5210MHz) with 29.3Mbps data rate were chosen for full testing.

### UNII Band IIA:

### IEEE 802.11a for 5260-5320MHz:

Channel Low (5260MHz), Channel Mid (5280MHz) and Channel High (5320MHz) with 6Mbps data rate were chosen for full testing.

### IEEE 802.11n HT20 for 5260-5320MHz:

Channel Low (5260MHz), Channel Mid (5280MHz) and Channel High (5320MHz) with 6.5Mbps data rate were chosen for full testing.

### IEEE 802.11n HT40 for 5270-5310MHz:

Channel Low (5270MHz) and Channel High (5310MHz) with 13.5Mbps data rate were chosen for full testing.

### IEEE 802.11ac HT80 for 5290MHz:

Channel (5290MHz) with 29.3Mbps data rate were chosen for full testing.



### **UNII Band IIC:**

### IEEE 802.11a for 5500-5700MHz:

Channel Low (5500MHz), Channel Mid (5580MHz) and Channel High (5700MHz) with 6Mbps data rate were chosen for full testing.

### IEEE 802.11n HT20 for 5500-5700MHz:

Channel Low (5500MHz), Channel Mid (5580MHz) and Channel High (5700MHz) with 6.5Mbps data rate were chosen for full testing.

### IEEE 802.11n HT40 for 5510-5670MHz:

Channel Low (5510MHz), Channel Mid (5550MHz) and Channel High (5670MHz) with 13.5Mbps data rate were chosen for full testing.

### IEEE 802.11ac HT80 for 5530MHz:

Channel (5530MHz) with 29.3Mbps data rate were chosen for full testing.

### UNII Band III:

### IEEE 802.11a for 5745-5825MHz:

Channel Low (5745MHz), Channel Mid (5785MHz) and Channel High (5825MHz) with 6Mbps data rate were chosen for full testing.

### IEEE 802.11n HT20 for 5745-5825MHz:

Channel Low(5745MHz), Channel Mid(5785MHz) and Channel High(5825MHz) with 6.5Mbps data rate were chosen for full testing.

### IEEE 802.11n HT40 for 5755-5795 MHz:

Channel Low(5755MHz) and Channel High(5795MHz) with 13.5Mbps data rate were chosen for full testing.

### IEEE 802.11ac HT80 for 5775MHz:

Channel (5775MHz) with 29.3Mbps data rate were chosen for full testing.



# 4. INSTRUMENT CALIBRATION

# 4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

## 4.2 MEASUREMENT EQUIPMENT USED

### **Equipment Used for Emissions Measurement**

| Conducted Emissions Test Site |              |         |               |                 |  |  |
|-------------------------------|--------------|---------|---------------|-----------------|--|--|
| Name of Equipment             | Manufacturer | Model   | Serial Number | Calibration Due |  |  |
| Spectrum Analyzer             | Agilent      | E4446A  | MY48250064    | 01/01/2015      |  |  |
| Spectrum Analyzer             | Agilent      | N9010A  | MY52220817    | 03/20/2015      |  |  |
| Spectrum Analyzer             | R&S          | FSL     | 100837        | 11/11/2014      |  |  |
| Power meter                   | Anritsu      | ML2495A | 1033009       | 09/29/2014      |  |  |
| Power Sensor                  | Anritsu      | MA2411B | 0917221       | 09/29/2014      |  |  |

| 3MSemi Anechoic Chamber |              |                         |               |                 |  |  |  |
|-------------------------|--------------|-------------------------|---------------|-----------------|--|--|--|
| Name of Equipment       | Manufacturer | Model                   | Serial Number | Calibration Due |  |  |  |
| Spectrum Analyzer       | Agilent      | E4446A                  | MY48250064    | 01/01/2015      |  |  |  |
| Spectrum Analyzer       | R&S          | FSL                     | 100837        | 11/11/2014      |  |  |  |
| Pre-Amplifier           | HP           | 8447D                   | 2944A06530    | 05/02/2015      |  |  |  |
| Pre-Amplifier           | EMEC         | EM01M26G                | 060570        | 07/28/2015      |  |  |  |
| Pre-Amplifier           | MITEQ        | AMF-6F-260400-4<br>0-8P | 985646        | 06/12/2015      |  |  |  |
| Pre-Amplifier           | Agilent      | 8449B                   | 3008A01738    | 08/11/2015      |  |  |  |
| EMI Test Receiver       | SCHAFFNER    | SCR 3501                | 430           | 03/30/2015      |  |  |  |
| Loop Antenna            | EMCO         | 6502                    | 8905-2356     | 08/20/2015      |  |  |  |
| Bilog Antenna           | TESEQ        | CBL 6112D               | 35378         | 08/21/2015      |  |  |  |
| Horn Antenna            | EMCO         | 3115                    | 00022250      | 08/05/2015      |  |  |  |
| Horn Antenna            | EMCO         | 3116                    | 00026370      | 12/29/2014      |  |  |  |
| Antenna Tower           | CCS          | CC-A-1F                 | N/A           | N.C.R           |  |  |  |
| Turn Table              | CCS          | CC-T-1F                 | N/A           | N.C.R           |  |  |  |
| Test S/W                |              | EZ                      | -EMC          |                 |  |  |  |

**NOTE:** 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R = No Calibration Request.



| Powerline Conducted Emissions Test Site #4 |              |                     |               |                 |  |  |
|--------------------------------------------|--------------|---------------------|---------------|-----------------|--|--|
| Name of Equipment                          | Manufacturer | Model               | Serial Number | Calibration Due |  |  |
| EMI Test Receiver                          | R&S          | ESCI                | 100782        | 06/12/2015      |  |  |
| LISN                                       | R&S          | ENV216              | 100066        | 02/06/2015      |  |  |
| LISN                                       | R&S          | ENV 4200            | 830326/016    | 05/22/2015      |  |  |
| ISN                                        | FCC          | FCC-TLISN-T2-<br>02 | 20587         | 07/28/2015      |  |  |
| ISN                                        | TESEQ        | ISN-T8              | 30843         | 08/11/2015      |  |  |
| Current Probe                              | FCC          | F-35                | 506           | 07/13/2015      |  |  |
| ISN                                        | TESEQ        | ISN ST08            | 27907         | 09/30/2014      |  |  |
| Test S/W                                   | EZ-EMC       |                     |               |                 |  |  |

**NOTE:** 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R = No Calibration Request.

## 4.3 MEASUREMENT UNCERTAINTY

| Parameter                                 | Uncertainty |
|-------------------------------------------|-------------|
| Powerline Conducted Emission #4           | ±2.0543     |
| 3M Semi Anechoic Chamber / 30MHz ~ 200MHz | ±3.5921     |
| 3M Semi Anechoic Chamber / 200MHz ~ 1GHz  | ±3.5657     |
| 3M Semi Anechoic Chamber / 1 ~ 8GHz       | ±2.5873     |
| 3M Semi Anechoic Chamber / 8 ~ 18GHz      | ±2.6646     |
| 3M Semi Anechoic Chamber / 18 ~ 26GHz     | ±2.9617     |
| 3M Semi Anechoic Chamber / 26 ~ 40GHz     | ±3.4250     |

**Remark**: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.



# 5. FACILITIES AND ACCREDITATIONS

## 5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No. 163-1, Jhongsheng Rd., Sindien District, Taipei City 23151, Taiwan
 Tel: 886-2-2217-0894 / Fax: 886-2-2217-1029

No 11, Wugong 6th Rd, Wugu District, New Taipei City 24891, Taiwan (R.O.C)
 Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045

No.81-1, Lane 210, Bade 2nd Rd., Lujhu Township, Taoyuan County 33841, Taiwan

Tel: 886-3-324-0332 / Fax: 886-3-324-5235

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

# 5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

## 5.3 LABORATORY ACCREDITATIONS AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by American Association for Laboratory Accreditation Program for the specific scope accreditation under Lab Code: 0824-01 to perform Electromagnetic Interference tests according to FCC Part 15 and CISPR 22 requirements. In addition, the test facilities are listed with Industry Canada, Certification and Engineering Bureau, IC 2324G-1 for 3M Semi Anechoic Chamber A, 2324G-2 for 3M Semi Anechoic Chamber B.



## 5.4 TABLE OF ACCREDITATIONS AND LISTINGS

| Country | Agency             | Scope of Accreditation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Logo                                                                        |
|---------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| USA     | A2LA               | CFR 47, FCC Part15/18, CISPR 22,<br>EN 55022, ICES-003, AS/NZS CISPR 22,<br>VCCI V-3, EN 55011, CISPR 11,<br>IEC/EN 61000-4-2/3/4/5/6/8/11,<br>EN 61000-6-1/2/3/4,<br>EN 55024, CISPR 24, AS/NZS CISPR 24,<br>AS/NZS 61000.6.2, EN 55014-1/-2,<br>ETSI EN 300 386 v1.3.2/v1.3.3,<br>IEC/EN 61000-3-2, AS/NZS 61000.3.2,<br>IEC/EN 61000-3-3, AS/NZS 61000.3.3                                                                                                                                                                       | ACCREDITED<br>TESTING CERT #0824.01                                         |
| USA     | FCC<br>MRA         | 3 meter Open Area Test Sites to perform FCC<br>Part 15/18 measurements                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FC TW1026                                                                   |
| Japan   | VCCI               | 3/10 meter Open Area Test Sites and<br>conducted test sites to perform<br>radiated/conducted measurements                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>VCCI</b><br>R-2882/2541/2798/725/1868<br>C-402/747/912<br>T-1930/1646    |
| Taiwan  | TAF                | EN 55014-1, CISPR 14, CNS 13781-1,<br>EN 55013, CISPR 13, CNS 13439,<br>EN 55011, CISPR 11, CNS 13803,<br>PLMN09, IS2045-0, LP0002<br>FCC Part 27/90, Part 15B/C/D/E,<br>RSS-192/193/210/310<br>ETSI EN 300 328/ 300 220-1/ 300 220-2/ 301<br>893/ 301 489-01/ 301 489-03/ 301 489-07 /<br>301 489-17/ 300 440-1/ 300 440-2<br>AS/NZS 4268, AS/NZS 4771<br>CISPR 22, EN 55022, CNS 13438, AS/NZS<br>CISPR 22, VCCI,<br>IEC/EN 61000-4-2/3/4/5/6/8/11,<br>CNS 14676-2/3/4/5/6/8, CNS 14934-2/3,<br>CNS 13783-1, CNS 13439, CNS 13803 | Testing Laboratory<br>0363                                                  |
| Taiwan  | BSMI               | CNS 13438, CNS 13783-1, CNS 13439,<br>CNS 14115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SL2-IS-E-0014 / IN-E-0014<br>/A1-E-0014 /R1-E-0014<br>/R2-E-0014 /L1-E-0014 |
| Canada  | Industry<br>Canada | RSS-Gen Issue 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Canada<br>IC 2324C-5                                                        |

\* No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.





# 6. SETUP OF EQUIPMENT UNDER TEST

## 6.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix I for the actual connections between EUT and support equipment.

## 6.2 SUPPORT EQUIPMENT

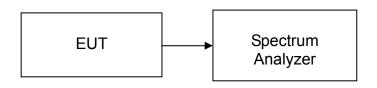
| For P | For Powerline Conducted Emission & Radiated Emissions(Below 1GHz) |                   |                   |         |          |                               |                                                                           |
|-------|-------------------------------------------------------------------|-------------------|-------------------|---------|----------|-------------------------------|---------------------------------------------------------------------------|
| No.   | Device Type                                                       | Model             | Series No.        | FCC ID  | Brand    | Data Cable                    | Power Cord                                                                |
| 1     | Notebook PC<br>(Remote)                                           | ThinkPad<br>T430u | PB-VZHMR<br>12/09 | FCC DOC | Lenovo   | LAN Cable:<br>Unshielded, 10m | AC I/P:<br>Unshielded, 1.8m<br>DC O/P:<br>Unshielded, 1.8m<br>with a core |
| 2     | Earphone                                                          | ClearChat         | N/A               | FCC DoC | Logitech | Unshielded, 1.8m              | N/A                                                                       |

| For R | For Radiated Emissions(Above 1GHz) |                   |                   |         |        |            |                                                                           |
|-------|------------------------------------|-------------------|-------------------|---------|--------|------------|---------------------------------------------------------------------------|
| No.   | Device Type                        | Model             | Series No.        | FCC ID  | Brand  | Data Cable | Power Cord                                                                |
| 1     | Notebook PC<br>(Remote)            | ThinkPad<br>T430u | PB-VZLGG<br>12/09 | FCC DOC | Lenovo | LAN Cable: | AC I/P:<br>Unshielded, 1.8m<br>DC O/P:<br>Unshielded, 1.8m<br>with a core |

| For C | For Conducted Emission |       |            |           |       |                                |                                                                           |
|-------|------------------------|-------|------------|-----------|-------|--------------------------------|---------------------------------------------------------------------------|
| No.   | Device Type            | Model | Series No. | FCC ID    | Brand | Data Cable                     | Power Cord                                                                |
| 1     | Notebook PC            | D400  | 0932RY     | E2K24GBRL | DELL  | LAN Cable:<br>Unshielded, 1.8m | AC I/P:<br>Unshielded, 1.8m<br>DC O/P:<br>Unshielded, 1.8m<br>with a core |

**Remark:** Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.




# 7. FCC PART 15 REQUIREMENTS

## 7.1 26 dB EMISSION BANDWIDTH

## <u>LIMIT</u>

According to §15.403(c), for purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Compliance with the emissions limits is based on the use of measurement instrumentation employing a peak detector function with an instrument resolutions bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

### **Test Configuration**



## TEST PROCEDURE

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low-loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW > 1%EBW, VBW > RBW, Span >26dB bandwidth, and Sweep = auto.
- 4. Mark the peak frequency and –26dB (upper and lower) frequency.
- 5. Repeat until all the rest channels were investigated.

# TEST RESULTS

No non-compliance noted



<u>Test Data</u>

### Test mode: IEEE 802.11a / 5180 ~ 5240MHz

| Channel | Frequency<br>(MHz) | Bandwidth<br>(MHz) |
|---------|--------------------|--------------------|
| Low     | 5180               | 25.164             |
| Mid     | 5220               | 24.884             |
| High    | 5240               | 24.908             |

### Test mode: IEEE 802.11n HT20 / 5180 ~ 5240MHz

| Channel | Frequency<br>(MHz) | Bandwidth<br>(MHz) |
|---------|--------------------|--------------------|
| Low     | 5180               | 22.281             |
| Mid     | 5220               | 22.166             |
| High    | 5240               | 25.040             |

#### Test mode: IEEE 802.11n HT40 / 5190 ~ 5230MHz

| Channel | Frequency<br>(MHz) | Bandwidth<br>(MHz) |
|---------|--------------------|--------------------|
| Low     | 5190               | 44.042             |
| High    | 5230               | 43.983             |

### Test mode: IEEE 802.11ac HT80 / 5210MHz

| Frequency | Bandwidth |
|-----------|-----------|
| (MHz)     | (MHz)     |
| 5210      | 99.637    |



### Test mode: IEEE 802.11a / 5260-5320MHz

| Channel | Frequency<br>(MHz) | Bandwidth<br>(MHz) |
|---------|--------------------|--------------------|
| Low     | 5260               | 23.237             |
| Mid     | 5280               | 21.793             |
| High    | 5320               | 23.365             |

#### Test mode: IEEE 802.11n HT20 / 5260-5320MHz

| Channel | Frequency<br>(MHz) | Bandwidth<br>(MHz) |
|---------|--------------------|--------------------|
| Low     | 5260               | 22.207             |
| Mid     | 5280               | 22.260             |
| High    | 5320               | 22.288             |

### Test mode: IEEE 802.11n HT40 / 5270-5310MHz

| Channel | Frequency<br>(MHz) | Bandwidth<br>(MHz) |
|---------|--------------------|--------------------|
| Low     | 5270               | 43.968             |
| High    | 5310               | 44.031             |

### Test mode: IEEE 802.11ac HT80 / 5290MHz

| Frequency | Bandwidth |
|-----------|-----------|
| (MHz)     | (MHz)     |
| 5290      | 97.177    |



### Test mode: IEEE 802.11a / 5500-5700MHz

| Channel | Frequency<br>(MHz) | Bandwidth<br>(MHz) |
|---------|--------------------|--------------------|
| Low     | 5500               | 21.233             |
| Mid     | 5580               | 21.063             |
| High    | 5700               | 20.930             |

### Test mode: IEEE 802.11n HT20 / 5500-5700MHz

| Channel | Frequency<br>(MHz) | Bandwidth<br>(MHz) |
|---------|--------------------|--------------------|
| Low     | 5500               | 21.748             |
| Mid     | 5580               | 21.543             |
| High    | 5700               | 21.414             |

### Test mode: IEEE 802.11n HT40 / 5510-5670MHz

| Channel | Frequency<br>(MHz) | Bandwidth<br>(MHz) |
|---------|--------------------|--------------------|
| Low     | 5510               | 43.700             |
| Mid     | 5550               | 43.687             |
| High    | 5670               | 43.640             |

## Test mode: IEEE 802.11ac HT80 / 5530MHz

| Frequency | Bandwidth |
|-----------|-----------|
| (MHz)     | (MHz)     |
| 5530      | 84.168    |



### Test mode: IEEE 802.11a / 5745 ~ 5825MHz

| Channel | Frequency<br>(MHz) | Bandwidth<br>(MHz) |
|---------|--------------------|--------------------|
| Low     | 5745               | 21.063             |
| Mid     | 5785               | 21.317             |
| High    | 5825               | 21.077             |

### Test mode: IEEE 802.11n HT20 / 5745 ~ 5825MHz

| Channel | Frequency<br>(MHz) | Bandwidth<br>(MHz) |
|---------|--------------------|--------------------|
| Low     | 5745               | 21.578             |
| Mid     | 5785               | 21.856             |
| High    | 5825               | 21.846             |

### Test mode: IEEE 802.11n HT40 / 5755 ~ 5795MHz

| Channel | Frequency<br>(MHz) | Bandwidth<br>(MHz) |
|---------|--------------------|--------------------|
| Low     | 5755               | 43.451             |
| High    | 5795               | 43.764             |

### Test mode: IEEE 802.11ac HT80 / 5775MHz

| Frequency | Bandwidth |
|-----------|-----------|
| (MHz)     | (MHz)     |
| 5775      | 84.058    |



Test Plot

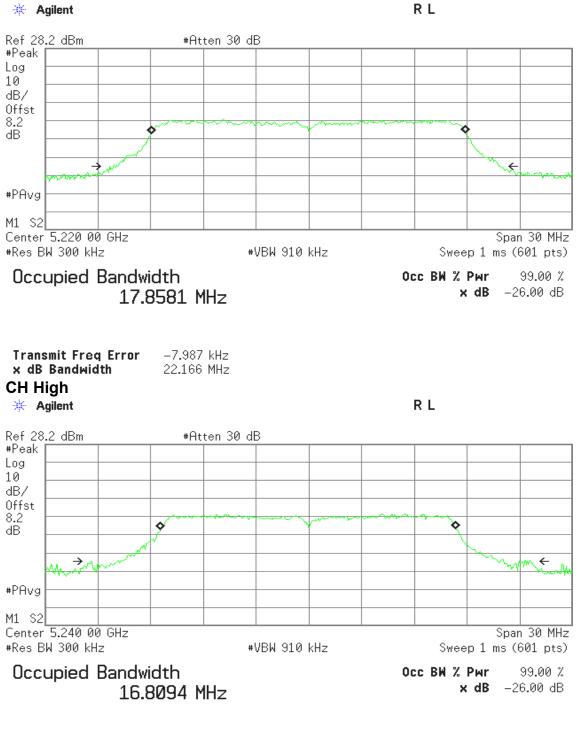
## IEEE 802.11a / 5180 ~ 5240MHz

CH Low

R L 🔆 Agilent Ref 28.2 dBm #Atten 30 dB #Peak Log 10 dB/ Offst 8.2 ٥  $\diamond$ dB  $\rightarrow$ ÷ #PAvg M1 S2 Center 5.180 00 GHz Span 30 MHz #Res BW 300 kHz #VBW 910 kHz Sweep 1 ms (601 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % **x dB** -26.00 dB 16.8602 MHz Transmit Freq Error -42.474 kHz x dB Bandwidth 25.164 MHz **CH Mid** R L 🔆 Agilent Ref 28.2 dBm #Atten 30 dB #Peak Log 10 dB/ Offst 8.2 4 ¢ dB ← #PAvg M1 S2 Center 5.220 00 GHz Span 30 MHz #Res BW 300 kHz #VBW 910 kHz Sweep 1 ms (601 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % 16.8318 MHz **x dB** -26.00 dB

| Transmit Freq Error | –32.555 kHz |
|---------------------|-------------|
| x dB Bandwidth      | 24.884 MHz  |




CH High

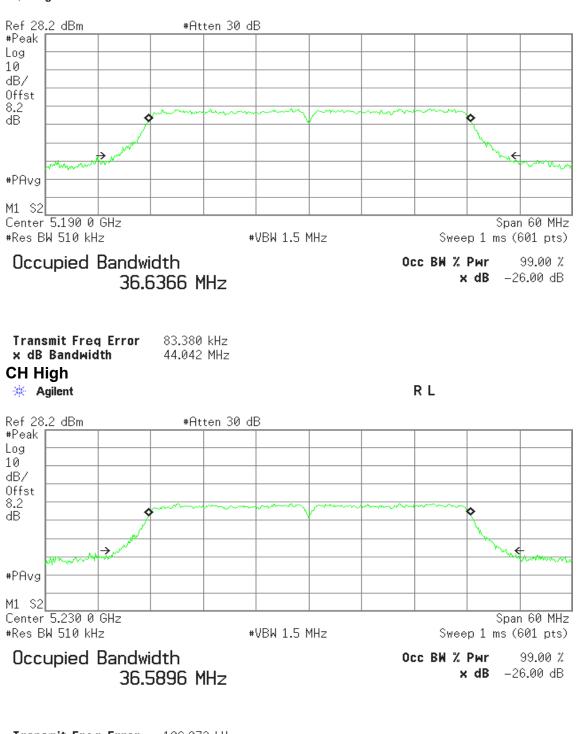
Ref 28.2 dBm #Atten 30 dB #Peak Log 10 dB/ Offst 8.2 \$ ò dB →<u>∦</u> ← W #PAvg M1 S2 Center 5.240 00 GHz Span 30 MHz #Res BW 300 kHz #VBW 910 kHz Sweep 1 ms (601 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % **x dB** -26.00 dB 16.8234 MHz Transmit Freg Error -29.032 kHz x dB Bandwidth 24.908 MHz IEEE 802.11n HT20 / 5180 ~ 5240MHz CH Low 🔆 Agilent R L Ref 28.2 dBm #Atten 30 dB #Peak Log 10 dB/ Offst 8.2 dB < #PAvg M1 S2 Center 5.180 00 GHz Span 30 MHz Sweep 1 ms (601 pts) #Res BW 300 kHz #VBW 910 kHz Occupied Bandwidth Occ BW % Pwr 99.00 % 17.8863 MHz **x dB** -26.00 dB

Transmit Freq Error -8.136 kHz x dB Bandwidth 22.281 MHz



CH Mid Agilent




| Transmit Freq Error | –33.613 kHz |
|---------------------|-------------|
| x dB Bandwidth      | 25.040 MHz  |

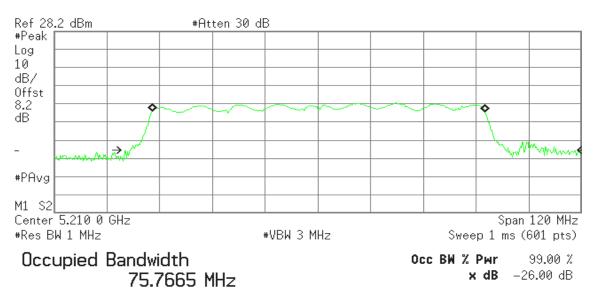


### IEEE 802.11n HT40 / 5190 ~ 5230MHz

CH Low

🔆 Agilent




Transmit Freq Error 106.072 kHz x dB Bandwidth 43.983 MHz



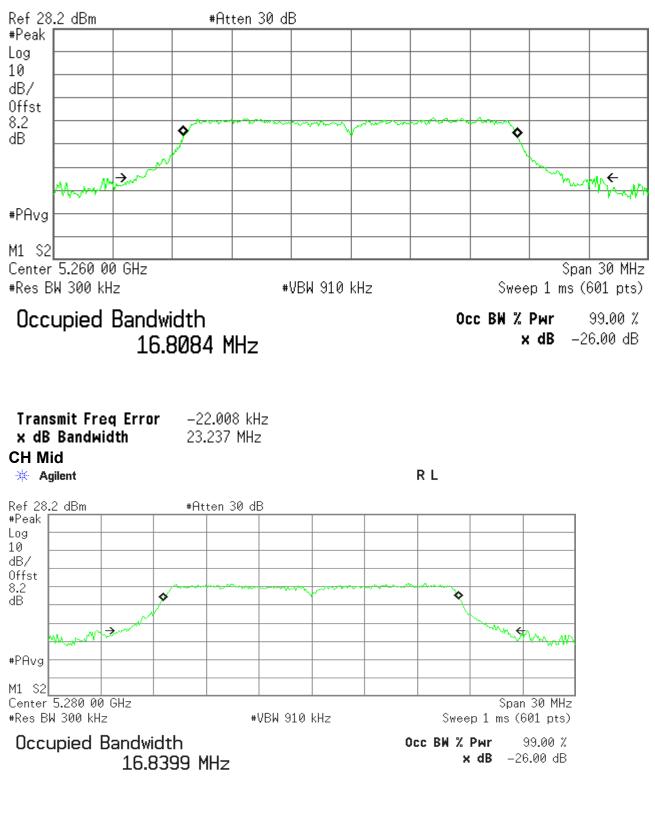
### IEEE 802.11ac HT80 / 5210MHz



R L



| Transmit Freq Error | 195.385 kHz |
|---------------------|-------------|
| x dB Bandwidth      | 99.637 MHz  |




### IEEE 802.11a / 5260 ~ 5320MHz

CH Low

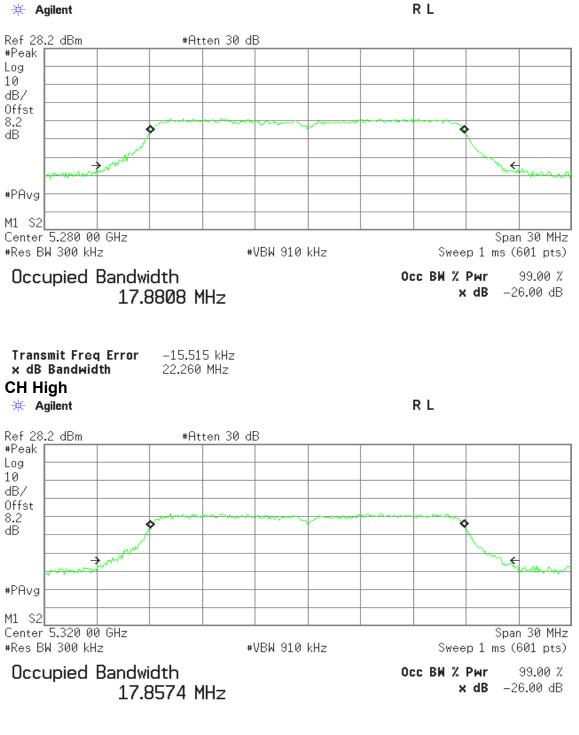


R L



Transmit Freq Error -45.683 kHz x dB Bandwidth 21.793 MHz




CH High

Ref 28.2 dBm #Atten 30 dB #Peak Log 10 dB/ Offst 8.2 0 8 dB  $\rightarrow$ <del>(</del> #PAvg M1 S2 Center 5.320 00 GHz Span 30 MHz Sweep 1 ms (601 pts) #Res BW 300 kHz #VBW 910 kHz Occupied Bandwidth Occ BW % Pwr 99.00 % 16.8445 MHz **x dB** -26.00 dB Transmit Freq Error -51.688 kHz x dB Bandwidth 23.365 MHz IEEE 802.11n HT20 / 5260 ~ 5320MHz **CH** Low 🔆 Agilent RL Ref 28.2 dBm #Atten 30 dB #Peak Log 10 dB/ Offst 8.2 dB ~ #PAvg M1 S2 Center 5.260 00 GHz Span 30 MHz #Res BW 300 kHz #VBW 910 kHz Sweep 1 ms (601 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % **x dB** -26.00 dB 17.8681 MHz

Transmit Freq Error -3.013 kHz x dB Bandwidth 22.207 MHz

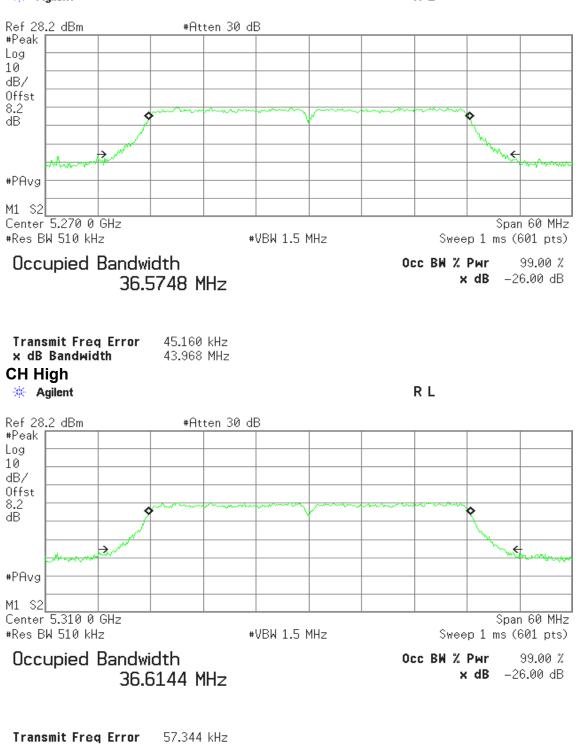


CH Mid Agilent



Transmit Freq Error-7.317 kHzx dB Bandwidth22.288 MHz



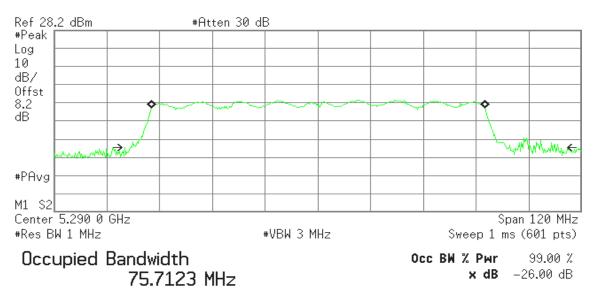

### IEEE 802.11n HT40 / 5270 ~ 5310MHz

CH Low

🔆 Agilent

x dB Bandwidth

44.031 MHz






### IEEE 802.11ac HT80 / 5290MHz

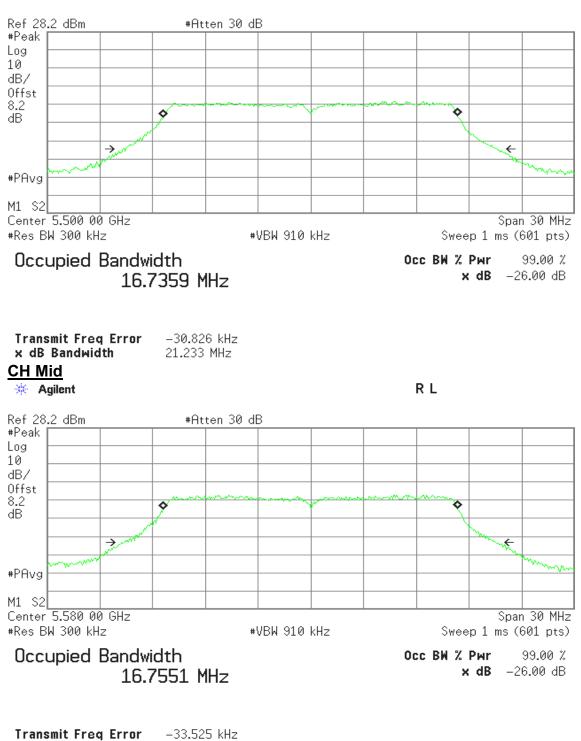






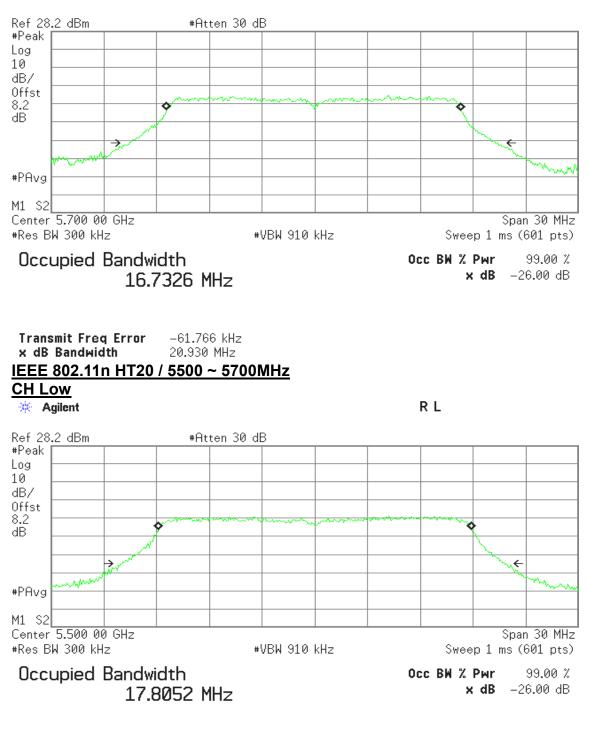
Transmit Freq Error 126.586 kHz x dB Bandwidth 97.177 MHz




IEEE 802.11a / 5500 ~ 5700MHz

<u>CH Low</u>

🔆 Agilent

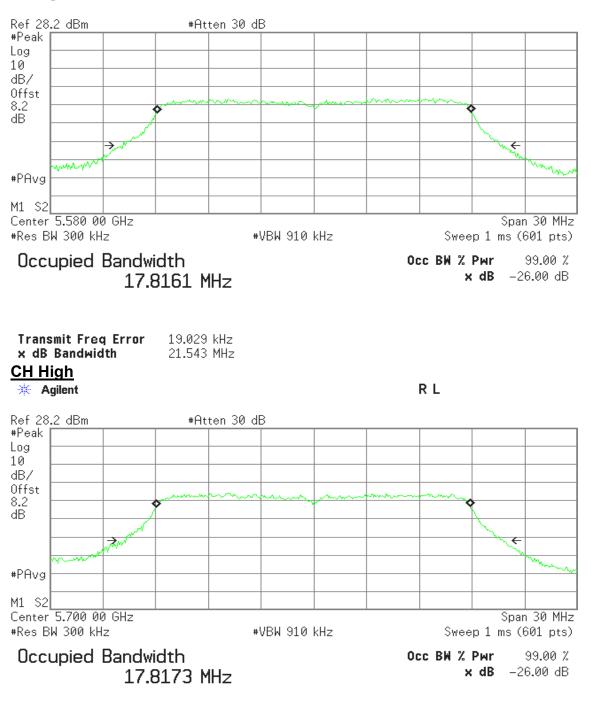

x dB Bandwidth

21.063 MHz





CH High Agilent




Transmit Freq Error 21.756 kHz x dB Bandwidth 21.748 MHz



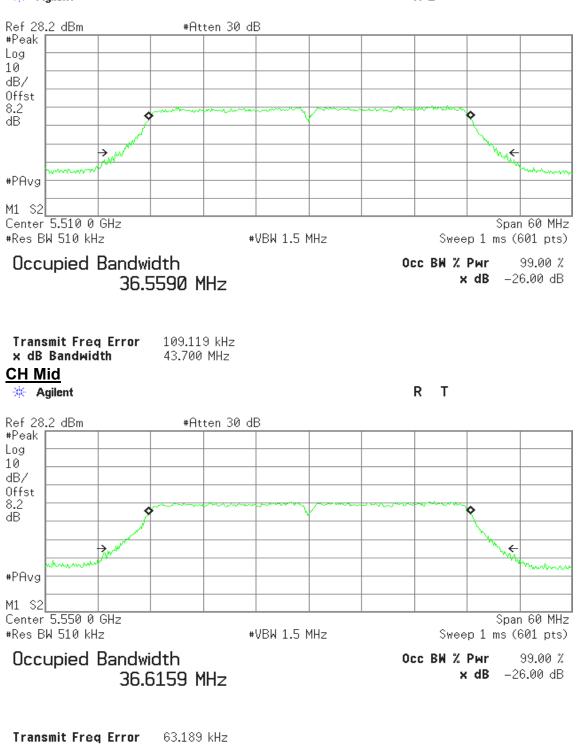
CH Mid Agilent

RL



| Transmit Freq Error | –24.197 kHz |
|---------------------|-------------|
| x dB Bandwidth      | 21.414 MHz  |




### IEEE 802.11n HT40 / 5510 ~ 5670MHz

<u>CH Low</u>

🔆 Agilent

x dB Bandwidth

43.687 MHz



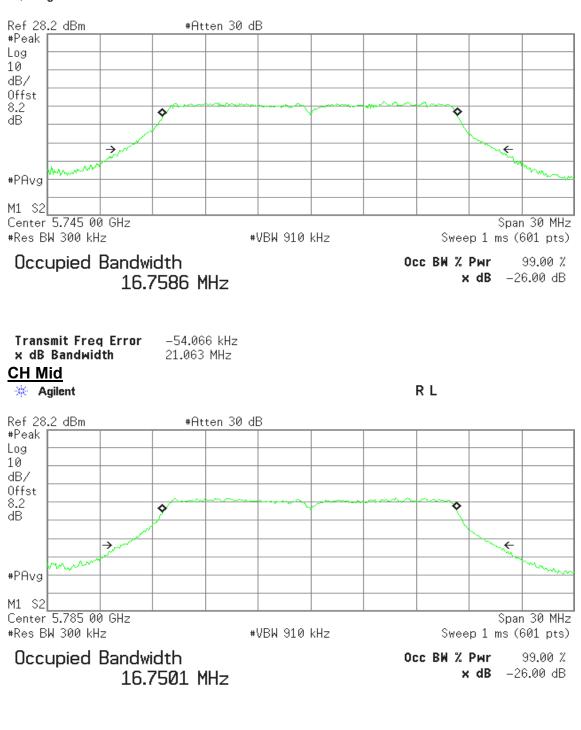


R L



Ref 28.2 dBm #Atten 30 dB #Peak Log 10 dB/ Offst 8.2 dB ⇒ <del>(</del> when #PAvg M1 S2 Center 5.670 0 GHz Span 60 MHz Sweep 1 ms (601 pts) #Res BW 510 kHz #VBW 1.5 MHz Occupied Bandwidth Occ BW % Pwr 99.00 % 36.5163 MHz **x dB** -26.00 dB **Transmit Freq Error** 19.456 kHz x dB Bandwidth 43.640 MHz IEEE 802.11ac HT80 / 5530MHz 🔆 Agilent R L Ref 28.2 dBm #Atten 30 dB #Peak Log 10 dB/ Offst 8.2 dB → ← #PAvg M1 S2 Center 5.530 0 GHz Span 120 MHz #Res BW 1 MHz #VBW 3 MHz Sweep 1 ms (601 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % 75.5328 MHz **x dB** -26.00 dB

