

FCC Test Report

Product Name :	Full HD	Ultra-Wide	View	Wi-Fi	Camera
----------------	---------	------------	------	-------	--------

- Model No. : DCS-2630L, DCS-2630LH
- FCC ID. : KA2CS2630LA1
- Applicant : D-Link Corporation

Address : No.289, Sinhu 3rd Rd., Neihu District, Taipei City 114, Taiwan, R.O.C.

Tested	:	2015/07/09~2015/07/23
Issued Date	:	2015/07/27
Report No.	:	1570078R-RFUSP26V00
Report Version	:	V1.0
Iac-ME	ALLANNA	Testing Laboratory
"hindululul	1.	3024

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

Test Report Certification Issued Date : 2015/07/27 Report No. : 1570078R-RFUSP26V00 QuieTek a DEKRA company : Full HD Ultra-Wide View Wi-Fi Camera Product Name Applicant : D-Link Corporation Address : No.289, Sinhu 3rd Rd., Neihu District, Taipei City 114, Taiwan, R.O.C. Model No. : DCS-2630L, DCS-2630LH FCC ID. : KA2CS2630LA1 EUT Test Voltage : AC 100-240V, 50-60Hz Trade Name : D-Link Applicable Standard : FCC CFR Title 47 Part 15 Subpart C Section 15.247: 2014 ANSI C63.10: 2013 Test Result : Complied The test results relate only to the samples tested. The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. and In Documented By 2 (Carol Tsai / Engineering Adm. Assistant) Reviewed By : en Huang (Ken Huang / Engineer) Approved By : (Roy Wang / Director)

Laboratory Information

We, **QuieTek Corporation**, are an independent RF consultancy that was established the whole facility in our laboratories. The test facility has been accredited/accepted (audited or listed) by the following related bodies in compliance with ISO 17025 specified testing scopes:

Taiwan R.O.C.	:	TAF, Accreditation Number: 3024
USA	:	FCC, Registration Number: 365520
Canada	:	IC, Submission No: 150981

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site:<u>http://www.quietek.com/english/about/certificates.aspx?bval=5</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site : <u>http://www.quietek.com/index_en.aspx</u>

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory:

No.75-2, 3rd Lin, Wangye Keng, Yonghxing Tsuen, Qionglin Shiang, Hsinchu County 307, Taiwan, R.O.C. TEL:+886-3-592-8858 / FAX:+886-3-592-8859 E-Mail : service@quietek.com

LinKou Testing Laboratory:

No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451, Taiwan, R.O.C. TEL : 886-2-8601-3788 / FAX : 886-2-8601-3789 E-Mail : service@quietek.com

TABLE OF CONTENTS

Descripti	on	Page
1.	General Information	6
1.1.	EUT Description	6
1.2.	Test Mode	
1.3.	Tested System Details	11
1.4.	Configuration of tested System	11
1.5.	EUT Exercise Software	12
1.6.	Test Facility	13
2.	Conducted Emission	14
2.1.	Test Equipment	14
2.2.	Test Setup	14
2.3.	Limits	15
2.4.	Test Procedure	15
2.5.	Test Specification	15
2.6.	Uncertainty	15
2.7.	Test Result	16
2.8.	Test Photo	
3.	Peak Power Output	19
3.1.	Test Equipment	19
3.2.	Test Setup	19
3.3.	Test procedures	19
3.4.	Limits	19
3.5.	Test Specification	19
3.6.	Uncertainty	19
3.7.	Test Result	20
4.	Radiated Emission	
4.1.	Test Equipment	
4.2.	Test Setup	
4.3.	Limits	
4.4.	Test Procedure	
4.5.	Test Specification	
4.6.	Uncertainty	
4.7.	Test Result	
4.8.	Test Photo	94
5.	RF antenna conducted test	96
5.1.	Test Equipment	96
5.2.	Test Setup	
5.3.	Limits	97
5.4.	Test Procedure	97

5.5.	Test Specification	97
5.6.	Uncertainty	97
5.7.	Test Result	
6.	Radiated Emission Band Edge	
6.1.	Test Equipment	
6.2.	Test Setup	
6.3.	Limits	
6.4.	Test Procedure	
6.5.	Test Specification	
6.6.	Uncertainty	
6.7.	Test Result	
7.	DTS Bandwidth	
7.1.	Test Equipment	
7.2.	Test Setup	
7.3.	Test Procedures	
7.4.	Limits	
7.5.	Test Specification	
7.6.	Uncertainty	
7.7.	Test Result	
8.	Occupied Bandwidth	
8.1.	Test Equipment	
8.2.	Test Setup	
8.3.	Test Procedures	
8.4.	Limits	
8.5.	Test Specification	
8.6.	Uncertainty	
8.7.	Test Result	
9.	Power Density	
9.1.	Test Equipment	
9.2.	Test Setup	
9.3.	Limits	
9.4.	Test Procedures	
9.5.	Test Specification	
9.6.	Uncertainty	
9.7.	Test Result	
Attache	ement	
	EUT Photograph	

1. General Information

1.1. EUT Description

Product Name	Full HD Ultra-Wide View Wi-Fi Camera
Trade Name	D-Link
Model No.	DCS-2630L, DCS-2630LH
Frequency Range/Channel Number	2412~2462MHz / 11 Channels
(20MHz)	
Frequency Range/Channel Number	2422~2452MHz / 7 Channels
IEEE 802.11n (40MHz)	
Type of Modulation (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Type of Modulation	Orthogonal Frequency Division Multiplexing (OFDM)
(IEEE 802.11g/n)	
Data Speed (IEEE 802.11b)	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data Speed (IEEE 802.11g)	6Mbps,9Mbps,12Mbps,18Mbps,24Mbps,36Mbps,48Mbps,54Mbps
Data Speed (IEEE 802.11n)	Support a subset of the combination of GI, MCS 0~MCS 7 and
	bandwidth defined in 802.11n
Antenna Gain	3.91dBi
Antenna Type	Omni-directional