Transmit Freq Error 182.276 kHz x dB Bandwidth 84.168 MHz




R L

IEEE 802.11a / 5745 ~ 5825MHz

<u>CH Low</u>

🔆 Agilent

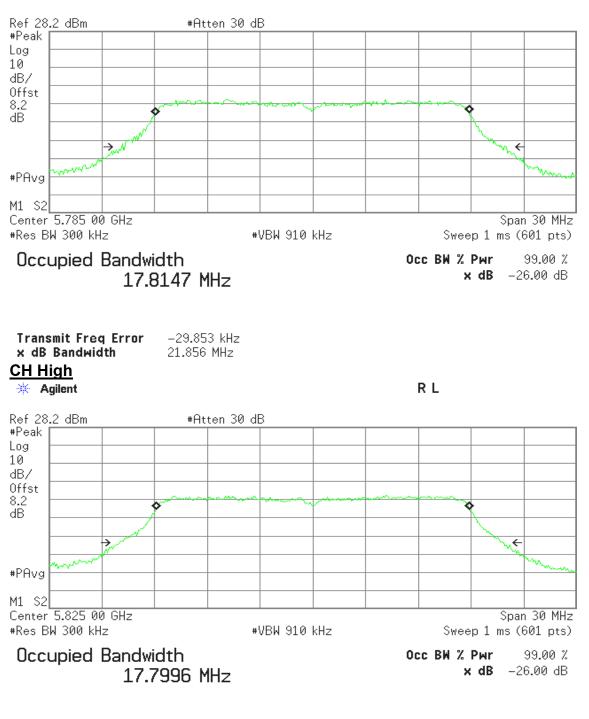


Transmit Freq Error -74.381 kHz x dB Bandwidth 21.317 MHz



R L

CH High Agilent


Ref 28.2 dBm #Atten 30 dB #Peak Log 10 dB/ Offst 8.2 0 0 dB  $\rightarrow$ ← mar #PAvg M1 S2 Center 5.825 00 GHz Span 30 MHz #Res BW 300 kHz #VBW 910 kHz Sweep 1 ms (601 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % **x dB** -26.00 dB 16.7591 MHz Transmit Freq Error -44.001 kHz x dB Bandwidth 21.077 MHz IEEE 802.11n HT20 / 5745 ~ 5825MHz **CH** Low R L 🔆 Agilent Ref 28.2 dBm #Atten 30 dB #Peak Log 10 dB/ Offst 8.2 dB ← > m and #PAvg M1 S2 Center 5.745 00 GHz Span 30 MHz #Res BW 300 kHz #VBW 910 kHz Sweep 1 ms (601 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % **x dB** -26.00 dB 17.8088 MHz

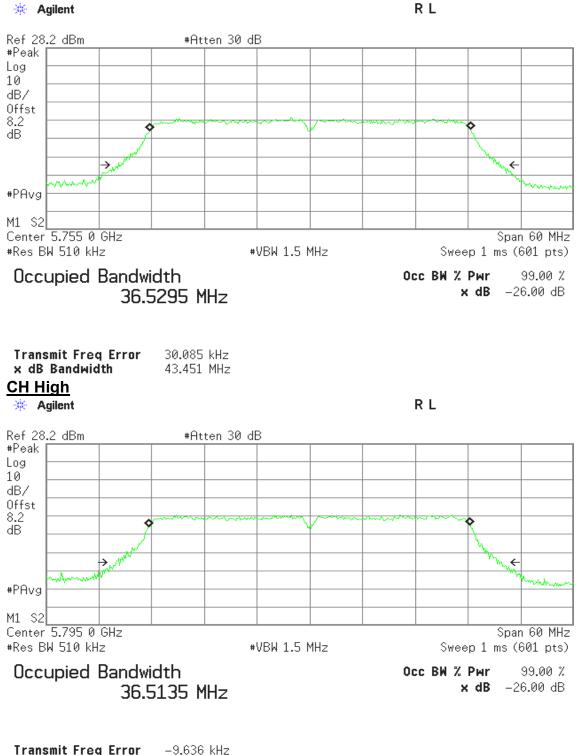
| Transmit Freq Error | –21.140 kHz |
|---------------------|-------------|
| x dB Bandwidth      | 21.578 MHz  |



CH Mid Agilent

RL




| Transmit Freq Error | 5.742 kHz  |
|---------------------|------------|
| x dB Bandwidth      | 21.846 MHz |



## IEEE 802.11n HT40 / 5755 ~ 5795MHz

**CH** Low

🔆 Agilent



| ransmit Freq Error | –9.636 kHz |
|--------------------|------------|
| dB Bandwidth       | 43.764 MHz |

×



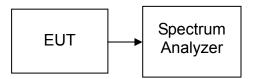
## IEEE 802.11ac HT80 / 5775MHz



RL



Transmit Freq Error 60.561 kHz x dB Bandwidth 84.058 MHz




# 7.2 6DB BANDWIDTH

# <u>LIMIT</u>

According to 15.407 (e), within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz

## Test Configuration



# TEST PROCEDURE

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 100kHz, VBW = 300kHz, Sweep = auto, Span = 30MHz (IEEE 802.11a, IEEE 802.11n HT20) or Span = 60MHz (IEEE 802.11n HT40) or Span = 120MHz (IEEE 802.11ac HT80).
- 4. Mark the peak frequency and –6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

# TEST RESULTS

No non-compliance noted



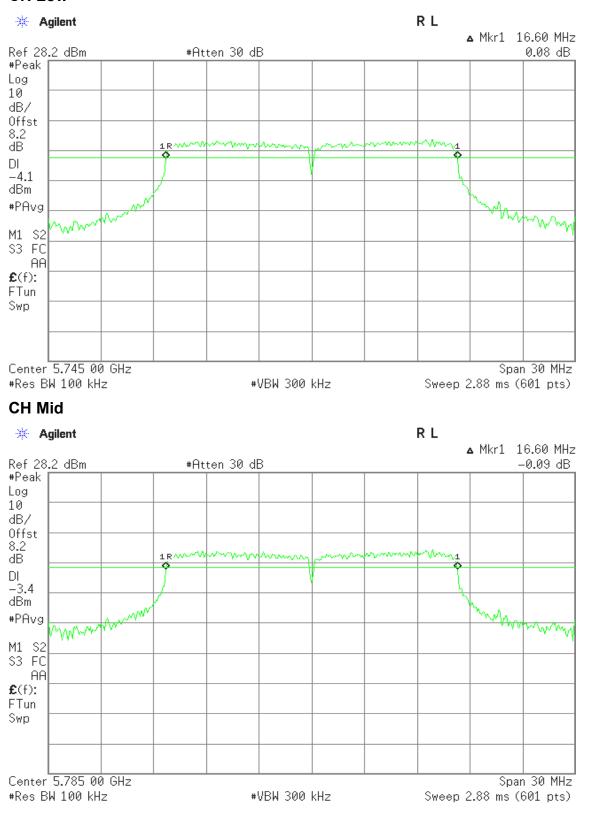
# Test mode: IEEE 802.11a / 5745 ~ 5825MHz

| Channel | Frequency<br>(MHz) | Bandwidth (MHz) | Limit<br>(kHz) | Result |
|---------|--------------------|-----------------|----------------|--------|
| Low     | 5745               | 16.60           |                | PASS   |
| Mid     | 5785               | 16.60           | >500           | PASS   |
| High    | 5825               | 16.60           |                | PASS   |

## Test mode: IEEE 802.11n HT20 / 5745 ~ 5825MHz

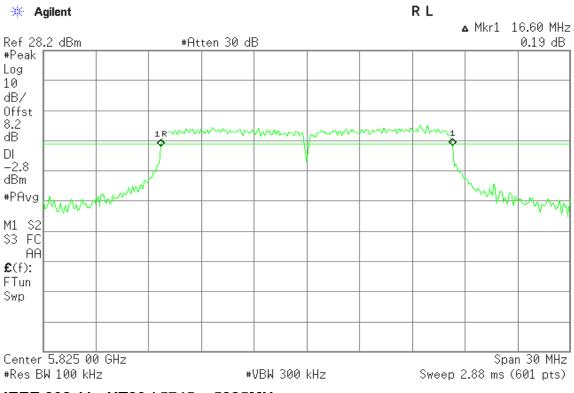
| Channel | Frequency<br>(MHz) | Bandwidth (MHz) | Limit<br>(kHz) | Result |
|---------|--------------------|-----------------|----------------|--------|
| Low     | 5745               | 17.80           |                | PASS   |
| Mid     | 5785               | 17.80           | >500           | PASS   |
| High    | 5825               | 17.90           |                | PASS   |

#### Test mode: IEEE 802.11n HT40 / 5755 ~ 5795MHz


| Channel | Frequency<br>(MHz) | Bandwidth (MHz) | Limit<br>(kHz) | Result |
|---------|--------------------|-----------------|----------------|--------|
| Low     | 5755               | 36.6            | >500           | PASS   |
| High    | 5795               | 36.6            | 2500           | PASS   |

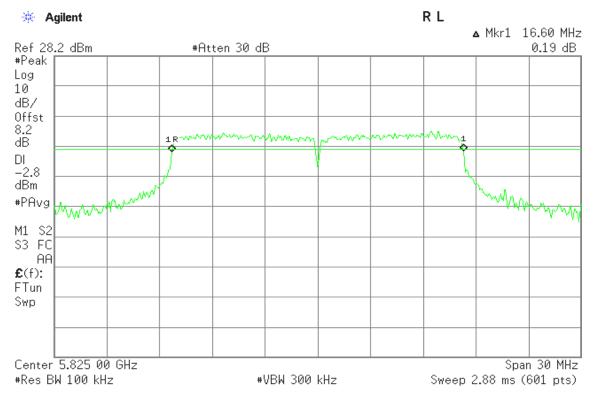
## Test mode: IEEE 802.11ac HT80 / 5775MHz

| Frequency<br>(MHz) | Bandwidth (MHz) | Limit<br>(kHz) | Result |
|--------------------|-----------------|----------------|--------|
| 5775               | 76.6            | >500           | PASS   |




## <u>Test Plot</u> <u>IEEE 802.11a / 5745 ~ 5825MHz</u> CH Low

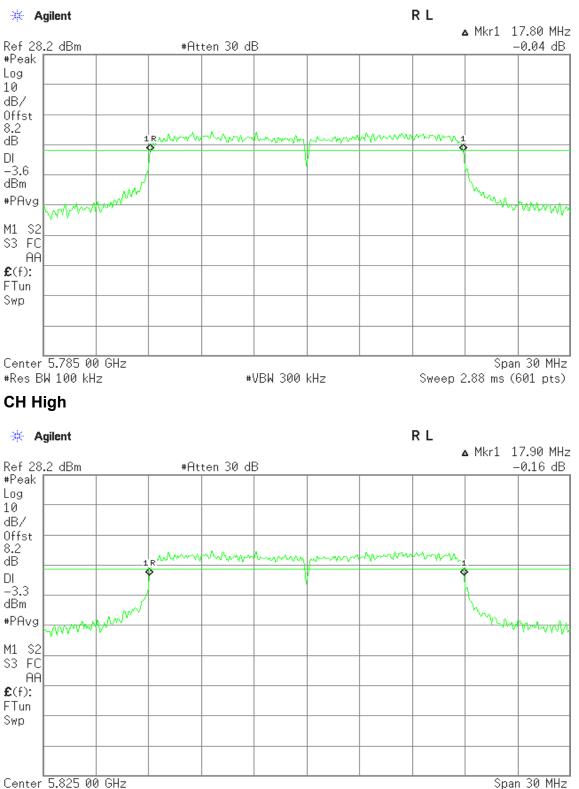





## CH High



## IEEE 802.11n HT20 / 5745 ~ 5825MHz


#### CH Low

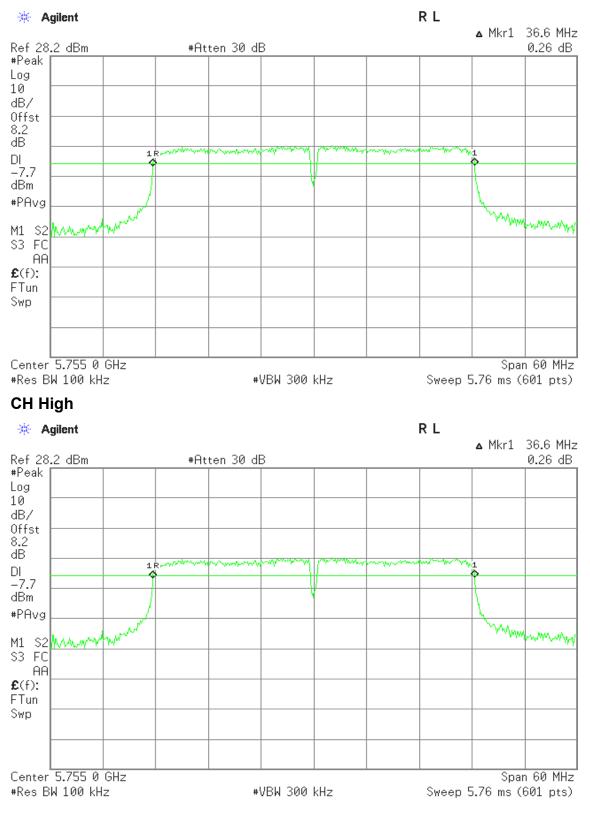




#Res BW 100 kHz

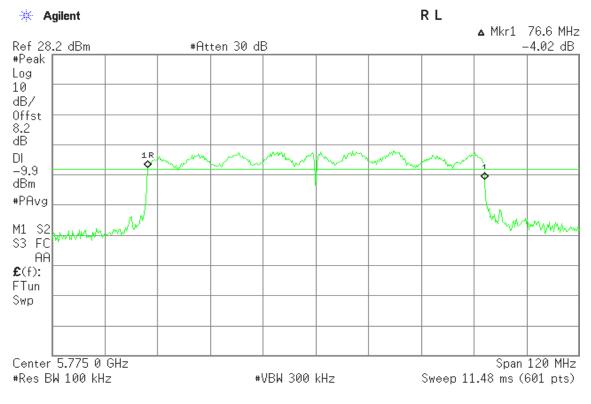
## CH Mid




Sweep 2.88 ms (601 pts)

#VBW 300 kHz




## IEEE 802.11n HT40 / 5755 ~ 5795MHz

#### **CH Low**





## IEEE 802.11ac HT80 / 5775MHz



# 7.3 MAXIMUM CONDUCTED OUTPUT POWER

# <u>LIMIT</u>

## According to § 15.407(a)

- (1) For the band 5.15-5.25 GHz.
  - (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
  - (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
  - (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
  - (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.



## <u>Specified Limit of the Output Power</u> Test mode: IEEE 802.11a mode / 5260-5320MHz

| Channel | Frequency<br>(MHz) | 26 dB<br>Bandwidth (B)<br>(MHz) | 10 Log B<br>(dB) | 11 + 10 Log B<br>(dBm) | Maximum<br>Conducted Output<br>Power Limit |
|---------|--------------------|---------------------------------|------------------|------------------------|--------------------------------------------|
| Low     | 5260               | 23.237                          | 13.66            | 24.66                  | 24.00                                      |
| Mid     | 5280               | 21.793                          | 13.38            | 24.38                  | 24.00                                      |
| High    | 5320               | 23.365                          | 13.69            | 24.69                  | 24.00                                      |

#### Test mode: IEEE 802.11n HT20 mode / 5260-5320MHz

| Channel | Frequency<br>(MHz) | 26 dB<br>Bandwidth (B)<br>(MHz) | 10 Log B<br>(dB) | 11 + 10 Log B<br>(dBm) | Maximum<br>Conducted Output<br>Power Limit |
|---------|--------------------|---------------------------------|------------------|------------------------|--------------------------------------------|
| Low     | 5260               | 22.207                          | 13.46            | 24.46                  | 24.00                                      |
| Mid     | 5280               | 22.26                           | 13.48            | 24.48                  | 24.00                                      |
| High    | 5320               | 22.288                          | 13.48            | 24.48                  | 24.00                                      |

#### Test mode: IEEE 802.11n HT40 mode / 5190-5230MHz

| Channel | Frequency<br>(MHz) | 26 dB<br>Bandwidth (B)<br>(MHz) | 10 Log B<br>(dB) | 11 + 10 Log B<br>(dBm) | Maximum<br>Conducted Output<br>Power Limit |
|---------|--------------------|---------------------------------|------------------|------------------------|--------------------------------------------|
| Low     | 5190               | 43.968                          | 16.43            | 27.43                  | 24.00                                      |
| High    | 5230               | 44.031                          | 16.44            | 27.44                  | 24.00                                      |

## Test mode: IEEE 802.11ac HT80 mode / 5290MHz

| Frequency<br>(MHz) | 26 dB<br>Bandwidth (B)<br>(MHz) | 10 Log B<br>(dB) | 11 + 10 Log B<br>(dBm) | Maximum<br>Conducted Output<br>Power Limit |
|--------------------|---------------------------------|------------------|------------------------|--------------------------------------------|
| 5290               | 97.177                          | 19.88            | 30.88                  | 24.00                                      |



Report No.: T140317J01-RP2 FCC ID: KA2CS7000LA1 Date of Issue: September 17, 2014

### Test mode: IEEE 802.11a mode / 5500-5700MHz

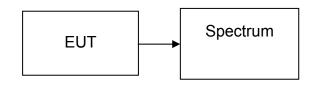
| Channel | Frequency<br>(MHz) | 26 dB<br>Bandwidth (B)<br>(MHz) | 10 Log B<br>(dB) | 11 + 10 Log B<br>(dBm) | Maximum<br>Conducted Output<br>Power Limit |
|---------|--------------------|---------------------------------|------------------|------------------------|--------------------------------------------|
| Low     | 5500               | 21.233                          | 13.27            | 24.27                  | 24.00                                      |
| Mid     | 5580               | 21.063                          | 13.24            | 24.24                  | 24.00                                      |
| High    | 5700               | 20.93                           | 13.21            | 24.21                  | 24.00                                      |

#### Test mode: IEEE 802.11n HT20 mode / 5500-5700MHz

| Channel | Frequency<br>(MHz) | 26 dB<br>Bandwidth (B)<br>(MHz) | 10 Log B<br>(dB) | 11 + 10 Log B<br>(dBm) | Maximum<br>Conducted Output<br>Power Limit |
|---------|--------------------|---------------------------------|------------------|------------------------|--------------------------------------------|
| Low     | 5500               | 21.748                          | 13.37            | 24.37                  | 24.00                                      |
| Mid     | 5580               | 21.543                          | 13.33            | 24.33                  | 24.00                                      |
| High    | 5700               | 21.414                          | 13.31            | 24.31                  | 24.00                                      |

#### Test mode: IEEE 802.11n HT40 mode / 5510-5670MHz

| Channel | Frequency<br>(MHz) | 26 dB<br>Bandwidth (B)<br>(MHz) | 10 Log B<br>(dB) | 11 + 10 Log B<br>(dBm) | Maximum<br>Conducted Output<br>Power Limit |
|---------|--------------------|---------------------------------|------------------|------------------------|--------------------------------------------|
| Low     | 5510               | 43.7                            | 16.40            | 27.40                  | 24.00                                      |
| Mid     | 5550               | 43.687                          | 16.40            | 27.40                  | 24.00                                      |
| High    | 5670               | 43.64                           | 16.40            | 27.40                  | 24.00                                      |


#### Test mode: IEEE 802.11ac HT80 mode / 5530MHz

| Frequency<br>(MHz) | 26 dB<br>Bandwidth (B)<br>(MHz) | 10 Log B<br>(dB) | 11 + 10 Log B<br>(dBm) | Maximum<br>Conducted Output<br>Power Limit |
|--------------------|---------------------------------|------------------|------------------------|--------------------------------------------|
| 5530               | 84.168                          | 19.25            | 30.25                  | 24.00                                      |



# Test Configuration

The EUT was connected to a spectrum analyzer through a 50 $\Omega$  RF cable.



# TEST PROCEDURE

Set span to encompass the entire emission bandwidth (EBW) of the signal.

Set RBW = 1 MHz / Set VBW = 3 MHz.

Use sample detector mode if bin width (i.e., span/number of points in spectrum display) < 0.5 RBW. Otherwise use peak detector mode. Use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at full control power for entire sweep of every sweep. If the device transmits continuously, with no off intervals or reduced power intervals, the trigger may be set to "free run". Trace average 100 traces in power averaging mode. Compute power by integrating the spectrum across the 26 dB EBW of the signal. The integration can be performed using the spectrum analyzer's band power measurement function with band limits set equal to the EBW band edges or by summing power levels in each 1 MHz band in linear power terms. The 1 MHz band power levels to be summed can be obtained by averaging, in linear power terms, power levels in each frequency bin across the 1 MHz.

# TEST RESULTS

No non-compliance noted



## <u>Test Data</u>

## Test mode: IEEE 802.11a / 5180 ~ 5240MHz

| Channel | Frequency<br>(MHz) | Maximum Conducted Output Power<br>(dBm) | Limit<br>(dBm) |
|---------|--------------------|-----------------------------------------|----------------|
| Low     | 5180               | 11.75                                   | 24.00          |
| Mid     | 5220               | 12.28                                   | 24.00          |
| High    | 5240               | 11.85                                   | 24.00          |

### Test mode: IEEE 802.11n HT20 / 5180 ~ 5240MHz

| Channel | Frequency<br>(MHz) | Maximum Conducted Output Power<br>(dBm) | Limit<br>(dBm) |
|---------|--------------------|-----------------------------------------|----------------|
| Low     | 5180               | 12.11                                   | 24.00          |
| Mid     | 5220               | 12.76                                   | 24.00          |
| High    | 5240               | 13.33                                   | 24.00          |

### Test mode: IEEE 802.11n HT40 / 5190 ~ 5230MHz

| Channel | Frequency<br>(MHz) | Maximum Conducted Output Power<br>(dBm) | Limit<br>(dBm) |
|---------|--------------------|-----------------------------------------|----------------|
| Low     | 5190               | 12.43                                   | 24.00          |
| High    | 5230               | 13.01                                   | 24.00          |

### Test mode: IEEE 802.11ac HT80 / 5210MHz

| Frequency | Maximum Conducted Output Power | Limit |
|-----------|--------------------------------|-------|
| (MHz)     | (dBm)                          | (dBm) |
| 5210      | 12.53                          | 24.00 |



| rest mode: | Test mode: TEEE 802.118 / 5260-5320MHZ |                                         |                |  |  |
|------------|----------------------------------------|-----------------------------------------|----------------|--|--|
| Channel    | Frequency<br>(MHz)                     | Maximum Conducted Output Power<br>(dBm) | Limit<br>(dBm) |  |  |
| Low        | 5260                                   | 12.65                                   | 24.00          |  |  |
| Mid        | 5280                                   | 13.45                                   | 24.00          |  |  |
| High       | 5320                                   | 14.08                                   | 24.00          |  |  |

## Test mode: IEEE 802.11a / 5260-5320MHz

#### Test mode: IEEE 802.11n HT20 / 5260-5320MHz

| Channel | Frequency<br>(MHz) | Maximum Conducted Output Power<br>(dBm) | Limit<br>(dBm) |
|---------|--------------------|-----------------------------------------|----------------|
| Low     | 5260               | 13.58                                   | 24.00          |
| Mid     | 5280               | 13.28                                   | 24.00          |
| High    | 5320               | 12.93                                   | 24.00          |

# Test mode: IEEE 802.11n HT40 / 5270-5310MHz

| Channel | Frequency<br>(MHz) | Maximum Conducted Output Power<br>(dBm) | Limit<br>(dBm) |
|---------|--------------------|-----------------------------------------|----------------|
| Low     | 5270               | 13.28                                   | 24.00          |
| High    | 5310               | 13.95                                   | 24.00          |

#### Test mode: IEEE 802.11ac HT80 / 5290MHz

| Frequency | Maximum Conducted Output Power | Limit |
|-----------|--------------------------------|-------|
| (MHz)     | (dBm)                          | (dBm) |
| 5290      | 13.27                          | 24.00 |



## Test mode: IEEE 802.11a / 5500-5700MHz

| Channel | Frequency<br>(MHz) | Maximum Conducted Output Power<br>(dBm) | Limit<br>(dBm) |
|---------|--------------------|-----------------------------------------|----------------|
| Low     | 5500               | 13.47                                   | 24.00          |
| Mid     | 5580               | 13.61                                   | 24.00          |
| High    | 5700               | 13.57                                   | 24.00          |

## Test mode: IEEE 802.11n HT20 / 5500-5700MHz

| Channel | Frequency<br>(MHz) | Maximum Conducted Output Power<br>(dBm) | Limit<br>(dBm) |
|---------|--------------------|-----------------------------------------|----------------|
| Low     | 5500               | 13.21                                   | 24.00          |
| Mid     | 5580               | 13.19                                   | 24.00          |
| High    | 5700               | 12.54                                   | 24.00          |

### Test mode: IEEE 802.11n HT40 / 5510-5670MHz

| Channel | Frequency<br>(MHz) | Maximum Conducted Output Power<br>(dBm) | Limit<br>(dBm) |
|---------|--------------------|-----------------------------------------|----------------|
| Low     | 5510               | 12.88                                   | 24.00          |
| Mid     | 5550               | 13.82                                   | 24.00          |
| High    | 5670               | 14.53                                   | 24.00          |

## Test mode: IEEE 802.11ac HT80 / 5530MHz

| Frequency | Maximum Conducted Output Power | Limit |
|-----------|--------------------------------|-------|
| (MHz)     | (dBm)                          | (dBm) |
| 5530      | 13.04                          | 24.00 |



## Test mode: IEEE 802.11a / 5745-5825MHz

| Channel | Frequency<br>(MHz) | Maximum Conducted Output Power<br>(dBm) | Limit<br>(dBm) |
|---------|--------------------|-----------------------------------------|----------------|
| Low     | 5745               | 17.15                                   | 30.00          |
| Mid     | 5785               | 17.56                                   | 30.00          |
| High    | 5825               | 16.66                                   | 30.00          |

### Test mode: IEEE 802.11n HT20 / 5745-5825MHz

| Channel | Frequency<br>(MHz) | Maximum Conducted Output Power<br>(dBm) | Limit<br>(dBm) |
|---------|--------------------|-----------------------------------------|----------------|
| Low     | 5745               | 16.47                                   | 30.00          |
| Mid     | 5785               | 16.39                                   | 30.00          |
| High    | 5825               | 16.73                                   | 30.00          |

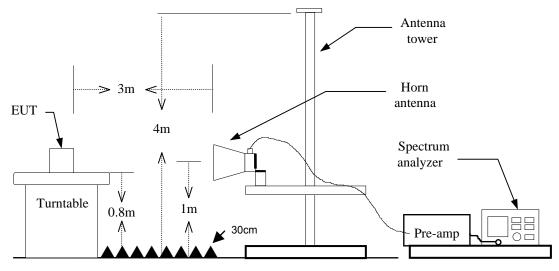
### Test mode: IEEE 802.11n HT40 / 5755-5795MHz

| Channel | Frequency<br>(MHz) | Maximum Conducted Output Power<br>(dBm) | Limit<br>(dBm) |
|---------|--------------------|-----------------------------------------|----------------|
| Low     | 5755               | 16.05                                   | 30.00          |
| High    | 5795               | 16.12                                   | 30.00          |

## Test mode: IEEE 802.11ac HT80 / 5775MHz

| Frequency | Maximum Conducted Output Power | Limit |
|-----------|--------------------------------|-------|
| (MHz)     | (dBm)                          | (dBm) |
| 5775      | 15.70                          | 30.00 |




# 7.4 BAND EDGES MEASUREMENT

# <u>LIMIT</u>

According to §15.407(b)

- (1) The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.
- (2) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency block edges as the design of the equipment permits.

## Test Configuration



# TEST PROCEDURE

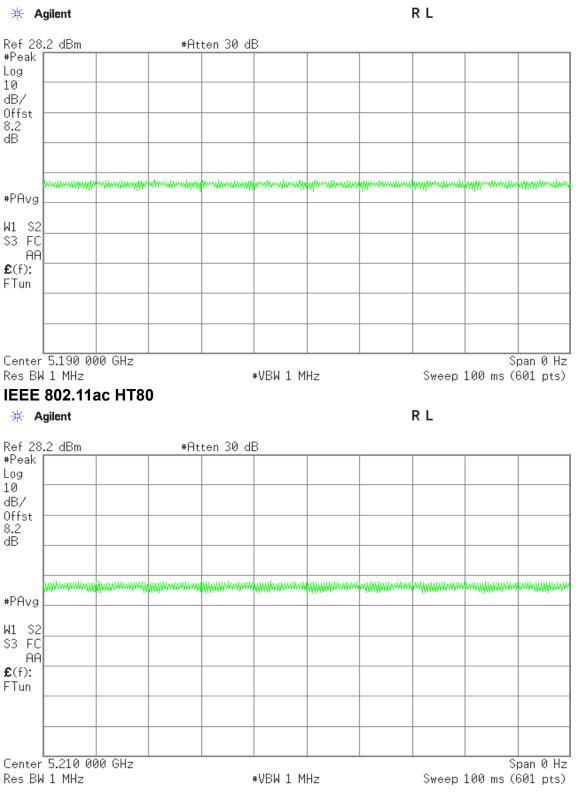
- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
  - (a) PEAK: RBW=1MHz / VBW=3MHz / Sweep=AUTO
  - (b) AVERAGE: RBW=1MHz / VBW=300Hz<sup>(1)</sup> / Sweep=AUTO
  - (c) Duty Cycle: RBW=1MHz / VBW=1MHz

(1): Because Duty Cycle> 98%, the use of more rigorous testing methods VBW = 300Hz.

5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

# TEST RESULTS

Refer to attach spectrum analyzer data chart.




## **DUTY CYCLE IEEE 802.11a**

RL 🔆 Agilent Ref 28.2 dBm #Peak #Atten 30 dB Log 10 dB/ Offst 8.2 dB #PAvg W1 S2 S3 FC AA  $\pmb{f}(f);$ FTun Center 5.180 000 GHz Span 0 Hz Res BW 1 MHz #VBW 1 MHz Sweep 100 ms (601 pts) **IEEE 802.11n HT20** 🔆 Agilent R L Ref 28.2 dBm #Atten 30 dB #Peak Log 10 dB/ Offst 8.2 dB #PAvg W1 S2 S3 FC AA £(f): FTun Center 5.180 000 GHz Span 0 Hz Res BW 1 MHz #VBW 1 MHz Sweep 100 ms (601 pts)



#### IEEE 802.11n HT40





### IEEE 802.11a / 5180-5240MHz / CH Low


#### Detector mode: Peak

## **Polarity: Vertical**

| Agilent Spect                        | rum Analyzer - Swept S |                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |
|--------------------------------------|------------------------|----------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------|
| LXI L                                | RF 50Ω D               |                                        | 9                      | SENSE:INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ALIGN AUTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              | 04:36:14 PM Jun 18, 2014  |
| Display                              | Line 74.00 dBլ         |                                        |                        | Tains Frank Dr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | #Avg Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              | TRACE 1 2 3 4 5 6         |
|                                      |                        |                                        | 10: Fast 😱<br>iain:Low | Trig: Free Run<br>#Atten: 10 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Avg Hold: 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 001100                       | DET P P N N N N           |
|                                      |                        | IFG                                    | ain:Low                | Hotten, iv up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |
|                                      | Ref Offset 6 dB        |                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | 1 5.150 0 GHz             |
| 10 dB/div                            | Ref 112.99 dE          | 3μV/m                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                            | 3.482 dBµV/m              |
| Log                                  |                        |                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | ~~                        |
| 103                                  |                        |                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |
| 93.0                                 |                        |                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |
| 83.0                                 |                        |                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |
| 73.0                                 |                        |                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | 7 <sup>4 h</sup> 0 dBµ∀/m |
|                                      |                        |                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |
| 63.0                                 |                        |                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | <u>,</u>                  |
| 53.0 -                               |                        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | townshare and          | where the second se | And the second s | and the second second second | menner                    |
| 43.0                                 |                        |                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |
| 33.0                                 |                        |                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |
|                                      |                        |                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |
| 23.0                                 |                        |                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |
| Start 4.5                            | 000 CH7                |                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | Stop 5.2000 GHz           |
| #Res BW                              |                        |                                        | #\/B)                  | N 3.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #Sween                       | 100 ms (1001 pts)         |
|                                      |                        |                                        | #VD1                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                            |                           |
| MKR MODE T                           |                        | ×                                      | Y                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FUNCTION WIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FUNCTIO                      | N VALUE                   |
|                                      | 1 f                    | 5.150 0 GHz                            | 63.482 dBi             | ıV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 |                        |                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |
| 4                                    |                        |                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |
| 5                                    |                        |                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |
| 5                                    |                        |                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |
| ė –                                  |                        |                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |
| 9                                    |                        |                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |
| 10<br>11                             |                        |                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |
| 12                                   |                        |                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |
| MSG                                  |                        |                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |
| MGG                                  |                        |                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NO STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |                           |

#### **Detector mode: Average**

#### **Polarity: Vertical**





## Detector mode: Peak

# **Polarity: Horizontal**

| Wideo BW 3.0 MHz         PN0: Fast<br>IFGain:Low         Trig: Free Run<br>#Atten: 10 dB         #Avg Type: RMS<br>Avg Hold>100/100         TRACE         I 3 4 5<br>TYPE           0 dB/div         Ref Offset 6 dB         Mkr1 5.150 0 GH         Str.759 dBµV/r           100         B/div         Ref 112.99 dBµV/m         Str.759 dBµV/r           103         93.0         1         74.90 dBµV/m           103         93.0         1         1           103         93.0         1         1           103         93.0         1         1           103         1         1         1           103         1         1         1           103         1         1         1           103         1         1         1           103         1         1         1           104         1         1         1           103         1         1         1           104         1         1         1           105         1         1         1         1           105         1         1         1         1           105         1         1         1         1 <th>Agilent Spect</th> <th>rum Analyzer - Swept</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Agilent Spect                              | rum Analyzer - Swept                                                                                           |                                |               |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------|---------------|----------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|
| PN0: Fast<br>IFGain:Low         Trig: Free Run<br>#Atten: 10 dB         Avg[Heid>100/100         Trig: PNNN<br>Det  P PNNN           Nkr1 5.150 0 GH         57.759 dBµV/m         57.759 dBµV/r           10 dB/div         Ref Offset 6 dB         77.759 dBµV/r           103         74.0 eBµV           930         74.0 eBµV           103         74.0 eBµV           930         74.0 eBµV           103         74.0 eBµV           104         1           105         1           106         1           107         1           108         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <mark>lXI</mark> L<br>Videe BV             |                                                                                                                | DC CORREC                      | SENSE:IN      | T                          | ALIGNAUTO                 | PMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 04:38:35 PM Jun 18, 2014       |  |
| Note:         Start 4.5000 GHz         #VBW 3.0 MHz         FUNCTION WIDTH         Stop 5.2000 GH           MKS         MODEL TRG SCL         X         Y         FUNCTION WIDTH         FUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |                                                                                                                | PNC                            |               |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TYPE MWWWWW<br>DET P P N N N N |  |
| Log<br>103<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>94.0<br>94.0<br>94.0<br>95.2000 GHz<br>#Sweep 100 ms (1001 pts)<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0<br>94.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            | Bot Officer 6 dB Mkr1 5.150 0 GHz                                                                              |                                |               |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |
| 103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       103       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 dB/div                                  | Ref 112.99 d                                                                                                   | BμV/m                          |               |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57.759 aBµV/m                  |  |
| 83.0       74.0       60.0       74.0       60.0         63.0       74.0       60.0       74.0       60.0         63.0       74.0       60.0       74.0       60.0         63.0       74.0       74.0       60.0       74.0         63.0       74.0       74.0       60.0       74.0         63.0       74.0       74.0       60.0       74.0         63.0       74.0       74.0       74.0       60.0         63.0       74.0       74.0       60.0       74.0         63.0       74.0       74.0       74.0       60.0         63.0       74.0       74.0       74.0       74.0         63.0       74.0       74.0       74.0       74.0         73.0       74.0       74.0       74.0       74.0         73.0       74.0       74.0       74.0       74.0         73.0       74.0       74.0       74.0       74.0         74.0       74.0       74.0       74.0       74.0         74.0       74.0       74.0       74.0       74.0         74.0       74.0       74.0       74.0       75.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                                                                                |                                |               |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |
| 73.0     74.0     74.0     68.0       63.0     74.0     69.0       63.0     74.0     74.0       63.0     74.0     74.0       73.0     74.0     74.0       73.0     74.0     74.0       73.0     74.0     74.0       73.0     74.0     74.0       73.0     74.0     74.0       73.0     74.0     74.0       73.0     74.0     74.0       73.0     74.0     74.0       73.0     74.0     74.0       73.0     74.0     74.0       73.0     74.0     74.0       73.0     74.0     74.0       73.0     74.0     74.0       73.0     74.0     74.0       74.0     74.0     74.0       74.0     74.0     74.0       74.0     74.0     74.0       74.0     74.0     74.0       74.0     74.0     74.0       74.0     74.0     74.0       74.0     74.0     74.0       74.0     74.0     74.0       74.0     74.0     74.0       74.0     74.0     74.0       74.0     74.0     74.0       74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 93.0                                       |                                                                                                                |                                |               |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |
| 73.0     73.0     73.0       63.0     73.0     73.0       73.0     73.0     73.0       73.0     73.0     73.0       73.0     73.0     73.0       73.0     73.0     73.0       73.0     73.0     73.0       73.0     73.0     74.0       73.0     74.0     74.0       73.0     74.0     74.0       73.0     74.0     74.0       73.0     74.0     74.0       74.0     74.0     74.0       74.0     74.0     74.0       74.0     74.0     74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 83.0                                       |                                                                                                                |                                |               |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>\ \</del>                 |  |
| 530     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 73.0                                       |                                                                                                                |                                |               |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74.00 dBµ∨/m                   |  |
| 43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0     43.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63.0                                       |                                                                                                                |                                |               |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                              |  |
| 33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0         33.0 <th< td=""><td>53.0 <b></b></td><td>man and a second se</td><td>mare a realistic Registres and</td><td>www.manler</td><td>Martin Calebra and Calebra</td><td>Incompression allowed and</td><td>and the states of the states o</td><td>mal down or the</td></th<> | 53.0 <b></b>                               | man and a second se | mare a realistic Registres and | www.manler    | Martin Calebra and Calebra | Incompression allowed and | and the states of the states o | mal down or the                |  |
| 23.0         Stop 5.2000 GHz           Start 4.5000 GHz         \$\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 43.0                                       |                                                                                                                |                                |               |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |
| Start 4.5000 GHz         Stop 5.2000 GH           #Res BW 1.0 MHz         #VBW 3.0 MHz         #Sweep 100 ms (1001 pts)           MKR MODE TRC SCI         X         Y         FUNCTION WIDTH         FUNCTION VALUE           1         N         1         f         5.150 0 GHz         57.759 dBµV/m         FUNCTION VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33.0                                       |                                                                                                                |                                |               |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |
| #Res BW 1.0 MHz         #VBW 3.0 MHz         #Sweep 100 ms (1001 pts)           MKR MODE TRC SCIX         Y         FUNCTION WIDTH         FUNCTION VALUE           1         N         1         f         5.150 0 GHz         57.759 dBµV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23.0                                       |                                                                                                                |                                |               |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |
| #Res BW 1.0 MHz         #VBW 3.0 MHz         #Sweep 100 ms (1001 pts)           MKR MODE TRC SCIX         Y         FUNCTION WIDTH         FUNCTION VALUE           1         N         1         f         5.150 0 GHz         57.759 dBµV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Start 4 50                                 |                                                                                                                |                                |               |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop 5 2000 CHz                |  |
| ■1 N 1 f 5.150 0 GHz 57.759 dBµV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                                                                                                                |                                | #VBW 3.0      | MHz                        |                           | #Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |                                                                                                                |                                | Y             | FUNCTION F                 | UNCTION WIDTH             | FUNCTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DN VALUE                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            | f                                                                                                              | 5.150 0 GHz                    | 57.759 dBµV/m |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 |                                                                                                                |                                |               |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                          |                                                                                                                |                                |               |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |
| 6 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6<br>7                                     |                                                                                                                |                                |               |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                                          |                                                                                                                |                                |               |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |                                                                                                                |                                |               |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |
| 11<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11<br>12                                   |                                                                                                                |                                |               |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |
| MSG STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MSG                                        |                                                                                                                |                                |               |                            | <b>I</b> STATUS           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |

## Detector mode: Average

# **Polarity: Horizontal**

| Agilent Spect                        | rum Analyzer - Swept SA              |                                            |                    |                                 |                                            |
|--------------------------------------|--------------------------------------|--------------------------------------------|--------------------|---------------------------------|--------------------------------------------|
| LXI L                                | RF 50 Ω DC CORRE                     | C SENSE:INT                                |                    | ALIGNAUTO                       | 04:38:58 PM Jun 18, 2014                   |
| Display I                            | Line 54.00 dBµV/m                    | PNO: Fast 😱 Trig: Fi<br>IFGain:Low #Atten: | ree Run<br>: 10 dB | #Avg Type: RI<br>Avg Hold: 5/10 |                                            |
| 10 dB/div                            | Ref Offset 6 dB<br>Ref 112.99 dBµV/m |                                            |                    |                                 | Mkr1 5.150 0 GHz<br>47.460 dBµV/m          |
| 103                                  |                                      |                                            |                    |                                 |                                            |
| 93.0                                 |                                      |                                            |                    |                                 | M                                          |
| 83.0                                 |                                      |                                            |                    |                                 |                                            |
| 73.0                                 |                                      |                                            |                    |                                 |                                            |
| 63.0                                 |                                      |                                            |                    |                                 | / \                                        |
| 53.0                                 |                                      |                                            |                    |                                 | 1_ <u>0</u> dBµ∨/m                         |
| 43.0                                 |                                      |                                            | -                  |                                 |                                            |
| 33.0                                 |                                      |                                            |                    |                                 |                                            |
| 23.0                                 |                                      |                                            |                    |                                 |                                            |
| Start 4.50<br>#Res BW                |                                      | #VBW 300 H                                 | lz                 |                                 | Stop 5.2000 GHz<br>Sweep 1.82 s (1001 pts) |
|                                      | RC SCL X<br>1 f 5.15000              |                                            | FUNCTION           | FUNCTION WIDTH                  | FUNCTION VALUE                             |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 |                                      |                                            |                    |                                 |                                            |
| 4<br>5                               |                                      |                                            |                    |                                 |                                            |
| 6<br>7                               |                                      |                                            |                    |                                 |                                            |
| 8                                    |                                      |                                            |                    |                                 |                                            |
|                                      |                                      |                                            |                    |                                 |                                            |
| 11<br>12                             |                                      |                                            |                    |                                 |                                            |
| MSG                                  |                                      |                                            |                    | <b>I</b> STATUS                 |                                            |



## Band Edges / IEEE 802.11n HT20 / 5180-5240MHz / CH Low

#### Detector mode: Peak

### **Polarity: Vertical**

| Agilent Spectrum An                        |                                     |                                                |                                        |                                         |
|--------------------------------------------|-------------------------------------|------------------------------------------------|----------------------------------------|-----------------------------------------|
| CXI RF                                     |                                     | SENSE:INT                                      | ALIGN AUTO                             | 09:41:25 AM Jun 19, 2014                |
| Display Line                               | 74.00 dBµV/m                        | PNO: East Trig: Free Run                       | #Avg Type: RMS<br>Avg Hold:>100/100    | TRACE 123456<br>TYPE MWWWWW             |
|                                            |                                     | PNO: Fast Free Run<br>IFGain:Low #Atten: 10 dB |                                        | DET P P N N N N                         |
|                                            |                                     |                                                |                                        |                                         |
|                                            | Offset 6 dB                         |                                                |                                        | Mkr1 5.150 0 GHz                        |
| 10 dB/div Re                               | f 112.99 dBµV/m                     |                                                |                                        | 62.181 dBµV/m                           |
| Log<br>103                                 |                                     |                                                |                                        | ~                                       |
| 103                                        |                                     |                                                |                                        |                                         |
| 93.0                                       |                                     |                                                |                                        |                                         |
| 83.0                                       |                                     |                                                |                                        |                                         |
| 73.0                                       |                                     |                                                |                                        | 74/00 dBµ∨/m                            |
| 63.0                                       |                                     |                                                |                                        | · · · · · • • • • • • • • • • • • • • • |
|                                            |                                     |                                                |                                        | and a second developed and way of       |
| 53.0                                       | and the second second second second | adamine he had the had and had                 | en and a she have been a she was a she |                                         |
| 43.0                                       |                                     |                                                |                                        |                                         |
| 33.0                                       |                                     |                                                |                                        |                                         |
| 23.0                                       |                                     |                                                |                                        |                                         |
| 23.0                                       |                                     |                                                |                                        |                                         |
| Start 4.5000 G                             | Hz                                  |                                                |                                        | Stop 5.2000 GHz                         |
| #Res BW 1.0 M                              |                                     | #VBW 3.0 MHz                                   | :                                      | Sweep 100 ms (1001 pts)                 |
|                                            |                                     |                                                |                                        |                                         |
| MKR MODE TRC SCL                           | ×<br>5.150 0 GH                     | Y FUNCTION<br>Hz 62.181 dBuV/m                 | N FUNCTION WIDTH                       | FUNCTION VALUE                          |
|                                            | 5.150 U GF                          | 12 62.181 dBµV/m                               |                                        |                                         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 |                                     |                                                |                                        |                                         |
| 4                                          |                                     |                                                |                                        |                                         |
| 6                                          |                                     |                                                |                                        |                                         |
| 7                                          |                                     |                                                |                                        |                                         |
| 8                                          |                                     |                                                |                                        |                                         |
| 10                                         |                                     |                                                |                                        |                                         |
| 11                                         |                                     |                                                |                                        |                                         |
| 12                                         |                                     |                                                |                                        |                                         |
| MSG                                        |                                     |                                                |                                        |                                         |
|                                            |                                     |                                                | <u> </u>                               |                                         |

#### **Detector mode: Average**

#### **Polarity: Vertical**





## Detector mode: Peak

# **Polarity: Horizontal**

| Agilent Spect                              | rum Analyzer - Swej                       |                  |                                                                                                                  |                                         |                                        |                           |                 |                       |                                       |
|--------------------------------------------|-------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------|---------------------------|-----------------|-----------------------|---------------------------------------|
|                                            | RF 50 Ω                                   | DC CORREC        |                                                                                                                  | SENSE:INT                               | A                                      | LIGNAUTO #Avg Type:       | DMC             |                       | 9 AM Jun 19, 2014<br>RACE 1 2 3 4 5 6 |
| Display I                                  | _ine 74.00 dl                             |                  | PNO: Fast 😱<br>FGain:Low                                                                                         | Trig: Free<br>#Atten: 10                |                                        | #Avg Type:<br>Avg Hold:>* |                 | 1                     | DET P P N N N N                       |
| 10 dB/div                                  | Ref Offset 6 di<br>Ref 112.99             | B<br>dBμV/m      |                                                                                                                  |                                         |                                        |                           |                 | Mkr1 5.1<br>59.382    | 50 0 GHz<br>ḋBµV/m                    |
| 103                                        |                                           |                  |                                                                                                                  |                                         |                                        |                           |                 |                       | $\sim$                                |
| 93.0                                       |                                           |                  |                                                                                                                  |                                         |                                        |                           |                 |                       |                                       |
| 83.0                                       |                                           |                  |                                                                                                                  |                                         |                                        |                           |                 |                       | 74.00 dBµ∀/m                          |
| 73.0                                       |                                           |                  |                                                                                                                  |                                         |                                        |                           |                 |                       | 74. <b>00</b> dBµV/m                  |
| 63.0                                       |                                           |                  |                                                                                                                  |                                         |                                        |                           |                 |                       | _ <u></u>                             |
| 53.0 <b></b>                               | Manan and and and and and and and and and |                  | and the second | and a second state of the second states | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Level a sector            | with the second | here any hours of the | <b></b>                               |
| 43.0                                       |                                           |                  |                                                                                                                  |                                         |                                        |                           |                 |                       |                                       |
| 33.0                                       |                                           |                  |                                                                                                                  |                                         |                                        |                           |                 |                       |                                       |
| 23.0                                       |                                           |                  |                                                                                                                  |                                         |                                        |                           |                 |                       |                                       |
| Start 4.50<br>#Res BW                      |                                           |                  | #VB                                                                                                              | W 3.0 MHz                               |                                        |                           | #Swe            |                       | 5.2000 GHz<br>5 (1001 pts)            |
| MKR MODE T                                 |                                           | ×<br>5.150 0 GHz | Y<br>59.382 dB                                                                                                   |                                         | CTION FUNC                             | CTION WIDTH               | FL              | INCTION VALUE         |                                       |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 |                                           |                  |                                                                                                                  |                                         |                                        |                           |                 |                       |                                       |
| 4<br>5                                     |                                           |                  |                                                                                                                  |                                         |                                        |                           |                 |                       |                                       |
| 6<br>7                                     |                                           |                  |                                                                                                                  |                                         |                                        |                           |                 |                       |                                       |
| 8                                          |                                           |                  |                                                                                                                  |                                         |                                        |                           |                 |                       |                                       |
|                                            |                                           |                  |                                                                                                                  |                                         |                                        |                           |                 |                       |                                       |
| 11<br>12                                   |                                           |                  |                                                                                                                  |                                         |                                        |                           |                 |                       |                                       |
| MSG                                        |                                           |                  |                                                                                                                  |                                         |                                        | <b>I</b> STATUS           |                 |                       |                                       |

## Detector mode: Average

# **Polarity: Horizontal**

| Agilent Spect                                                                                             | rum Analyzer - Swept SA              |                           |                                 |                            |              |                                                      |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------|---------------------------------|----------------------------|--------------|------------------------------------------------------|
| LXI                                                                                                       | RF 50 Ω DC CORR                      | EC S                      | ENSE:INT                        | ALIGNAUTO                  | <b>B</b> 146 | 09:45:25 AM Jun 19, 2014                             |
| Display I                                                                                                 | _ine 54.00 dBµV/m                    | PNO: Fast 😱<br>IFGain:Low | Trig: Free Run<br>#Atten: 10 dB | #Avg Type:<br>Avg Hold: 14 |              | TRACE 1 2 3 4 5 6<br>TYPE M WWWWW<br>DET P P N N N N |
| 10 dB/div                                                                                                 | Ref Offset 6 dB<br>Ref 112.99 dBµV/m |                           |                                 |                            | Mkr<br>40    | 1 5.150 0 GHz<br>6.713 dBµV/m                        |
| 103                                                                                                       |                                      |                           |                                 |                            |              |                                                      |
| 93.0                                                                                                      |                                      |                           |                                 |                            |              | m                                                    |
| 83.0                                                                                                      |                                      |                           |                                 |                            |              |                                                      |
| 73.0                                                                                                      |                                      |                           |                                 |                            |              |                                                      |
| 63.0                                                                                                      |                                      |                           |                                 |                            |              |                                                      |
| 53.0                                                                                                      |                                      |                           |                                 |                            |              |                                                      |
| 43.0                                                                                                      |                                      |                           |                                 |                            |              |                                                      |
| 33.0                                                                                                      |                                      |                           |                                 |                            |              |                                                      |
| 23.0                                                                                                      |                                      |                           |                                 |                            |              |                                                      |
| Start 4.5000 GHz         Stop 5.20           #Res BW 1.0 MHz         #VBW 300 Hz         Sweep 1.82 s (10 |                                      |                           |                                 |                            |              | Stop 5.2000 GHz<br>1.82 s (1001 pts)                 |
| MKR MODE T                                                                                                | RC SCL X<br>f 5.150 0                | Y<br>GHz 46.713 dB        |                                 | FUNCTION WIDTH             | FUNCTION     | VALUE                                                |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                |                                      |                           |                                 |                            |              |                                                      |
| 5                                                                                                         |                                      |                           |                                 |                            |              |                                                      |
| 7                                                                                                         |                                      |                           |                                 |                            |              |                                                      |
| 9                                                                                                         |                                      |                           |                                 |                            |              |                                                      |
| 10<br>11<br>12                                                                                            |                                      |                           |                                 |                            |              |                                                      |
|                                                                                                           |                                      |                           |                                 |                            |              |                                                      |
| MSG                                                                                                       |                                      |                           |                                 | STATUS                     |              |                                                      |



## Band Edges / IEEE 802.11n HT40 / 5190-5230MHz / CH Low

#### Detector mode: Peak

### **Polarity: Vertical**



#### **Detector mode: Average**

#### **Polarity: Vertical**





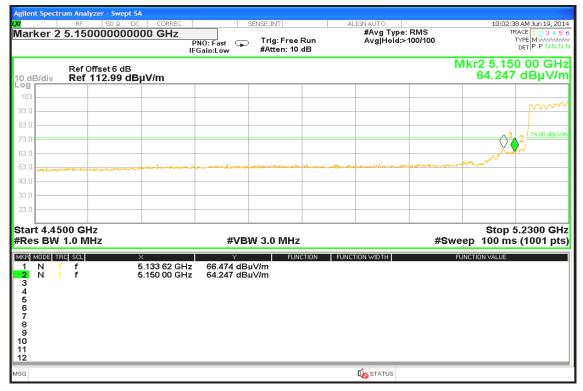
# Detector mode: Peak

# **Polarity: Horizontal**

| Agilent Spectrum Analyzer - Swept SA                                                                                     |                                     |                        |                                              |                                                                                                                  |                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| LXI                                                                                                                      | RF 50Ω C                            |                        | SENSE:INT                                    | A                                                                                                                | LIGNAUTO                                                                                                        | <b>B</b> M6          | 09:55:17 AM Jun 19, 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Display L                                                                                                                | .ine 74.00 dBµ                      | JV/M<br>PNO:<br>IFGair | : Fast 😱 Trig: Fre<br>n:Low #Atten: 1        |                                                                                                                  | #Avg Type:<br>Avg Hold:>1                                                                                       | 00/100               | TRACE 1 2 3 4 5 6<br>TYPE MWWWW<br>DET P P N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Ref Offset 6 dB         Mkr1 5.150 00 GHz           10 dB/div         Ref 112.99 dBµV/m         59.693 dBµV/m            |                                     |                        |                                              |                                                                                                                  |                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Log                                                                                                                      |                                     |                        |                                              |                                                                                                                  |                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 93.0                                                                                                                     |                                     |                        |                                              |                                                                                                                  |                                                                                                                 |                      | man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 83.0                                                                                                                     |                                     |                        |                                              |                                                                                                                  |                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 73.0                                                                                                                     |                                     |                        |                                              |                                                                                                                  |                                                                                                                 |                      | 74.00 dBµ∨/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 63.0                                                                                                                     |                                     |                        |                                              |                                                                                                                  |                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 53.0 <b></b>                                                                                                             | Carlling March - March Carlo - Carl |                        | n aumenana anna anna anna anna anna anna ann | and the second | and the state of the | naingen annan Namban | and the second |  |
| 43.0                                                                                                                     |                                     |                        |                                              |                                                                                                                  |                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 33.0                                                                                                                     |                                     |                        |                                              |                                                                                                                  |                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 23.0                                                                                                                     |                                     |                        |                                              |                                                                                                                  |                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Start 4.5000 GHz         Stop 5.2300 GHz           #Res BW 1.0 MHz         #VBW 3.0 MHz         #Sweep 100 ms (1001 pts) |                                     |                        |                                              |                                                                                                                  |                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| MKR MODE TR                                                                                                              |                                     | ×                      |                                              | NCTION FUNC                                                                                                      | TION WIDTH                                                                                                      | FUN                  | CTION VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| <mark>1</mark> N 1<br>2                                                                                                  | f                                   | 5.150 00 GHz 5         | 59.693 dBµV/m                                |                                                                                                                  |                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 3                                                                                                                        |                                     |                        |                                              |                                                                                                                  |                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                               |                                     |                        |                                              |                                                                                                                  |                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 7                                                                                                                        |                                     |                        |                                              |                                                                                                                  |                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 9                                                                                                                        |                                     |                        |                                              |                                                                                                                  |                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 11<br>12                                                                                                                 |                                     |                        |                                              |                                                                                                                  |                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| MSG                                                                                                                      |                                     |                        |                                              |                                                                                                                  | STATUS                                                                                                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 1                                                                                                                        |                                     |                        |                                              |                                                                                                                  | -                                                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |

## **Detector mode: Average**

# **Polarity: Horizontal**


| Agilent Spect                              | rum Analyzer - Swept SA                                                                                                |                           |                                 |                                  |                                    |  |  |  |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------|----------------------------------|------------------------------------|--|--|--|
| LXI                                        | RF 50 Ω DC CORREC                                                                                                      | <u> </u>                  | ENSE:INT                        | ALIGN AUTO                       | 09:55:55 AM Jun 19, 2014           |  |  |  |
| Display I                                  | <u>-ine 54.00 dBµV/m</u>                                                                                               | PNO: Fast 😱<br>IFGain:Low | Trig: Free Run<br>#Atten: 10 dB | #Avg Type: RM<br>Avg Hold: 9/100 | TYPE MWWWWW<br>DET P P N N N N     |  |  |  |
| 10 dB/div                                  | Ref Offset 6 dB<br>Ref 112.99 dBµV/m                                                                                   |                           |                                 |                                  | Mkr1 5.150 00 GHz<br>46.873 dBµV/m |  |  |  |
| 103                                        |                                                                                                                        |                           |                                 |                                  |                                    |  |  |  |
| 93.0                                       |                                                                                                                        |                           |                                 |                                  |                                    |  |  |  |
| 83.0                                       |                                                                                                                        |                           |                                 |                                  |                                    |  |  |  |
| 73.0                                       |                                                                                                                        |                           |                                 |                                  |                                    |  |  |  |
| 63.0                                       |                                                                                                                        |                           |                                 |                                  | ▲ 1 54.00 dBLV/m                   |  |  |  |
| 53.0                                       |                                                                                                                        |                           |                                 |                                  |                                    |  |  |  |
| 43.0                                       |                                                                                                                        |                           |                                 |                                  |                                    |  |  |  |
| 23.0                                       |                                                                                                                        |                           |                                 |                                  |                                    |  |  |  |
|                                            |                                                                                                                        |                           |                                 |                                  |                                    |  |  |  |
|                                            | Start 4.5000 GHz         Stop 5.2300 GHz           #Res BW 1.0 MHz         #VBW 300 Hz         Sweep 1.90 s (1001 pts) |                           |                                 |                                  |                                    |  |  |  |
| MKR MODE T                                 | rc scl X<br>f 5,150 00 G                                                                                               | Hz 46.873 dB              |                                 | FUNCTION WIDTH                   | FUNCTION VALUE                     |  |  |  |
|                                            |                                                                                                                        | 112 40.010 ubp            |                                 |                                  |                                    |  |  |  |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 |                                                                                                                        |                           |                                 |                                  |                                    |  |  |  |
| 6                                          |                                                                                                                        |                           |                                 |                                  |                                    |  |  |  |
| 8                                          |                                                                                                                        |                           |                                 |                                  |                                    |  |  |  |
| 10                                         |                                                                                                                        |                           |                                 |                                  |                                    |  |  |  |
| 11<br>12                                   |                                                                                                                        |                           |                                 |                                  |                                    |  |  |  |
| MSG                                        |                                                                                                                        |                           |                                 | STATUS                           |                                    |  |  |  |



## Band Edges / IEEE 802.11ac HT80 / 5210MHz / CH Low

#### Detector mode: Peak

### **Polarity: Vertical**

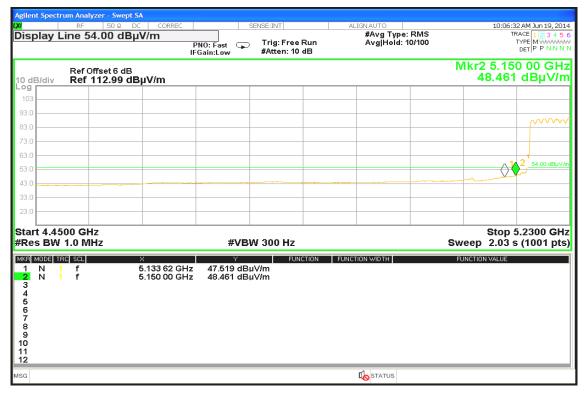


#### **Detector mode: Average**

#### **Polarity: Vertical**






## Detector mode: Peak

## **Polarity: Horizontal**

| Agilent Spectrum Ar                                                                                           | nalyzer - Swept SA         |                                                 |                       |                     |                                          |  |  |
|---------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------|-----------------------|---------------------|------------------------------------------|--|--|
| IXI RF                                                                                                        | 50 Ω DC CORREC             | SENSE:INT                                       | ALIGNAUTO<br>#Avg Typ |                     | :54 AM Jun 19, 2014<br>TRACE 1 2 3 4 5 6 |  |  |
| Marker 2 5.1                                                                                                  |                            | PNO: Fast 🕞 Trig: Free<br>IFGain:Low #Atten: 10 | Run Avg Hold          | l>100/100           | DET P P N N N N                          |  |  |
| Ref Offset 6 dB         Mkr2 5.150 00 GHz           10 dB/div         Ref 112.99 dBμV/m         61.773 dBμV/m |                            |                                                 |                       |                     |                                          |  |  |
| 103                                                                                                           |                            |                                                 |                       |                     |                                          |  |  |
| 93.0                                                                                                          |                            |                                                 |                       |                     | mm                                       |  |  |
| 83.0                                                                                                          |                            |                                                 |                       |                     | 74.00 470 444                            |  |  |
| 73.0                                                                                                          |                            |                                                 |                       |                     | 1<br>2                                   |  |  |
| 63.0<br>53.0                                                                                                  |                            |                                                 |                       | an and a set of the | - AN                                     |  |  |
| 43.0                                                                                                          |                            |                                                 |                       |                     |                                          |  |  |
| 33.0                                                                                                          |                            |                                                 |                       |                     |                                          |  |  |
| 23.0                                                                                                          |                            |                                                 |                       |                     |                                          |  |  |
| Start 4.4500 C                                                                                                |                            |                                                 | -                     |                     | 5.2300 GHz                               |  |  |
| #Res BW 1.0                                                                                                   |                            | #VBW 3.0 MHz                                    |                       | #Sweep 100 m        | is (1001 pts)                            |  |  |
| MKR MODE TRC SCI<br>1 N 1 f<br>2 N 1 f<br>3<br>4<br>5                                                         | 5.133 62 GH<br>5.150 00 GH | z 64.656 dBµV/m                                 | ICTION FUNCTION WIDTH | FUNCTION VALUE      |                                          |  |  |
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                                                             |                            |                                                 |                       |                     |                                          |  |  |
| MSG                                                                                                           |                            |                                                 |                       |                     |                                          |  |  |

## **Detector mode: Average**

## **Polarity: Horizontal**





## Band Edges / IEEE 802.11a / 5260-5320MHz / CH High

#### Detector mode: Peak

### **Polarity: Vertical**



#### **Detector mode: Average**

#### **Polarity: Vertical**





## Detector mode: Peak

## **Polarity: Horizontal**

| Agilent Spectrum Analyzer - Swept SA                                                |                                                                                                         |              |               |           |           |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------|---------------|-----------|-----------|-------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| LXI                                                                                 | RF 50 Ω DC                                                                                              |              |               | SENSE:INT | ALI       | GNAUTO            | BMG                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AM Jun 19, 2014 |
| Display L                                                                           | Display Line 74.00 dBµV/m #Avg Type: RMS TRACE 123456<br>PNO: East Trig: Free Run Avg Hold>100/100 TYPE |              |               |           |           |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PE M WWWWWW     |
| PNO: Fast C Ing: Free Run Avg Hold>100/100 PPE Monorman<br>IFGain:Low #Atten: 10 dB |                                                                                                         |              |               |           |           |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
|                                                                                     | Ref Offset 6 dB                                                                                         |              |               |           |           |                   | Mk                           | (r2 5.352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80 GHz          |
| 10 dB/div                                                                           | Ref 112.99 dB                                                                                           | uV/m         |               |           |           |                   |                              | 60.669                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dBµV/m          |
| Log                                                                                 |                                                                                                         |              |               |           |           |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| 103                                                                                 |                                                                                                         |              |               |           |           |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| 93.0                                                                                |                                                                                                         |              |               |           |           |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| 83.0                                                                                | $\downarrow $                                                                                           |              |               |           |           |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| 73.0                                                                                |                                                                                                         | The Land     | - 2           |           |           |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 74.00 dBµV/m    |
| 63.0                                                                                |                                                                                                         | New York In  | ∆♦́           |           |           |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| 53.0                                                                                |                                                                                                         |              | Marken warmen | monumenta |           | ومعرب مريد المعاد | and the second second second | all man and the second | when we want    |
| 43.0                                                                                |                                                                                                         |              |               |           |           |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
|                                                                                     |                                                                                                         |              |               |           |           |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| 33.0                                                                                |                                                                                                         |              |               |           |           |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| 23.0                                                                                |                                                                                                         |              |               |           |           |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| Start 5.30                                                                          | 000 GHz                                                                                                 |              |               |           |           |                   |                              | Stop 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6000 GHz        |
| #Res BW                                                                             |                                                                                                         |              | #VB۱          | N 3.0 MHz |           |                   | #Swee                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1001 pts)      |
| MKR MODE TR                                                                         | RC SCL                                                                                                  | ×            | Y             | FUNCTI    | ON FUNCTI | ON WIDTH          | FUNC                         | CTION VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
| 1 N 1                                                                               | f                                                                                                       | 5.350 00 GHz | 58.773 dBi    |           |           |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| 2 N 1<br>3 4<br>5 6<br>7 8<br>9 10                                                  | f                                                                                                       | 5.352 80 GHz | 60.669 dBı    | ıV/m      |           |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| 4                                                                                   |                                                                                                         |              |               |           |           |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| 5                                                                                   |                                                                                                         |              |               |           |           |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| 7                                                                                   |                                                                                                         |              |               |           |           |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| 8                                                                                   |                                                                                                         |              |               |           |           |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| 10                                                                                  |                                                                                                         |              |               |           |           |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| 11<br>12                                                                            |                                                                                                         |              |               |           |           |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
|                                                                                     |                                                                                                         |              |               |           |           | 1 ot a Turo       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| MSG                                                                                 |                                                                                                         |              |               |           |           | STATUS            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |

### **Detector mode: Average**

## **Polarity: Horizontal**





## Band Edges / IEEE 802.11n HT20 / 5260-5320MHz / CH High

#### Detector mode: Peak

### **Polarity: Vertical**



#### **Detector mode: Average**

#### **Polarity: Vertical**





# **Polarity: Horizontal**

| Agilent Spectr                   | um Analyzer - Swept S |              |                     |               |                |                          |       |              |                    |
|----------------------------------|-----------------------|--------------|---------------------|---------------|----------------|--------------------------|-------|--------------|--------------------|
| LXI                              | RF 50Ω D              |              |                     | ENSE:INT      | ALI            | GNAUTO                   |       |              | 5 AM Jun 19, 2014  |
| Marker 2                         | 5.353920000           |              | NO: Fast            | Trig: Free R  | un             | #Avg Type:<br>Avg Hold:> |       | т            | ACE 1 2 3 4 5 6    |
|                                  |                       |              | Gain:Low            | #Atten: 10 dl |                | 0.                       |       |              | DETPPNNNN          |
|                                  | Ref Offset 6 dB       |              |                     |               |                |                          | M     | kr2 5.353    | 3 92 GHz           |
| 10 dB/div                        | Ref 112.99 dE         | 3μV/m        |                     |               |                |                          |       | 62.963       | dBµV/m             |
| Log                              |                       |              |                     |               |                |                          |       |              |                    |
| 103                              |                       |              |                     |               |                |                          |       |              |                    |
| 93.0                             | /                     |              |                     |               |                |                          |       |              |                    |
| 83.0                             | /                     |              |                     |               |                |                          |       |              |                    |
| 73.0                             | ·                     | - ~~         |                     |               |                |                          |       |              | 74.00 dBµ∀/m       |
| 63.0                             |                       | - her        | $\mathbf{\sqrt{2}}$ |               |                |                          |       |              |                    |
| 53.0                             |                       |              | W Wellering         |               | contract allow | Martin Martin            |       |              | and and the second |
| 43.0                             |                       |              |                     |               |                |                          |       |              |                    |
|                                  |                       |              |                     |               |                |                          |       |              |                    |
| 33.0                             |                       |              |                     |               |                |                          |       |              |                    |
| 23.0                             |                       |              |                     |               |                |                          |       |              |                    |
| Start 5.30                       | 000 GHz               |              |                     |               |                |                          |       | Stop 5.4     | 46000 GHz          |
| #Res BW                          |                       |              | #VB\                | N 3.0 MHz     |                |                          | #Swee |              | (1001 pts)         |
| MKR MODE TH                      | RCI SCLI              | ×            | Y                   | FUNCT         | ION FUNCTI     | ON WIDTH                 | FUI   | NCTION VALUE |                    |
| 1 N 1                            | f                     | 5.350 00 GHz | 63.242 dBi          | ıV/m          |                |                          |       |              |                    |
| 2 N 1                            | f                     | 5.353 92 GHz | 62.963 dBı          | ıVim          |                |                          |       |              |                    |
| 3<br>4<br>5<br>7<br>8<br>9<br>10 |                       |              |                     |               |                |                          |       |              |                    |
| 5                                |                       |              |                     |               |                |                          |       |              |                    |
| 7                                |                       |              |                     |               |                |                          |       |              |                    |
| 8                                |                       |              |                     |               |                |                          |       |              |                    |
| 10                               |                       |              |                     |               |                |                          |       |              |                    |
| 11<br>12                         |                       |              |                     |               |                |                          |       |              |                    |
|                                  |                       |              |                     |               |                |                          |       |              |                    |
| MSG                              |                       |              |                     |               |                | STATUS                   |       |              |                    |

#### **Detector mode: Average**





### Band Edges / IEEE 802.11n HT40 / 5270-5310MHz / CH High

#### Detector mode: Peak

#### **Polarity: Vertical**



#### **Detector mode: Average**

#### **Polarity: Vertical**





# **Polarity: Horizontal**

| Agilent Spectrum Analyzer - Swept SA                 |            |                              |                        |                          |            |                           |                   |                     |                                                   |  |  |
|------------------------------------------------------|------------|------------------------------|------------------------|--------------------------|------------|---------------------------|-------------------|---------------------|---------------------------------------------------|--|--|
| LXI RI                                               |            | CORREC                       |                        | SENSE:INT                | Al         | LIGNAUTO                  |                   |                     | ) AM Jun 19, 2014                                 |  |  |
| Display Line                                         | 74.00 dBµ\ | P                            | NO: Fast 😱<br>Gain:Low | Trig: Free<br>#Atten: 10 |            | #Avg Type:<br>Avg Hold:>* | RMS<br>100/100    | т                   | ACE 1 2 3 4 5 6<br>YPE M WWWWW<br>DET P P N N N N |  |  |
| 10 dB/div Re                                         |            |                              |                        |                          |            |                           |                   |                     |                                                   |  |  |
| 103                                                  |            |                              |                        |                          |            |                           |                   |                     |                                                   |  |  |
| 93.0                                                 |            |                              |                        |                          |            |                           |                   |                     |                                                   |  |  |
| 83.0                                                 |            |                              |                        |                          |            |                           |                   |                     | 74.00 dBµ∀/m                                      |  |  |
| 73.0<br>63.0                                         |            | Lannan                       | $\langle \mathbf{A}^2$ |                          |            |                           |                   |                     |                                                   |  |  |
| 53.0                                                 |            | ۰. <sup>ب</sup> ر            | William Routing was    | our man                  | montenen   | www.                      | alganer and and a | where an an and the | en en en en                                       |  |  |
| 43.0                                                 |            |                              |                        |                          |            |                           |                   |                     |                                                   |  |  |
| 33.0                                                 |            |                              |                        |                          |            |                           |                   |                     |                                                   |  |  |
| 23.0                                                 |            |                              |                        |                          |            |                           |                   |                     |                                                   |  |  |
| Start 5.30000<br>#Res BW 1.0                         |            |                              | #VB                    | W 3.0 MHz                |            |                           | #Swee             |                     | 46000 GHz<br>(1001 pts)                           |  |  |
| MKR MODE TRC SC<br>1 N 1 f<br>2 N 1 f<br>3<br>4<br>5 |            | 5.350 00 GHz<br>5.351 04 GHz | 60.583 dB<br>62.329 dB | µV/m                     | CTION FUNC | TION WIDTH                | FUN               | NCTION VALUE        |                                                   |  |  |
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12    |            |                              |                        |                          |            |                           |                   |                     |                                                   |  |  |
| MSG                                                  |            |                              |                        |                          |            | <b>K</b> STATUS           |                   |                     |                                                   |  |  |

#### **Detector mode: Average**





# Band Edges / IEEE 802.11ac HT80 / 5290Hz / CH High

#### Detector mode: Peak

#### **Polarity: Vertical**



#### **Detector mode: Average**

#### **Polarity: Vertical**

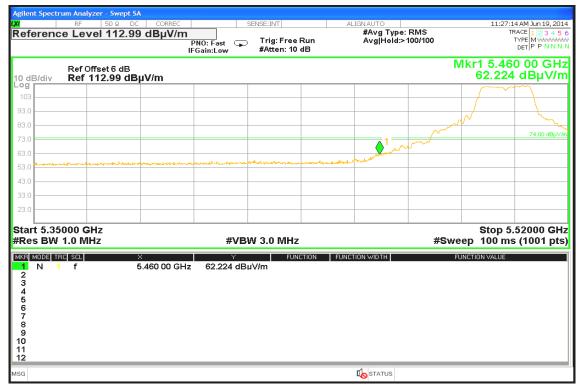




## **Polarity: Horizontal**

| Agilent Spectrum Analyzer - Swept SA |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                       |                           |                      |                                       |                   |  |
|--------------------------------------|----------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|---------------------------|----------------------|---------------------------------------|-------------------|--|
| LXI                                  | RF 50 Ω DC     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SENSE:INT         | AL                    | IGN AUTO                  | -                    |                                       | . AM Jun 19, 2014 |  |
| Marker 2                             | 5.3603200000   |                   | 'NO: Fast 🗔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Trig: Free        | Run                   | #Avg Type:<br>Avg Hold:>* |                      | Т                                     | ACE 123456        |  |
|                                      |                |                   | Gain:Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | #Atten: 10        |                       |                           |                      |                                       | DET P P N N N N   |  |
| Ref Offset 6 dB Mkr2 5.360 32 GHz    |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                       |                           |                      |                                       |                   |  |
| 10 dB/div                            | Ref offseto dB |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                       |                           |                      |                                       |                   |  |
| Log                                  |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                       |                           |                      |                                       |                   |  |
| 103                                  |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                       |                           |                      |                                       |                   |  |
| 93.0                                 | m m            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                       |                           |                      |                                       |                   |  |
| 83.0                                 |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                       |                           |                      |                                       |                   |  |
| 73.0                                 |                |                   | - 1 A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                       |                           |                      |                                       | 74.00 dBµ∨/m      |  |
| 63.0                                 |                | and and the start | Que a series | Lub to the second |                       |                           |                      |                                       |                   |  |
| 53.0                                 |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | which when we address |                           | and an and a marging | - Andrew Property - Andrew Property - | home the second   |  |
| 43.0                                 |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                       |                           |                      |                                       |                   |  |
| 33.0                                 |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                       |                           |                      |                                       |                   |  |
| 23.0                                 |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                       |                           |                      |                                       |                   |  |
| 23.0                                 |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                       |                           |                      |                                       |                   |  |
| Start 5.30                           | 0000 GHz       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                       |                           |                      | Stop 5.4                              | 46000 GHz         |  |
| #Res BW                              | 1.0 MHz        |                   | #VB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | W 3.0 MHz         |                       |                           | #Swee                | p 100 ms                              | (1001 pts)        |  |
| MKR MODE T                           | RC SCL         | ×                 | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FUN               | CTION FUNCT           | TION WIDTH                | FUN                  | CTION VALUE                           |                   |  |
| 1 N                                  |                | 5.350 00 GHz      | 60.023 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                       |                           |                      |                                       |                   |  |
| 2 N '<br>3                           | T I            | 5.360 32 GHz      | 62.095 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | μvim              |                       |                           |                      |                                       |                   |  |
| 3<br>4<br>5<br>7<br>8<br>9<br>10     |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                       |                           |                      |                                       |                   |  |
| 6                                    |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                       |                           |                      |                                       |                   |  |
| 7                                    |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                       |                           |                      |                                       |                   |  |
| 9                                    |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                       |                           |                      |                                       |                   |  |
| 10<br>11                             |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                       |                           |                      |                                       |                   |  |
| 12                                   |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                       |                           |                      |                                       |                   |  |
| MSG                                  |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                       | <b>STATUS</b>             |                      |                                       |                   |  |
|                                      |                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                       | <b>v</b>                  |                      |                                       |                   |  |

#### **Detector mode: Average**






#### Band Edges / IEEE 802.11a / 5500-5700MHz / CH Low

#### Detector mode: Peak

#### **Polarity: Vertical**



#### **Detector mode: Average**

#### **Polarity: Vertical**





# **Polarity: Horizontal**

| Agilent Spectrum Analyzer - Swept SA       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |  |  |  |  |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|--|--|
| LXI                                        | RF 50 Ω DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SENSE:INT                         | ALIGNAUTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11:30:17 AM Jun 19, 2014                            |  |  |  |  |
| Display L                                  | .ine 74.00 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PNO: Fast ⊂<br>IFGain:Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) Trig: Free Run<br>#Atten: 10 dB | #Avg Type: RMS<br>Avg Hold:>100/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRACE 1 2 3 4 5 6<br>TYPE MWWWWW<br>DET P P N N N N |  |  |  |  |
| 10 dB/div                                  | Ref Offset 6 dB<br>Ref 112.99 dBµ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mkr1 5.460 00 GHz<br>58.388 dBµV/m                  |  |  |  |  |
| 103                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |  |  |  |  |
| 93.0                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |  |  |  |  |
| 83.0                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 74.00 dBµV/m                                        |  |  |  |  |
| 73.0                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   | A1 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74.00 080 071                                       |  |  |  |  |
| 63.0                                       | the manufacture of the second s | ange of the first | and and the second second second  | and and a second s |                                                     |  |  |  |  |
| 43.0                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |  |  |  |  |
| 33.0                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |  |  |  |  |
| 23.0                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |  |  |  |  |
| Start 5.35<br>#Res BW                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | #VB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | W 3.0 MHz                         | #Sw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stop 5.52000 GHz<br>eep 100 ms (1001 pts)           |  |  |  |  |
| MKR MODE TH                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   | FUNCTION WIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FUNCTION VALUE                                      |  |  |  |  |
| <mark>1</mark> N 1<br>2                    | f 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .460 00 GHz 58.388 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μV/m                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |  |  |  |  |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |  |  |  |  |
| 5<br>6                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |  |  |  |  |
| 7<br>8                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |  |  |  |  |
| 9<br>10                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |  |  |  |  |
| 11<br>12                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |  |  |  |  |
| MSG                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   | <b>K</b> STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |  |  |  |  |

#### **Detector mode: Average**





#### Band Edges / IEEE 802.11n HT20 / 5500-5700MHz / CH Low

#### Detector mode: Peak

#### **Polarity: Vertical**



#### **Detector mode: Average**

#### **Polarity: Vertical**





# **Polarity: Horizontal**

| Agilent Spectrum Analyzer - Swept SA       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                   |                                     |                                               |  |  |  |  |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------|-----------------------------------------------|--|--|--|--|
| LXI                                        | RF 50 Ω DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | SENSE:INT                         | ALIGN AUTO<br>#Avg Type: RMS        | 11:37:07 AM Jun 19, 2014<br>TRACE 1 2 3 4 5 6 |  |  |  |  |
| Display L                                  | _ine 74.00 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PNO: Fast<br>IFGain:Low                                                                                        | ) Trig: Free Run<br>#Atten: 10 dB | #Avg Type: RMS<br>Avg Hold:>100/100 | TYPE MWWWW<br>DET P P N N N N                 |  |  |  |  |
| 10 dB/div                                  | Ref Offset 6 dB<br>Ref 112.99 dBµ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IV/m                                                                                                           |                                   |                                     | Mkr1 5.460 00 GHz<br>61.269 dBµV/m            |  |  |  |  |
| 103                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                   |                                     |                                               |  |  |  |  |
| 93.0                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                   |                                     |                                               |  |  |  |  |
| 83.0                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                   | ~                                   | and have                                      |  |  |  |  |
| 73.0                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                   |                                     | 74.00 dBµ∨/m                                  |  |  |  |  |
| 63.0                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                   | man and man and a                   |                                               |  |  |  |  |
| 53.0                                       | the second secon | and a second |                                   |                                     |                                               |  |  |  |  |
| 43.0                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                   |                                     |                                               |  |  |  |  |
| 23.0                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                   |                                     |                                               |  |  |  |  |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                   |                                     |                                               |  |  |  |  |
| Start 5.35<br>#Res BW                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #VB                                                                                                            | W 3.0 MHz                         | #Sv                                 | Stop 5.52000 GHz<br>veep 100 ms (1001 pts)    |  |  |  |  |
| MKR MODE TH                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                   | FUNCTION WIDTH                      | FUNCTION VALUE                                |  |  |  |  |
| <mark>1</mark> N 1<br>2                    | f 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .460 00 GHz 61.269 dB                                                                                          | µV/m                              |                                     |                                               |  |  |  |  |
| 3                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                   |                                     |                                               |  |  |  |  |
| 5                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                   |                                     |                                               |  |  |  |  |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                   |                                     |                                               |  |  |  |  |
| 9                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                   |                                     |                                               |  |  |  |  |
| 10                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                   |                                     |                                               |  |  |  |  |
| MSG                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                   |                                     |                                               |  |  |  |  |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                   | -0                                  |                                               |  |  |  |  |

#### **Detector mode: Average**





#### Band Edges / IEEE 802.11n HT40 / 5510-5670MHz / CH Low

#### Detector mode: Peak

#### **Polarity: Vertical**



#### **Detector mode: Average**

#### **Polarity: Vertical**





#### **Polarity: Horizontal**

| Agilent Spectrum Analyzer - Swept SA                                                                          |                                       |                         |                      |                              |                               |                                                                                                                  |               |                                               |  |  |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------|----------------------|------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------|--|--|
| LXI                                                                                                           | RF 50 Ω DC                            |                         |                      | ENSE:INT                     | ALIGNAUTO                     |                                                                                                                  |               | 5 PM Jun 19, 2014                             |  |  |
| Marker 1                                                                                                      | 5.4600000000                          | PN                      | 0: Fast 😱<br>ain:Low | Trig: Free R<br>#Atten: 10 d | un Avg Ho                     | /pe: RMS<br>ld:>100/100                                                                                          | 1             | RACE 123456<br>TYPE MWWWWW<br>DET P P N N N N |  |  |
| Ref Offset 6 dB         Mkr1 5.460 00 GHz           10 dB/div         Ref 112.99 dBµV/m         60.807 dBµV/m |                                       |                         |                      |                              |                               |                                                                                                                  |               |                                               |  |  |
| Log                                                                                                           | 1(c) 112.33 dD                        |                         |                      |                              |                               |                                                                                                                  |               |                                               |  |  |
| 103                                                                                                           |                                       |                         |                      |                              |                               |                                                                                                                  | perman        |                                               |  |  |
| 93.0                                                                                                          |                                       |                         |                      |                              |                               |                                                                                                                  | - /           |                                               |  |  |
| 83.0                                                                                                          |                                       |                         |                      |                              |                               |                                                                                                                  | 1             |                                               |  |  |
| 73.0                                                                                                          |                                       |                         |                      |                              | 1                             | matheration                                                                                                      | 1             | 74.00 dBµ∀/m                                  |  |  |
| 63.0                                                                                                          |                                       |                         |                      |                              | Aurenter                      | man and a start and a start a st |               |                                               |  |  |
| 53.0 *****                                                                                                    | understand a soft of some handling to | und we have been and an | emproved to          | and a second second          | and the first with the office |                                                                                                                  |               |                                               |  |  |
| 43.0                                                                                                          |                                       |                         |                      |                              |                               |                                                                                                                  |               |                                               |  |  |
| 33.0                                                                                                          |                                       |                         |                      |                              |                               |                                                                                                                  |               |                                               |  |  |
| 23.0                                                                                                          |                                       |                         |                      |                              |                               |                                                                                                                  |               |                                               |  |  |
|                                                                                                               |                                       |                         |                      |                              |                               |                                                                                                                  |               |                                               |  |  |
| Start 5.35<br>#Res BW                                                                                         |                                       |                         | #VB\                 | N 3.0 MHz                    |                               | #Swe                                                                                                             |               | 52000 GHz<br>(1001 pts)                       |  |  |
| MKR MODE T                                                                                                    | RC SCL                                | x                       | Y                    | FUNCT                        | ION FUNCTION WIDTH            | F                                                                                                                | UNCTION VALUE |                                               |  |  |
|                                                                                                               | 1 f                                   | 5.460 00 GHz            | 60.807 dBı           | iV/m                         |                               |                                                                                                                  |               |                                               |  |  |
| 3                                                                                                             |                                       |                         |                      |                              |                               |                                                                                                                  |               |                                               |  |  |
| 4                                                                                                             |                                       |                         |                      |                              |                               |                                                                                                                  |               |                                               |  |  |
| 6                                                                                                             |                                       |                         |                      |                              |                               |                                                                                                                  |               |                                               |  |  |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                    |                                       |                         |                      |                              |                               |                                                                                                                  |               |                                               |  |  |
| 9                                                                                                             |                                       |                         |                      |                              |                               |                                                                                                                  |               |                                               |  |  |
| 11                                                                                                            |                                       |                         |                      |                              |                               |                                                                                                                  |               |                                               |  |  |
| 12                                                                                                            |                                       |                         |                      |                              |                               |                                                                                                                  |               |                                               |  |  |
| MSG                                                                                                           |                                       |                         |                      |                              | Ko STATUS                     |                                                                                                                  |               |                                               |  |  |

#### **Detector mode: Average**





## Band Edges / IEEE 802.11ac HT80 / 5530MHz / CH Low

#### Detector mode: Peak

#### **Polarity: Vertical**



#### **Detector mode: Average**

#### **Polarity: Vertical**





# **Polarity: Horizontal**

| Agilent Spectrum Analyzer - Swept SA           |                                    |                              |                               |                              |                           |                                          |                  |              |                                              |
|------------------------------------------------|------------------------------------|------------------------------|-------------------------------|------------------------------|---------------------------|------------------------------------------|------------------|--------------|----------------------------------------------|
| LXI                                            | RF 50 Ω DC                         | CORREC                       | SE                            | NSE:INT                      | AL                        | IGNAUTO                                  |                  |              | 2 PM Jun 19, 2014                            |
| Display L                                      | .ine 74.00 dBµ\                    | PN                           | 0:Fast 😱<br>ain:Low           | Trig: Free F<br>#Atten: 10 d |                           | #Avg Type:<br>Avg Hold:>*                |                  | -<br>-<br>-  | ACE 123456<br>TYPE MWWWWW<br>DET P P N N N N |
| 10 dB/div                                      | Ref Offset 6 dB<br>Ref 112.99 dB   | uV/m                         |                               |                              |                           |                                          | М                |              | 0 00 GHz<br>dBµV/m                           |
| 103                                            |                                    |                              |                               |                              |                           |                                          |                  |              |                                              |
| 93.0                                           |                                    |                              |                               |                              |                           |                                          |                  | $\sim$       | $\sim$                                       |
| 83.0                                           |                                    |                              |                               |                              |                           |                                          |                  |              | 74.00 dBµ∀/m                                 |
| 63.0                                           |                                    |                              |                               |                              |                           | $\langle \rangle^1 \langle \rangle^2$    | and the strength | (            |                                              |
| 53.0                                           | Rhahman and an and a second of the | en and the second            | and the second second         | and a sport of the           | phone and an and a second | ng ang ang ang ang ang ang ang ang ang a | Man Alle Alle    |              |                                              |
| 43.0                                           |                                    |                              |                               |                              |                           |                                          |                  |              |                                              |
| 33.0                                           |                                    |                              |                               |                              |                           |                                          |                  |              |                                              |
| 23.0                                           |                                    |                              |                               |                              |                           |                                          |                  |              |                                              |
| Start 5.35<br>#Res BW                          |                                    |                              | #VBW                          | / 3.0 MHz                    |                           |                                          | #Swee            |              | 52000 GHz<br>(1001 pts)                      |
| MKR MODE TR<br>1 N 1<br>2 N 1<br>3             | f 5                                | 6.454 05 GHz<br>6.460 00 GHz | ۲<br>62.260 dBµ<br>60.258 dBµ |                              | TION FUNCT                | ION WIDTH                                | FUI              | NCTION VALUE |                                              |
| 2 N 1<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 |                                    |                              |                               |                              |                           |                                          |                  |              |                                              |
| 7 8                                            |                                    |                              |                               |                              |                           |                                          |                  |              |                                              |
| 10<br>11<br>12                                 |                                    |                              |                               |                              |                           |                                          |                  |              |                                              |
| MSG                                            |                                    |                              |                               |                              |                           | <b>I</b> status                          |                  |              |                                              |

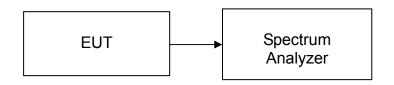
#### **Detector mode: Average**





# 7.5 PEAK POWER SPECTRAL DENSITY

# <u>LIMIT</u>


### According to §15.407(a)

(1) For the band 5.15-5.25 GHz.

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

# **Test Configuration**



# TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer in the following setting as:

# UNII Band I/IIA/IIC:

RBW = 1MHz, VBW = 3MHz, Span = Sweep= AUTO **UNII Band III:** 

RBW = 510kHz, VBW = 1.5MHz, Span = Sweep= AUTO

- 3. Record the max. reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed

# TEST RESULTS

No non-compliance noted



### <u>Test Data</u>

### Test mode: IEEE 802.11a / 5180 ~ 5240MHz

| Channel | Frequency<br>(MHz) | PEAK POWER<br>SPECTRAL DENSITY<br>(dB) | Limit<br>(dB) | Result |
|---------|--------------------|----------------------------------------|---------------|--------|
| Low     | 5180               | 8.48                                   | 17.00         | PASS   |
| Mid     | 5220               | 8.68                                   | 17.00         | PASS   |
| High    | 5240               | 9.12                                   | 17.00         | PASS   |

#### Test mode: IEEE 802.11n HT20 / 5180 ~ 5240MHz

| Channel | Frequency<br>(MHz) | PEAK POWER<br>SPECTRAL DENSITY<br>(dB) | Limit<br>(dB) | Result |
|---------|--------------------|----------------------------------------|---------------|--------|
| Low     | 5180               | 9.85                                   | 17.00         | PASS   |
| Mid     | 5220               | 9.53                                   | 17.00         | PASS   |
| High    | 5240               | 9.01                                   | 17.00         | PASS   |

#### Test mode: IEEE 802.11n HT40 / 5190 ~ 5230MHz

| Channel | Frequency<br>(MHz) | PEAK POWER<br>SPECTRAL DENSITY<br>(dB) | Limit<br>(dB) | Result |
|---------|--------------------|----------------------------------------|---------------|--------|
| Low     | 5190               | 8.47                                   | 17.00         | PASS   |
| High    | 5230               | 7.46                                   | 17.00         | PASS   |

#### Test mode: IEEE 802.11ac HT80 / 5210MHz

| Frequency<br>(MHz) | PEAK POWER<br>SPECTRAL DENSITY<br>(dB) | Limit<br>(dB) | Result |
|--------------------|----------------------------------------|---------------|--------|
| 5210               | 4.92                                   | 17.00         | PASS   |



| Test mode: IEEE 802.11a / 5260 ~ 5320WIRZ |                    |                                        |               |        |  |  |  |  |  |
|-------------------------------------------|--------------------|----------------------------------------|---------------|--------|--|--|--|--|--|
| Channel                                   | Frequency<br>(MHz) | PEAK POWER<br>SPECTRAL DENSITY<br>(dB) | Limit<br>(dB) | Result |  |  |  |  |  |
| Low                                       | 5260               | 9.78                                   | 11.00         | PASS   |  |  |  |  |  |
| Mid                                       | 5280               | 10.22                                  | 11.00         | PASS   |  |  |  |  |  |
| High                                      | 5320               | 10.09                                  | 11.00         | PASS   |  |  |  |  |  |

# Test mode: IEEE 802.11a / 5260 ~ 5320MHz

#### Test mode: IEEE 802.11n HT20 / 5260 ~ 5320MHz

| Channel | Frequency<br>(MHz) | PEAK POWER<br>SPECTRAL DENSITY<br>(dB) | Limit<br>(dB) | Result |
|---------|--------------------|----------------------------------------|---------------|--------|
| Low     | 5260               | 10.15                                  | 11.00         | PASS   |
| Mid     | 5280               | 10.17                                  | 11.00         | PASS   |
| High    | 5320               | 9.72                                   | 11.00         | PASS   |

#### Test mode: IEEE 802.11n HT40 / 5270 ~ 5310MHz

| Channel | Frequency<br>(MHz) | PEAK POWER<br>SPECTRAL DENSITY<br>(dB) | Limit<br>(dB) | Result |
|---------|--------------------|----------------------------------------|---------------|--------|
| Low     | 5270               | 9.57                                   | 11.00         | PASS   |
| High    | 5310               | 8.90                                   | 11.00         | PASS   |

#### Test mode: IEEE 802.11ac HT80 / 5290MHz

| Frequency<br>(MHz) | PEAK POWER<br>SPECTRAL DENSITY<br>(dB) | Limit<br>(dB) | Result |
|--------------------|----------------------------------------|---------------|--------|
| 5290               | 6.76                                   | 11.00         | PASS   |



#### Test mode: IEEE 802.11a / 5500 ~ 5700MHz

| Channel | Frequency<br>(MHz) | PEAK POWER<br>SPECTRAL DENSITY<br>(dB) | Limit<br>(dB) | Result |
|---------|--------------------|----------------------------------------|---------------|--------|
| Low     | 5500               | 9.17                                   | 11.00         | PASS   |
| Mid     | 5580               | 10.25                                  | 11.00         | PASS   |
| High    | 5700               | 9.89                                   | 11.00         | PASS   |

## Test mode: IEEE 802.11n HT20 / 5500 ~ 5700MHz

| Channel | Frequency<br>(MHz) | PEAK POWER<br>SPECTRAL DENSITY<br>(dB) | Limit<br>(dB) | Result |
|---------|--------------------|----------------------------------------|---------------|--------|
| Low     | 5500               | 9.69                                   | 11.00         | PASS   |
| Mid     | 5580               | 9.81                                   | 11.00         | PASS   |
| High    | 5700               | 9.33                                   | 11.00         | PASS   |

#### Test mode: IEEE 802.11n HT40 / 5510 ~ 5670MHz

| Channel | Frequency<br>(MHz) | PEAK POWER<br>SPECTRAL DENSITY<br>(dB) | Limit<br>(dB) | Result |
|---------|--------------------|----------------------------------------|---------------|--------|
| Low     | 5510               | 8.90                                   | 11.00         | PASS   |
| Mid     | 5550               | 9.35                                   | 11.00         | PASS   |
| High    | 5670               | 10.24                                  | 11.00         | PASS   |

#### Test mode: IEEE 802.11ac HT80 / 5530MHz

| Frequency<br>(MHz) | PEAK POWER<br>SPECTRAL DENSITY<br>(dB) | Limit<br>(dB) | Result |
|--------------------|----------------------------------------|---------------|--------|
| 5530               | 5.83                                   | 11.00         | PASS   |



#### Test mode: IEEE 802.11a / 5745 ~ 5825MHz

| Channel | Frequency<br>(MHz) | PEAK POWER<br>SPECTRAL DENSITY<br>(dB) | Limit<br>(dB) | Result |
|---------|--------------------|----------------------------------------|---------------|--------|
| Low     | 5745               | 10.66                                  | 30.00         | PASS   |
| Mid     | 5785               | 10.05                                  | 30.00         | PASS   |
| High    | 5825               | 10.62                                  | 30.00         | PASS   |

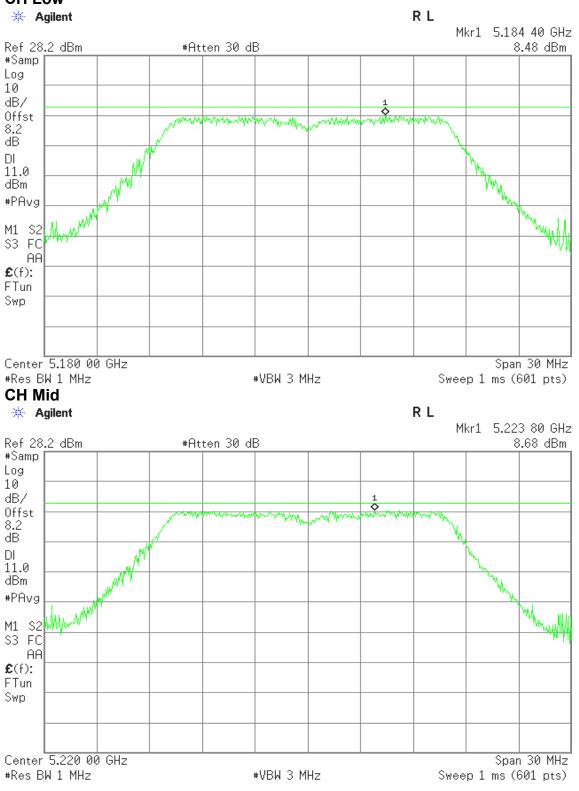
# Test mode: IEEE 802.11n HT20 / 5745 ~ 5825MHz

| Channel | Frequency<br>(MHz) | PEAK POWER<br>SPECTRAL DENSITY<br>(dB) | Limit<br>(dB) | Result |
|---------|--------------------|----------------------------------------|---------------|--------|
| Low     | 5745               | 10.44                                  | 30.00         | PASS   |
| Mid     | 5785               | 10.15                                  | 30.00         | PASS   |
| High    | 5825               | 10.63                                  | 30.00         | PASS   |

#### Test mode: IEEE 802.11n HT40 / 5755 ~ 5795MHz

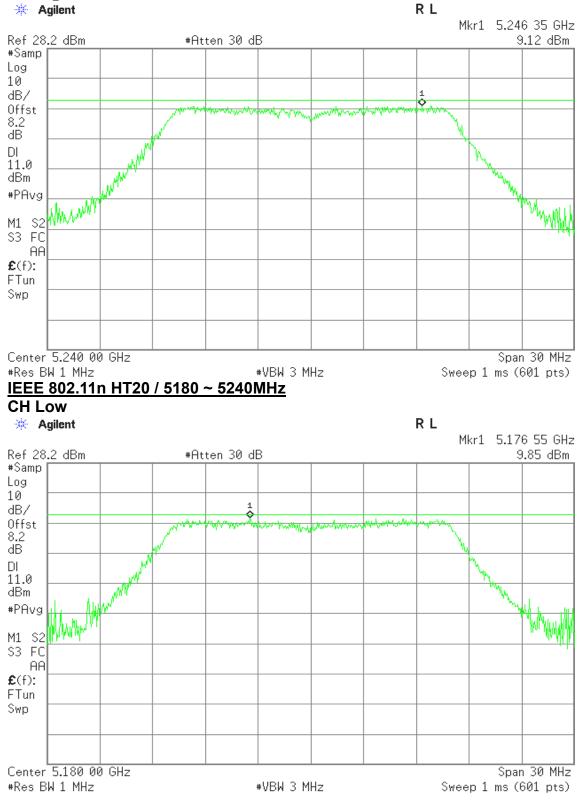
| Channel | Frequency<br>(MHz) | PEAK POWER<br>SPECTRAL DENSITY<br>(dB) | Limit<br>(dB) | Result |
|---------|--------------------|----------------------------------------|---------------|--------|
| Low     | 5755               | 8.42                                   | 30.00         | PASS   |
| High    | 5795               | 8.46                                   | 30.00         | PASS   |

# Test mode: IEEE 802.11ac HT80 / 5775MHz


| Frequency<br>(MHz) | PEAK POWER<br>SPECTRAL DENSITY<br>(dB) | Limit<br>(dB) | Result |
|--------------------|----------------------------------------|---------------|--------|
| 5775               | 5.86                                   | 30.00         | PASS   |