Component	
Power Adapter	Asian Power Devices Inc., WB-10E05R
	I/P: 100-240V~, 50-60Hz, 0.4A MAX.
	O/P: 5V===2A
	Cable Out: Shielded, 3m
Power Adapter	Asian Power Devices Inc., WB-10E05FU
	I/P: 100-240V~, 50-60Hz, 0.4A MAX.
	O/P: 5V===2A
	Cable Out: Shielded, 3m

ANT-TX / RX & Bandwidth

ANT-TX / RX	Т	X	RX			
Mode/ Channel Bandwidth	20MHz 40MHz		20MHz	40MHz		
IEEE802.11b	\checkmark		\checkmark			
IEEE802.11g	\checkmark		\checkmark			
IEEE802.11n	\checkmark	\checkmark	\checkmark	\checkmark		

<u>1TX / 1RX</u>

				Nc	BPS	ND	BPS	Data Ra		te(Mb/s)		
MCS	Modulation	R	N _{BPSCS}				10141	800ns GI		400ns GI		
Index				20MHZ	40MHZ	20MHZ	40MHZ	20MHz	40MHz	20MHz	40MHz	
0	BPSK	1/2	1	52	108	26	54	6.5	13.5	7.2	15.0	
1	QPSK	1/2	2	104	216	52	108	13.0	27.0	14.4	30.0	
2	QPSK	3/4	2	104	216	78	162	19.5	40.5	21.7	45.0	
3	16-QAM	1/2	4	208	432	104	216	26.0	54.0	28.9	60.0	
4	16-QAM	3/4	4	208	432	156	324	39.0	81.0	43.3	90.0	
5	64-QAM	2/3	6	312	648	208	432	52.0	108.0	57.8	120.0	
6	64-QAM	3/4	6	312	648	234	486	58.5	121.5	65.0	135.0	
7	64-QAM	5/6	6	312	648	260	540	65.0	135.0	72.2	150.0	

IEEE 802.11n

Note 1: Support of 400ns GI is optional on transmit and receive.

Table 1 – MCS parameters for TX Antenna number = 1

Symbol	Explanation
R	Code rate
N _{BPSC}	Number of coded bits per single carrier
N _{CBPS}	Number of coded bits per symbol
N _{DBPS}	Number of data bits per symbol
GI	guard interval

IEEE 802.11b/g & IEEE 802.11n (20MHz)

Working Frequency of Each Channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
001	2412 MHz	002	2417 MHz	003	2422 MHz	004	2427 MHz	
005	2432 MHz	006	2437 MHz	007	2442 MHz	008	2447 MHz	
009	2452 MHz	010	2457 MHz	011	2462 MHz			

IEEE 802.11n (40MHz)

Working Frequency of Each Channel									
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
003	2422 MHz	004	2427 MHz	005	2432 MHz	006	2437 MHz		
007	2442 MHz	008	2447 MHz	009	2452 MHz				

Note:

- This device is the Full HD Ultra-Wide View Wi-Fi Camera including 2.4GHz b/g/n (1X1)/ 5GHz a/n/ac (1x1) transmitting and receiving function.
- 2. The variation of model number is for different strategy of marketing.
- The power adapters, WB-10E05R and WB-10E05FU are equal in layout. Only one of them was tested and shown in the report
- 4. These test results on a sample of the device are for the purpose of demonstrating Compliance with Part 15 Subpart C Paragraph 15.247.
- 5. The function of the 5GHz transmitting is measured and makes a test report of the report number: 1570078R-RFUSP63V00 & 1570078R-RFUSP57V00.
- 6. This device is a WIFI device in accordance with Part 15 regulations. The receiving function receiving was tested and its test report number is 1570078R-RFUSP01V00.

٦

1.2. Test Mode

QuieTek has verified the construction and function in typical operation. The preliminary tests were performed in different data rate, and to find the worst condition, which was shown in this test report. The following table is the final test mode.

TX	Mode 1: Transmitter				
Test Items	Modulation	Channel	Antenna	Result	
Conducted Emission	11n(40MHz)	6	0	Complies	
Peak Power Output	11b/g	1/ 6/ 11	0	Complies	
	11n(20MHz)	1/ 6/ 11	0	Complies	
	11n(40MHz)	3/ 6/ 9	0	Complies	
Radiated Emission	11b/g	1/ 6/ 11	0	Complies	
	11n(20MHz)	1/ 6/ 11	0	Complies	
	11n(40MHz)	3/ 6/ 9	0	Complies	
RF antenna conducted test	11b/g	1/ 6/ 11	0	Complies	
	11n(20MHz)	1/ 6/ 11	0	Complies	
	11n(40MHz)	3/ 6/ 9	0	Complies	
Radiated Emission Band Edge	11b/g	1/ 11	0	Complies	
	11n(20MHz)	1/ 11	0	Complies	
	11n(40MHz)	3/ 9	0	Complies	
DTS Bandwidth	11b/g	1/ 6/ 11	0	Complies	
	11n(20MHz)	1/ 6/ 11	0	Complies	
	11n(40MHz)	3/ 6/ 9	0	Complies	
Occupied Bandwidth	11b/g	1/ 6/ 11	0	Complies	
	11n(20MHz)	1/ 6/ 11	0	Complies	
	11n(40MHz)	3/ 6/ 9	0	Complies	
Power Density	11b/g	1/ 6/ 11	0	Complies	
	11n(20MHz)	1/ 6/ 11	0	Complies	
	11n(40MHz)	3/ 6/ 9	0	Complies	

1.3. Tested System Details

The types for all equipments, plus descriptions of all cables used in the tested system (including inserted cards) are:

Prod	uct	Manufacturer	Model No.	Serial No.	FCC ID	Power Cord
1	SD Card	Transcend	TS512MSD80	160073-4668	DoC	
2	Fixture	Alpha	N/A	N/A	DoC	
3	Notebook PC	ASUS	X522EP	E5N0CV04326 4197	DoC	Non-Shielded, 1.8m, one ferrite core bonded

1.4. Configuration of tested System

1.5. EUT Exercise Software

1	Test system is in accord with EUT user manual (refer to 1.4 configuration of tested system)
2	Execute the "Tera term command" on the Notebook.
3	Execute the "QA Tools-MT7688" with EUT.
4	Configure the test mode, the test channel, and the data rate.
5	Make the EUT to start the transmitting.
6	Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Test Item	Required (IEC 68-1)	Actual
Temperature (°C)		15 - 35	20
Humidity (%RH)	FCC PART 15 C 15.207	25 - 75	50
Barometric pressure (mbar)	Conducted Emission	860 - 1060	950-1000
Temperature (°C)		15 - 35	25
Humidity (%RH)	FCC PART 15 C 15.247	25 - 75	45
Barometric pressure (mbar)	Peak Power Output	860 - 1060	950-1000
Temperature (°C)		15 - 35	20
Humidity (%RH)	FCC PART 15 C 15.247	25 - 75	50
Barometric pressure (mbar)	Radiated Emission	860 - 1060	950-1000
Temperature (°C)		15 - 35	25
Humidity (%RH)	FCC PART 15 C 15.247	25 - 75	45
Barometric pressure (mbar)	RF antenna conducted test	860 - 1060	950-1000
Temperature (°C)		15 - 35	20
Humidity (%RH)	FCC PART 15 C 15.247	25 - 75	50
Barometric pressure (mbar)	Band Edge	860 - 1060	950-1000
Temperature (°C)		15 - 35	25
Humidity (%RH)	FCC PART 15 C 15.247	25 - 75	45
Barometric pressure (mbar)	Occupied Bandwidth	860 - 1060	950-1000
Temperature (°C)		15 - 35	25
Humidity (%RH)	FCC PART 15 C 15.247	25 - 75	45
Barometric pressure (mbar)	ic pressure (mbar)		950-1000

2. Conducted Emission

2.1. Test Equipment

The following test equipments are used during the test:

Conducted Emission / SR3

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
LISN	R&S	ENV216	100096	2015/08/10
LISN	R&S	ESH3-Z5	836679/022	2015/12/15
Test Receiver	R&S	ESCS 30	825442/017	2016/01/14

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 Limits (dBuV)					
Frequency MHz	QP	AV			
0.15 - 0.50	66-56	56-46			
0.50 - 5.0	56	46			
5.0 - 30	60	50			

Remarks: In the above table, the tighter limit applies at the band edges.

2.4. Test Procedure

The EUT was setup according to ANSI C63.10 and tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs.)

Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.

The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.

2.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.207: 2014

2.6. Uncertainty

The measurement uncertainty is defined as ± 2.26 dB.

2.7. Test Result

Site : SR3	Time : 2015/07/10 - 19:07
Limit : CISPR_B_00M_QP	Margin : 10
Probe : SR3_LISN(16A)-4_0811 - Line1	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n40_2437MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	
1		0.162	9.665	29.530	39.195	-26.180	65.375	QUASIPEAK
2		0.162	9.665	15.320	24.985	-30.390	55.375	AVERAGE
3		0.236	9.699	25.460	35.160	-27.078	62.238	QUASIPEAK
4		0.236	9.699	11.230	20.930	-31.308	52.238	AVERAGE
5		0.283	9.719	20.910	30.628	-30.104	60.733	QUASIPEAK
6		0.283	9.719	11.040	20.758	-29.974	50.733	AVERAGE
7		0.412	9.789	14.800	24.589	-33.025	57.614	QUASIPEAK
8		0.412	9.789	6.140	15.929	-31.685	47.614	AVERAGE
9		12.005	10.128	22.720	32.848	-27.152	60.000	QUASIPEAK
10		12.005	10.128	18.410	28.538	-21.462	50.000	AVERAGE
11		21.052	10.122	30.480	40.602	-19.398	60.000	QUASIPEAK
12	*	21.052	10.122	23.280	33.402	-16.598	50.000	AVERAGE

Note:

1. All Reading Levels are Quasi-Peak and average value.

2. " * ", means this data is the worst emission level.

3. Measurement Level = Reading Level + Correct Factor.

Site : SR3	Time : 2015/07/10 - 19:10
Limit : CISPR_B_00M_QP	Margin : 10
Probe : SR3_LISN(16A)-4_0811 - Line2	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n40_2437MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	
1		0.150	9.657	30.060	39.717	-26.283	66.000	QUASIPEAK
2		0.150	9.657	14.820	24.477	-31.523	56.000	AVERAGE
3		0.173	9.660	27.380	37.040	-27.754	64.794	QUASIPEAK
4		0.173	9.660	13.070	22.730	-32.064	54.794	AVERAGE
5		0.220	9.681	24.910	34.591	-28.216	62.807	QUASIPEAK
6		0.220	9.681	11.160	20.841	-31.966	52.807	AVERAGE
7		0.353	9.759	19.030	28.789	-30.099	58.889	QUASIPEAK
8		0.353	9.759	5.900	15.659	-33,229	48.889	AVERAGE
9		0.459	9.821	14.330	24.151	-32.567	56.718	QUASIPEAK
10		0 459	9 821	2 710	12 531	-34 187	46 718	AVERAGE
11		20 564	10.349	26.840	37 189	-22 811	60,000	
12	*	20.564	10.349	17.750	28.099	-21.901	50.000	AVERAGE

Note:

1. All Reading Levels are Quasi-Peak and average value.

- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

3. Peak Power Output

3.1. Test Equipment

The following test equipments are used during the test:

Peak Power Output / SR7

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Spectrum Analyzer	Agilent	N9010A-EXA	US47140172	2016/07/13

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

3.2. Test Setup

3.3. Test procedures

The EUT was tested according to DTS test procedure section 9.1.2 of KDB558074 v03r02 measurement to FCC 47CFR 15.247 requirements.