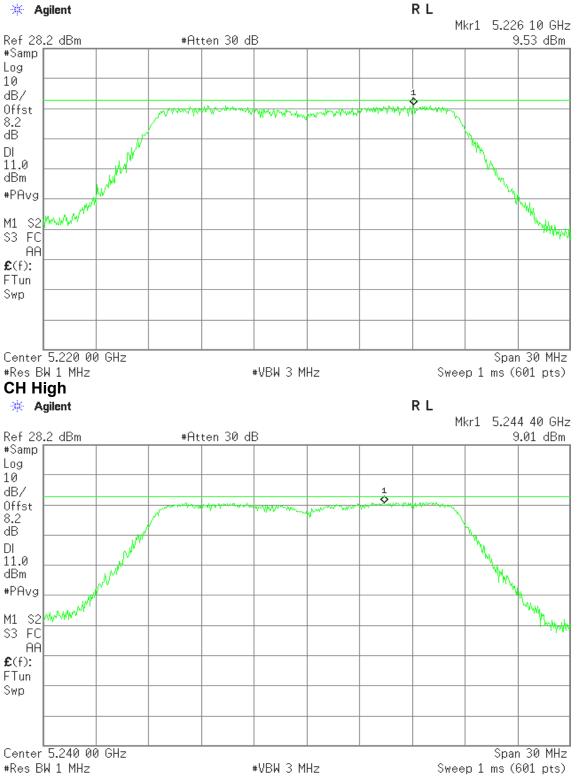


Test Plot


# IEEE 802.11a / 5180 ~ 5240MHz





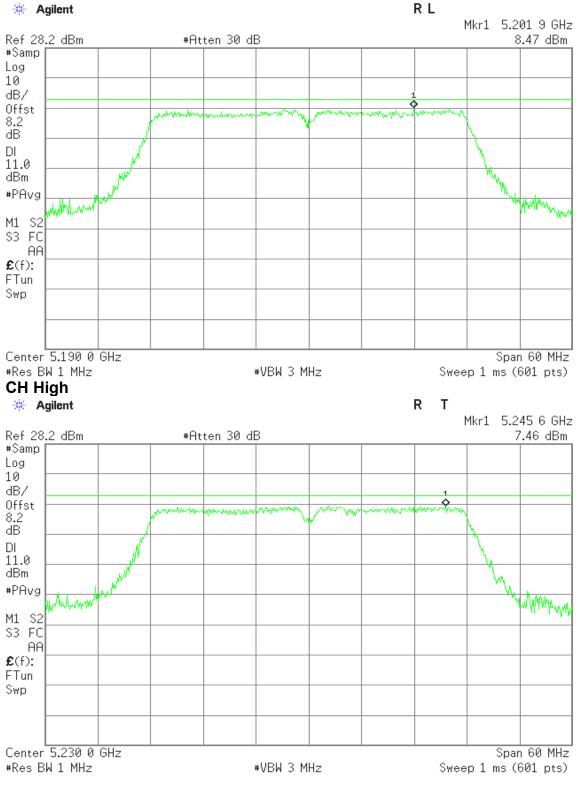



CH High



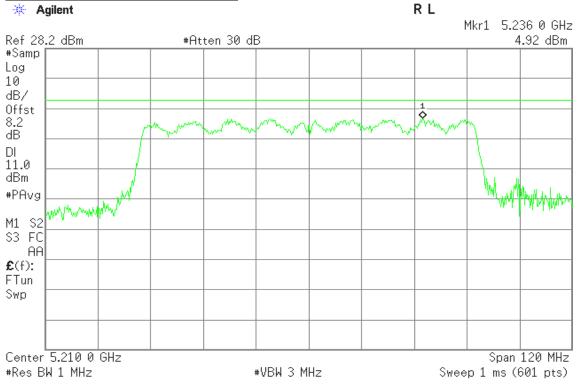


CH Mid






#### IEEE 802.11n HT40 / 5190 ~ 5230MHz

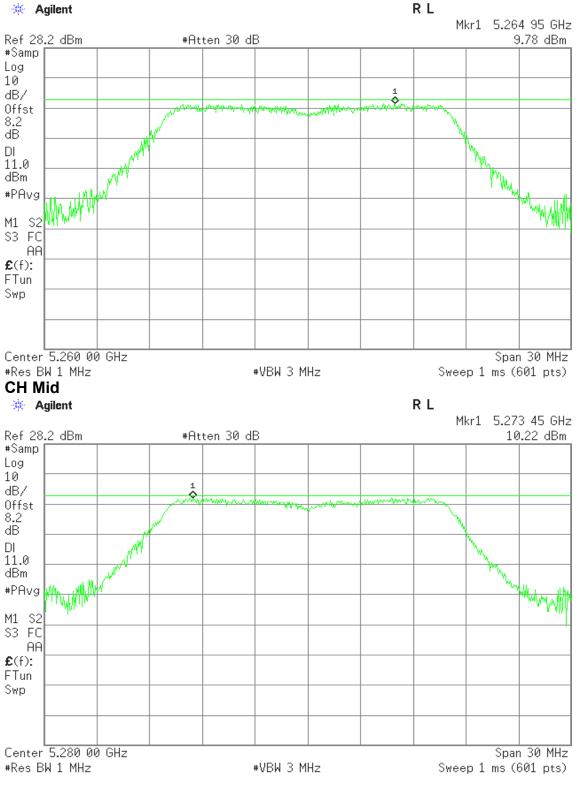

**CH** Low





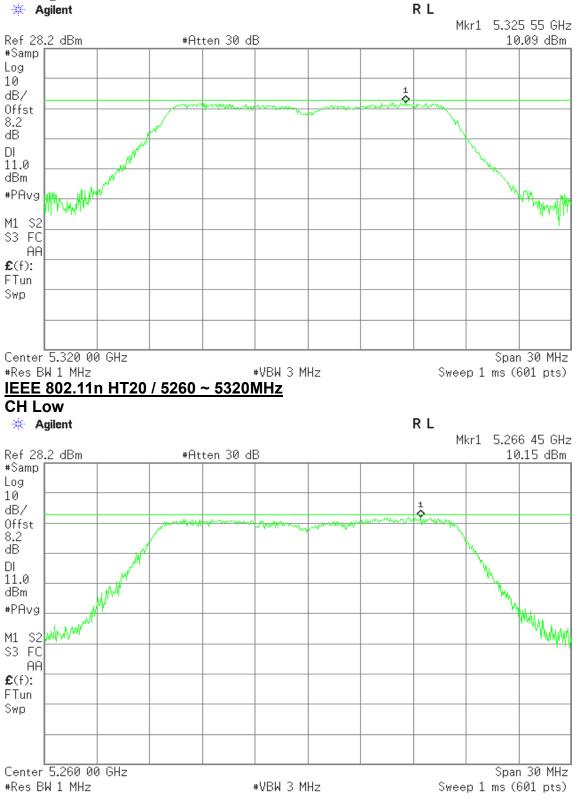


# IEEE 802.11ac HT80 / 5210MHz



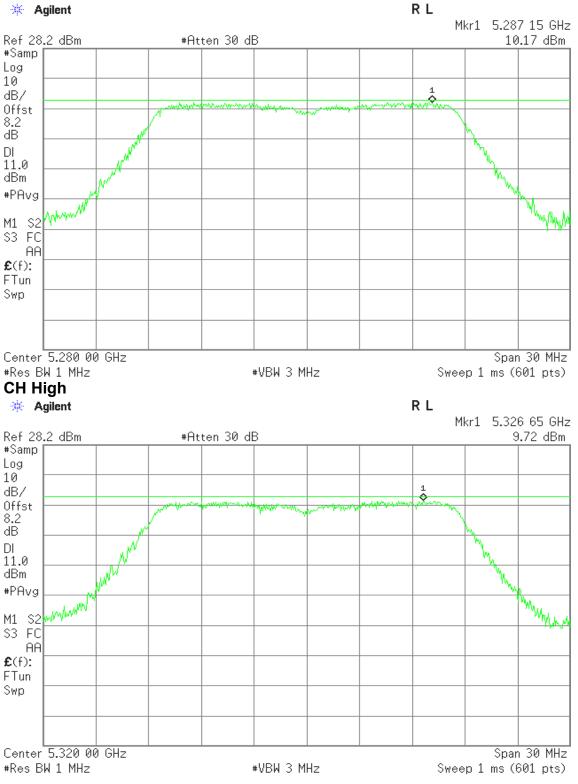



IEEE 802.11a / 5260 ~ 5320MHz


**CH** Low

🔆 Agilent



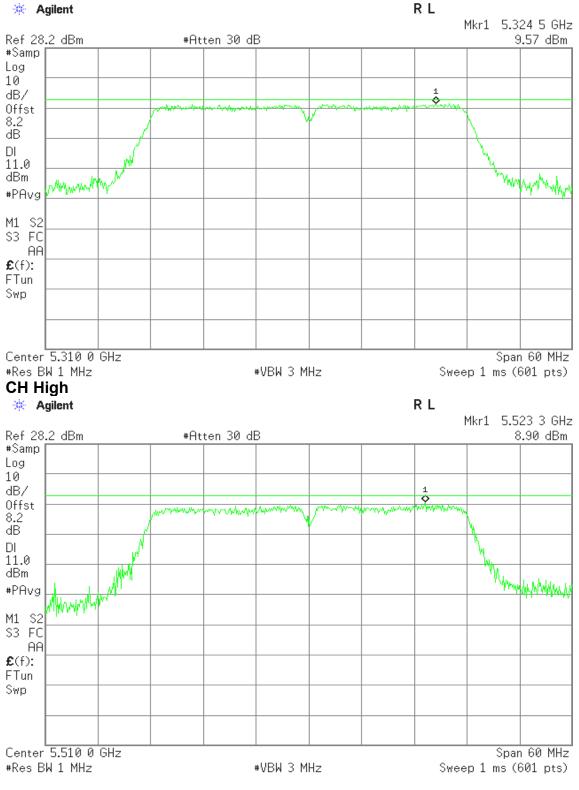



CH High



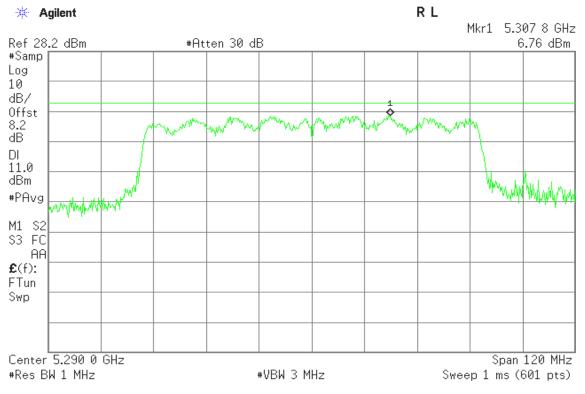


CH Mid






### IEEE 802.11n HT40 / 5270 ~ 5310MHz

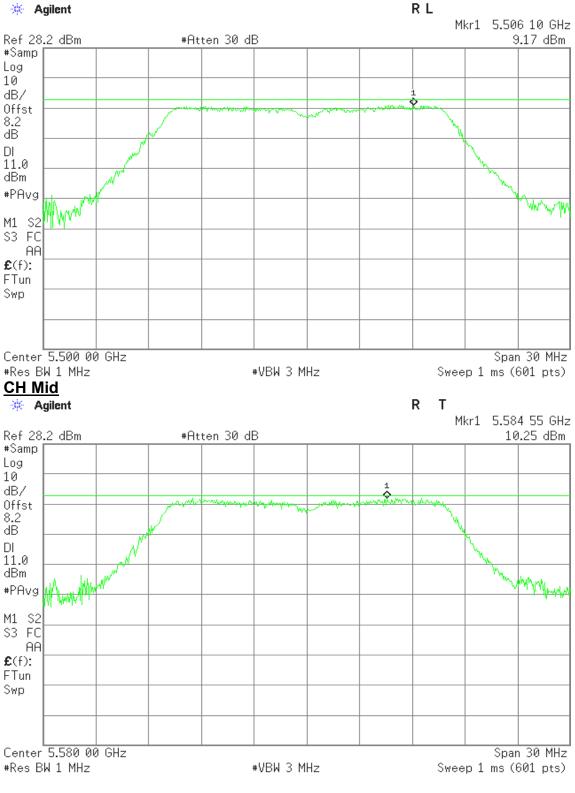

**CH** Low





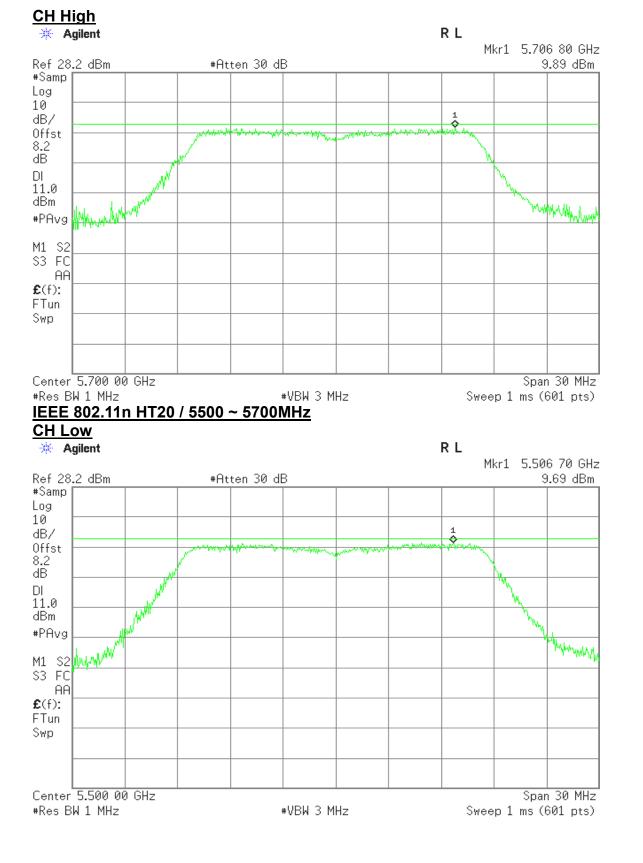


# IEEE 802.11ac HT80 / 5290MHz



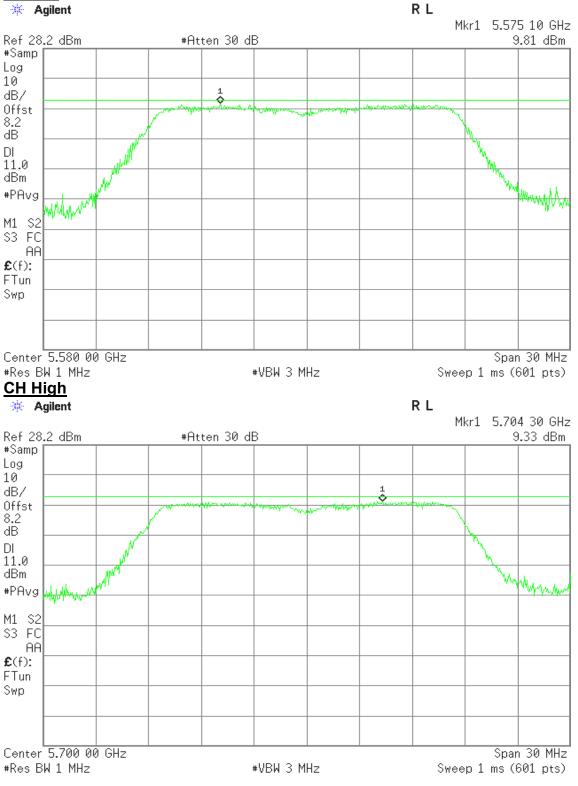



#### IEEE 802.11a / 5500 ~ 5700MHz


CH Low





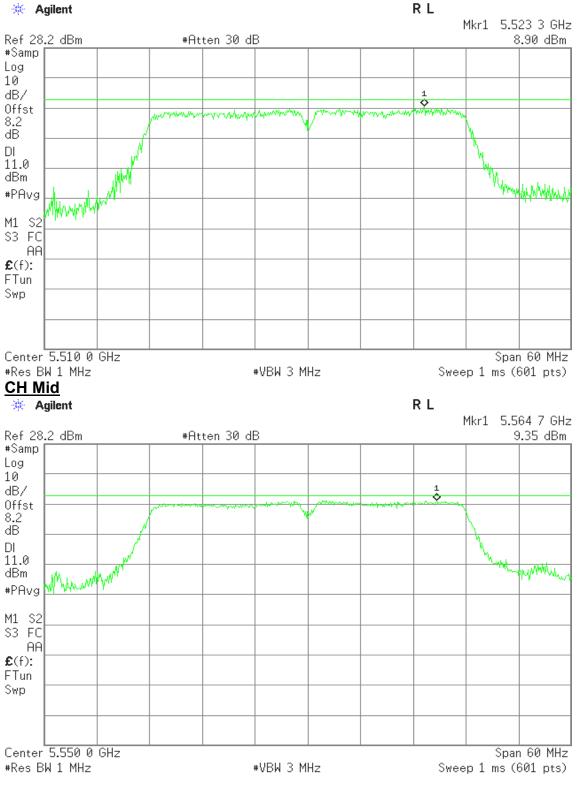






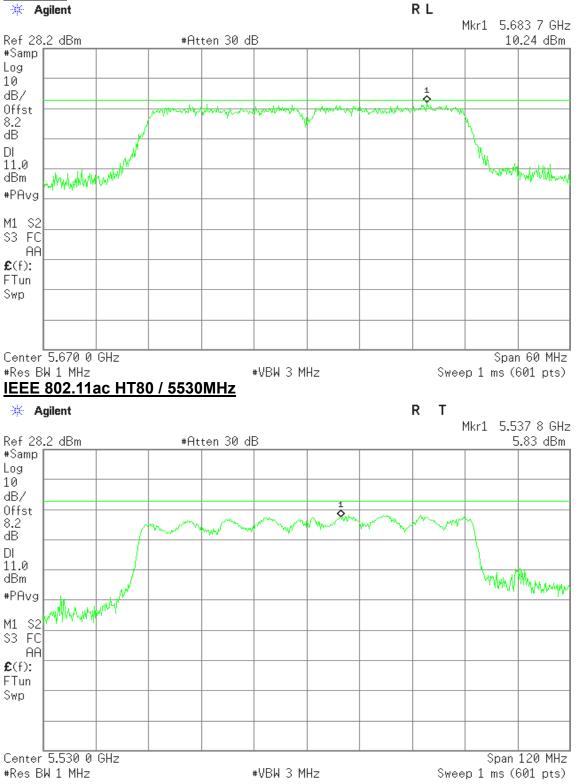



CH Mid






## IEEE 802.11n HT40 / 5510 ~ 5670MHz

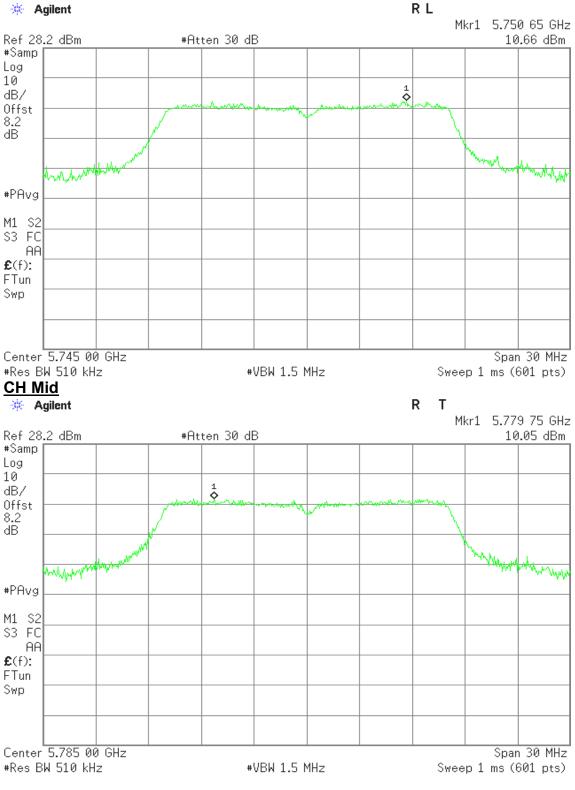






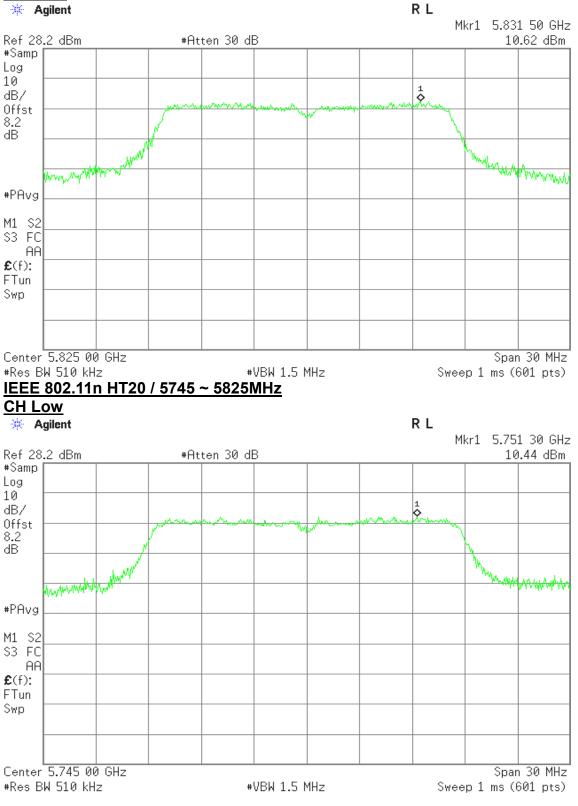



CH High



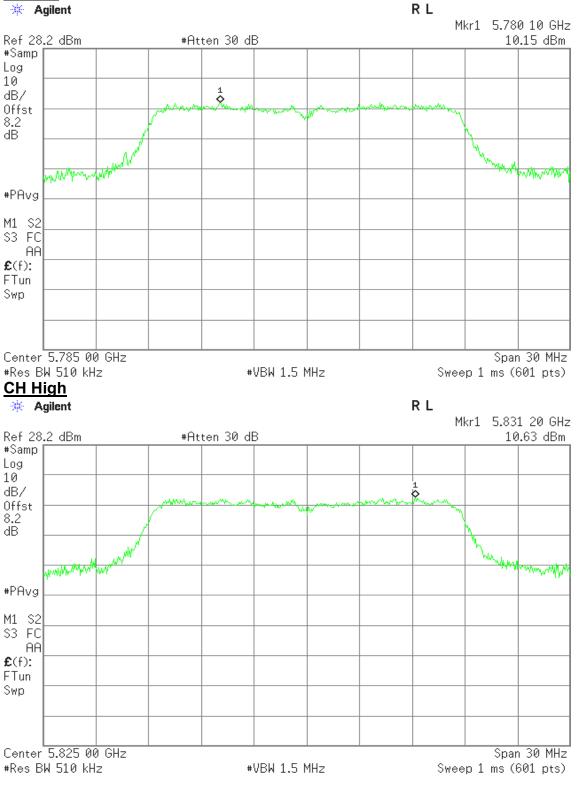



#### IEEE 802.11a / 5745 ~ 5825MHz




🔆 Agilent



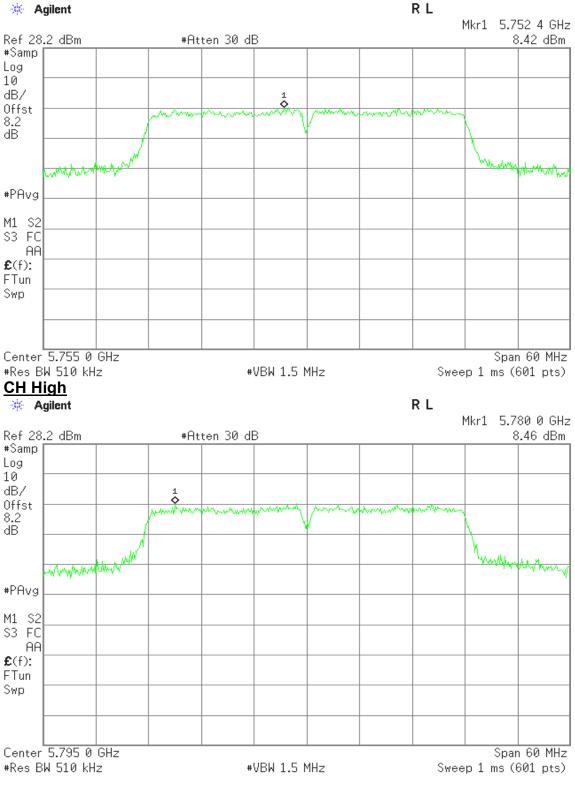



CH High Agilent



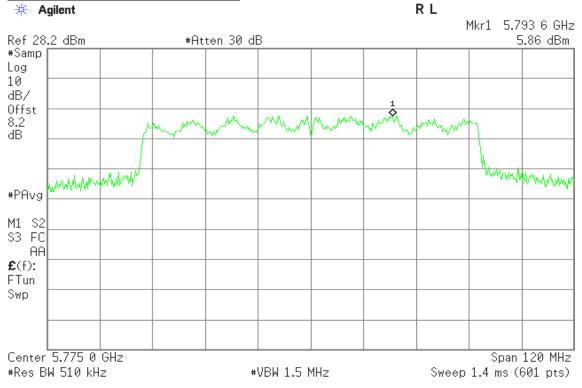


CH Mid Agilent






### IEEE 802.11n HT40 / 5755 ~ 5795MHz


**CH** Low







## IEEE 802.11ac HT80 / 5775MHz



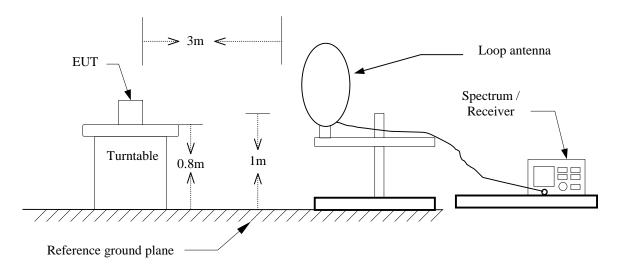


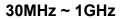
# 7.6 RADIATED UNDESIRABLE EMISSION

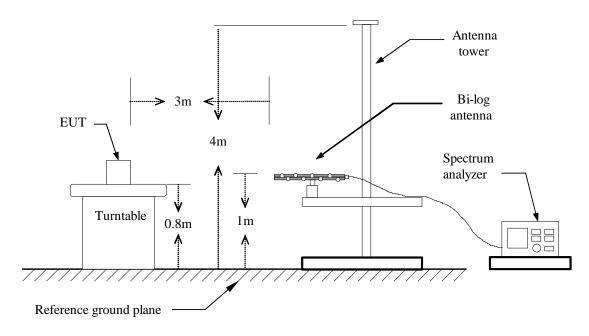
1. According to §15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency<br>(MHz) | Field Strength<br>(µV/m) | Measurement Distance<br>(m) |
|--------------------|--------------------------|-----------------------------|
| 30-88              | 100*                     | 3                           |
| 88-216             | 150*                     | 3                           |
| 216-960            | 200*                     | 3                           |
| Above 960          | 500                      | 3                           |

**Remark:** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

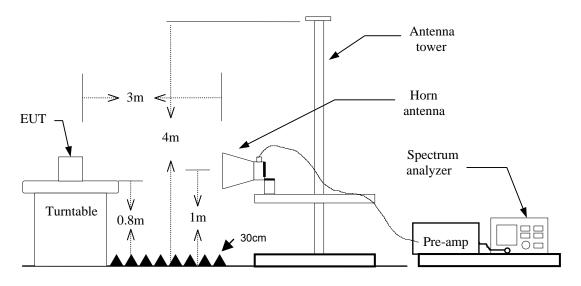

2. In the emission table above, the tighter limit applies at the band edges.


| Frequency<br>(MHz) | Field Strength<br>(µV/m at 3-meter) | Field Strength<br>(dBµV/m at 3-meter) |
|--------------------|-------------------------------------|---------------------------------------|
| 30-88              | 100                                 | 40                                    |
| 88-216             | 150                                 | 43.5                                  |
| 216-960            | 200                                 | 46                                    |
| Above 960          | 500                                 | 54                                    |




### **Test Configuration**

### 9kHz ~ 30MHz










Above 1 GHz



# TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

## Below 30MHz

RBW=10kHz / VBW=30kHz / Sweep=AUTO

## 30 ~ 1000MHz:

RBW=100kHz / VBW=300KHz / Sweep=AUTO

## Above 1GHz:

a) PEAK: RBW=1MHz / VBW=3MHz / Sweep=AUTO

- b) AVERAGE: RBW=1MHz / VBW=300Hz / Sweep=AUTO
- 7. Repeat above procedures until the measurements for all frequencies are complete.



### DATA SAMPLE

## Below 1 GHz

| Frequency<br>(MHz)                                                                                     | Reading<br>(dBuV)           | Correction Factor<br>(dB/m)                                    | Result<br>(dBuV/m) | Limit<br>(dBuV/m)                            | Margin<br>(dB) | Ant. Pol.<br>(H/V) | Remark |
|--------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------|--------------------|----------------------------------------------|----------------|--------------------|--------|
| X.XX                                                                                                   | 43.20                       | -20.71                                                         | 22.49              | 40.00                                        | -17.51         | V                  | QP     |
| Frequency (M<br>Reading (dB<br>Correction Fa<br>Result (dBuV/r<br>Limit (dBuV/r<br>Margin (dB)<br>Q.P. | uV)<br>actor (dB/m)<br>//m) | = Uncorrecte<br>= Antenna fa<br>= Reading (d<br>= Limit stated | uV/m) – Limit (    | eceiver read<br>r gain + Cab<br>Factor (dB/m | le loss        |                    |        |

### Above 1 GHz

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| X.XX           | 45.25             | 6.91                        | 52.16              | 74.00             | -21.84         | Н               | peak   |
| X.XX           | 32.33             | 6.91                        | 39.24              | 54.00             | -14.76         | Н               | AVG    |
| Frequency (MHz | )                 | = Emissior                  | frequency in       | MHz               |                |                 |        |

Reading (dBuV) Correction Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Margin (dB)

= Uncorrected Analyzer / Receiver reading

= Antenna factor + Cable loss – Amplifier gain

= Reading (dBuV) + Corr. Factor (dB/m)

= Limit stated in standard = Result (dBuV/m) – Limit (dBuV/m)

## **TEST RESULTS**

No non-compliance noted.



## TEST DATA Below 1GHz

| Operation Mode: | LAN Mode | Test Date: | 2014/9/9    |
|-----------------|----------|------------|-------------|
| Temperature:    | 26°C     | Tested by: | Eric Liao   |
| Humidity:       | 56% RH   | Polarity:  | Ver. / Hor. |

| Frequency<br>(MHz) | Reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol.<br>(H/V) | Remark |
|--------------------|-------------------|--------------------------------|--------------------|-------------------|----------------|--------------------|--------|
| 43.5799            | 43.90             | -16.27                         | 27.63              | 40.00             | -12.37         | V                  | QP     |
| 126.0300           | 41.81             | -15.32                         | 26.49              | 43.50             | -17.01         | V                  | QP     |
| 167.7400           | 46.60             | -16.91                         | 29.69              | 43.50             | -13.81         | V                  | QP     |
| 210.4199           | 48.50             | -16.39                         | 32.11              | 43.50             | -11.39         | V                  | QP     |
| 377.2599           | 48.30             | -10.67                         | 37.63              | 46.00             | -8.37          | V                  | QP     |
| 800.1799           | 39.80             | -5.78                          | 34.02              | 46.00             | -11.98         | V                  | QP     |
| 210.4200           | 49.40             | -16.39                         | 33.01              | 43.50             | -10.49         | Н                  | QP     |
| 240.4900           | 41.50             | -14.22                         | 27.28              | 46.00             | -18.72         | Н                  | QP     |
| 335.5500           | 50.30             | -11.49                         | 38.81              | 46.00             | -7.19          | Н                  | QP     |
| 378.2300           | 53.10             | -10.65                         | 42.45              | 46.00             | -3.55          | Н                  | QP     |
| 480.0800           | 34.40             | -9.55                          | 24.85              | 46.00             | -21.15         | Н                  | QP     |
| 800.1800           | 42.70             | -5.78                          | 36.92              | 46.00             | -9.08          | Н                  | QP     |

- No emission found between lowest internal used / generated frequency to 30 MHz. (9kHz ~ 30MHz)
- 2. Measuring frequencies from 9 kHz to the 1GHz.
- 3. Radiated emissions measured in the measured frequency range were made with an instrument using peak detector or quasi-peak detector mode.
- 4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.



### Above 1 GHz

Operation Mode: TX / IEEE 802.11a mode 5180-5240MHz / Low

/**Test Date:** 2014/6/16~17

Temperature:26℃

Humidity: 5

Tested by: Francis Lee

56%RH

Polarity: Ver. / Hor.

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2135.000       | 51.31             | -2.79                       | 48.52              | 74.00             | -25.48         | V               | peak   |
| 3610.000       | 47.92             | 2.88                        | 50.80              | 74.00             | -23.20         | V               | peak   |
| 4700.000       | 47.42             | 2.80                        | 50.22              | 74.00             | -23.78         | V               | peak   |
| 5725.000       | 46.41             | 5.74                        | 52.15              | 74.00             | -21.85         | V               | peak   |
| 5725.000       | 35.09             | 5.74                        | 40.83              | 54.00             | -13.17         | V               | AVG    |
| 10356.000      | 44.89             | 10.53                       | 55.42              | 74.00             | -18.58         | V               | peak   |
| 10356.000      | 36.36             | 10.53                       | 46.89              | 54.00             | -7.11          | V               | AVG    |
| 15540.000      | 41.86             | 11.21                       | 53.07              | 74.00             | -20.93         | V               | peak   |
| 15540.000      | 29.40             | 11.21                       | 40.61              | 54.00             | -13.39         | V               | AVG    |
| 3130.000       | 48.05             | 1.26                        | 49.31              | 74.00             | -24.69         | Н               | peak   |
| 3765.000       | 47.76             | 4.63                        | 52.39              | 74.00             | -21.61         | Н               | peak   |
| 3765.000       | 36.79             | 4.63                        | 41.42              | 54.00             | -12.58         | Н               | AVG    |
| 4310.000       | 45.67             | 7.59                        | 53.26              | 74.00             | -20.74         | Н               | peak   |
| 4310.000       | 36.00             | 7.59                        | 43.59              | 54.00             | -10.41         | Н               | AVG    |
| 5600.000       | 45.06             | 9.20                        | 54.26              | 74.00             | -19.74         | Н               | peak   |
| 5600.000       | 35.50             | 9.20                        | 44.70              | 54.00             | -9.30          | Н               | AVG    |
| 10368.000      | 44.83             | 10.00                       | 54.83              | 74.00             | -19.17         | Н               | peak   |
| 10368.000      | 36.93             | 10.00                       | 46.93              | 54.00             | -7.07          | Н               | AVG    |
| 15768.000      | 39.35             | 11.09                       | 50.44              | 74.00             | -23.56         | Н               | peak   |

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.

3. Average test would be performed if the peak result were greater than the average limit.

4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
 Marrin (dB) = Demark result (dBu)((m) = Average limit (dBu)((m))



| Operation Mode: | TX / IEEE<br>5180-5240MH | 802.11a<br>z / Mid | mode | <sup>/</sup> Test Date: | 2014/6/16~17 |  |
|-----------------|--------------------------|--------------------|------|-------------------------|--------------|--|
| Temperature:    | <b>26</b> °C             |                    |      | Tested by               | Francis Lee  |  |
| Humidity:       | 56%RH                    |                    |      | Polarity:               | Ver. / Hor.  |  |
|                 |                          |                    |      |                         |              |  |

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2135.000       | 49.74             | -2.79                       | 46.95              | 74.00             | -27.05         | V               | peak   |
| 3805.000       | 46.92             | 3.58                        | 50.50              | 74.00             | -23.50         | V               | peak   |
| 5005.000       | 45.40             | 5.27                        | 50.67              | 74.00             | -23.33         | V               | peak   |
| 5905.000       | 45.48             | 6.21                        | 51.69              | 74.00             | -22.31         | V               | peak   |
| 5905.000       | 34.96             | 6.21                        | 41.17              | 54.00             | -12.83         | V               | AVG    |
| 10440.000      | 44.85             | 9.88                        | 54.73              | 74.00             | -19.27         | V               | peak   |
| 10440.000      | 34.65             | 9.88                        | 44.53              | 54.00             | -9.47          | V               | AVG    |
| 15648.000      | 39.62             | 11.15                       | 50.77              | 74.00             | -23.23         | V               | peak   |
| 2135.000       | 48.71             | -3.70                       | 45.01              | 74.00             | -28.99         | Н               | peak   |
| 4315.000       | 46.38             | 7.55                        | 53.93              | 74.00             | -20.07         | Н               | peak   |
| 4315.000       | 35.87             | 7.55                        | 43.42              | 54.00             | -10.58         | Н               | AVG    |
| 5030.000       | 46.17             | 7.21                        | 53.38              | 74.00             | -20.62         | Н               | peak   |
| 5030.000       | 35.47             | 7.21                        | 42.68              | 54.00             | -11.32         | Н               | AVG    |
| 5565.000       | 45.43             | 9.08                        | 54.51              | 74.00             | -19.49         | Н               | peak   |
| 5565.000       | 35.19             | 9.08                        | 44.27              | 54.00             | -9.73          | Н               | AVG    |
| 5875.000       | 45.86             | 8.61                        | 54.47              | 74.00             | -19.53         | Н               | peak   |
| 5875.000       | 35.26             | 8.61                        | 43.87              | 54.00             | -10.13         | Н               | AVG    |
| 10440.000      | 44.82             | 9.68                        | 54.50              | 74.00             | -19.50         | Н               | peak   |
| 10440.000      | 35.71             | 9.68                        | 45.39              | 54.00             | -8.61          | Н               | AVG    |
| 15660.000      | 41.34             | 11.14                       | 52.48              | 74.00             | -21.52         | Н               | peak   |
| 15660.000      | 31.77             | 11.14                       | 42.91              | 54.00             | -11.09         | Н               | AVG    |

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.

3. Average test would be performed if the peak result were greater than the average limit.

4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.



| Operation Mode: | TX /<br>5180-5 | IEEE<br>5240MH | 802.11a<br>z / High | mo | de | <sup>/</sup> Test | Date:  | 2014 | 4/6/16~17 |  |
|-----------------|----------------|----------------|---------------------|----|----|-------------------|--------|------|-----------|--|
| Temperature:    | <b>26</b> °C   |                |                     |    |    | Teste             | ed by: | Frar | ncis Lee  |  |
| Humidity:       | 56%RI          | H              |                     |    |    | Pola              | rity:  | Ver. | / Hor.    |  |
|                 |                |                |                     |    |    |                   |        |      |           |  |
|                 |                | -              |                     |    |    |                   |        |      |           |  |

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2135.000       | 50.58             | -2.79                       | 47.79              | 74.00             | -26.21         | V               | peak   |
| 3595.000       | 46.54             | 2.90                        | 49.44              | 74.00             | -24.56         | V               | peak   |
| 5555.000       | 45.89             | 6.05                        | 51.94              | 74.00             | -22.06         | V               | peak   |
| 5555.000       | 35.46             | 6.05                        | 41.51              | 54.00             | -12.49         | V               | AVG    |
| 10464.000      | 44.98             | 9.69                        | 54.67              | 74.00             | -19.33         | V               | peak   |
| 10464.000      | 34.37             | 9.69                        | 44.06              | 54.00             | -9.94          | V               | AVG    |
| 15708.000      | 40.71             | 11.12                       | 51.83              | 74.00             | -22.17         | V               | peak   |
| 15708.000      | 29.79             | 11.12                       | 40.91              | 54.00             | -13.09         | V               | AVG    |
| 2135.000       | 48.63             | -3.70                       | 44.93              | 74.00             | -29.07         | Н               | peak   |
| 4300.000       | 45.76             | 7.66                        | 53.42              | 74.00             | -20.58         | Н               | peak   |
| 4300.000       | 35.54             | 7.66                        | 43.20              | 54.00             | -10.80         | Н               | AVG    |
| 4965.000       | 45.82             | 7.44                        | 53.26              | 74.00             | -20.74         | Н               | peak   |
| 4965.000       | 35.23             | 7.44                        | 42.67              | 54.00             | -11.33         | Н               | AVG    |
| 5560.000       | 46.08             | 9.06                        | 55.14              | 74.00             | -18.86         | Н               | peak   |
| 5560.000       | 34.94             | 9.06                        | 44.00              | 54.00             | -10.00         | Н               | AVG    |
| 5965.000       | 45.97             | 8.97                        | 54.94              | 74.00             | -19.06         | Н               | peak   |
| 5965.000       | 34.97             | 8.97                        | 43.94              | 54.00             | -10.06         | Н               | AVG    |
| 10488.000      | 46.53             | 9.46                        | 55.99              | 74.00             | -18.01         | Н               | peak   |
| 10488.000      | 38.00             | 9.46                        | 47.46              | 54.00             | -6.54          | Н               | AVG    |
| 16164.000      | 39.72             | 11.37                       | 51.09              | 74.00             | -22.91         | Н               | peak   |
| 16164.000      | 29.60             | 11.37                       | 40.97              | 54.00             | -13.03         | Н               | AVG    |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).



| Operation Mode: | TX / IEEE 802.11n HT20 mode 5180-5240MHz / Low | <sup>/</sup> Test Date: | 2014/6/16~17 |
|-----------------|------------------------------------------------|-------------------------|--------------|
| Temperature:    | <b>26</b> °C                                   | Tested by:              | Francis Lee  |
| Humidity:       | 56%RH                                          | Polarity:               | Ver. / Hor.  |
|                 |                                                |                         |              |

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2200.000       | 48.61             | -1.33                       | 47.28              | 74.00             | -26.72         | V               | peak   |
| 3640.000       | 47.39             | 2.75                        | 50.14              | 74.00             | -23.86         | V               | peak   |
| 5640.000       | 45.78             | 5.92                        | 51.70              | 74.00             | -22.30         | V               | peak   |
| 5640.000       | 34.94             | 5.92                        | 40.86              | 54.00             | -13.14         | V               | AVG    |
| 5915.000       | 45.81             | 6.10                        | 51.91              | 74.00             | -22.09         | V               | peak   |
| 5915.000       | 35.05             | 6.10                        | 41.15              | 54.00             | -12.85         | V               | AVG    |
| 11508.000      | 39.14             | 10.60                       | 49.74              | 74.00             | -24.26         | V               | peak   |
| 16080.000      | 39.86             | 11.16                       | 51.02              | 74.00             | -22.98         | V               | peak   |
| 16080.000      | 28.37             | 11.16                       | 39.53              | 54.00             | -14.47         | V               | AVG    |
| 2155.000       | 48.47             | -3.66                       | 44.81              | 74.00             | -29.19         | Н               | peak   |
| 4310.000       | 45.31             | 7.59                        | 52.90              | 74.00             | -21.10         | Н               | peak   |
| 4310.000       | 35.64             | 7.59                        | 43.23              | 54.00             | -10.77         | Н               | AVG    |
| 4705.000       | 45.35             | 7.22                        | 52.57              | 74.00             | -21.43         | Н               | peak   |
| 4705.000       | 35.61             | 7.22                        | 42.83              | 54.00             | -11.17         | Н               | AVG    |
| 5575.000       | 45.67             | 9.11                        | 54.78              | 74.00             | -19.22         | Н               | peak   |
| 5575.000       | 35.50             | 9.11                        | 44.61              | 54.00             | -9.39          | Н               | AVG    |
| 5940.000       | 46.15             | 9.06                        | 55.21              | 74.00             | -18.79         | Н               | peak   |
| 5940.000       | 35.14             | 9.06                        | 44.20              | 54.00             | -9.80          | Н               | AVG    |
| 11232.000      | 38.21             | 10.39                       | 48.60              | 74.00             | -25.40         | Н               | peak   |
| 15528.000      | 40.83             | 11.21                       | 52.04              | 74.00             | -21.96         | Н               | peak   |
| 15528.000      | 28.74             | 11.21                       | 39.95              | 54.00             | -14.05         | Н               | AVG    |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
   Marrin (dD) - Demark result (dDu)(m) - Augustus limit (dDu)(m)
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).



| Operation Mode: | TX / IEEE 802.11n HT20 mode 5180-5240MHz / Mid | <sup>/</sup> Test Date: | 2014/6/16~18 |
|-----------------|------------------------------------------------|-------------------------|--------------|
| Temperature:    | <b>26</b> °C                                   | Tested by:              | Francis Lee  |
| Humidity:       | 56%RH                                          | Polarity:               | Ver. / Hor.  |
|                 |                                                |                         |              |

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2275.000       | 48.48             | -1.50                       | 46.98              | 74.00             | -27.02         | V               | peak   |
| 3765.000       | 46.11             | 3.26                        | 49.37              | 74.00             | -24.63         | V               | peak   |
| 5005.000       | 45.78             | 5.27                        | 51.05              | 74.00             | -22.95         | V               | peak   |
| 5005.000       | 35.22             | 5.27                        | 40.49              | 54.00             | -13.51         | V               | AVG    |
| 5645.000       | 45.58             | 5.92                        | 51.50              | 74.00             | -22.50         | V               | peak   |
| 5645.000       | 34.87             | 5.92                        | 40.79              | 54.00             | -13.21         | V               | AVG    |
| 11172.000      | 38.87             | 10.34                       | 49.21              | 74.00             | -24.79         | V               | peak   |
| 16248.000      | 38.81             | 11.58                       | 50.39              | 74.00             | -23.61         | V               | peak   |
| 2190.000       | 48.45             | -3.58                       | 44.87              | 74.00             | -29.13         | Н               | peak   |
| 4295.000       | 45.75             | 7.58                        | 53.33              | 74.00             | -20.67         | Н               | peak   |
| 4295.000       | 35.61             | 7.58                        | 43.19              | 54.00             | -10.81         | Н               | AVG    |
| 4900.000       | 45.97             | 7.15                        | 53.12              | 74.00             | -20.88         | Н               | peak   |
| 4900.000       | 35.26             | 7.15                        | 42.41              | 54.00             | -11.59         | Н               | AVG    |
| 5555.000       | 45.49             | 9.05                        | 54.54              | 74.00             | -19.46         | Н               | peak   |
| 5555.000       | 35.11             | 9.05                        | 44.16              | 54.00             | -9.84          | Н               | AVG    |
| 5920.000       | 45.42             | 9.14                        | 54.56              | 74.00             | -19.44         | Н               | peak   |
| 5920.000       | 35.00             | 9.14                        | 44.14              | 54.00             | -9.86          | Н               | AVG    |
| 10440.000      | 45.07             | 9.68                        | 54.75              | 74.00             | -19.25         | Н               | peak   |
| 10440.000      | 35.24             | 9.68                        | 44.92              | 54.00             | -9.08          | Н               | AVG    |
| 15648.000      | 38.91             | 11.15                       | 50.06              | 74.00             | -23.94         | Н               | peak   |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
   Marrin (dB) = Demark result (dBu)(m) = Average limit (dBu)(m)
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).



| Operation Mode: | TX / IEEE 802.11n HT20 mode 5180-5240MHz / High | /Test Date: | 2014/6/16~18 |
|-----------------|-------------------------------------------------|-------------|--------------|
| Temperature:    | <b>26</b> °C                                    | Tested by:  | Francis Lee  |
| Humidity:       | 56%RH                                           | Polarity:   | Ver. / Hor.  |
|                 |                                                 |             |              |

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2135.000       | 49.59             | -2.79                       | 46.80              | 74.00             | -27.20         | V               | peak   |
| 3810.000       | 46.27             | 3.47                        | 49.74              | 74.00             | -24.26         | V               | peak   |
| 4915.000       | 45.42             | 4.51                        | 49.93              | 74.00             | -24.07         | V               | peak   |
| 5550.000       | 46.24             | 6.07                        | 52.31              | 74.00             | -21.69         | V               | peak   |
| 5550.000       | 35.76             | 6.07                        | 41.83              | 54.00             | -12.17         | V               | AVG    |
| 11544.000      | 39.23             | 10.61                       | 49.84              | 74.00             | -24.16         | V               | peak   |
| 16236.000      | 39.20             | 11.55                       | 50.75              | 74.00             | -23.25         | V               | peak   |
| 3100.000       | 46.90             | 1.33                        | 48.23              | 74.00             | -25.77         | Н               | peak   |
| 4355.000       | 45.88             | 7.25                        | 53.13              | 74.00             | -20.87         | Н               | peak   |
| 4355.000       | 35.56             | 7.25                        | 42.81              | 54.00             | -11.19         | Н               | AVG    |
| 5005.000       | 45.31             | 7.53                        | 52.84              | 74.00             | -21.16         | Н               | peak   |
| 5005.000       | 35.20             | 7.53                        | 42.73              | 54.00             | -11.27         | Н               | AVG    |
| 5515.000       | 45.47             | 8.91                        | 54.38              | 74.00             | -19.62         | Н               | peak   |
| 5515.000       | 34.97             | 8.91                        | 43.88              | 54.00             | -10.12         | Н               | AVG    |
| 5990.000       | 46.79             | 8.87                        | 55.66              | 74.00             | -18.34         | Н               | peak   |
| 5990.000       | 35.08             | 8.87                        | 43.95              | 54.00             | -10.05         | Н               | AVG    |
| 10476.000      | 40.95             | 9.52                        | 50.47              | 74.00             | -23.53         | Н               | peak   |
| 15720.000      | 40.05             | 11.11                       | 51.16              | 74.00             | -22.84         | Н               | peak   |
| 15720.000      | 27.22             | 11.11                       | 38.33              | 54.00             | -15.67         | Н               | AVG    |

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.

- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
   Marrin (dP) = Remark result (dPu)((m) = Average limit (dPu)((m))
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).



| Operation Mode: | TX / IEEE 802.11n HT40 mode<br>5190 ~ 5230MHz / Low | /Test Date: | 2014/6/17~18 |
|-----------------|-----------------------------------------------------|-------------|--------------|
| Temperature:    | <b>26</b> °C                                        | Tested by:  | Francis Lee  |
| Humidity:       | 56%RH                                               | Polarity:   | Ver. / Hor.  |
|                 |                                                     |             |              |

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2245.000       | 48.60             | -1.43                       | 47.17              | 74.00             | -26.83         | V               | peak   |
| 3110.000       | 47.20             | 0.32                        | 47.52              | 74.00             | -26.48         | V               | peak   |
| 3995.000       | 45.75             | 3.39                        | 49.14              | 74.00             | -24.86         | V               | peak   |
| 5830.000       | 45.83             | 5.47                        | 51.30              | 74.00             | -22.70         | V               | peak   |
| 5830.000       | 34.77             | 5.47                        | 40.24              | 54.00             | -13.76         | V               | AVG    |
| 10920.000      | 38.91             | 10.07                       | 48.98              | 74.00             | -25.02         | V               | peak   |
| 15972.000      | 40.22             | 10.98                       | 51.20              | 74.00             | -22.80         | V               | peak   |
| 15972.000      | 28.61             | 10.98                       | 39.59              | 54.00             | -14.41         | V               | AVG    |
| 3135.000       | 46.93             | 1.24                        | 48.17              | 74.00             | -25.83         | Н               | peak   |
| 4275.000       | 45.94             | 7.24                        | 53.18              | 74.00             | -20.82         | Н               | peak   |
| 4275.000       | 35.48             | 7.24                        | 42.72              | 54.00             | -11.28         | Н               | AVG    |
| 4540.000       | 47.25             | 6.34                        | 53.59              | 74.00             | -20.41         | Н               | peak   |
| 4540.000       | 35.27             | 6.34                        | 41.61              | 54.00             | -12.39         | Н               | AVG    |
| 5630.000       | 45.40             | 8.87                        | 54.27              | 74.00             | -19.73         | Н               | peak   |
| 5630.000       | 34.82             | 8.87                        | 43.69              | 54.00             | -10.31         | Н               | AVG    |
| 5940.000       | 45.69             | 9.06                        | 54.75              | 74.00             | -19.25         | Н               | peak   |
| 5940.000       | 34.88             | 9.06                        | 43.94              | 54.00             | -10.06         | Н               | AVG    |
| 10512.000      | 40.16             | 9.43                        | 49.59              | 74.00             | -24.41         | Н               | peak   |
| 15900.000      | 39.19             | 11.01                       | 50.20              | 74.00             | -23.80         | Н               | peak   |

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.

- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
   Marrin (dP) = Remark result (dPu)((m) = Average limit (dPu)((m))
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).



| Operation Mode: | TX / IEEE 802.11n HT40 mode<br>5190 ~ 5230MHz / High | <sup>/</sup> Test Date: | 2014/6/17~18 |
|-----------------|------------------------------------------------------|-------------------------|--------------|
| Temperature:    | <b>26</b> °C                                         | Tested by:              | Francis Lee  |
| Humidity:       | 56%RH                                                | Polarity:               | Ver. / Hor.  |
|                 |                                                      |                         |              |

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2000.000       | 48.41             | -1.30                       | 47.11              | 74.00             | -26.89         | V               | peak   |
| 3800.000       | 45.98             | 3.69                        | 49.67              | 74.00             | -24.33         | V               | peak   |
| 4950.000       | 45.43             | 4.85                        | 50.28              | 74.00             | -23.72         | V               | peak   |
| 5875.000       | 45.36             | 5.98                        | 51.34              | 74.00             | -22.66         | V               | peak   |
| 5875.000       | 35.17             | 5.98                        | 41.15              | 54.00             | -12.85         | V               | AVG    |
| 10440.000      | 41.10             | 9.88                        | 50.98              | 74.00             | -23.02         | V               | peak   |
| 16044.000      | 39.20             | 11.07                       | 50.27              | 74.00             | -23.73         | V               | peak   |
| 2210.000       | 49.18             | -3.84                       | 45.34              | 74.00             | -28.66         | Н               | peak   |
| 4275.000       | 46.27             | 7.24                        | 53.51              | 74.00             | -20.49         | Н               | peak   |
| 4275.000       | 36.24             | 7.24                        | 43.48              | 54.00             | -10.52         | Н               | AVG    |
| 4645.000       | 46.48             | 6.55                        | 53.03              | 74.00             | -20.97         | Н               | peak   |
| 4645.000       | 35.79             | 6.55                        | 42.34              | 54.00             | -11.66         | Н               | AVG    |
| 4905.000       | 45.88             | 7.17                        | 53.05              | 74.00             | -20.95         | Н               | peak   |
| 4905.000       | 35.19             | 7.17                        | 42.36              | 54.00             | -11.64         | Н               | AVG    |
| 5610.000       | 44.93             | 9.09                        | 54.02              | 74.00             | -19.98         | Н               | peak   |
| 5610.000       | 34.95             | 9.09                        | 44.04              | 54.00             | -9.96          | Н               | AVG    |
| 5960.000       | 45.11             | 8.99                        | 54.10              | 74.00             | -19.90         | Н               | peak   |
| 5960.000       | 34.95             | 8.99                        | 43.94              | 54.00             | -10.06         | Н               | AVG    |
| 10440.000      | 43.68             | 9.68                        | 53.36              | 74.00             | -20.64         | Н               | peak   |
| 10440.000      | 36.27             | 9.68                        | 45.95              | 54.00             | -8.05          | Н               | AVG    |
| 16164.000      | 39.65             | 11.37                       | 51.02              | 74.00             | -22.98         | Н               | peak   |
| 16164.000      | 28.65             | 11.37                       | 40.02              | 54.00             | -13.98         | Н               | AVG    |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
   Marrin (dD)



| Operation Mode: | TX / IEEE 802.11ac HT80 mode / 5210MHz | Test Date: | 2014/6/17~18 |
|-----------------|----------------------------------------|------------|--------------|
| Temperature:    | <b>26</b> °C                           | Tested by: | Francis Lee  |
| Humidity:       | 56%RH                                  | Polarity:  | Ver. / Hor.  |
|                 |                                        |            |              |

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2135.000       | 50.64             | -2.79                       | 47.85              | 74.00             | -26.15         | V               | peak   |
| 3795.000       | 46.28             | 3.63                        | 49.91              | 74.00             | -24.09         | V               | peak   |
| 4690.000       | 46.43             | 2.67                        | 49.10              | 74.00             | -24.90         | V               | peak   |
| 5735.000       | 45.97             | 5.66                        | 51.63              | 74.00             | -22.37         | V               | peak   |
| 5735.000       | 34.12             | 5.66                        | 39.78              | 54.00             | -14.22         | V               | AVG    |
| 5910.000       | 44.95             | 6.15                        | 51.10              | 74.00             | -22.90         | V               | peak   |
| 5910.000       | 34.49             | 6.15                        | 40.64              | 54.00             | -13.36         | V               | AVG    |
| 11688.000      | 38.74             | 10.66                       | 49.40              | 74.00             | -24.60         | V               | peak   |
| 16176.000      | 40.35             | 11.40                       | 51.75              | 74.00             | -22.25         | V               | peak   |
| 16176.000      | 28.63             | 11.40                       | 40.03              | 54.00             | -13.97         | V               | AVG    |
| 2160.000       | 48.03             | -3.65                       | 44.38              | 74.00             | -29.62         | Н               | peak   |
| 4300.000       | 45.79             | 7.66                        | 53.45              | 74.00             | -20.55         | Н               | peak   |
| 4300.000       | 34.56             | 7.66                        | 42.22              | 54.00             | -11.78         | Н               | AVG    |
| 4645.000       | 47.02             | 6.55                        | 53.57              | 74.00             | -20.43         | Н               | peak   |
| 4645.000       | 35.30             | 6.55                        | 41.85              | 54.00             | -12.15         | Н               | AVG    |
| 5680.000       | 45.82             | 8.31                        | 54.13              | 74.00             | -19.87         | Н               | peak   |
| 5680.000       | 34.32             | 8.31                        | 42.63              | 54.00             | -11.37         | Н               | AVG    |
| 5955.000       | 45.12             | 9.01                        | 54.13              | 74.00             | -19.87         | Н               | peak   |
| 5955.000       | 34.41             | 9.01                        | 43.42              | 54.00             | -10.58         | Н               | AVG    |
| 11148.000      | 38.97             | 10.32                       | 49.29              | 74.00             | -24.71         | Н               | peak   |
| 15804.000      | 39.61             | 11.07                       | 50.68              | 74.00             | -23.32         | Н               | peak   |

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.