3.4. Limits

The maximum peak power shall be less 1 Watt.

3.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247: 2014

3.6. Uncertainty

The measurement uncertainty is defined as \pm 1.27 dB.

3.7. Test Result

Product	Full HD Ultra-Wide View Wi-Fi Camera		
Test Item	Peak Power Output		
Test Mode	Mode 1: Transmitter		
Date of Test	2015/07/10	Test Site	SR7

IEEE 802.11b, ANT 0									
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result					
1	2412	13.530	30	Pass					
6	2437	11.960	30	Pass					
11	2462	17.520	30	Pass					

The worst emission of data rate is 1Mbps.

	Peak Power Output (dBm)									
Channel	Frequency		Data Rate (Mbps)							
No	(MHz)	1	2	5.5	11	Limit				
1	2412	13.53				30dBm				
6	2437	11.96	11.86	11.62	11.51	30dBm				
11	2462	17.52				30dBm				

Note: Measure Level =Reading value + cable loss

<u>Channel 1</u>

🗊 Agilent Spec	trum Analyzer - C	hannel Power							
Center Fr	50 Ω eq 2.41200 Inp	00000 GHz ut: RF #IFGain	AC Ce Tri n:Low #At	SENSE:INT nter Freq; 2.4 g: Free Run ten: 30 dB	12000000 GHz Avg Hol Ext Gair	ALIGNAUTC d:> 100/100 n: -1.00 dB	Radio Sto Radio De	1 PM Jul 10, 2015 d: None vice: BTS	Freq / Channel
10 dB/div Log 10 -10 -20 -30 -40 -50	Ref 20 d								Center Freq 2.412000000 GHz
-70 Center 2.4 #Res BW	412 GHz 510 kHz			#VBW 1.	5 MHz		Spa Sweep	an 30 MHz 1.333 ms	CF Step 3.000000 MHz <u>Auto</u> Man
Msg i File <	13.53	dBm/ 1	4.2 MHz	For	-58	.00 dE	Sm/Hz		

<u>Channel 6</u>

D Agilent Spect	rum Analyzer -	Channel Pow	er							
Center Fre	eq 2.4370	00000 G put: RF #IF	iHz Gain:Low	Center F Center F Trig: Fre #Atten: 3	:NSE:INT req: 2.4370 e Run 0 dB	00000 GHz Avg Hold Ext Gain:	ALIGNAUTO :>100/100 -1.00 dB	11:18:05 Radio Sto Radio De	i PM Jul 10, 2015 I: None vice: BTS	Freq / Channel
10 dB/div Log 10 -10 -20 -30 -40 -50	Ref 20 (Center Freq 2.437000000 GHz
-60 -70 Center 2.4 #Res BW 3	37 GHz 510 kHz			#VE	3W 1.5 F	MHz		Spa Sweep	an 30 MHz 1.333 ms	CF Step 3.000000 MHz <u>Auto</u> Man
Channe	el Power 11.90	6 dBm	/ 14.15	ИНz	Powe	r Specti -59.	ral Den 55 dB	sity Im/Hz		
MSG							STATU	s		

D Agilent Spe	ctrum Analyzer - I	Channel Powe	r							
Center Fr	50 Ω req 2.4620 Inj	00000 GI put: RF #IFC	Hz Gain:Low	AC SE Center F Trig: Fre #Atten: 3	:NSE:INT req: 2.4620 e Run 0 dB	00000 GHz Avg Hold Ext Gain	ALIGNAUTO 4:>100/100 : -1.00 dB	11:21:39 Radio Sto Radio De	9 PM Jul 10, 2015 1: None vice: BTS	Freq / Channel
										Center Freq 2.462000000 GHz
-70 -70 Center 2. #Res BW	462 GHz 510 kHz			#VE	3W 1.5 I	MHz		Spa Sweep	an 30 MHz 1.333 ms	CF Step 3.000000 MHz <u>Auto</u> Man
Chanr	nel Power 17.52	2 dBm/	14.36	MHz	Powe	r Spect -54.	ral Den . 05 dE	sity 3m/Hz		
MSG							STATU	IS		

Product	Full HD Ultra-Wide View Wi-Fi Camera					
Test Item	Peak Power Output					
Test Mode	Mode 1: Transmitter					
Date of Test	2015/07/10	Test Site	SR7			

IEEE 802.11g, ANT 0									
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result					
1	2412	16.380	30	Pass					
6	2437	16.300	30	Pass					
11	2462	16.370	30	Pass					

The worst emission of data rate is 6 Mbps.

	Peak Power Output (dBm)									
Channel	Required									
No	(MHz)	6	12	18	24	36	48	54	Limit	
1	2412	16.38							30dBm	
6	2437	16.30	16.20	16.09	15.96	15.84	15.73	15.61	30dBm	
11	2462	16.37							30dBm	

Note: Measure Level =Reading value + cable loss

<u>Channel 1</u>

🗊 Agilent Spec	trum Analyzer - Channel	Power					
Center Fr	eq 2.41200000 Input: RF	AC O GHz #IFGain:Low	SENSE: Center Freq: Trig: Free Ru #Atten: 30 dB	1NT 2.412000000 GHz In Avg Ho I Ext Gai	ALIGNAUTO Id:>100/100 n: -1.00 dB	11:25:33 PM Jul 10, 201 Radio Std: None Radio Device: BTS	Freq / Channel
10 dB/div Log 10 -10 -20 -30 -30 -40 -50	Ref 20 dBm						Center Freq 2.412000000 GHz
-70 Center 2.4 #Res BW	412 GHz 510 kHz		#VBW	1.5 MHz		Span 30 MHz Sweep 1.333 ms	CF Step 3.000000 MHz <u>Auto</u> Man
Chann Msg i File <	PICTURE.PNG> sav	3m/ 17.06 N	P IHz	ower Spec -55	5.94 dB	sity sm/Hz	

<u>Channel 6</u>

🗊 Agilent Spec	ctrum Analyzer	- Channel Power					
Center Fr	req 2.437	000000 GH nput: RF #IFG	AC 12 Co Ti ain:Low 44	sense:INT enter Freq: 2.43 ig: Free Run istten: 30 dB	ALIGNAU 7000000 GHz Avg Hold:>100/10 Ext Gain: -1.00 dE	UTCO 11:29:00 PM Jul 10, 2015 Radio Std: None 0 3 Radio Device: BTS	Freq / Channel
10 dB/div Log 10 -10 -20 -30 -40 -50	Ref 20						Center Freq 2.437000000 GHz
-60 -70 Center 2. #Res BW	437 GHz 510 kHz			#VBW 1.5	MHz	Span 30.04 MHz Sweep 1.333 ms	CF Step 3.003517 MHz <u>Auto</u> Man
Chanr	nel Powe 16.3	r O dBm/	17.08 MH	Pow z	er Spectral De	ensity dBm/Hz	
MSG					ST	TUS	

🗊 Agilent Spec	strum Analyzer	- Channel Power							
Center Fr	eq 2.462	000000 GH Input: RF #IFGa	Z in:Low	SENSE:IN Center Freq: 2. (rig: Free Run Atten: 30 dB	T 462000000 GHz Avg Hol Ext Gair	ALIGNAUTO d:>100/100 n: -1.00 dB	11:32:42 Radio Std Radio Dev	PM Jul 10, 2015 : None vice: BTS	Freq / Channel
Log 10 -10 -20 -30 -40 -50							Mag		Center Freq 2.462000000 GHz
- ⁶⁰ -70 Center 2. #Res BW	462 GHz 510 kHz			#VBW 1	I.5 MHz		Span 3 Sweep	80.08 MHz 1.333 ms	CF Step 3.008090 MHz <u>Auto</u> Man
Chanr	16.3	er 97 dBm/*	17.1 MH	Po	wer Spect	tral Dens .96 dB	sity m/Hz		
Msg 🧼 File <	PICTURE.PI	NG> saved				STATU	5		

Product	Full HD Ultra-Wide View Wi-Fi Camera				
Test Item	Peak Power Output				
Test Mode	Mode 1: Transmitter				
Date of Test	2015/07/10	Test Site	SR7		

IEEE 802.11n (20MHz), ANT 0

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
1	2412	15.970	30	Pass
6	2437	16.200	30	Pass
11	2462	16.150	30	Pass

The worst emission of data rate is 6.5 Mbps.

	Peak Power Output (dBm)											
MCS Index 0 1 2 3 4 5 6 7									7	Demined		
Channel	Channel Frequency Data Rate											
No	(MHz)	6.5	13	19.5	26	39	52	58.5	65	Limit		
1	2412	15.97								30dBm		
6	2437	16.20	15.96	15.86	15.64	15.38	15.14	14.90	14.68	30dBm		
11	2462	16.15								30dBm		

Note: Measure Level =Reading value + cable loss

<u>Channel 1</u>

🗊 Agilent Spe	ctrum Analyzer - Cha	nnel Power						
Center Fr	50 Ω reg 2.412000 Input	000 GHz RF #IFGain:Low	AC SEN Center Fro Trig: Free #Atten: 30	se:INT eq: 2.412000000 Run Av dB Ex	GHz g Hold:>100/100 t Gain: -1.00 dB	11:37:54 Radio Std Radio Dev	PM Jul 10, 2015 I: None vice: BTS	Freq / Channel
10 dB/div Log 10 -10 -20 -30 -40 -50	Ref 20 dB	m				Jan		Center Freq 2.412000000 GHz
-70 -70 Center 2. #Res BW	412 GHz 510 kHz		#VB	W 1.5 MHz		Spa Sweep	in 30 MHz 1.333 ms	CF Step 3.000000 MHz <u>Auto</u> Man
Chanr	nel Power 15.97	dBm/ 17.95 l	WHz	Power Sp	bectral Den 56.57 de	sity 3m/Hz		
MSG					STATU)s		

<u>Channel 6</u>

D Agilent Spectrum Analyz	er - Channel Power				
Center Freq 2.43	37000000 GHz Input: RF #IFGain:Low	AC SENSE:INT Center Freq: 2.437 Trig: Free Run #Atten: 30 dB	ALIGNAUTO 7000000 GHz Avg Hold:> 100/100 Ext Gain: -1.00 dB	11:41:38 PM Jul 10, 2015 Radio Std: None Radio Device: BTS	Freq / Channel
Log 10 -10 -20 -30 -40 -50					Center Freq 2.437000000 GHz
-70 -70 Center 2.437 GHz #Res BW 510 kHz		#VBW 1.5	MHz	Span 30 MHz Sweep 1.333 ms	CF Step 3.000334 MHz <u>Auto</u> Man
Channel Pow 16.	/er 20 dBm/ 17.9	Pow 5 MHz	er Spectral Den -56.35 dE	sity 3m/Hz	
MSG 🤳 File < PICTURE	PNG> saved		STATU	s	