3. Average test would be performed if the peak result were greater than the average limit.

4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.



| Operation Mode: | TX / IEEE 802.11a mode / 5260 ~ 5320MHz / Low | Test Date: | 2014/6/16~17 |
|-----------------|-----------------------------------------------|------------|--------------|
| Temperature:    | <b>26</b> °C                                  | Tested by: | Francis Lee  |
| Humidity:       | 56%RH                                         | Polarity:  | Ver. / Hor.  |
|                 |                                               |            |              |

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2135.000       | 49.53             | -2.79                       | 46.74              | 74.00             | -27.26         | V               | peak   |
| 3770.000       | 47.05             | 3.32                        | 50.37              | 74.00             | -23.63         | V               | peak   |
| 4900.000       | 45.96             | 4.37                        | 50.33              | 74.00             | -23.67         | V               | peak   |
| 5875.000       | 45.98             | 5.98                        | 51.96              | 74.00             | -22.04         | V               | peak   |
| 5875.000       | 34.94             | 5.98                        | 40.92              | 54.00             | -13.08         | V               | AVG    |
| 10536.000      | 46.02             | 9.47                        | 55.49              | 74.00             | -18.51         | V               | peak   |
| 10536.000      | 37.74             | 9.47                        | 47.21              | 54.00             | -6.79          | V               | AVG    |
| 15780.000      | 43.50             | 11.08                       | 54.58              | 74.00             | -19.42         | V               | peak   |
| 15780.000      | 35.31             | 11.08                       | 46.39              | 54.00             | -7.61          | V               | AVG    |
| 2180.000       | 48.37             | -3.60                       | 44.77              | 74.00             | -29.23         | Н               | peak   |
| 4315.000       | 46.03             | 7.55                        | 53.58              | 74.00             | -20.42         | Н               | peak   |
| 4315.000       | 35.67             | 7.55                        | 43.22              | 54.00             | -10.78         | Н               | AVG    |
| 4950.000       | 46.03             | 7.37                        | 53.40              | 74.00             | -20.60         | Н               | peak   |
| 4950.000       | 35.40             | 7.37                        | 42.77              | 54.00             | -11.23         | Н               | AVG    |
| 5575.000       | 45.53             | 9.11                        | 54.64              | 74.00             | -19.36         | Н               | peak   |
| 5575.000       | 35.51             | 9.11                        | 44.62              | 54.00             | -9.38          | Н               | AVG    |
| 5940.000       | 45.30             | 9.06                        | 54.36              | 74.00             | -19.64         | Н               | peak   |
| 5940.000       | 35.00             | 9.06                        | 44.06              | 54.00             | -9.94          | Н               | AVG    |
| 10524.000      | 44.65             | 9.45                        | 54.10              | 74.00             | -19.90         | Н               | peak   |
| 10524.000      | 35.48             | 9.45                        | 44.93              | 54.00             | -9.07          | Н               | AVG    |
| 15792.000      | 40.08             | 11.07                       | 51.15              | 74.00             | -22.85         | Н               | peak   |
| 15792.000      | 31.03             | 11.07                       | 42.10              | 54.00             | -11.90         | Н               | AVG    |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
   Margin (dD)



| Operation Mode: | TX / IEEE 802.11a mode / 5260 ~ 5320MHz / Mid | Test Date: | 2014/6/16~17 |
|-----------------|-----------------------------------------------|------------|--------------|
| Temperature:    | <b>26</b> °C                                  | Tested by: | Francis Lee  |
| Humidity:       | 56%RH                                         | Polarity:  | Ver. / Hor.  |
|                 |                                               |            |              |

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2135.000       | 50.49             | -2.79                       | 47.70              | 74.00             | -26.30         | V               | peak   |
| 3640.000       | 48.71             | 2.75                        | 51.46              | 74.00             | -22.54         | V               | peak   |
| 3640.000       | 36.32             | 2.75                        | 39.07              | 54.00             | -14.93         | V               | AVG    |
| 5450.000       | 46.56             | 6.31                        | 52.87              | 74.00             | -21.13         | V               | peak   |
| 5450.000       | 37.12             | 6.31                        | 43.43              | 54.00             | -10.57         | V               | AVG    |
| 10560.000      | 44.40             | 9.50                        | 53.90              | 74.00             | -20.10         | V               | peak   |
| 10560.000      | 36.07             | 9.50                        | 45.57              | 54.00             | -8.43          | V               | AVG    |
| 15840.000      | 43.92             | 11.05                       | 54.97              | 74.00             | -19.03         | V               | peak   |
| 15840.000      | 36.83             | 11.05                       | 47.88              | 54.00             | -6.12          | V               | AVG    |
| 2200.000       | 48.61             | -3.56                       | 45.05              | 74.00             | -28.95         | Н               | peak   |
| 4265.000       | 46.27             | 7.07                        | 53.34              | 74.00             | -20.66         | Н               | peak   |
| 4265.000       | 35.69             | 7.07                        | 42.76              | 54.00             | -11.24         | Н               | AVG    |
| 4710.000       | 45.74             | 7.12                        | 52.86              | 74.00             | -21.14         | Н               | peak   |
| 4710.000       | 35.79             | 7.12                        | 42.91              | 54.00             | -11.09         | Н               | AVG    |
| 5010.000       | 46.08             | 7.46                        | 53.54              | 74.00             | -20.46         | Н               | peak   |
| 5010.000       | 35.31             | 7.46                        | 42.77              | 54.00             | -11.23         | Н               | AVG    |
| 5650.000       | 45.66             | 8.64                        | 54.30              | 74.00             | -19.70         | Н               | peak   |
| 5650.000       | 34.90             | 8.64                        | 43.54              | 54.00             | -10.46         | Н               | AVG    |
| 5900.000       | 45.22             | 9.22                        | 54.44              | 74.00             | -19.56         | Н               | peak   |
| 5900.000       | 34.98             | 9.22                        | 44.20              | 54.00             | -9.80          | Н               | AVG    |
| 10560.000      | 44.07             | 9.50                        | 53.57              | 74.00             | -20.43         | Н               | peak   |
| 10560.000      | 36.99             | 9.50                        | 46.49              | 54.00             | -7.51          | Н               | AVG    |
| 15840.000      | 39.77             | 11.05                       | 50.82              | 74.00             | -23.18         | Н               | peak   |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).



| Operation Mode: | TX / IEEE 802.11a<br>5320MHz / High | a mode / 5260 $\sim$ Test Date: | 2014/6/16~17 |  |
|-----------------|-------------------------------------|---------------------------------|--------------|--|
| Temperature:    | <b>26</b> °C                        | Tested by:                      | Francis Lee  |  |
| Humidity:       | 56%RH                               | Polarity:                       | Ver. / Hor.  |  |
|                 |                                     |                                 |              |  |

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2135.000       | 50.04             | -3.70                       | 46.34              | 74.00             | -27.66         | V               | peak   |
| 3795.000       | 45.52             | 5.03                        | 50.55              | 74.00             | -23.45         | V               | peak   |
| 5485.000       | 44.30             | 8.79                        | 53.09              | 74.00             | -20.91         | V               | peak   |
| 5485.000       | 37.26             | 8.79                        | 46.05              | 54.00             | -7.95          | V               | AVG    |
| 10644.000      | 39.98             | 9.64                        | 49.62              | 74.00             | -24.38         | V               | peak   |
| 16140.000      | 39.18             | 11.31                       | 50.49              | 74.00             | -23.51         | V               | peak   |
| 2140.000       | 48.14             | -3.69                       | 44.45              | 74.00             | -29.55         | Н               | peak   |
| 4315.000       | 45.68             | 7.55                        | 53.23              | 74.00             | -20.77         | Н               | peak   |
| 4315.000       | 35.57             | 7.55                        | 43.12              | 54.00             | -10.88         | Н               | AVG    |
| 4915.000       | 45.73             | 7.22                        | 52.95              | 74.00             | -21.05         | Н               | peak   |
| 4915.000       | 35.40             | 7.22                        | 42.62              | 54.00             | -11.38         | Н               | AVG    |
| 5655.000       | 45.64             | 8.59                        | 54.23              | 74.00             | -19.77         | Н               | peak   |
| 5655.000       | 34.95             | 8.59                        | 43.54              | 54.00             | -10.46         | Н               | AVG    |
| 5960.000       | 45.49             | 8.99                        | 54.48              | 74.00             | -19.52         | Н               | peak   |
| 5960.000       | 35.07             | 8.99                        | 44.06              | 54.00             | -9.94          | Н               | AVG    |
| 10644.000      | 41.73             | 9.64                        | 51.37              | 74.00             | -22.63         | Н               | peak   |
| 10644.000      | 30.67             | 9.64                        | 40.31              | 54.00             | -13.69         | Н               | AVG    |
| 16248.000      | 40.78             | 11.58                       | 52.36              | 74.00             | -21.64         | Н               | peak   |
| 16248.000      | 28.69             | 11.58                       | 40.27              | 54.00             | -13.73         | Н               | AVG    |

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.

- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
   Marrin (dP) = Remark result (dPu)(m) = Average limit (dPu)(m)
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).



| Operation Mode: | TX / IEEE 802.11n HT20 mode<br>5260 ~ 5320MHz / Low | <sup>/</sup> Test Date: | 2014/6/17~18 |
|-----------------|-----------------------------------------------------|-------------------------|--------------|
| Temperature:    | <b>26</b> °C                                        | Tested by:              | Francis Lee  |
| Humidity:       | 56%RH                                               | Polarity:               | Ver. / Hor.  |
|                 |                                                     |                         |              |

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2135.000       | 49.96             | -2.79                       | 47.17              | 74.00             | -26.83         | V               | peak   |
| 3790.000       | 46.08             | 3.57                        | 49.65              | 74.00             | -24.35         | V               | peak   |
| 4935.000       | 46.60             | 4.70                        | 51.30              | 74.00             | -22.70         | V               | peak   |
| 4935.000       | 35.44             | 4.70                        | 40.14              | 54.00             | -13.86         | V               | AVG    |
| 5615.000       | 46.15             | 5.91                        | 52.06              | 74.00             | -21.94         | V               | peak   |
| 5615.000       | 35.17             | 5.91                        | 41.08              | 54.00             | -12.92         | V               | AVG    |
| 5880.000       | 45.82             | 6.03                        | 51.85              | 74.00             | -22.15         | V               | peak   |
| 5880.000       | 35.23             | 6.03                        | 41.26              | 54.00             | -12.74         | V               | AVG    |
| 11580.000      | 38.80             | 10.63                       | 49.43              | 74.00             | -24.57         | V               | peak   |
| 15780.000      | 38.88             | 11.08                       | 49.96              | 74.00             | -24.04         | V               | peak   |
| 2175.000       | 47.98             | -3.61                       | 44.37              | 74.00             | -29.63         | Н               | peak   |
| 4330.000       | 45.68             | 7.44                        | 53.12              | 74.00             | -20.88         | Н               | peak   |
| 4330.000       | 35.56             | 7.44                        | 43.00              | 54.00             | -11.00         | Н               | AVG    |
| 4635.000       | 46.17             | 6.41                        | 52.58              | 74.00             | -21.42         | Н               | peak   |
| 4635.000       | 36.26             | 6.41                        | 42.67              | 54.00             | -11.33         | Н               | AVG    |
| 4965.000       | 45.26             | 7.44                        | 52.70              | 74.00             | -21.30         | Н               | peak   |
| 4965.000       | 35.27             | 7.44                        | 42.71              | 54.00             | -11.29         | Н               | AVG    |
| 5605.000       | 44.87             | 9.14                        | 54.01              | 74.00             | -19.99         | Н               | peak   |
| 5605.000       | 35.06             | 9.14                        | 44.20              | 54.00             | -9.80          | Н               | AVG    |
| 5920.000       | 45.15             | 9.14                        | 54.29              | 74.00             | -19.71         | Н               | peak   |
| 5920.000       | 35.20             | 9.14                        | 44.34              | 54.00             | -9.66          | Н               | AVG    |
| 10656.000      | 40.38             | 9.66                        | 50.04              | 74.00             | -23.96         | Н               | peak   |
| 15792.000      | 39.43             | 11.07                       | 50.50              | 74.00             | -23.50         | Н               | peak   |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).



| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2530.000       | 49.03             | -1.30                       | 47.73              | 74.00             | -26.27         | V               | peak   |
| 3745.000       | 46.62             | 3.02                        | 49.64              | 74.00             | -24.36         | V               | peak   |
| 4925.000       | 46.57             | 4.61                        | 51.18              | 74.00             | -22.82         | V               | peak   |
| 4925.000       | 35.43             | 4.61                        | 40.04              | 54.00             | -13.96         | V               | AVG    |
| 5575.000       | 46.22             | 5.99                        | 52.21              | 74.00             | -21.79         | V               | peak   |
| 5575.000       | 35.14             | 5.99                        | 41.13              | 54.00             | -12.87         | V               | AVG    |
| 5940.000       | 45.90             | 5.84                        | 51.74              | 74.00             | -22.26         | V               | peak   |
| 5940.000       | 35.08             | 5.84                        | 40.92              | 54.00             | -13.08         | V               | AVG    |
| 11244.000      | 38.61             | 10.40                       | 49.01              | 74.00             | -24.99         | V               | peak   |
| 16188.000      | 39.83             | 11.43                       | 51.26              | 74.00             | -22.74         | V               | peak   |
| 16188.000      | 26.33             | 11.43                       | 37.76              | 54.00             | -16.24         | V               | AVG    |
| 2165.000       | 48.05             | -3.64                       | 44.41              | 74.00             | -29.59         | Н               | peak   |
| 4260.000       | 46.05             | 6.99                        | 53.04              | 74.00             | -20.96         | Н               | peak   |
| 4260.000       | 35.44             | 6.99                        | 42.43              | 54.00             | -11.57         | Н               | AVG    |
| 4975.000       | 45.74             | 7.48                        | 53.22              | 74.00             | -20.78         | Н               | peak   |
| 4975.000       | 35.05             | 7.48                        | 42.53              | 54.00             | -11.47         | Н               | AVG    |
| 5525.000       | 45.47             | 8.95                        | 54.42              | 74.00             | -19.58         | Н               | peak   |
| 5525.000       | 35.10             | 8.95                        | 44.05              | 54.00             | -9.95          | Н               | AVG    |
| 5605.000       | 45.29             | 9.14                        | 54.43              | 74.00             | -19.57         | Н               | peak   |
| 5605.000       | 35.00             | 9.14                        | 44.14              | 54.00             | -9.86          | Н               | AVG    |
| 5915.000       | 45.47             | 9.16                        | 54.63              | 74.00             | -19.37         | Н               | peak   |
| 5915.000       | 34.98             | 9.16                        | 44.14              | 54.00             | -9.86          | Н               | AVG    |
| 10560.000      | 41.41             | 9.50                        | 50.91              | 74.00             | -23.09         | Н               | peak   |
| 15780.000      | 38.89             | 11.08                       | 49.97              | 74.00             | -24.03         | Н               | peak   |

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.

3. Average test would be performed if the peak result were greater than the average limit.

4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

 Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
 Marrin (dD)



| Operation Mode: | TX / IEEE 802.11n HT20 mode<br>5260 ~ 5320MHz / High | <sup>/</sup> Test Date: | 2014/6/17~18 |
|-----------------|------------------------------------------------------|-------------------------|--------------|
| Temperature:    | <b>26</b> ℃                                          | Tested by:              | Francis Lee  |
| Humidity:       | 56%RH                                                | Polarity:               | Ver. / Hor.  |
| Temperature:    | <b>26</b> ℃                                          | Tested by:              | Francis Lee  |

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2135.000       | 50.27             | -2.79                       | 47.48              | 74.00             | -26.52         | V               | peak   |
| 3630.000       | 46.76             | 2.79                        | 49.55              | 74.00             | -24.45         | V               | peak   |
| 5015.000       | 46.05             | 5.18                        | 51.23              | 74.00             | -22.77         | V               | peak   |
| 5015.000       | 35.11             | 5.18                        | 40.29              | 54.00             | -13.71         | V               | AVG    |
| 5520.000       | 45.49             | 6.17                        | 51.66              | 74.00             | -22.34         | V               | peak   |
| 5520.000       | 35.58             | 6.17                        | 41.75              | 54.00             | -12.25         | V               | AVG    |
| 5900.000       | 45.93             | 6.26                        | 52.19              | 74.00             | -21.81         | V               | peak   |
| 5900.000       | 35.16             | 6.26                        | 41.42              | 54.00             | -12.58         | V               | AVG    |
| 11556.000      | 39.53             | 10.62                       | 50.15              | 74.00             | -23.85         | V               | peak   |
| 15960.000      | 39.47             | 10.98                       | 50.45              | 74.00             | -23.55         | V               | peak   |
| 2170.000       | 47.87             | -3.63                       | 44.24              | 74.00             | -29.76         | Н               | peak   |
| 4290.000       | 47.17             | 7.49                        | 54.66              | 74.00             | -19.34         | Н               | peak   |
| 4290.000       | 35.47             | 7.49                        | 42.96              | 54.00             | -11.04         | Н               | AVG    |
| 4735.000       | 46.17             | 6.66                        | 52.83              | 74.00             | -21.17         | Н               | peak   |
| 4735.000       | 35.54             | 6.66                        | 42.20              | 54.00             | -11.80         | Н               | AVG    |
| 4965.000       | 45.88             | 7.44                        | 53.32              | 74.00             | -20.68         | Н               | peak   |
| 4965.000       | 35.06             | 7.44                        | 42.50              | 54.00             | -11.50         | Н               | AVG    |
| 5590.000       | 45.66             | 9.17                        | 54.83              | 74.00             | -19.17         | Н               | peak   |
| 5590.000       | 35.07             | 9.17                        | 44.24              | 54.00             | -9.76          | Н               | AVG    |
| 5905.000       | 45.91             | 9.20                        | 55.11              | 74.00             | -18.89         | Н               | peak   |
| 5905.000       | 35.15             | 9.20                        | 44.35              | 54.00             | -9.65          | Н               | AVG    |
| 10644.000      | 40.05             | 9.64                        | 49.69              | 74.00             | -24.31         | Н               | peak   |
| 15792.000      | 39.31             | 11.07                       | 50.38              | 74.00             | -23.62         | Н               | peak   |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).



| Operation Mode: | TX / IEEE 802.11n HT40 mode<br>5270 ~ 5310MHz / Low | <sup>/</sup> Test Date: | 2014/6/17~18 |
|-----------------|-----------------------------------------------------|-------------------------|--------------|
| Temperature:    | <b>26</b> °C                                        | Tested by:              | Francis Lee  |
| Humidity:       | 56%RH                                               | Polarity:               | Ver. / Hor.  |
|                 |                                                     |                         |              |

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2015.000       | 48.88             | -1.64                       | 47.24              | 74.00             | -26.76         | V               | peak   |
| 3755.000       | 46.37             | 3.14                        | 49.51              | 74.00             | -24.49         | V               | peak   |
| 4950.000       | 45.66             | 4.85                        | 50.51              | 74.00             | -23.49         | V               | peak   |
| 5900.000       | 46.31             | 6.26                        | 52.57              | 74.00             | -21.43         | V               | peak   |
| 5900.000       | 35.12             | 6.26                        | 41.38              | 54.00             | -12.62         | V               | AVG    |
| 11304.000      | 39.10             | 10.44                       | 49.54              | 74.00             | -24.46         | V               | peak   |
| 15780.000      | 39.44             | 11.08                       | 50.52              | 74.00             | -23.48         | V               | peak   |
| 2185.000       | 47.95             | -3.59                       | 44.36              | 74.00             | -29.64         | Н               | peak   |
| 4310.000       | 45.47             | 7.59                        | 53.06              | 74.00             | -20.94         | Н               | peak   |
| 4310.000       | 35.34             | 7.59                        | 42.93              | 54.00             | -11.07         | Н               | AVG    |
| 4665.000       | 46.18             | 6.82                        | 53.00              | 74.00             | -21.00         | Н               | peak   |
| 4665.000       | 35.74             | 6.82                        | 42.56              | 54.00             | -11.44         | Н               | AVG    |
| 5000.000       | 45.63             | 7.59                        | 53.22              | 74.00             | -20.78         | Н               | peak   |
| 5000.000       | 35.00             | 7.59                        | 42.59              | 54.00             | -11.41         | Н               | AVG    |
| 5610.000       | 44.80             | 9.09                        | 53.89              | 74.00             | -20.11         | Н               | peak   |
| 5610.000       | 34.74             | 9.09                        | 43.83              | 54.00             | -10.17         | Н               | AVG    |
| 5915.000       | 45.26             | 9.16                        | 54.42              | 74.00             | -19.58         | Н               | peak   |
| 5915.000       | 34.78             | 9.16                        | 43.94              | 54.00             | -10.06         | Н               | AVG    |
| 10524.000      | 40.66             | 9.45                        | 50.11              | 74.00             | -23.89         | Н               | peak   |
| 16116.000      | 39.92             | 11.25                       | 51.17              | 74.00             | -22.83         | Н               | peak   |
| 16116.000      | 28.78             | 11.25                       | 40.03              | 54.00             | -13.97         | Н               | AVG    |

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.

3. Average test would be performed if the peak result were greater than the average limit.

4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.



| Operation Mode: | TX / IEEE 802.11n HT40 mode<br>5270 ~ 5310MHz / High | <sup>/</sup> Test Date: | 2014/6/17~18 |
|-----------------|------------------------------------------------------|-------------------------|--------------|
| Temperature:    | <b>26</b> °C                                         | Tested by:              | Francis Lee  |
| Humidity:       | 56%RH                                                | Polarity:               | Ver. / Hor.  |
|                 |                                                      |                         |              |

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2135.000       | 50.18             | -2.79                       | 47.39              | 74.00             | -26.61         | V               | peak   |
| 3795.000       | 46.73             | 3.63                        | 50.36              | 74.00             | -23.64         | V               | peak   |
| 4930.000       | 45.42             | 4.66                        | 50.08              | 74.00             | -23.92         | V               | peak   |
| 5655.000       | 45.77             | 5.93                        | 51.70              | 74.00             | -22.30         | V               | peak   |
| 5655.000       | 34.86             | 5.93                        | 40.79              | 54.00             | -13.21         | V               | AVG    |
| 5900.000       | 44.90             | 6.26                        | 51.16              | 74.00             | -22.84         | V               | peak   |
| 5900.000       | 35.02             | 6.26                        | 41.28              | 54.00             | -12.72         | V               | AVG    |
| 10596.000      | 40.77             | 9.56                        | 50.33              | 74.00             | -23.67         | V               | peak   |
| 15780.000      | 39.84             | 11.08                       | 50.92              | 74.00             | -23.08         | V               | peak   |
| 2115.000       | 47.67             | -3.75                       | 43.92              | 74.00             | -30.08         | Н               | peak   |
| 3930.000       | 48.00             | 5.11                        | 53.11              | 74.00             | -20.89         | Н               | peak   |
| 3930.000       | 36.07             | 5.11                        | 41.18              | 54.00             | -12.82         | Н               | AVG    |
| 4300.000       | 45.53             | 7.66                        | 53.19              | 74.00             | -20.81         | Н               | peak   |
| 4300.000       | 35.34             | 7.66                        | 43.00              | 54.00             | -11.00         | Н               | AVG    |
| 4950.000       | 45.45             | 7.37                        | 52.82              | 74.00             | -21.18         | Н               | peak   |
| 4950.000       | 35.25             | 7.37                        | 42.62              | 54.00             | -11.38         | Н               | AVG    |
| 5570.000       | 44.61             | 9.10                        | 53.71              | 74.00             | -20.29         | Н               | peak   |
| 5570.000       | 35.00             | 9.10                        | 44.10              | 54.00             | -9.90          | Н               | AVG    |
| 5935.000       | 45.68             | 9.08                        | 54.76              | 74.00             | -19.24         | Н               | peak   |
| 5935.000       | 34.90             | 9.08                        | 43.98              | 54.00             | -10.02         | Н               | AVG    |
| 10776.000      | 40.06             | 9.85                        | 49.91              | 74.00             | -24.09         | Н               | peak   |
| 16092.000      | 38.96             | 11.19                       | 50.15              | 74.00             | -23.85         | Н               | peak   |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
   Marrin (dB) = Demark result (dBul(m) = Average limit (dBul(m))
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).



| Operation Mode: | TX / IEEE 802.11ac HT80 m<br>5290MHz | node / Test Date: | 2014/6/17~18 |
|-----------------|--------------------------------------|-------------------|--------------|
| Temperature:    | <b>26</b> ℃                          | Tested by:        | Francis Lee  |
| Humidity:       | 56%RH                                | Polarity:         | Ver. / Hor.  |
|                 |                                      |                   |              |

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 1945.000       | 48.37             | -2.17                       | 46.20              | 74.00             | -27.80         | V               | peak   |
| 3745.000       | 46.87             | 3.02                        | 49.89              | 74.00             | -24.11         | V               | peak   |
| 4915.000       | 46.12             | 4.51                        | 50.63              | 74.00             | -23.37         | V               | peak   |
| 5855.000       | 45.10             | 5.75                        | 50.85              | 74.00             | -23.15         | V               | peak   |
| 11460.000      | 38.73             | 10.57                       | 49.30              | 74.00             | -24.70         | V               | peak   |
| 15792.000      | 39.83             | 11.07                       | 50.90              | 74.00             | -23.10         | V               | peak   |
| 2895.000       | 47.98             | -1.77                       | 46.21              | 74.00             | -27.79         | Н               | peak   |
| 4255.000       | 46.29             | 6.90                        | 53.19              | 74.00             | -20.81         | Н               | peak   |
| 4255.000       | 35.35             | 6.90                        | 42.25              | 54.00             | -11.75         | Н               | AVG    |
| 4895.000       | 45.58             | 7.07                        | 52.65              | 74.00             | -21.35         | Н               | peak   |
| 4895.000       | 35.12             | 7.07                        | 42.19              | 54.00             | -11.81         | Н               | AVG    |
| 5580.000       | 44.99             | 9.13                        | 54.12              | 74.00             | -19.88         | Н               | peak   |
| 5580.000       | 34.93             | 9.13                        | 44.06              | 54.00             | -9.94          | Н               | AVG    |
| 5900.000       | 45.47             | 9.22                        | 54.69              | 74.00             | -19.31         | Н               | peak   |
| 5900.000       | 34.59             | 9.22                        | 43.81              | 54.00             | -10.19         | Н               | AVG    |
| 11388.000      | 38.88             | 10.51                       | 49.39              | 74.00             | -24.61         | Н               | peak   |
| 15264.000      | 40.74             | 12.18                       | 52.92              | 74.00             | -21.08         | Н               | peak   |
| 15264.000      | 28.27             | 12.18                       | 40.45              | 54.00             | -13.55         | Н               | AVG    |

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.

3. Average test would be performed if the peak result were greater than the average limit.

- 4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
   Margin (dP) = Remark result (dPu)((m) = Average limit (dPu)((m))
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).



| Operation Mode: | TX / IEEE<br>5700MHz | E 802.11<br>: / Low | la mode / 5 | 500 ~ | Test Dat  | <b>e:</b> 201 | 4/6/16~17 |  |
|-----------------|----------------------|---------------------|-------------|-------|-----------|---------------|-----------|--|
| Temperature:    | <b>26</b> ℃          |                     |             |       | Tested b  | y: Fran       | ncis Lee  |  |
| Humidity:       | 56%RH                |                     |             |       | Polarity: | Ver.          | / Hor.    |  |
|                 |                      |                     |             |       |           |               |           |  |
|                 | (                    | Corroct             |             |       |           |               | 1         |  |

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2220.000       | 48.42             | -1.37                       | 47.05              | 74.00             | -26.95         | V               | peak   |
| 4010.000       | 46.83             | 3.45                        | 50.28              | 74.00             | -23.72         | V               | peak   |
| 5005.000       | 45.24             | 5.27                        | 50.51              | 74.00             | -23.49         | V               | peak   |
| 5880.000       | 45.58             | 6.03                        | 51.61              | 74.00             | -22.39         | V               | peak   |
| 5880.000       | 35.11             | 6.03                        | 41.14              | 54.00             | -12.86         | V               | AVG    |
| 10824.000      | 39.08             | 9.92                        | 49.00              | 74.00             | -25.00         | V               | peak   |
| 16188.000      | 39.09             | 11.43                       | 50.52              | 74.00             | -23.48         | V               | peak   |
| 2165.000       | 47.80             | -3.64                       | 44.16              | 74.00             | -29.84         | Н               | peak   |
| 4315.000       | 47.18             | 7.55                        | 54.73              | 74.00             | -19.27         | Н               | peak   |
| 4315.000       | 35.59             | 7.55                        | 43.14              | 54.00             | -10.86         | Н               | AVG    |
| 4465.000       | 47.12             | 6.72                        | 53.84              | 74.00             | -20.16         | Н               | peak   |
| 4465.000       | 35.56             | 6.72                        | 42.28              | 54.00             | -11.72         | Н               | AVG    |
| 5015.000       | 47.19             | 7.40                        | 54.59              | 74.00             | -19.41         | Н               | peak   |
| 5015.000       | 35.09             | 7.40                        | 42.49              | 54.00             | -11.51         | Н               | AVG    |
| 5955.000       | 45.71             | 9.01                        | 54.72              | 74.00             | -19.28         | Н               | peak   |
| 5955.000       | 35.17             | 9.01                        | 44.18              | 54.00             | -9.82          | Н               | AVG    |
| 11532.000      | 38.70             | 10.61                       | 49.31              | 74.00             | -24.69         | Н               | peak   |
| 15576.000      | 39.44             | 11.19                       | 50.63              | 74.00             | -23.37         | Н               | peak   |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
   Margin (dB) = Remark result (dBuV/m) – Average limit (dBuV/m).

Page 135



| Operation Mode: | TX / IEEE 802.1<br>5700MHz / Mid | 1a mode / 550 | <sup>00~</sup> Test Date: | 2014/6/16~17 |  |
|-----------------|----------------------------------|---------------|---------------------------|--------------|--|
| Temperature:    | <b>26</b> ℃                      |               | Tested by:                | Francis Lee  |  |
| Humidity:       | 56%RH                            |               | Polarity:                 | Ver. / Hor.  |  |
|                 |                                  |               |                           |              |  |
|                 | Correct                          |               |                           |              |  |

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2425.000       | 48.88             | -1.48                       | 47.40              | 74.00             | -26.60         | V               | peak   |
| 3660.000       | 47.31             | 2.65                        | 49.96              | 74.00             | -24.04         | V               | peak   |
| 5150.000       | 46.85             | 4.96                        | 51.81              | 74.00             | -22.19         | V               | peak   |
| 5150.000       | 35.17             | 4.96                        | 40.13              | 54.00             | -13.87         | V               | AVG    |
| 5735.000       | 47.83             | 5.66                        | 53.49              | 74.00             | -20.51         | V               | peak   |
| 5735.000       | 37.56             | 5.66                        | 43.22              | 54.00             | -10.78         | V               | AVG    |
| 11172.000      | 39.74             | 10.34                       | 50.08              | 74.00             | -23.92         | V               | peak   |
| 16104.000      | 40.08             | 11.22                       | 51.30              | 74.00             | -22.70         | V               | peak   |
| 16104.000      | 28.95             | 11.22                       | 40.17              | 54.00             | -13.83         | V               | AVG    |
| 2095.000       | 48.71             | -3.91                       | 44.80              | 74.00             | -29.20         | Н               | peak   |
| 3680.000       | 47.55             | 3.85                        | 51.40              | 74.00             | -22.60         | Н               | peak   |
| 3680.000       | 35.97             | 3.85                        | 39.82              | 54.00             | -14.18         | Н               | AVG    |
| 4365.000       | 46.12             | 7.18                        | 53.30              | 74.00             | -20.70         | Н               | peak   |
| 4365.000       | 35.57             | 7.18                        | 42.75              | 54.00             | -11.25         | Н               | AVG    |
| 4920.000       | 46.13             | 7.24                        | 53.37              | 74.00             | -20.63         | Н               | peak   |
| 4920.000       | 35.37             | 7.24                        | 42.61              | 54.00             | -11.39         | Н               | AVG    |
| 5945.000       | 45.88             | 9.04                        | 54.92              | 74.00             | -19.08         | Н               | peak   |
| 5945.000       | 34.93             | 9.04                        | 43.97              | 54.00             | -10.03         | Н               | AVG    |
| 11160.000      | 40.43             | 10.33                       | 50.76              | 74.00             | -23.24         | Н               | peak   |
| 15972.000      | 40.16             | 10.98                       | 51.14              | 74.00             | -22.86         | Н               | peak   |
| 15972.000      | 28.71             | 10.98                       | 39.69              | 54.00             | -14.31         | Н               | AVG    |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
   Margin (dD)
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).



| Operation Mode: | TX / IEEE 802.11a mode / 5500 -<br>5700MHz / High | Test Date: | 2014/6/16~17 |
|-----------------|---------------------------------------------------|------------|--------------|
| Temperature:    | <b>26</b> °C                                      | Tested by: | Francis Lee  |
| Humidity:       | 56%RH                                             | Polarity:  | Ver. / Hor.  |
|                 |                                                   |            |              |

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2185.000       | 48.58             | -1.67                       | 46.91              | 74.00             | -27.09         | V               | peak   |
| 3825.000       | 47.14             | 3.13                        | 50.27              | 74.00             | -23.73         | V               | peak   |
| 5255.000       | 45.98             | 5.38                        | 51.36              | 74.00             | -22.64         | V               | peak   |
| 5255.000       | 35.27             | 5.38                        | 40.65              | 54.00             | -13.35         | V               | AVG    |
| 5905.000       | 45.42             | 6.21                        | 51.63              | 74.00             | -22.37         | V               | peak   |
| 5905.000       | 35.23             | 6.21                        | 41.44              | 54.00             | -12.56         | V               | AVG    |
| 11400.000      | 42.18             | 10.52                       | 52.70              | 74.00             | -21.30         | V               | peak   |
| 11400.000      | 36.23             | 10.52                       | 46.75              | 54.00             | -7.25          | V               | AVG    |
| 16104.000      | 38.64             | 11.22                       | 49.86              | 74.00             | -24.14         | V               | peak   |
| 2090.000       | 49.01             | -4.04                       | 44.97              | 74.00             | -29.03         | Н               | peak   |
| 4355.000       | 46.05             | 7.25                        | 53.30              | 74.00             | -20.70         | Н               | peak   |
| 4355.000       | 35.62             | 7.25                        | 42.87              | 54.00             | -11.13         | Н               | AVG    |
| 4910.000       | 46.27             | 7.19                        | 53.46              | 74.00             | -20.54         | Н               | peak   |
| 4910.000       | 35.51             | 7.19                        | 42.70              | 54.00             | -11.30         | Н               | AVG    |
| 5925.000       | 45.52             | 9.12                        | 54.64              | 74.00             | -19.36         | Н               | peak   |
| 5925.000       | 35.14             | 9.12                        | 44.26              | 54.00             | -9.74          | Н               | AVG    |
| 11400.000      | 40.11             | 10.52                       | 50.63              | 74.00             | -23.37         | Н               | peak   |
| 16164.000      | 39.05             | 11.37                       | 50.42              | 74.00             | -23.58         | Н               | peak   |

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.