🗊 Agilent Spectrum Analyzer - Cha	nnel Power				
20 dB(diu Def 20 dB	000 GHz RF #IFGain:Low	C SENSE:INT Center Freq: 2.4620 Trig: Free Run #Atten: 30 dB	ALIGNAUTC 000000 GHz Avg Hold:>100/100 Ext Gain: -1.00 dB	11:45:06 PM Jul 10, 2015 Radio Std: None Radio Device: BTS	Freq / Channel
10 dB/div Ref 20 dB 10 10 -10 -20 -30 -40 -50	m				Center Freq 2.462000000 GHz
-60 -70 Center 2.462 GHz #Res BW 510 kHz		#VBW 1.5	MHz	Span 30 MHz Sweep 1.333 ms	CF Step 3.000334 MHz <u>Auto</u> Man
Channel Power 16.15	dBm/ 17.95 M	Powe	er Spectral Den -56.39 de	sity 3m/Hz	

Product	Full HD Ultra-Wide View Wi-Fi Camera					
Test Item	Peak Power Output					
Test Mode	Mode 1: Transmitter					
Date of Test	2015/07/10	Test Site	SR7			

IEEE 802.11n (40MHz), ANT 0

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
3	2422	13.690	30	Pass
6	2437	15.190	30	Pass
9	2452	14.600	30	Pass

The worst emission of data rate is 13.5 Mbps.

	Peak Power Output (dBm)											
MCS Index 0 1 2 3 4 5 6 7									7			
Channel	Channel Frequency Data Rate											
No	(MHz)	13.5	27	40.5	54	81	108	121.5	+135	Limit		
3	2422	13.69								30dBm		
6	2437	15.19	15.09	14.99	14.73	14.53	14.29	14.17	14.05	30dBm		
9	2452	14.60								30dBm		

Note: Measure Level =Reading value + cable loss

🗊 Agilent Spect	rum Analyzer	Channel Powe	r							
Center Fre	eq 2.4220	000000 Gi 1put: RF #IF(Hz Sain:Low	AC SE Center F Trig: Fre #Atten: 3	inse;int req: 2.4220 e Run 0 dB	000000 GHz Avg Holc Ext Gain	ALIGNAUTO 4:>100/100 : -1.00 dB	11:55:5 Radio Sto Radio De	1 PM Jul 10, 2015 d: None vice: BTS	Freq / Channel
-10 -20 -30 -50						**************************************		l		Center Freq 2.422000000 GHz
-60 -70 Center 2.4 #Res BW	22 GHz 510 kHz			#VI	3W 1.5 I	MHz		Sp: Sweep	an 60 MHz 1.333 ms	CF Step 6.000000 MHz <u>Auto</u> Man
Chann	el Power 13.6	r 9 dBm/	35.96	MHz	Powe	r Spect -61.	ral Dens 86 dB	sity m/Hz		
MSG 🤳 File <f< td=""><td>PICTURE.PN</td><td>IG> saved</td><td></td><td></td><td></td><td></td><td>STATUS</td><td>3</td><td></td><td></td></f<>	PICTURE.PN	IG> saved					STATUS	3		

🗊 Agilent Spect	trum Analyzer -	Channel Powe	r							
Center Fro	50 Ω eq 2.4370 Ir	100000 G iput: RF #IF0	AC HZ Gain:Low	Center F Trig: Fre #Atten: 3	:NSE:INT req: 2.437(e Run 0 dB	000000 GHz Avg Hold: Ext Gain:	ALIGNAUTO >100/100 -1.00 dB	11:52:14 Radio Sto Radio De	i PM Jul 10, 2015 I: None vice: BTS	Freq / Channel
10 dB/div Log 10 -10 -20 -30 -40	Ref 20	dBm								Center Freq 2.437000000 GHz
-70 -70 Center 2.4 #Res BW	37 GHz 510 kHz			#VE	3W 1.5 I	MHz		Span Sweep	60.07 MHz 1.333 ms	CF Step 6.007342 MHz <u>Auto</u> Man
Chann	el Power 15.1	9 dBm/	36 MHz		Powe	er Spectr -60.3	al Den 38 dB	sity Im/Hz		
MSG 🤳 File <	PICTURE.PN	G> saved					STATU	s		

🗊 Agilent Spec	strum Analyzer -	Channel Powe	r							
Center Fr	50.Ω eq 2.4520 Ir	100000 G iput: RF #IFO	HZ Gain:Low	Center Fr Trig: Free #Atten: 30	vse:INT eq: 2.4520 ≥ Run) dB	00000 GHz Avg Hold: Ext Gain:	ALIGNAUTO > 100/100 -1.00 dB	11:59:4 Radio St Radio De	0 PM Jul 10, 2015 d: None evice: BTS	Freq / Channel
10 dB/div Log 10	Ref 20						-	}		Center Freq 2.452000000 GHz
-20 -30 -40 -50 -60								han	and whether and a second and	
-70 Center 2.4 #Res BW	452 GHz 510 kHz			#VE	W 1.5 M	ЛНz		Sp Sweep	an 60 MHz 1.333 ms	CF Step 6.000000 MHz <u>Auto</u> Man
Chanr	nel Power 14.6	, OdBmi	35.96 N	1Hz	Powe	r Spectr -60.	al Den 96 dB	sity m/Hz		
MSG							STATU	s		

4. Radiated Emission

4.1. Test Equipment

The following test equipments are used during the test:

Radiated Emission / CB1

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Bilog Antenna	SCHAFFNER	CBL6112B	2895(CB1)	2015/08/14
Double Ridged	SCHAFFNER	BBHA 9120	D743	2016/01/26
Guide Horn Antenna				
Pre-Amplifier	EMCI	EMC0031835	980233	2016/01/18
Pre-Amplifier	QuieTek	AP-025C	CHM-0706049	2016/01/18
Spectrum Analyzer	Agilent	E4440A	MY46187335	2016/01/07
k Type Cable	Huber Suhner	Sucoflex 102	25623/2	2016/01/26

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

4.2. Test Setup

Under 1GHz Test Setup:

4.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209 Limits		
Frequency MHz	dBuV/m	dBuV/m
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

Remarks: E field strength (dBuV/m) = 20 log E field strength (uV/m)

4.4. Test Procedure

The EUT was setup according to ANSI C63.10 and tested according to DTS test procedure of KDB558074 v03r02 for compliance to FCC 47CFR 15.247 requirements.

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground(under 1GHz) or 1.5 meter above ground (above 1GHz). The turn table can rotate 360 degrees to determine the position of the maximum emission level.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10 on radiated measurement.

On any frequency or frequencies below or equal to 1000 MHz, the limits shown are based on measuring equipment employing a quasi-peak detector function and on any frequency or frequencies above 1000 MHz the radiated limits shown are based upon the use of measurement instrumentation employing an average detector function. When average radiated emission measurement are included emission measurement below 1000 MHz, there also is a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit. The bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

4.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247: 2014

4.6. Uncertainty

The measurement uncertainty $30MHz \sim 1GHz$ as $\pm 3.43dB$ $1GHz \sim 26.5Ghz$ as $\pm 3.65dB$
4.7. Test Result

30MHz-1GHz Spurious

Site : CB1	Time : 2015/07/10 – 00:30
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB1_FCC_EFS_30-1G-2_1011 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11b_2437MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	141.009	10.082	26.312	36.394	-7.106	43.500	QUASIPEAK
2		249.595	11.849	23.461	35.310	-10.690	46.000	QUASIPEAK
3		479.855	16.774	16.671	33.445	-12.555	46.000	QUASIPEAK
4		574.868	17.408	19.631	37.039	-8.961	46.000	QUASIPEAK
5		670.850	17.844	13.805	31.649	-14.351	46.000	QUASIPEAK
6		958.311	19.948	13.368	33.316	-12.684	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

Site : CB1	Time : 2015/07/10 - 00:35
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB1_FCC_EFS_30-1G-2_1011 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11b_2437MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	65.872	5.612	27.094	32.706	-7.294	40.000	QUASIPEAK
2		141.009	10.082	21.604	31.686	-11.814	43.500	QUASIPEAK
3		304.858	12.868	18.208	31.077	-14.923	46.000	QUASIPEAK
4		479.855	16.774	13.357	30.131	-15.869	46.000	QUASIPEAK
5		574.868	17.408	17.257	34.665	-11.335	46.000	QUASIPEAK
6		912.744	19.576	10.261	29.837	-16.163	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

Site : CB1	Time : 2015/07/10 - 01:53
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB1_FCC_EFS_30-1G-2_1011 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11g_2437MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	168.641	8.758	28.293	37.051	-6.449	43.500	QUASIPEAK
2		249.595	11.849	22.475	34.324	-11.676	46.000	QUASIPEAK
3		479.855	16.774	16.779	33.553	-12.447	46.000	QUASIPEAK
4		574.868	17.408	19.790	37.198	-8.802	46.000	QUASIPEAK
5		718.356	18.217	16.244	34.461	-11.539	46.000	QUASIPEAK
6		958.311	19.948	14.978	34.926	-11.074	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

Site : CB1	Time : 2015/07/10 – 00:40
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB1_FCC_EFS_30-1G-2_1011 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11g_2437MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	65.872	5.612	26.723	32.335	-7.665	40.000	QUASIPEAK
2		141.009	10.082	21.888	31.970	-11.530	43.500	QUASIPEAK
3		336.367	13.626	15.208	28.834	-17.166	46.000	QUASIPEAK
4		479.855	16.774	13.436	30.210	-15.790	46.000	QUASIPEAK
5		574.868	17.408	15.583	32.991	-13.009	46.000	QUASIPEAK
6		862.329	19.375	11.240	30.615	-15.385	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

Site : CB1	Time : 2015/07/10 – 00:50
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB1_FCC_EFS_30-1G-2_1011 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n20_2437MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	168.641	8.758	28.316	37.074	-6.426	43.500	QUASIPEAK
2		249.595	11.849	23.982	35.831	-10.169	46.000	QUASIPEAK
3		479.855	16.774	14.641	31.415	-14.585	46.000	QUASIPEAK
4		574.868	17.408	21.086	38.494	-7.506	46.000	QUASIPEAK
5		862.329	19.375	10.789	30.164	-15.836	46.000	QUASIPEAK
6		958.311	19.948	14.970	34.918	-11.082	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

Site : CB1	Time : 2015/07/10 - 00:55
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB1_FCC_EFS_30-1G-2_1011 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n20_2437MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	65.872	5.612	26.626	32.238	-7.762	40.000	QUASIPEAK
2		141.009	10.082	20.743	30.825	-12.675	43.500	QUASIPEAK
3		382.904	14.744	15.804	30.548	-15.452	46.000	QUASIPEAK
4		574.868	17.408	17.812	35.220	-10.780	46.000	QUASIPEAK
5		862.329	19.375	13.284	32.659	-13.341	46.000	QUASIPEAK
6		958.311	19.948	17.173	37.121	-8.879	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

Site : CB1	Time : 2015/07/10 - 01:00
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB1_FCC_EFS_30-1G-2_1011 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n40_2437MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		71.689	5.656	24.528	30.184	-9.816	40.000	QUASIPEAK
2	*	168.641	8.758	28.559	37.317	-6.183	43.500	QUASIPEAK
3		249.595	11.849	23.669	35.518	-10.482	46.000	QUASIPEAK
4		479.855	16.774	17.377	34.151	-11.849	46.000	QUASIPEAK
5		574.868	17.408	20.521	37.929	-8.071	46.000	QUASIPEAK
6		958.311	19.948	14.231	34.179	-11.821	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

Site : CB1	Time : 2015/07/10 - 01:05
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB1_FCC_EFS_30-1G-2_1011 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n40_2437MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	65.872	5.612	27.130	32.742	-7.258	40.000	QUASIPEAK
2		141.009	10.082	21.582	31.664	-11.836	43.500	QUASIPEAK
3		334.913	13.591	18.467	32.058	-13.942	46.000	QUASIPEAK
4		574.868	17.408	17.211	34.619	-11.381	46.000	QUASIPEAK
5		862.329	19.375	11.877	31.252	-14.748	46.000	QUASIPEAK
6		958.311	19.948	16.825	36.773	-9.227	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