3. Average test would be performed if the peak result were greater than the average limit.

- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
   Margin (dP) = Remark result (dPu)((m) = Average limit (dPu)((m))
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).



| Operation Mode: | TX / IEEE 802.11n HT20 mode<br>5500 ~ 5700MHz / Low | <sup>/</sup> Test Date: | 2014/6/17~18 |
|-----------------|-----------------------------------------------------|-------------------------|--------------|
| Temperature:    | <b>26</b> °C                                        | Tested by:              | Francis Lee  |
| Humidity:       | 56%RH                                               | Polarity:               | Ver. / Hor.  |
|                 |                                                     |                         |              |

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2000.000       | 48.23             | -1.30                       | 46.93              | 74.00             | -27.07         | V               | peak   |
| 3780.000       | 46.22             | 3.45                        | 49.67              | 74.00             | -24.33         | V               | peak   |
| 5235.000       | 45.86             | 5.44                        | 51.30              | 74.00             | -22.70         | V               | peak   |
| 5235.000       | 35.32             | 5.44                        | 40.76              | 54.00             | -13.24         | V               | AVG    |
| 5895.000       | 45.09             | 6.20                        | 51.29              | 74.00             | -22.71         | V               | peak   |
| 5895.000       | 35.21             | 6.20                        | 41.41              | 54.00             | -12.59         | V               | AVG    |
| 11760.000      | 40.29             | 10.68                       | 50.97              | 74.00             | -23.03         | V               | peak   |
| 15612.000      | 38.42             | 11.17                       | 49.59              | 74.00             | -24.41         | V               | peak   |
| 2120.000       | 49.21             | -3.74                       | 45.47              | 74.00             | -28.53         | Н               | peak   |
| 4360.000       | 46.08             | 7.22                        | 53.30              | 74.00             | -20.70         | Н               | peak   |
| 4360.000       | 35.56             | 7.22                        | 42.78              | 54.00             | -11.22         | Н               | AVG    |
| 4705.000       | 45.64             | 7.22                        | 52.86              | 74.00             | -21.14         | Н               | peak   |
| 4705.000       | 35.72             | 7.22                        | 42.94              | 54.00             | -11.06         | Н               | AVG    |
| 5000.000       | 46.11             | 7.59                        | 53.70              | 74.00             | -20.30         | Н               | peak   |
| 5000.000       | 35.16             | 7.59                        | 42.75              | 54.00             | -11.25         | Н               | AVG    |
| 5655.000       | 45.55             | 8.59                        | 54.14              | 74.00             | -19.86         | Н               | peak   |
| 5655.000       | 34.92             | 8.59                        | 43.51              | 54.00             | -10.49         | Н               | AVG    |
| 5940.000       | 45.55             | 9.06                        | 54.61              | 74.00             | -19.39         | Н               | peak   |
| 5940.000       | 35.16             | 9.06                        | 44.22              | 54.00             | -9.78          | Н               | AVG    |
| 11016.000      | 41.94             | 10.21                       | 52.15              | 74.00             | -21.85         | Н               | peak   |
| 11016.000      | 30.26             | 10.21                       | 40.47              | 54.00             | -13.53         | Н               | AVG    |
| 16128.000      | 40.18             | 11.28                       | 51.46              | 74.00             | -22.54         | Н               | peak   |
| 16128.000      | 26.55             | 11.28                       | 37.83              | 54.00             | -16.17         | Н               | AVG    |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).



| Operation Mode: | TX / IEEE 802.11n HT20 mode<br>5500 ~ 5700MHz / Mid | <sup>/</sup> Test Date: | 2014/6/17~18 |
|-----------------|-----------------------------------------------------|-------------------------|--------------|
| Temperature:    | <b>26</b> °C                                        | Tested by:              | Francis Lee  |
| Humidity:       | 56%RH                                               | Polarity:               | Ver. / Hor.  |
|                 |                                                     |                         |              |

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 1995.000       | 49.83             | -1.38                       | 48.45              | 74.00             | -25.55         | V               | peak   |
| 4075.000       | 46.38             | 3.21                        | 49.59              | 74.00             | -24.41         | V               | peak   |
| 5075.000       | 47.09             | 4.61                        | 51.70              | 74.00             | -22.30         | V               | peak   |
| 5075.000       | 35.20             | 4.61                        | 39.81              | 54.00             | -14.19         | V               | AVG    |
| 5905.000       | 45.92             | 6.21                        | 52.13              | 74.00             | -21.87         | V               | peak   |
| 5905.000       | 35.50             | 6.21                        | 41.71              | 54.00             | -12.29         | V               | AVG    |
| 11160.000      | 40.22             | 10.33                       | 50.55              | 74.00             | -23.45         | V               | peak   |
| 16080.000      | 39.69             | 11.16                       | 50.85              | 74.00             | -23.15         | V               | peak   |
| 1400.000       | 50.38             | -6.90                       | 43.48              | 74.00             | -30.52         | Н               | peak   |
| 3620.000       | 47.86             | 4.08                        | 51.94              | 74.00             | -22.06         | Н               | peak   |
| 3620.000       | 36.49             | 4.08                        | 40.57              | 54.00             | -13.43         | Н               | AVG    |
| 4310.000       | 46.61             | 7.59                        | 54.20              | 74.00             | -19.80         | Н               | peak   |
| 4310.000       | 35.76             | 7.59                        | 43.35              | 54.00             | -10.65         | Н               | AVG    |
| 4685.000       | 46.29             | 7.10                        | 53.39              | 74.00             | -20.61         | Н               | peak   |
| 4685.000       | 35.64             | 7.10                        | 42.74              | 54.00             | -11.26         | Н               | AVG    |
| 4970.000       | 46.12             | 7.46                        | 53.58              | 74.00             | -20.42         | Н               | peak   |
| 4970.000       | 35.40             | 7.46                        | 42.86              | 54.00             | -11.14         | Н               | AVG    |
| 5925.000       | 46.01             | 9.12                        | 55.13              | 74.00             | -18.87         | Н               | peak   |
| 5925.000       | 35.31             | 9.12                        | 44.43              | 54.00             | -9.57          | Н               | AVG    |
| 11148.000      | 41.97             | 10.32                       | 52.29              | 74.00             | -21.71         | Н               | peak   |
| 11148.000      | 33.73             | 10.32                       | 44.05              | 54.00             | -9.95          | Н               | AVG    |
| 15852.000      | 39.21             | 11.04                       | 50.25              | 74.00             | -23.75         | Н               | peak   |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
   Marrin (dB) = Demark result (dBul(m) = Average limit (dBul(m))
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).



| Operation Mode: | TX / IEEE 802.11n HT20 mode<br>5500 ~ 5700MHz / High | <sup>/</sup> Test Date: | 2014/6/17~18 |
|-----------------|------------------------------------------------------|-------------------------|--------------|
| Temperature:    | <b>26</b> °C                                         | Tested by:              | Francis Lee  |
| Humidity:       | 56%RH                                                | Polarity:               | Ver. / Hor.  |
|                 |                                                      |                         |              |

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2200.000       | 48.48             | -1.33                       | 47.15              | 74.00             | -26.85         | V               | peak   |
| 4020.000       | 47.06             | 3.42                        | 50.48              | 74.00             | -23.52         | V               | peak   |
| 5220.000       | 45.88             | 5.48                        | 51.36              | 74.00             | -22.64         | V               | peak   |
| 5220.000       | 35.51             | 5.48                        | 40.99              | 54.00             | -13.01         | V               | AVG    |
| 5890.000       | 45.77             | 6.15                        | 51.92              | 74.00             | -22.08         | V               | peak   |
| 5890.000       | 35.45             | 6.15                        | 41.60              | 54.00             | -12.40         | V               | AVG    |
| 11400.000      | 42.42             | 10.52                       | 52.94              | 74.00             | -21.06         | V               | peak   |
| 11400.000      | 37.57             | 10.52                       | 48.09              | 54.00             | -5.91          | V               | AVG    |
| 15804.000      | 39.65             | 11.07                       | 50.72              | 74.00             | -23.28         | V               | peak   |
| 2185.000       | 47.79             | -3.59                       | 44.20              | 74.00             | -29.80         | Н               | peak   |
| 4360.000       | 46.63             | 7.22                        | 53.85              | 74.00             | -20.15         | Н               | peak   |
| 4360.000       | 35.55             | 7.22                        | 42.77              | 54.00             | -11.23         | Н               | AVG    |
| 4680.000       | 45.90             | 7.03                        | 52.93              | 74.00             | -21.07         | Н               | peak   |
| 4680.000       | 35.60             | 7.03                        | 42.63              | 54.00             | -11.37         | Н               | AVG    |
| 5435.000       | 45.53             | 8.55                        | 54.08              | 74.00             | -19.92         | Н               | peak   |
| 5435.000       | 35.04             | 8.55                        | 43.59              | 54.00             | -10.41         | Н               | AVG    |
| 5965.000       | 45.27             | 8.97                        | 54.24              | 74.00             | -19.76         | Н               | peak   |
| 5965.000       | 35.29             | 8.97                        | 44.26              | 54.00             | -9.74          | Н               | AVG    |
| 11400.000      | 41.54             | 10.52                       | 52.06              | 74.00             | -21.94         | Н               | peak   |
| 11400.000      | 37.87             | 10.52                       | 48.39              | 54.00             | -5.61          | Н               | AVG    |
| 16428.000      | 40.28             | 12.02                       | 52.30              | 74.00             | -21.70         | Н               | peak   |
| 16428.000      | 29.31             | 12.02                       | 41.33              | 54.00             | -12.67         | Н               | AVG    |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
   Marrin (dB) = Demark result (dBul(m) = Average limit (dBul(m))
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).



| Operation Mode: | TX / IEEE 802.11n HT40 mode 5510 ~ 5670MHz / Low | <sup>/</sup> Test Date: | 2014/6/17~18 |
|-----------------|--------------------------------------------------|-------------------------|--------------|
| Temperature:    | <b>26</b> °C                                     | Tested by:              | Francis Lee  |
| Humidity:       | 56%RH                                            | Polarity:               | Ver. / Hor.  |
|                 |                                                  |                         |              |

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2135.000       | 48.78             | -2.79                       | 45.99              | 74.00             | -28.01         | V               | peak   |
| 4040.000       | 46.19             | 3.34                        | 49.53              | 74.00             | -24.47         | V               | peak   |
| 5020.000       | 45.56             | 5.13                        | 50.69              | 74.00             | -23.31         | V               | peak   |
| 5840.000       | 45.61             | 5.58                        | 51.19              | 74.00             | -22.81         | V               | peak   |
| 5840.000       | 35.44             | 5.58                        | 41.02              | 54.00             | -12.98         | V               | AVG    |
| 11004.000      | 39.71             | 10.20                       | 49.91              | 74.00             | -24.09         | V               | peak   |
| 15768.000      | 39.81             | 11.09                       | 50.90              | 74.00             | -23.10         | V               | peak   |
| 2125.000       | 48.03             | -3.72                       | 44.31              | 74.00             | -29.69         | Н               | peak   |
| 3620.000       | 47.33             | 4.08                        | 51.41              | 74.00             | -22.59         | Н               | peak   |
| 3620.000       | 36.11             | 4.08                        | 40.19              | 54.00             | -13.81         | Н               | AVG    |
| 4345.000       | 45.71             | 7.33                        | 53.04              | 74.00             | -20.96         | Н               | peak   |
| 4345.000       | 35.46             | 7.33                        | 42.79              | 54.00             | -11.21         | Н               | AVG    |
| 4910.000       | 46.46             | 7.19                        | 53.65              | 74.00             | -20.35         | Н               | peak   |
| 4910.000       | 35.41             | 7.19                        | 42.60              | 54.00             | -11.40         | Н               | AVG    |
| 5885.000       | 45.71             | 8.85                        | 54.56              | 74.00             | -19.44         | Н               | peak   |
| 5885.000       | 35.22             | 8.85                        | 44.07              | 54.00             | -9.93          | Н               | AVG    |
| 10668.000      | 39.39             | 9.68                        | 49.07              | 74.00             | -24.93         | Н               | peak   |
| 15552.000      | 39.18             | 11.20                       | 50.38              | 74.00             | -23.62         | Н               | peak   |

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.

3. Average test would be performed if the peak result were greater than the average limit.

- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
   Margin (dP) = Remark result (dPu)((m) = Average limit (dPu)((m))
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).



| Operation Mode: | TX / IEEE 802.11n HT40 mode<br>5510 ~ 5670MHz / Mid | <sup>/</sup> Test Date: | 2014/6/17~18 |
|-----------------|-----------------------------------------------------|-------------------------|--------------|
| Temperature:    | <b>26</b> °C                                        | Tested by:              | Francis Lee  |
| Humidity:       | 56%RH                                               | Polarity:               | Ver. / Hor.  |
|                 |                                                     |                         |              |

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2135.000       | 50.14             | -2.79                       | 47.35              | 74.00             | -26.65         | V               | peak   |
| 3755.000       | 46.52             | 3.14                        | 49.66              | 74.00             | -24.34         | V               | peak   |
| 5000.000       | 45.30             | 5.32                        | 50.62              | 74.00             | -23.38         | V               | peak   |
| 5905.000       | 44.88             | 6.21                        | 51.09              | 74.00             | -22.91         | V               | peak   |
| 5905.000       | 35.15             | 6.21                        | 41.36              | 54.00             | -12.64         | V               | AVG    |
| 11076.000      | 39.34             | 10.26                       | 49.60              | 74.00             | -24.40         | V               | peak   |
| 16032.000      | 39.83             | 11.04                       | 50.87              | 74.00             | -23.13         | V               | peak   |
| 2115.000       | 47.73             | -3.75                       | 43.98              | 74.00             | -30.02         | Н               | peak   |
| 3620.000       | 46.73             | 4.08                        | 50.81              | 74.00             | -23.19         | Н               | peak   |
| 4320.000       | 46.37             | 7.51                        | 53.88              | 74.00             | -20.12         | Н               | peak   |
| 4320.000       | 35.32             | 7.51                        | 42.83              | 54.00             | -11.17         | Н               | AVG    |
| 4965.000       | 46.52             | 7.44                        | 53.96              | 74.00             | -20.04         | Н               | peak   |
| 4965.000       | 35.14             | 7.44                        | 42.58              | 54.00             | -11.42         | Н               | AVG    |
| 5975.000       | 45.18             | 8.93                        | 54.11              | 74.00             | -19.89         | Н               | peak   |
| 5975.000       | 35.15             | 8.93                        | 44.08              | 54.00             | -9.92          | Н               | AVG    |
| 11856.000      | 38.58             | 10.71                       | 49.29              | 74.00             | -24.71         | Н               | peak   |
| 16032.000      | 39.92             | 11.04                       | 50.96              | 74.00             | -23.04         | Н               | peak   |

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.

3. Average test would be performed if the peak result were greater than the average limit.

4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.



| Operation Mode: | TX / IEEE 802.11n HT40 mode<br>5510 ~ 5670MHz / High | <sup>/</sup> Test Date: | 2014/6/18~20 |
|-----------------|------------------------------------------------------|-------------------------|--------------|
| Temperature:    | <b>26</b> °C                                         | Tested by:              | Francis Lee  |
| Humidity:       | 56%RH                                                | Polarity:               | Ver. / Hor.  |
|                 |                                                      |                         |              |

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2455.000       | 47.84             | -1.26                       | 46.58              | 74.00             | -27.42         | V               | peak   |
| 3655.000       | 46.87             | 2.68                        | 49.55              | 74.00             | -24.45         | V               | peak   |
| 4460.000       | 46.70             | 2.22                        | 48.92              | 74.00             | -25.08         | V               | peak   |
| 5385.000       | 45.61             | 6.22                        | 51.83              | 74.00             | -22.17         | V               | peak   |
| 5385.000       | 34.58             | 6.22                        | 40.80              | 54.00             | -13.20         | V               | AVG    |
| 5890.000       | 46.40             | 6.15                        | 52.55              | 74.00             | -21.45         | V               | peak   |
| 5890.000       | 34.25             | 6.15                        | 40.40              | 54.00             | -13.60         | V               | AVG    |
| 11316.000      | 39.57             | 10.45                       | 50.02              | 74.00             | -23.98         | V               | peak   |
| 16092.000      | 39.91             | 11.19                       | 51.10              | 74.00             | -22.90         | V               | peak   |
| 16092.000      | 28.82             | 11.19                       | 40.01              | 54.00             | -13.99         | V               | AVG    |
| 2210.000       | 48.61             | -3.84                       | 44.77              | 74.00             | -29.23         | Н               | peak   |
| 4355.000       | 45.34             | 7.25                        | 52.59              | 74.00             | -21.41         | Н               | peak   |
| 4355.000       | 34.95             | 7.25                        | 42.20              | 54.00             | -11.80         | Н               | AVG    |
| 4930.000       | 45.89             | 7.28                        | 53.17              | 74.00             | -20.83         | Н               | peak   |
| 4930.000       | 34.34             | 7.28                        | 41.62              | 54.00             | -12.38         | Н               | AVG    |
| 5440.000       | 45.17             | 8.58                        | 53.75              | 74.00             | -20.25         | Н               | peak   |
| 5440.000       | 34.66             | 8.58                        | 43.24              | 54.00             | -10.76         | Н               | AVG    |
| 5892.000       | 45.55             | 9.02                        | 54.57              | 74.00             | -19.43         | Н               | peak   |
| 5892.000       | 36.29             | 9.02                        | 45.31              | 54.00             | -8.69          | Н               | AVG    |
| 11316.000      | 40.42             | 10.45                       | 50.87              | 74.00             | -23.13         | Н               | peak   |
| 16044.000      | 39.97             | 11.07                       | 51.04              | 74.00             | -22.96         | Н               | peak   |
| 16044.000      | 28.59             | 11.07                       | 39.66              | 54.00             | -14.34         | Н               | AVG    |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
   Marrin (dB) = Demark result (dBul(m) = Average limit (dBul(m))
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).



| Operation Mode: | TX / IEEE 802<br>5530MHz | .11ac HT80 mod | <sup>e /</sup> Test Date: | 2014/6/17~18 | 5 |
|-----------------|--------------------------|----------------|---------------------------|--------------|---|
| Temperature:    | <b>26</b> °C             |                | Tested by:                | Francis Lee  |   |
| Humidity:       | 56%RH                    |                | Polarity:                 | Ver. / Hor.  |   |
|                 |                          |                |                           |              |   |
|                 | Correct                  |                |                           |              |   |

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2235.000       | 48.56             | -1.41                       | 47.15              | 74.00             | -26.85         | V               | peak   |
| 3755.000       | 46.13             | 3.14                        | 49.27              | 74.00             | -24.73         | V               | peak   |
| 4855.000       | 46.83             | 3.36                        | 50.19              | 74.00             | -23.81         | V               | peak   |
| 5930.000       | 44.86             | 5.94                        | 50.80              | 74.00             | -23.20         | V               | peak   |
| 11592.000      | 38.99             | 10.63                       | 49.62              | 74.00             | -24.38         | V               | peak   |
| 15732.000      | 39.54             | 11.10                       | 50.64              | 74.00             | -23.36         | V               | peak   |
| 2100.000       | 47.78             | -3.78                       | 44.00              | 74.00             | -30.00         | Н               | peak   |
| 4360.000       | 45.65             | 7.22                        | 52.87              | 74.00             | -21.13         | Н               | peak   |
| 4360.000       | 35.35             | 7.22                        | 42.57              | 54.00             | -11.43         | Н               | AVG    |
| 4650.000       | 46.18             | 6.62                        | 52.80              | 74.00             | -21.20         | Н               | peak   |
| 4650.000       | 36.00             | 6.62                        | 42.62              | 54.00             | -11.38         | Н               | AVG    |
| 4990.000       | 45.08             | 7.55                        | 52.63              | 74.00             | -21.37         | Н               | peak   |
| 4990.000       | 34.97             | 7.55                        | 42.52              | 54.00             | -11.48         | Н               | AVG    |
| 5920.000       | 44.67             | 9.14                        | 53.81              | 74.00             | -20.19         | Н               | peak   |
| 5920.000       | 34.99             | 9.14                        | 44.13              | 54.00             | -9.87          | Н               | AVG    |
| 10848.000      | 39.40             | 9.96                        | 49.36              | 74.00             | -24.64         | Н               | peak   |
| 15948.000      | 39.62             | 10.99                       | 50.61              | 74.00             | -23.39         | Н               | peak   |

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.

3. Average test would be performed if the peak result were greater than the average limit.

4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.



#### Operation Mode: TX / IEEE 802.11a mode / CH Low Test Date: 2014/6/17~18

| Temperature:  | <b>26</b> °C |
|---------------|--------------|
| i omporataro. | 200          |

### Tested by: Francis Lee

Humidity:

56%RH

Polarity: Ver. / Hor.

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2135.000       | 49.88             | -2.79                       | 47.09              | 74.00             | -26.91         | V               | peak   |
| 3780.000       | 46.14             | 3.45                        | 49.59              | 74.00             | -24.41         | V               | peak   |
| 5555.000       | 46.00             | 6.05                        | 52.05              | 74.00             | -21.95         | V               | peak   |
| 5555.000       | 35.03             | 6.05                        | 41.08              | 54.00             | -12.92         | V               | AVG    |
| 5960.000       | 45.81             | 5.62                        | 51.43              | 74.00             | -22.57         | V               | peak   |
| 5960.000       | 35.30             | 5.62                        | 40.92              | 54.00             | -13.08         | V               | AVG    |
| 11496.000      | 42.58             | 10.60                       | 53.18              | 74.00             | -20.82         | V               | peak   |
| 11496.000      | 37.10             | 10.60                       | 47.70              | 54.00             | -6.30          | V               | AVG    |
| 15828.000      | 39.09             | 11.05                       | 50.14              | 74.00             | -23.86         | V               | peak   |
| 2135.000       | 47.79             | -3.70                       | 44.09              | 74.00             | -29.91         | Н               | peak   |
| 4290.000       | 45.80             | 7.49                        | 53.29              | 74.00             | -20.71         | Н               | peak   |
| 4290.000       | 35.48             | 7.49                        | 42.97              | 54.00             | -11.03         | Н               | AVG    |
| 4945.000       | 46.28             | 7.35                        | 53.63              | 74.00             | -20.37         | Н               | peak   |
| 4945.000       | 35.21             | 7.35                        | 42.56              | 54.00             | -11.44         | Н               | AVG    |
| 5900.000       | 45.98             | 9.22                        | 55.20              | 74.00             | -18.80         | Н               | peak   |
| 5900.000       | 35.29             | 9.22                        | 44.51              | 54.00             | -9.49          | Н               | AVG    |
| 11496.000      | 42.44             | 10.60                       | 53.04              | 74.00             | -20.96         | Н               | peak   |
| 11496.000      | 34.78             | 10.60                       | 45.38              | 54.00             | -8.62          | Н               | AVG    |
| 15852.000      | 38.07             | 11.04                       | 49.11              | 74.00             | -24.89         | Н               | peak   |

#### Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
   Margin (dP) = Remark result (dPu)((m) = Average limit (dPu)((m))
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).



#### Operation Mode: TX / IEEE 802.11a mode / CH Mid Test Date: 2014/6/17~18

**Temperature:** 26°C

### Tested by: Francis Lee

Humidity:

56%RH

Polarity: Ver. / Hor.

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2135.000       | 50.38             | -2.79                       | 47.59              | 74.00             | -26.41         | V               | peak   |
| 3765.000       | 46.59             | 3.26                        | 49.85              | 74.00             | -24.15         | V               | peak   |
| 4925.000       | 45.87             | 4.61                        | 50.48              | 74.00             | -23.52         | V               | peak   |
| 5455.000       | 45.49             | 6.30                        | 51.79              | 74.00             | -22.21         | V               | peak   |
| 5455.000       | 35.44             | 6.30                        | 41.74              | 54.00             | -12.26         | V               | AVG    |
| 11568.000      | 43.54             | 10.62                       | 54.16              | 74.00             | -19.84         | V               | peak   |
| 11568.000      | 37.21             | 10.62                       | 47.83              | 54.00             | -6.17          | V               | AVG    |
| 16140.000      | 38.64             | 11.31                       | 49.95              | 74.00             | -24.05         | V               | peak   |
| 2155.000       | 48.06             | -3.66                       | 44.40              | 74.00             | -29.60         | Н               | peak   |
| 4295.000       | 45.62             | 7.58                        | 53.20              | 74.00             | -20.80         | Н               | peak   |
| 4295.000       | 35.39             | 7.58                        | 42.97              | 54.00             | -11.03         | Н               | AVG    |
| 4715.000       | 45.94             | 7.03                        | 52.97              | 74.00             | -21.03         | Н               | peak   |
| 4715.000       | 35.57             | 7.03                        | 42.60              | 54.00             | -11.40         | Н               | AVG    |
| 5605.000       | 45.12             | 9.14                        | 54.26              | 74.00             | -19.74         | Н               | peak   |
| 5605.000       | 35.17             | 9.14                        | 44.31              | 54.00             | -9.69          | Н               | AVG    |
| 5940.000       | 45.23             | 9.06                        | 54.29              | 74.00             | -19.71         | Н               | peak   |
| 5940.000       | 35.65             | 9.06                        | 44.71              | 54.00             | -9.29          | Н               | AVG    |
| 11568.000      | 42.57             | 10.62                       | 53.19              | 74.00             | -20.81         | Н               | peak   |
| 11568.000      | 35.20             | 10.62                       | 45.82              | 54.00             | -8.18          | Н               | AVG    |
| 16068.000      | 39.39             | 11.13                       | 50.52              | 74.00             | -23.48         | Н               | peak   |

#### Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.

3. Average test would be performed if the peak result were greater than the average limit.

- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
   Marrin (dD) = Demark result (dDu)(m) = Average limit (dDu)(m)
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).



#### Operation Mode: TX / IEEE 802.11a mode / CH High Test Date: 2014/6/17~18

| Temperature: | <b>26</b> ℃ |  |
|--------------|-------------|--|
|              |             |  |

### Tested by: Francis Lee

Humidity:

56%RH

Polarity: Ver. / Hor.

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 2185.000       | 48.33             | -1.67                       | 46.66              | 74.00             | -27.34         | V               | peak   |
| 3790.000       | 46.19             | 3.57                        | 49.76              | 74.00             | -24.24         | V               | peak   |
| 5045.000       | 46.46             | 4.89                        | 51.35              | 74.00             | -22.65         | V               | peak   |
| 5045.000       | 35.88             | 4.89                        | 40.77              | 54.00             | -13.23         | V               | AVG    |
| 5665.000       | 45.83             | 5.93                        | 51.76              | 74.00             | -22.24         | V               | peak   |
| 5665.000       | 35.02             | 5.93                        | 40.95              | 54.00             | -13.05         | V               | AVG    |
| 11640.000      | 43.13             | 10.64                       | 53.77              | 74.00             | -20.23         | V               | peak   |
| 11640.000      | 38.80             | 10.64                       | 49.44              | 54.00             | -4.56          | V               | AVG    |
| 15864.000      | 39.00             | 11.03                       | 50.03              | 74.00             | -23.97         | V               | peak   |
| 3105.000       | 47.16             | 1.32                        | 48.48              | 74.00             | -25.52         | Н               | peak   |
| 4345.000       | 46.11             | 7.33                        | 53.44              | 74.00             | -20.56         | Н               | peak   |
| 4345.000       | 35.43             | 7.33                        | 42.76              | 54.00             | -11.24         | Н               | AVG    |
| 5165.000       | 47.55             | 6.77                        | 54.32              | 74.00             | -19.68         | Н               | peak   |
| 5165.000       | 34.87             | 6.77                        | 41.64              | 54.00             | -12.36         | Н               | AVG    |
| 5550.000       | 45.58             | 9.03                        | 54.61              | 74.00             | -19.39         | Н               | peak   |
| 5550.000       | 34.64             | 9.03                        | 43.67              | 54.00             | -10.33         | Н               | AVG    |
| 5985.000       | 46.34             | 8.89                        | 55.23              | 74.00             | -18.77         | Н               | peak   |
| 5985.000       | 35.20             | 8.89                        | 44.09              | 54.00             | -9.91          | Н               | AVG    |
| 11652.000      | 42.79             | 10.65                       | 53.44              | 74.00             | -20.56         | Н               | peak   |
| 11652.000      | 33.47             | 10.65                       | 44.12              | 54.00             | -9.88          | Н               | AVG    |
| 16428.000      | 39.29             | 12.02                       | 51.31              | 74.00             | -22.69         | Н               | peak   |
| 16428.000      | 28.20             | 12.02                       | 40.22              | 54.00             | -13.78         | Н               | AVG    |

#### Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
   Marrin (dP) = Remark result (dPu)(m) = Average limit (dPu)(m)

6. Margin (dB) = Remark result (dBuV/m) – Average limit (dBuV/m).



| Operation Moo<br>Temperature:<br>Humidity: | de:TX / IEE<br>CH Low<br>26℃<br>56%RH |                             | n HT20 moc         |                   | Date: 2014<br>ed by: Frar<br>rity: Ver. |                 | Ì |
|--------------------------------------------|---------------------------------------|-----------------------------|--------------------|-------------------|-----------------------------------------|-----------------|---|
| Freq.<br>(MHz)                             | Reading<br>(dBuV)                     | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB)                          | Ant. Pol<br>H/V |   |
| 2000.000                                   | 48.11                                 | -1.30                       | 46.81              | 74.00             | -27.19                                  | V               | Γ |

|           |       | (ub/m) |       |       |        |   |      |
|-----------|-------|--------|-------|-------|--------|---|------|
| 2000.000  | 48.11 | -1.30  | 46.81 | 74.00 | -27.19 | V | peak |
| 3825.000  | 46.70 | 3.13   | 49.83 | 74.00 | -24.17 | V | peak |
| 4980.000  | 46.08 | 5.13   | 51.21 | 74.00 | -22.79 | V | peak |
| 4980.000  | 35.08 | 5.13   | 40.21 | 54.00 | -13.79 | V | AVG  |
| 5395.000  | 44.73 | 6.33   | 51.06 | 74.00 | -22.94 | V | peak |
| 5395.000  | 34.96 | 6.33   | 41.29 | 54.00 | -12.71 | V | AVG  |
| 5860.000  | 46.06 | 5.81   | 51.87 | 74.00 | -22.13 | V | peak |
| 5860.000  | 35.15 | 5.81   | 40.96 | 54.00 | -13.04 | V | AVG  |
| 11496.000 | 41.54 | 10.60  | 52.14 | 74.00 | -21.86 | V | peak |
| 11496.000 | 36.85 | 10.60  | 47.45 | 54.00 | -6.55  | V | AVG  |
| 16296.000 | 39.36 | 11.69  | 51.05 | 74.00 | -22.95 | V | peak |
| 16296.000 | 28.05 | 11.69  | 39.74 | 54.00 | -14.26 | V | AVG  |
| 2085.000  | 49.42 | -4.17  | 45.25 | 74.00 | -28.75 | Н | peak |
| 4670.000  | 46.72 | 6.89   | 53.61 | 74.00 | -20.39 | Н | peak |
| 4670.000  | 35.74 | 6.89   | 42.63 | 54.00 | -11.37 | Н | AVG  |
| 4980.000  | 45.74 | 7.50   | 53.24 | 74.00 | -20.76 | Н | peak |
| 4980.000  | 35.15 | 7.50   | 42.65 | 54.00 | -11.35 | Н | AVG  |
| 5565.000  | 44.77 | 9.08   | 53.85 | 74.00 | -20.15 | Н | peak |
| 5565.000  | 34.94 | 9.08   | 44.02 | 54.00 | -9.98  | Н | AVG  |
| 5940.000  | 45.50 | 9.06   | 54.56 | 74.00 | -19.44 | Н | peak |
| 5940.000  | 34.91 | 9.06   | 43.97 | 54.00 | -10.03 | Н | AVG  |
| 11496.000 | 40.73 | 10.60  | 51.33 | 74.00 | -22.67 | Н | peak |
| 11496.000 | 35.91 | 10.60  | 46.51 | 54.00 | -7.49  | Н | AVG  |
| 15936.000 | 39.27 | 10.99  | 50.26 | 74.00 | -23.74 | Н | peak |

#### Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Remark



5150.000

5605.000

5605.000

11568.000

11568.000

16008.000

2120.000

3915.000

3915.000

4345.000

4345.000

5460.000

5460.000

5545.000

5545.000

11568.000

11568.000

15972.000

34.99

46.12

35.00

42.91

37.40

39.30

48.00

46.67

36.04

45.73

35.60

45.89

35.11

44.86

34.90

42.52

35.17

38.79

54.00

74.00

54.00

74.00

54.00

74.00

74.00

74.00

54.00

74.00

54.00

74.00

54.00

74.00

54.00

74.00

54.00

74.00

-14.05

-21.97

-13.09

-20.47

-5.98

-23.72

-29.74

-22.17

-12.80

-20.94

-11.07

-19.44

-10.22

-20.13

-10.09

-20.86

-8.21

-24.23

V

V

V

V

V

V

н

Н

Н

Н

Н

Н

Н

Н

Н

Н

Н

Н

| Operation Mode: TX / IEEE 802.11n HT20 mode /<br>CH Mid Test Date: 2014/6/17~18 |                   |                             |                    |                   |                |                 |  |  |  |
|---------------------------------------------------------------------------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--|--|--|
| Temperature                                                                     |                   |                             |                    | Teste             | ed by: Frar    | ncis Lee        |  |  |  |
| Humidity:                                                                       | 56%RH             | ł                           |                    | Pola              | rity: Ver.     | / Hor.          |  |  |  |
|                                                                                 |                   |                             |                    |                   |                |                 |  |  |  |
|                                                                                 |                   |                             |                    |                   |                |                 |  |  |  |
| Freq.<br>(MHz)                                                                  | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V |  |  |  |
| •                                                                               | -                 | Factor                      |                    |                   |                |                 |  |  |  |
| (MHz)                                                                           | (dBuV)            | Factor<br>(dB/m)            | (dBuV/m)           | (dBuV/m)          | (dB)           | H/V             |  |  |  |

39.95

52.03

40.91

53.53

48.02

50.28

44.26

51.83

41.20

53.06

42.93

54.56

43.78

53.87

43.91

53.14

45.79

49.77

4.96

5.91

5.91

10.62

10.62

10.98

-3.74

5.16

5.16

7.33

7.33

8.67

8.67

9.01

9.01

10.62

10.62

10.98

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
   Marrin (dP) = Remark result (dPu)(m) = Average limit (dPu)(m)

6. Margin (dB) = Remark result (dBuV/m) – Average limit (dBuV/m).

Remark

peak peak peak

AVG

peak

AVG

peak

AVG

peak

peak

peak

AVG

peak

AVG

peak

AVG

peak

AVG

peak

AVG

peak



| Operation Mo   | Deperation Mode: TX / IEEE 802.11n HT20 mode / Test Date: 2014/6/17~18<br>CH High |                             |                    |                   |                |                 |  |  |  |  |
|----------------|-----------------------------------------------------------------------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--|--|--|--|
| Temperature    |                                                                                   |                             |                    | Teste             | ed by: Frar    | ncis Lee        |  |  |  |  |
| Humidity:      | 56%RH                                                                             | ł                           |                    | Pola              | rity: Ver.     | / Hor.          |  |  |  |  |
|                |                                                                                   |                             |                    |                   |                |                 |  |  |  |  |
| Freq.<br>(MHz) | Reading<br>(dBuV)                                                                 | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V |  |  |  |  |
| 2000.000       | 48.96                                                                             | -1.30                       | 47.66              | 74.00             | -26.34         | V               |  |  |  |  |
| 3610.000       | 47.00                                                                             | 2.88                        | 49.88              | 74.00             | -24.12         | V               |  |  |  |  |
| 5000.000       | 45.14                                                                             | 5.32                        | 50.46              | 74.00             | -23.54         | V               |  |  |  |  |
| 5415.000       | 44.80                                                                             | 6.37                        | 51.17              | 74.00             | -22.83         | V               |  |  |  |  |
| 5415.000       | 44.00                                                                             | 0.57                        | 51.17              | 74.00             | -22.00         | v               |  |  |  |  |

| 5000.000  | 45.14 | 5.32  | 50.46 | 74.00 | -23.54 | V | peak |
|-----------|-------|-------|-------|-------|--------|---|------|
| 5415.000  | 44.80 | 6.37  | 51.17 | 74.00 | -22.83 | V | peak |
| 5415.000  | 35.02 | 6.37  | 41.39 | 54.00 | -12.61 | V | AVG  |
| 11640.000 | 42.88 | 10.64 | 53.52 | 74.00 | -20.48 | V | peak |
| 11640.000 | 37.04 | 10.64 | 47.68 | 54.00 | -6.32  | V | AVG  |
| 15864.000 | 39.60 | 11.03 | 50.63 | 74.00 | -23.37 | V | peak |
| 2105.000  | 48.54 | -3.77 | 44.77 | 74.00 | -29.23 | Н | nook |
|           |       | _     |       |       | -      |   | peak |
| 3160.000  | 47.67 | 1.18  | 48.85 | 74.00 | -25.15 | Н | peak |
| 4345.000  | 45.53 | 7.33  | 52.86 | 74.00 | -21.14 | Н | peak |
| 4345.000  | 35.50 | 7.33  | 42.83 | 54.00 | -11.17 | Н | AVG  |
| 5385.000  | 45.93 | 8.20  | 54.13 | 74.00 | -19.87 | Н | peak |
| 5385.000  | 34.97 | 8.20  | 43.17 | 54.00 | -10.83 | Н | AVG  |
| 5580.000  | 45.35 | 9.13  | 54.48 | 74.00 | -19.52 | Н | peak |
| 5580.000  | 34.92 | 9.13  | 44.05 | 54.00 | -9.95  | Н | AVG  |
| 11652.000 | 43.98 | 10.65 | 54.63 | 74.00 | -19.37 | Н | peak |
| 11652.000 | 37.18 | 10.65 | 47.83 | 54.00 | -6.17  | Н | AVG  |
| 15900.000 | 38.89 | 11.01 | 49.90 | 74.00 | -24.10 | Н | peak |

#### Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.

3. Average test would be performed if the peak result were greater than the average limit.

- 4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
   Marrin (dB) = Demark result (dBu)((m) = Average limit (dBu)((m))
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Remark

peak peak



Remark

|  | Operation Mo   | <b>Deperation Mode:</b> TX / IEEE 802.11n HT40 mode <b>Test Date:</b> 2014/6/17~18 |        |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |  |  |  |  |  |
|--|----------------|------------------------------------------------------------------------------------|--------|-------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|--|--|
|  |                |                                                                                    |        |       |       | Reading<br>(dBuV)       Correct<br>Factor<br>(dB/m)       Result<br>(dBuV/m)       Limit<br>(dBuV/m)       Margin<br>(dBuV/m)       Ant. Pol<br>H/V         00       47.98       -1.26       46.72       74.00       -27.28       V         00       46.78       3.13       49.91       74.00       -24.09       V         00       46.70       2.22       48.92       74.00       -25.08       V         00       45.18       6.16       51.34       74.00       -22.66       V |        |  |  |  |  |  |
|  |                |                                                                                    |        |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |  |  |  |  |  |
|  | Humidity:      | 56%R⊦                                                                              | 1      |       | Pola  | rity: Ver.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | / Hor. |  |  |  |  |  |
|  | Freq.<br>(MHz) | -                                                                                  | Factor |       |       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |  |  |  |
|  | 2455.000       | 47.98                                                                              | -1.26  | 46.72 | 74.00 | -27.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V      |  |  |  |  |  |
|  | 3825.000       | 46.78                                                                              | 3.13   | 49.91 | 74.00 | -24.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V      |  |  |  |  |  |
|  | 4460.000       | 46.70                                                                              | 2.22   | 48.92 | 74.00 | -25.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V      |  |  |  |  |  |
|  | 5380.000       | 45.18                                                                              | 6.16   | 51.34 | 74.00 | -22.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V      |  |  |  |  |  |
|  | E280.000       | 24.47                                                                              | 6.46   | 40.62 | E4 00 | 40.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V      |  |  |  |  |  |

| . ,       | . ,   | (а <b>в</b> /m) | . ,   | . ,   | . ,    |   |      |
|-----------|-------|-----------------|-------|-------|--------|---|------|
| 2455.000  | 47.98 | -1.26           | 46.72 | 74.00 | -27.28 | V | peak |
| 3825.000  | 46.78 | 3.13            | 49.91 | 74.00 | -24.09 | V | peak |
| 4460.000  | 46.70 | 2.22            | 48.92 | 74.00 | -25.08 | V | peak |
| 5380.000  | 45.18 | 6.16            | 51.34 | 74.00 | -22.66 | V | peak |
| 5380.000  | 34.47 | 6.16            | 40.63 | 54.00 | -13.37 | V | AVG  |
| 11496.000 | 40.61 | 10.60           | 51.21 | 74.00 | -22.79 | V | peak |
| 11496.000 | 35.51 | 10.60           | 46.11 | 54.00 | -7.89  | V | AVG  |
| 16224.000 | 40.29 | 11.52           | 51.81 | 74.00 | -22.19 | V | peak |
| 16224.000 | 28.59 | 11.52           | 40.11 | 54.00 | -13.89 | V | AVG  |
|           |       |                 |       |       |        |   |      |
| 2215.000  | 48.62 | -3.98           | 44.64 | 74.00 | -29.36 | H | peak |
| 4350.000  | 45.57 | 7.29            | 52.86 | 74.00 | -21.14 | Н | peak |
| 4350.000  | 34.81 | 7.29            | 42.10 | 54.00 | -11.90 | Н | AVG  |
| 4925.000  | 45.67 | 7.26            | 52.93 | 74.00 | -21.07 | Н | peak |
| 4925.000  | 34.65 | 7.26            | 41.91 | 54.00 | -12.09 | Н | AVG  |
| 5440.000  | 45.17 | 8.58            | 53.75 | 74.00 | -20.25 | Н | peak |
| 5440.000  | 34.66 | 8.58            | 43.24 | 54.00 | -10.76 | Н | AVG  |
| 5890.000  | 45.92 | 8.98            | 54.90 | 74.00 | -19.10 | Н | peak |
| 5890.000  | 36.05 | 8.98            | 45.03 | 54.00 | -8.97  | Н | AVG  |
| 11496.000 | 40.05 | 10.60           | 50.65 | 74.00 | -23.35 | Н | peak |
| 16176.000 | 40.29 | 11.40           | 51.69 | 74.00 | -22.31 | Н | peak |
| 16176.000 | 28.52 | 11.40           | 39.92 | 54.00 | -14.08 | Н | AVG  |

#### Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

6. Margin (dB) = Remark result (dBuV/m) – Average limit (dBuV/m).



Ver. / Hor.

Ant. Pol

H/V

V

V

V

Remark

peak

peak

peak

#### Operation Mode: TX / IEEE 802.11n HT40 mode Test Date: 2014/6/17~18 / CH High **Temperature: 26°**C **Tested by:** Francis Lee Humidity: 56%RH **Polarity:** Correct Freq. Reading Result Limit Margin Factor (dBuV) (dBuV/m) (dBuV/m) (dB) (MHz) (dB/m) 1990.000 47.82 46.36 74.00 -27.64 -1.46 4115.000 46.03 3.03 49.06 74.00 -24.94 5235.000 45.39 5.44 50.83 74.00 -23.17 5610.000 46.27 5.91 52.18 74.00 -21.82

| 5610.000  | 46.27 | 5.91  | 52.18 | 74.00 | -21.82 | V | peak |
|-----------|-------|-------|-------|-------|--------|---|------|
| 5610.000  | 34.82 | 5.91  | 40.73 | 54.00 | -13.27 | V | AVG  |
| 11568.000 | 40.24 | 10.62 | 50.86 | 74.00 | -23.14 | V | peak |
| 15552.000 | 40.13 | 11.20 | 51.33 | 74.00 | -22.67 | V | peak |
| 15552.000 | 28.23 | 11.20 | 39.43 | 54.00 | -14.57 | V | AVG  |
| 2200.000  | 48.04 | -3.56 | 44.48 | 74.00 | -29.52 | Н | peak |
| 4310.000  | 45.71 | 7.59  | 53.30 | 74.00 | -20.70 | Н | peak |
| 4310.000  | 34.87 | 7.59  | 42.46 | 54.00 | -11.54 | Н | AVG  |
| 4715.000  | 46.52 | 7.03  | 53.55 | 74.00 | -20.45 | Н | peak |
| 4715.000  | 35.05 | 7.03  | 42.08 | 54.00 | -11.92 | Н | AVG  |
| 5240.000  | 46.55 | 7.06  | 53.61 | 74.00 | -20.39 | Н | peak |
| 5240.000  | 34.44 | 7.06  | 41.50 | 54.00 | -12.50 | Н | AVG  |
| 5600.000  | 44.88 | 9.20  | 54.08 | 74.00 | -19.92 | Н | peak |
| 5600.000  | 34.61 | 9.20  | 43.81 | 54.00 | -10.19 | Н | AVG  |
| 11568.000 | 40.01 | 10.62 | 50.63 | 74.00 | -23.37 | Н | peak |
| 16332.000 | 39.54 | 11.78 | 51.32 | 74.00 | -22.68 | Н | peak |
| 16332.000 | 28.59 | 11.78 | 40.37 | 54.00 | -13.63 | Н | AVG  |

#### Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.

- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).



**Temperature:** 

Humidity:

**Operation Mode:**TX / IEEE 802.11ac HT80 mode

**26°**C

56%RH

Test Date:2014/6/17~18Tested by:Francis LeePolarity:Ver. / Hor.

| Freq.<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant. Pol<br>H/V | Remark |
|----------------|-------------------|-----------------------------|--------------------|-------------------|----------------|-----------------|--------|
| 1990.000       | 48.00             | -1.46                       | 46.54              | 74.00             | -27.46         | V               | peak   |
| 3785.000       | 45.62             | 3.51                        | 49.13              | 74.00             | -24.87         | V               | peak   |
| 4920.000       | 45.99             | 4.56                        | 50.55              | 74.00             | -23.45         | V               | peak   |
| 5235.000       | 45.34             | 5.44                        | 50.78              | 74.00             | -23.22         | V               | peak   |
| 11556.000      | 39.67             | 10.62                       | 50.29              | 74.00             | -23.71         | V               | peak   |
| 15900.000      | 39.29             | 11.01                       | 50.30              | 74.00             | -23.70         | V               | peak   |
| 2155.000       | 47.85             | -3.66                       | 44.19              | 74.00             | -29.81         | Н               | peak   |
| 4040.000       | 46.97             | 5.08                        | 52.05              | 74.00             | -21.95         | Н               | peak   |
| 4040.000       | 35.79             | 5.08                        | 40.87              | 54.00             | -13.13         | Н               | AVG    |
| 4325.000       | 45.40             | 7.47                        | 52.87              | 74.00             | -21.13         | Н               | peak   |
| 4325.000       | 35.32             | 7.47                        | 42.79              | 54.00             | -11.21         | Н               | AVG    |
| 4975.000       | 45.72             | 7.48                        | 53.20              | 74.00             | -20.80         | Н               | peak   |
| 4975.000       | 35.03             | 7.48                        | 42.51              | 54.00             | -11.49         | Н               | AVG    |
| 5295.000       | 45.93             | 7.12                        | 53.05              | 74.00             | -20.95         | Н               | peak   |
| 5295.000       | 35.00             | 7.12                        | 42.12              | 54.00             | -11.88         | Н               | AVG    |
| 11160.000      | 38.89             | 10.33                       | 49.22              | 74.00             | -24.78         | Н               | peak   |
| 16032.000      | 39.50             | 11.04                       | 50.54              | 74.00             | -23.46         | Н               | peak   |

#### Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.

3. Average test would be performed if the peak result were greater than the average limit.

4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

6. Margin (dB) = Remark result (dBuV/m) – Average limit (dBuV/m).



### 7.7 POWERLINE CONDUCTED EMISSIONS

#### <u>LIMIT</u>

According to §15.207(a), except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50  $\mu$ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

| Frequency Range | Lim<br>(dBj |           |
|-----------------|-------------|-----------|
| (MHz)           | Quasi-peak  | Average   |
| 0.15 to 0.50    | 66 to 56*   | 56 to 46* |
| 0.50 to 5       | 56          | 46        |
| 5 to 30         | 60          | 50        |

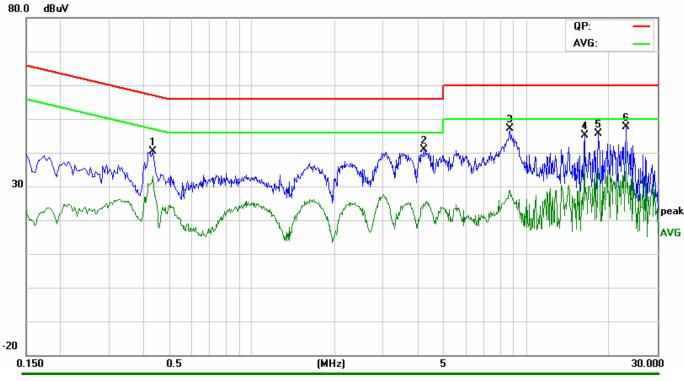
\* Decreases with the logarithm of the frequency.

#### Test Configuration

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

### TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.


### **TEST RESULTS**

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.



### TEST DATA

| Test Mode                   | LAN Mode     | 6dBBandwidth | 9 kHz     |
|-----------------------------|--------------|--------------|-----------|
| Environmental<br>Conditions | 25°C, 57% RH | Test Date:   | 2014/5/19 |
| Tested By                   | Tony Tsai    | Line         | L1        |



|     | Fraguesar | QuasiPeak | Average | Correction | QuasiPeak | Average | QuasiPeak | Average | QuasiPeak | Average | Demerk      |
|-----|-----------|-----------|---------|------------|-----------|---------|-----------|---------|-----------|---------|-------------|
| NO. | Frequency | reading   | reading | factor     | result    | result  | limit     | limit   | margin    | margin  | Remark      |
|     | (MHz)     | (dBuV)    | (dBuV)  | (dB)       | (dBuV)    | (dBuV)  | (dBuV)    | (dBuV)  | (dB)      | (dB)    | (Pass/Fail) |
| 1   | 0.4340    | 30.60     | 23.22   | 9.89       | 40.49     | 33.11   | 57.18     | 47.18   | -16.69    | -14.07  | Pass        |
| 2   | 4.2300    | 30.63     | 14.61   | 10.17      | 40.80     | 24.78   | 56.00     | 46.00   | -15.20    | -21.22  | Pass        |
| 3   | 8.7180    | 36.89     | 18.50   | 10.27      | 47.16     | 28.77   | 60.00     | 50.00   | -12.84    | -21.23  | Pass        |
| 4   | 16.2300   | 34.55     | 24.25   | 10.58      | 45.13     | 34.83   | 60.00     | 50.00   | -14.87    | -15.17  | Pass        |
| 5   | 18.2460   | 29.05     | 11.85   | 10.65      | 39.70     | 22.50   | 60.00     | 50.00   | -20.30    | -27.50  | Pass        |
| 6*  | 23.1300   | 36.76     | 27.62   | 10.91      | 47.67     | 38.53   | 60.00     | 50.00   | -12.33    | -11.47  | Pass        |



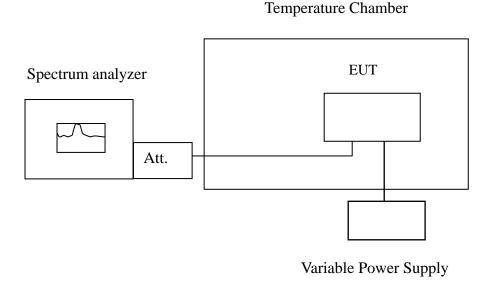


| Test Mode                   | LAN Mode     | 6dBBandwidth | 9 kHz     |
|-----------------------------|--------------|--------------|-----------|
| Environmental<br>Conditions | 25°C, 57% RH | Test Date:   | 2014/5/19 |
| Tested By                   | Tony Tsai    | Line         | L2        |

|    |      |          |                      |           |  | QP:<br>AVG:    |
|----|------|----------|----------------------|-----------|--|----------------|
| ;0 | Many | A market | Werdmann - Markenner | Mary Mary |  | <mark>б</mark> |
|    |      |          |                      |           |  |                |

| NO  | Frequency | QuasiPeak | Average | Correction | QuasiPeak | Average | QuasiPeak | Average | QuasiPeak | Average | Remark      |
|-----|-----------|-----------|---------|------------|-----------|---------|-----------|---------|-----------|---------|-------------|
| NO. | Frequency | reading   | reading | factor     | result    | result  | limit     | limit   | margin    | margin  | Remark      |
|     | (MHz)     | (dBuV)    | (dBuV)  | (dB)       | (dBuV)    | (dBuV)  | (dBuV)    | (dBuV)  | (dB)      | (dB)    | (Pass/Fail) |
| 1   | 0.4380    | 33.19     | 23.07   | 9.81       | 43.00     | 32.88   | 57.10     | 47.10   | -14.10    | -14.22  | Pass        |
| 2   | 2.2260    | 32.34     | 20.00   | 10.00      | 42.34     | 30.00   | 56.00     | 46.00   | -13.66    | -16.00  | Pass        |
| 3*  | 3.6180    | 34.40     | 21.47   | 10.12      | 44.52     | 31.59   | 56.00     | 46.00   | -11.48    | -14.41  | Pass        |
| 4   | 4.4140    | 32.89     | 17.48   | 10.18      | 43.07     | 27.66   | 56.00     | 46.00   | -12.93    | -18.34  | Pass        |
| 5   | 8.7180    | 35.99     | 22.52   | 10.31      | 46.30     | 32.83   | 60.00     | 50.00   | -13.70    | -17.17  | Pass        |
| 6   | 16.2300   | 34.77     | 27.56   | 10.57      | 45.34     | 38.13   | 60.00     | 50.00   | -14.66    | -11.87  | Pass        |

**REMARKS:**L2 = Line Two (Neutral Line)




### 7.8 FREQUENCY STABILITY

### LIMIT

According to §15.407(g), manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the operational description.

#### Test Configuration



**Remark:** Measurement setup for testing on Antenna connector

### TEST PROCEDURE

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to  $-20^{\circ}$ C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with  $10^{\circ}$ C increased per stage until the highest temperature of  $+50^{\circ}$ C reached.

### **TEST RESULTS**

No non-compliance noted.



#### IEEE 802.11a / 5180 ~ 5240 MHz:

|                                    | Operating Frequency: 5180 MHz |                             |             |             |  |  |  |  |
|------------------------------------|-------------------------------|-----------------------------|-------------|-------------|--|--|--|--|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V)                | Measured Frequency<br>(MHz) | Limit Range | Test Result |  |  |  |  |
| -20                                | 120                           | 5179.928649                 | 5150~5250   | Pass        |  |  |  |  |
| -10                                | 120                           | 5179.998292                 | 5150~5250   | Pass        |  |  |  |  |
| 0                                  | 120                           | 5179.992895                 | 5150~5250   | Pass        |  |  |  |  |
| 10                                 | 120                           | 5179.967972                 | 5150~5250   | Pass        |  |  |  |  |
| 20                                 | 120                           | 5179.990118                 | 5150~5250   | Pass        |  |  |  |  |
| 30                                 | 120                           | 5180.006566                 | 5150~5250   | Pass        |  |  |  |  |
| 40                                 | 120                           | 5180.025492                 | 5150~5250   | Pass        |  |  |  |  |
| 50                                 | 120                           | 5180.005545                 | 5150~5250   | Pass        |  |  |  |  |

| Operating Frequency: 5180 MHz                                                                      |     |             |           |      |  |  |  |
|----------------------------------------------------------------------------------------------------|-----|-------------|-----------|------|--|--|--|
| Environment<br>Temperature<br>(°C) Voltage Measured Frequency<br>(V) (MHz) Limit Range Test Result |     |             |           |      |  |  |  |
|                                                                                                    | 108 | 5179.972945 | 5150~5250 | Pass |  |  |  |
| 20                                                                                                 | 120 | 5179.990395 | 5150~5250 | Pass |  |  |  |
|                                                                                                    | 132 | 5180.004671 | 5150~5250 | Pass |  |  |  |



| Operating Frequency: 5240 MHz      |                |                             |             |             |  |  |  |
|------------------------------------|----------------|-----------------------------|-------------|-------------|--|--|--|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |  |  |  |
| -20                                | 120            | 5239.930444                 | 5150~5250   | Pass        |  |  |  |
| -10                                | 120            | 5239.964721                 | 5150~5250   | Pass        |  |  |  |
| 0                                  | 120            | 5239.982103                 | 5150~5250   | Pass        |  |  |  |
| 10                                 | 120            | 5239.963488                 | 5150~5250   | Pass        |  |  |  |
| 20                                 | 120            | 5240.013790                 | 5150~5250   | Pass        |  |  |  |
| 30                                 | 120            | 5240.003001                 | 5150~5250   | Pass        |  |  |  |
| 40                                 | 120            | 5240.018846                 | 5150~5250   | Pass        |  |  |  |
| 50                                 | 120            | 5240.037258                 | 5150~5250   | Pass        |  |  |  |

| Operating Frequency: 5240 MHz                                                                      |     |             |           |      |  |  |  |
|----------------------------------------------------------------------------------------------------|-----|-------------|-----------|------|--|--|--|
| Environment<br>Temperature<br>(°C) Voltage Measured Frequency<br>(W) (MHz) Limit Range Test Result |     |             |           |      |  |  |  |
|                                                                                                    | 108 | 5239.990520 | 5150~5250 | Pass |  |  |  |
| 20                                                                                                 | 120 | 5239.990551 | 5150~5250 | Pass |  |  |  |
|                                                                                                    | 132 | 5240.005689 | 5150~5250 | Pass |  |  |  |



### IEEE 802.11n HT20 / 5180 ~ 5240 MHz:

| Operating Frequency: 5180 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
| -20                                | 120            | 5179.969865                 | 5150~5250   | Pass        |
| -10                                | 120            | 5179.964945                 | 5150~5250   | Pass        |
| 0                                  | 120            | 5179.969518                 | 5150~5250   | Pass        |
| 10                                 | 120            | 5179.990543                 | 5150~5250   | Pass        |
| 20                                 | 120            | 5180.018794                 | 5150~5250   | Pass        |
| 30                                 | 120            | 5180.005122                 | 5150~5250   | Pass        |
| 40                                 | 120            | 5180.015699                 | 5150~5250   | Pass        |
| 50                                 | 120            | 5180.012454                 | 5150~5250   | Pass        |

| Operating Frequency: 5180 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
|                                    | 108            | 5179.992159                 | 5150~5250   | Pass        |
| 20                                 | 120            | 5179.981468                 | 5150~5250   | Pass        |
|                                    | 132            | 5180.018245                 | 5150~5250   | Pass        |



| Operating Frequency: 5240 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
| -20                                | 120            | 5239.961448                 | 5150~5250   | Pass        |
| -10                                | 120            | 5239.989086                 | 5150~5250   | Pass        |
| 0                                  | 120            | 5239.965936                 | 5150~5250   | Pass        |
| 10                                 | 120            | 5239.985853                 | 5150~5250   | Pass        |
| 20                                 | 120            | 5240.010293                 | 5150~5250   | Pass        |
| 30                                 | 120            | 5240.015488                 | 5150~5250   | Pass        |
| 40                                 | 120            | 5240.000495                 | 5150~5250   | Pass        |
| 50                                 | 120            | 5240.038554                 | 5150~5250   | Pass        |

| Operating Frequency: 5240 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
|                                    | 108            | 5239.979056                 | 5150~5250   | Pass        |
| 20                                 | 120            | 5239.990994                 | 5150~5250   | Pass        |
|                                    | 132            | 5240.007741                 | 5150~5250   | Pass        |



### IEEE 802.11n HT40 / 5190 ~ 5230 MHz:

| Operating Frequency: 5190 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
| -20                                | 120            | 5189.981116                 | 5150~5250   | Pass        |
| -10                                | 120            | 5189.930998                 | 5150~5250   | Pass        |
| 0                                  | 120            | 5189.995786                 | 5150~5250   | Pass        |
| 10                                 | 120            | 5189.965165                 | 5150~5250   | Pass        |
| 20                                 | 120            | 5190.016499                 | 5150~5250   | Pass        |
| 30                                 | 120            | 5190.000937                 | 5150~5250   | Pass        |
| 40                                 | 120            | 5190.015578                 | 5150~5250   | Pass        |
| 50                                 | 120            | 5190.003320                 | 5150~5250   | Pass        |

| Operating Frequency: 5190 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
|                                    | 108            | 5189.990431                 | 5150~5250   | Pass        |
| 20                                 | 120            | 5189.990333                 | 5150~5250   | Pass        |
|                                    | 132            | 5190.025477                 | 5150~5250   | Pass        |



| Operating Frequency: 5230 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
| -20                                | 120            | 5229.980549                 | 5150~5250   | Pass        |
| -10                                | 120            | 5229.999066                 | 5150~5250   | Pass        |
| 0                                  | 120            | 5229.997282                 | 5150~5250   | Pass        |
| 10                                 | 120            | 5229.996157                 | 5150~5250   | Pass        |
| 20                                 | 120            | 5230.015784                 | 5150~5250   | Pass        |
| 30                                 | 120            | 5230.009630                 | 5150~5250   | Pass        |
| 40                                 | 120            | 5230.004361                 | 5150~5250   | Pass        |
| 50                                 | 120            | 5230.043152                 | 5150~5250   | Pass        |

| Operating Frequency: 5230 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
|                                    | 108            | 5229.993331                 | 5150~5250   | Pass        |
| 20                                 | 120            | 5229.983053                 | 5150~5250   | Pass        |
|                                    | 132            | 5230.002702                 | 5150~5250   | Pass        |



#### IEEE 802.11ac HT80 / 5210MHz:

| Operating Frequency: 5210 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
| -20                                | 120            | 5209.923970                 | 5150~5250   | Pass        |
| -10                                | 120            | 5209.950102                 | 5150~5250   | Pass        |
| 0                                  | 120            | 5209.983523                 | 5150~5250   | Pass        |
| 10                                 | 120            | 5209.977934                 | 5150~5250   | Pass        |
| 20                                 | 120            | 5210.008629                 | 5150~5250   | Pass        |
| 30                                 | 120            | 5210.002420                 | 5150~5250   | Pass        |
| 40                                 | 120            | 5210.019848                 | 5150~5250   | Pass        |
| 50                                 | 120            | 5210.043627                 | 5150~5250   | Pass        |

| Operating Frequency: 5210 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
|                                    | 108            | 5209.975383                 | 5150~5250   | Pass        |
| 20                                 | 120            | 5209.990141                 | 5150~5250   | Pass        |
|                                    | 132            | 5210.026635                 | 5150~5250   | Pass        |



### IEEE 802.11a / 5260 ~ 5320 MHz:

| Operating Frequency: 5260 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
| -20                                | 120            | 5259.954697                 | 5250~5350   | Pass        |
| -10                                | 120            | 5259.965165                 | 5250~5350   | Pass        |
| 0                                  | 120            | 5259.957040                 | 5250~5350   | Pass        |
| 10                                 | 120            | 5259.983780                 | 5250~5350   | Pass        |
| 20                                 | 120            | 5260.013325                 | 5250~5350   | Pass        |
| 30                                 | 120            | 5260.012440                 | 5250~5350   | Pass        |
| 40                                 | 120            | 5260.006417                 | 5250~5350   | Pass        |
| 50                                 | 120            | 5260.035200                 | 5250~5350   | Pass        |

| Operating Frequency: 5260 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
|                                    | 108            | 5259.976996                 | 5250~5350   | Pass        |
| 20                                 | 120            | 5259.992202                 | 5250~5350   | Pass        |
|                                    | 132            | 5260.001791                 | 5250~5350   | Pass        |



| Operating Frequency: 5320 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
| -20                                | 120            | 5319.950834                 | 5250~5350   | Pass        |
| -10                                | 120            | 5319.970582                 | 5250~5350   | Pass        |
| 0                                  | 120            | 5319.961744                 | 5250~5350   | Pass        |
| 10                                 | 120            | 5319.981837                 | 5250~5350   | Pass        |
| 20                                 | 120            | 5320.017151                 | 5250~5350   | Pass        |
| 30                                 | 120            | 5320.020248                 | 5250~5350   | Pass        |
| 40                                 | 120            | 5320.019283                 | 5250~5350   | Pass        |
| 50                                 | 120            | 5320.036113                 | 5250~5350   | Pass        |

| Operating Frequency: 5320 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
|                                    | 108            | 5319.972249                 | 5250~5350   | Pass        |
| 20                                 | 120            | 5319.986964                 | 5250~5350   | Pass        |
|                                    | 132            | 5320.020535                 | 5250~5350   | Pass        |



### IEEE 802.11n HT20 / 5260 ~ 5320 MHz:

| Operating Frequency: 5260 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
| -20                                | 120            | 5259.992884                 | 5250~5350   | Pass        |
| -10                                | 120            | 5259.969071                 | 5250~5350   | Pass        |
| 0                                  | 120            | 5259.975872                 | 5250~5350   | Pass        |
| 10                                 | 120            | 5259.985602                 | 5250~5350   | Pass        |
| 20                                 | 120            | 5259.994845                 | 5250~5350   | Pass        |
| 30                                 | 120            | 5260.003248                 | 5250~5350   | Pass        |
| 40                                 | 120            | 5260.027593                 | 5250~5350   | Pass        |
| 50                                 | 120            | 5260.028959                 | 5250~5350   | Pass        |

| Operating Frequency: 5260 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
|                                    | 108            | 5259.983722                 | 5250~5350   | Pass        |
| 20                                 | 120            | 5259.996607                 | 5250~5350   | Pass        |
|                                    | 132            | 5260.029862                 | 5250~5350   | Pass        |



| Operating Frequency: 5320 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
| -20                                | 120            | 5319.93004                  | 5250~5350   | Pass        |
| -10                                | 120            | 5319.950195                 | 5250~5350   | Pass        |
| 0                                  | 120            | 5319.983706                 | 5250~5350   | Pass        |
| 10                                 | 120            | 5319.960354                 | 5250~5350   | Pass        |
| 20                                 | 120            | 5320.002659                 | 5250~5350   | Pass        |
| 30                                 | 120            | 5320.0038                   | 5250~5350   | Pass        |
| 40                                 | 120            | 5320.021534                 | 5250~5350   | Pass        |
| 50                                 | 120            | 5320.01693                  | 5250~5350   | Pass        |

| Operating Frequency: 5320 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
|                                    | 108            | 5319.981064                 | 5250~5350   | Pass        |
| 20                                 | 120            | 5319.98873                  | 5250~5350   | Pass        |
|                                    | 132            | 5320.005032                 | 5250~5350   | Pass        |



### IEEE 802.11n HT40 / 5270 ~ 5310 MHz:

| Operating Frequency: 5270 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
| -20                                | 120            | 5269.939182                 | 5250~5350   | Pass        |
| -10                                | 120            | 5269.975235                 | 5250~5350   | Pass        |
| 0                                  | 120            | 5269.958771                 | 5250~5350   | Pass        |
| 10                                 | 120            | 5269.990603                 | 5250~5350   | Pass        |
| 20                                 | 120            | 5270.013604                 | 5250~5350   | Pass        |
| 30                                 | 120            | 5270.015525                 | 5250~5350   | Pass        |
| 40                                 | 120            | 5270.025043                 | 5250~5350   | Pass        |
| 50                                 | 120            | 5270.018783                 | 5250~5350   | Pass        |

| Operating Frequency: 5270 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
|                                    | 108            | 5269.968110                 | 5250~5350   | Pass        |
| 20                                 | 120            | 5269.987699                 | 5250~5350   | Pass        |
|                                    | 132            | 5270.020058                 | 5250~5350   | Pass        |



| Operating Frequency: 5310 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
| -20                                | 120            | 5309.923486                 | 5250~5350   | Pass        |
| -10                                | 120            | 5309.956495                 | 5250~5350   | Pass        |
| 0                                  | 120            | 5309.958673                 | 5250~5350   | Pass        |
| 10                                 | 120            | 5309.961789                 | 5250~5350   | Pass        |
| 20                                 | 120            | 5310.001122                 | 5250~5350   | Pass        |
| 30                                 | 120            | 5310.014595                 | 5250~5350   | Pass        |
| 40                                 | 120            | 5310.011150                 | 5250~5350   | Pass        |
| 50                                 | 120            | 5310.043453                 | 5250~5350   | Pass        |

| Operating Frequency: 5310 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
|                                    | 108            | 5309.974017                 | 5250~5350   | Pass        |
| 20                                 | 120            | 5309.988483                 | 5250~5350   | Pass        |
|                                    | 132            | 5310.024961                 | 5250~5350   | Pass        |



### IEEE 802.11ac HT80 / 5290MHz:

| Operating Frequency: 5290 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
| -20                                | 120            | 5289.933689                 | 5250~5350   | Pass        |
| -10                                | 120            | 5289.940045                 | 5250~5350   | Pass        |
| 0                                  | 120            | 5289.952410                 | 5250~5350   | Pass        |
| 10                                 | 120            | 5289.999332                 | 5250~5350   | Pass        |
| 20                                 | 120            | 5290.012901                 | 5250~5350   | Pass        |
| 30                                 | 120            | 5290.012303                 | 5250~5350   | Pass        |
| 40                                 | 120            | 5290.033824                 | 5250~5350   | Pass        |
| 50                                 | 120            | 5290.013317                 | 5250~5350   | Pass        |

| Operating Frequency: 5290 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
|                                    | 108            | 5289.972694                 | 5250~5350   | Pass        |
| 20                                 | 120            | 5289.986186                 | 5250~5350   | Pass        |
|                                    | 132            | 5290.006175                 | 5250~5350   | Pass        |



#### IEEE 802.11a / 5500 ~ 5700 MHz:

| Operating Frequency: 5500 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
| -20                                | 120            | 5499.974869                 | 5470~5725   | Pass        |
| -10                                | 120            | 5499.952986                 | 5470~5725   | Pass        |
| 0                                  | 120            | 5499.968137                 | 5470~5725   | Pass        |
| 10                                 | 120            | 5499.985179                 | 5470~5725   | Pass        |
| 20                                 | 120            | 5500.015019                 | 5470~5725   | Pass        |
| 30                                 | 120            | 5500.023058                 | 5470~5725   | Pass        |
| 40                                 | 120            | 5500.031388                 | 5470~5725   | Pass        |
| 50                                 | 120            | 5500.007049                 | 5470~5725   | Pass        |

| Operating Frequency: 5500 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
|                                    | 108            | 5499.993831                 | 5470~5725   | Pass        |
| 20                                 | 120            | 5499.998819                 | 5470~5725   | Pass        |
|                                    | 132            | 5500.028136                 | 5470~5725   | Pass        |



| Operating Frequency: 5700 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
| -20                                | 120            | 5699.920474                 | 5470~5725   | Pass        |
| -10                                | 120            | 5699.970080                 | 5470~5725   | Pass        |
| 0                                  | 120            | 5699.976127                 | 5470~5725   | Pass        |
| 10                                 | 120            | 5699.974129                 | 5470~5725   | Pass        |
| 20                                 | 120            | 5700.010037                 | 5470~5725   | Pass        |
| 30                                 | 120            | 5700.026115                 | 5470~5725   | Pass        |
| 40                                 | 120            | 5700.008253                 | 5470~5725   | Pass        |
| 50                                 | 120            | 5700.014810                 | 5470~5725   | Pass        |

| Operating Frequency: 5700 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
|                                    | 108            | 5699.977401                 | 5470~5725   | Pass        |
| 20                                 | 120            | 5699.998087                 | 5470~5725   | Pass        |
|                                    | 132            | 5700.014430                 | 5470~5725   | Pass        |



### IEEE 802.11n HT20 / 5500 ~ 5700 MHz:

| Operating Frequency: 5500 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
| -20                                | 120            | 5499.935314                 | 5470~5725   | Pass        |
| -10                                | 120            | 5499.987095                 | 5470~5725   | Pass        |
| 0                                  | 120            | 5499.988718                 | 5470~5725   | Pass        |
| 10                                 | 120            | 5499.994929                 | 5470~5725   | Pass        |
| 20                                 | 120            | 5500.003403                 | 5470~5725   | Pass        |
| 30                                 | 120            | 5500.001133                 | 5470~5725   | Pass        |
| 40                                 | 120            | 5500.021419                 | 5470~5725   | Pass        |
| 50                                 | 120            | 5500.018493                 | 5470~5725   | Pass        |

| Operating Frequency: 5500 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
|                                    | 108            | 5499.993425                 | 5470~5725   | Pass        |
| 20                                 | 120            | 5499.995941                 | 5470~5725   | Pass        |
|                                    | 132            | 5500.007337                 | 5470~5725   | Pass        |



| Operating Frequency: 5700 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
| -20                                | 120            | 5699.967587                 | 5470~5725   | Pass        |
| -10                                | 120            | 5699.986777                 | 5470~5725   | Pass        |
| 0                                  | 120            | 5699.963985                 | 5470~5725   | Pass        |
| 10                                 | 120            | 5699.993065                 | 5470~5725   | Pass        |
| 20                                 | 120            | 5700.018086                 | 5470~5725   | Pass        |
| 30                                 | 120            | 5700.002394                 | 5470~5725   | Pass        |
| 40                                 | 120            | 5700.008588                 | 5470~5725   | Pass        |
| 50                                 | 120            | 5700.040322                 | 5470~5725   | Pass        |

| Operating Frequency: 5700 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
|                                    | 108            | 5699.985928                 | 5470~5725   | Pass        |
| 20                                 | 120            | 5699.996029                 | 5470~5725   | Pass        |
|                                    | 132            | 5700.021667                 | 5470~5725   | Pass        |



### IEEE 802.11n HT40 / 5510 ~ 5670 MHz:

| Operating Frequency: 5510 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
| -20                                | 120            | 5509.956133                 | 5470~5725   | Pass        |
| -10                                | 120            | 5509.980846                 | 5470~5725   | Pass        |
| 0                                  | 120            | 5509.973281                 | 5470~5725   | Pass        |
| 10                                 | 120            | 5509.984760                 | 5470~5725   | Pass        |
| 20                                 | 120            | 5510.006002                 | 5470~5725   | Pass        |
| 30                                 | 120            | 5510.004588                 | 5470~5725   | Pass        |
| 40                                 | 120            | 5510.004514                 | 5470~5725   | Pass        |
| 50                                 | 120            | 5510.048197                 | 5470~5725   | Pass        |

| Operating Frequency: 5510 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
|                                    | 108            | 5509.976916                 | 5470~5725   | Pass        |
| 20                                 | 120            | 5509.980480                 | 5470~5725   | Pass        |
|                                    | 132            | 5510.003026                 | 5470~5725   | Pass        |



| Operating Frequency: 5670 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
| -20                                | 120            | 5669.983108                 | 5470~5725   | Pass        |
| -10                                | 120            | 5669.941276                 | 5470~5725   | Pass        |
| 0                                  | 120            | 5669.960627                 | 5470~5725   | Pass        |
| 10                                 | 120            | 5669.981426                 | 5470~5725   | Pass        |
| 20                                 | 120            | 5670.007930                 | 5470~5725   | Pass        |
| 30                                 | 120            | 5670.029209                 | 5470~5725   | Pass        |
| 40                                 | 120            | 5670.037624                 | 5470~5725   | Pass        |
| 50                                 | 120            | 5670.023789                 | 5470~5725   | Pass        |

| Operating Frequency: 5670 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
|                                    | 108            | 5669.961968                 | 5470~5725   | Pass        |
| 20                                 | 120            | 5669.986639                 | 5470~5725   | Pass        |
|                                    | 132            | 5670.021549                 | 5470~5725   | Pass        |



### IEEE 802.11ac HT80 / 5530MHz:

| Operating Frequency: 5530 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
| -20                                | 120            | 5529.958649                 | 5470~5725   | Pass        |
| -10                                | 120            | 5529.934695                 | 5470~5725   | Pass        |
| 0                                  | 120            | 5529.978054                 | 5470~5725   | Pass        |
| 10                                 | 120            | 5529.997232                 | 5470~5725   | Pass        |
| 20                                 | 120            | 5530.009046                 | 5470~5725   | Pass        |
| 30                                 | 120            | 5530.018533                 | 5470~5725   | Pass        |
| 40                                 | 120            | 5530.033945                 | 5470~5725   | Pass        |
| 50                                 | 120            | 5530.044627                 | 5470~5725   | Pass        |

| Operating Frequency: 5530 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
|                                    | 108            | 5529.983407                 | 5470~5725   | Pass        |
| 20                                 | 120            | 5529.995680                 | 5470~5725   | Pass        |
|                                    | 132            | 5530.020130                 | 5470~5725   | Pass        |



### IEEE 802.11a / 5745 ~ 5825MHz:

| Operating Frequency: 5745 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
| -20                                | 120            | 5744.999575                 | 5725~5850   | Pass        |
| -10                                | 120            | 5744.943964                 | 5725~5850   | Pass        |
| 0                                  | 120            | 5744.991332                 | 5725~5850   | Pass        |
| 10                                 | 120            | 5744.981880                 | 5725~5850   | Pass        |
| 20                                 | 120            | 5745.018386                 | 5725~5850   | Pass        |
| 30                                 | 120            | 5745.004606                 | 5725~5850   | Pass        |
| 40                                 | 120            | 5745.002134                 | 5725~5850   | Pass        |
| 50                                 | 120            | 5745.008568                 | 5725~5850   | Pass        |

| Operating Frequency: 5745 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
|                                    | 108            | 5744.985301                 | 5725~5850   | Pass        |
| 20                                 | 120            | 5744.984948                 | 5725~5850   | Pass        |
|                                    | 132            | 5745.019967                 | 5725~5850   | Pass        |



| Operating Frequency: 5825 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
| -20                                | 120            | 5824.975847                 | 5725~5850   | Pass        |
| -10                                | 120            | 5824.979743                 | 5725~5850   | Pass        |
| 0                                  | 120            | 5824.967040                 | 5725~5850   | Pass        |
| 10                                 | 120            | 5824.994255                 | 5725~5850   | Pass        |
| 20                                 | 120            | 5825.005761                 | 5725~5850   | Pass        |
| 30                                 | 120            | 5825.010087                 | 5725~5850   | Pass        |
| 40                                 | 120            | 5825.013613                 | 5725~5850   | Pass        |
| 50                                 | 120            | 5825.031795                 | 5725~5850   | Pass        |

| Operating Frequency: 5825 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
|                                    | 108            | 5824.978953                 | 5725~5850   | Pass        |
| 20                                 | 120            | 5824.986437                 | 5725~5850   | Pass        |
|                                    | 132            | 5825.008952                 | 5725~5850   | Pass        |



#### IEEE 802.11n HT20 / 5745 ~ 5825MHz:

| Operating Frequency: 5745 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
| -20                                | 120            | 5744.938354                 | 5725~5850   | Pass        |
| -10                                | 120            | 5744.976047                 | 5725~5850   | Pass        |
| 0                                  | 120            | 5744.952815                 | 5725~5850   | Pass        |
| 10                                 | 120            | 5744.968481                 | 5725~5850   | Pass        |
| 20                                 | 120            | 5745.000060                 | 5725~5850   | Pass        |
| 30                                 | 120            | 5745.005043                 | 5725~5850   | Pass        |
| 40                                 | 120            | 5745.033796                 | 5725~5850   | Pass        |
| 50                                 | 120            | 5745.000833                 | 5725~5850   | Pass        |

| Operating Frequency: 5745 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
|                                    | 108            | 5744.998836                 | 5725~5850   | Pass        |
| 20                                 | 120            | 5744.988684                 | 5725~5850   | Pass        |
|                                    | 132            | 5745.023568                 | 5725~5850   | Pass        |



| Operating Frequency: 5825 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
| -20                                | 120            | 5824.971858                 | 5725~5850   | Pass        |
| -10                                | 120            | 5824.950448                 | 5725~5850   | Pass        |
| 0                                  | 120            | 5824.987499                 | 5725~5850   | Pass        |
| 10                                 | 120            | 5824.988883                 | 5725~5850   | Pass        |
| 20                                 | 120            | 5825.011378                 | 5725~5850   | Pass        |
| 30                                 | 120            | 5825.010219                 | 5725~5850   | Pass        |
| 40                                 | 120            | 5825.007840                 | 5725~5850   | Pass        |
| 50                                 | 120            | 5825.039314                 | 5725~5850   | Pass        |

| Operating Frequency: 5825 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
|                                    | 108            | 5824.980077                 | 5725~5850   | Pass        |
| 20                                 | 120            | 5824.988937                 | 5725~5850   | Pass        |
|                                    | 132            | 5825.027689                 | 5725~5850   | Pass        |



#### IEEE 802.11n HT40 / 5755 ~ 5795MHz:

| Operating Frequency: 5755 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
| -20                                | 120            | 5754.978833                 | 5725~5850   | Pass        |
| -10                                | 120            | 5754.941332                 | 5725~5850   | Pass        |
| 0                                  | 120            | 5754.993831                 | 5725~5850   | Pass        |
| 10                                 | 120            | 5754.993864                 | 5725~5850   | Pass        |
| 20                                 | 120            | 5755.005804                 | 5725~5850   | Pass        |
| 30                                 | 120            | 5755.002203                 | 5725~5850   | Pass        |
| 40                                 | 120            | 5755.008243                 | 5725~5850   | Pass        |
| 50                                 | 120            | 5755.041992                 | 5725~5850   | Pass        |

| Operating Frequency: 5755 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
|                                    | 108            | 5754.992662                 | 5725~5850   | Pass        |
| 20                                 | 120            | 5754.983163                 | 5725~5850   | Pass        |
|                                    | 132            | 5755.004718                 | 5725~5850   | Pass        |



| Operating Frequency: 5795 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
| -20                                | 120            | 5794.971710                 | 5725~5850   | Pass        |
| -10                                | 120            | 5794.986289                 | 5725~5850   | Pass        |
| 0                                  | 120            | 5794.979729                 | 5725~5850   | Pass        |
| 10                                 | 120            | 5794.954001                 | 5725~5850   | Pass        |
| 20                                 | 120            | 5794.963163                 | 5725~5850   | Pass        |
| 30                                 | 120            | 5795.018413                 | 5725~5850   | Pass        |
| 40                                 | 120            | 5795.027180                 | 5725~5850   | Pass        |
| 50                                 | 120            | 5795.023349                 | 5725~5850   | Pass        |

| Operating Frequency: 5795 MHz      |                |                             |             |             |  |
|------------------------------------|----------------|-----------------------------|-------------|-------------|--|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |  |
|                                    | 108            | 5794.971351                 | 5725~5850   | Pass        |  |
| 20                                 | 120            | 5794.997124                 | 5725~5850   | Pass        |  |
|                                    | 132            | 5795.002831                 | 5725~5850   | Pass        |  |



### IEEE 802.11ac HT80 / 5775MHz:

| Operating Frequency: 5775 MHz      |                |                             |             |             |
|------------------------------------|----------------|-----------------------------|-------------|-------------|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |
| -20                                | 120            | 5774.937728                 | 5725~5850   | Pass        |
| -10                                | 120            | 5774.936347                 | 5725~5850   | Pass        |
| 0                                  | 120            | 5774.985370                 | 5725~5850   | Pass        |
| 10                                 | 120            | 5774.966677                 | 5725~5850   | Pass        |
| 20                                 | 120            | 5775.013637                 | 5725~5850   | Pass        |
| 30                                 | 120            | 5775.018705                 | 5725~5850   | Pass        |
| 40                                 | 120            | 5775.025867                 | 5725~5850   | Pass        |
| 50                                 | 120            | 5775.046138                 | 5725~5850   | Pass        |

| Operating Frequency: 5775 MHz      |                |                             |             |             |  |
|------------------------------------|----------------|-----------------------------|-------------|-------------|--|
| Environment<br>Temperature<br>(°C) | Voltage<br>(V) | Measured Frequency<br>(MHz) | Limit Range | Test Result |  |
| 20                                 | 108            | 5774.988207                 | 5725~5850   | Pass        |  |
|                                    | 120            | 5774.986468                 | 5725~5850   | Pass        |  |
|                                    | 132            | 5775.011933                 | 5725~5850   | Pass        |  |



## 8. APPENDIX I PHOTOGRAPHS OF TEST SETUP


Radiated Emission Set up Photos Below 1GHz







Above 1GHz





### **Conducted Emissions Setup Photo**





### **Powerline Conducted Emissions Setup Photos**







# 9. APPENDIX II: PHOTOGRAPHS OF EUT

Refer to T140317J01 External Photographs.