Above 1GHz Spurious

Site : CB1	Time : 2015/07/09 - 19:13
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11b_2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4823.990	-7.036	62.364	55.328	-18.672	74.000	PEAK
2		7236.920	-0.772	51.623	50.852	-23.148	74.000	PEAK
3		9648.180	5.031	48.689	53.720	-20.280	74.000	PEAK
4		12057.290	8.356	39.255	47.612	-26.388	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 19:14
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11b_2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4824.040	-7.036	60.175	53.139	-0.861	54.000	AVERAGE
2		9648.090	5.031	44.737	49.768	-4.232	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 19:32
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11b_2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4824.000	-9.336	64.309	54.973	-19.027	74.000	PEAK
2	*	7237.020	0.180	54.998	55.178	-18.822	74.000	PEAK
3		9648.050	4.197	48.904	53.102	-20.898	74.000	PEAK
4		12058.060	8.103	39.474	47.577	-26.423	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 19:34
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11b_2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4824.000	-9.336	62.163	52.827	-1.173	54.000	AVERAGE
2		7235.220	0.176	50.650	50.825	-3.175	54.000	AVERAGE
3		9648.000	4.197	44.583	48.780	-5.220	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 19:40
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11b_2437MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4873.850	-6.975	62.169	55.194	-18.806	74.000	PEAK
2		7311.930	-0.602	50.130	49.528	-24.472	74.000	PEAK
3		9748.030	5.440	44.294	49.734	-24.266	74.000	PEAK
4		12158.900	8.363	39.107	47.470	-26.530	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 19:46
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11b_2437MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4874.030	-6.975	60.222	53.247	-0.753	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 19:52
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11b_2437MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4873.910	-9.071	62.314	53.243	-20.757	74.000	PEAK
2		7311.900	0.376	52.311	52.687	-21.313	74.000	PEAK
3		9747.910	4.652	44.879	49.530	-24.470	74.000	PEAK
4		12187.010	8.016	39.938	47.955	-26.045	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 19:54
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11b_2437MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4874.090	-9.070	60.144	51.074	-2.926	54.000	AVERAGE
2		7310.250	0.371	47.410	47.782	-6.218	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 – 20:07
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11b_2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4923.880	-6.913	60.531	53.618	-20.382	74.000	PEAK
2		7385.040	-0.435	50.854	50.419	-23.581	74.000	PEAK
3		9847.580	5.832	41.082	46.913	-27.087	74.000	PEAK
4		12300.870	8.346	39.160	47.506	-26.494	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 20:08
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11b_2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4924.090	-6.913	58.610	51.697	-2.303	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 20:14
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11b_2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4924.060	-8.804	62.489	53.684	-20.316	74.000	PEAK
2		7385.130	0.572	52.617	53.189	-20.811	74.000	PEAK
3		9848.090	5.091	42.520	47.611	-26.389	74.000	PEAK
4		12320.980	7.896	40.018	47.914	-26.086	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 20:16
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11b_2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4924.090	-8.804	60.927	52.123	-1.877	54.000	AVERAGE
2		7385.250	0.573	47.424	47.996	-6.004	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 20:21
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11g_2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4820.420	-7.041	66.653	59.612	-14.388	74.000	PEAK
2		7235.020	-0.775	58.456	57.681	-16.319	74.000	PEAK
3		9648.150	5.031	53.181	58.212	-15.788	74.000	PEAK
4		12038.220	8.355	38.966	47.320	-26.680	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 20:23
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11g_2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4822.080	-7.038	52.058	45.020	-8.980	54.000	AVERAGE
2		7238.440	-0.768	42.730	41.962	-12.038	54.000	AVERAGE
3	*	9648.000	5.030	41.002	46.032	-7.968	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 20:28
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11g_2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4820.370	-7.041	67.806	60.765	-13.235	74.000	PEAK
2		7237.620	0.182	62.008	62.189	-11.811	74.000	PEAK
3		9648.150	4.198	52.653	56.851	-17.149	74.000	PEAK
4		12060.780	8.100	39.978	48.079	-25.921	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 20:29
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11g_2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4822.050	-9.346	53.756	44.409	-9.591	54.000	AVERAGE
2	*	7238.220	0.183	46.562	46.745	-7.255	54.000	AVERAGE
3		9648.030	4.197	40.830	45.027	-8.973	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 20:36
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11g_2437MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4875.650	-6.973	61.202	54.229	-19.771	74.000	PEAK
2		7312.410	-0.601	52.147	51.547	-22.453	74.000	PEAK
3		9747.790	5.439	42.977	48.416	-25.584	74.000	PEAK
4		12160.310	8.363	39.525	47.888	-26.112	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 20:40
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11g_2437MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4871.900	-6.977	46.416	39.439	-14.561	54.000	AVERAGE
2		7313.550	-0.597	36.931	36.333	-17.667	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 20:50
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11g_2437MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4874.060	-9.070	62.433	53.363	-20.637	74.000	PEAK
2	*	7312.410	0.377	54.976	55.353	-18.647	74.000	PEAK
3		9748.000	4.652	43.916	48.568	-25.432	74.000	PEAK
4		12188.510	8.016	39.354	47.369	-26.631	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 20:52
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11g_2437MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4871.720	-9.082	47.330	38.247	-15.753	54.000	AVERAGE
2	*	7313.640	0.381	39.534	39.914	-14.086	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 20:59
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11g_2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4920.340	-6.918	60.147	53.229	-20.771	74.000	PEAK
2	*	7384.230	-0.437	53.857	53.420	-20.580	74.000	PEAK
3		9848.510	5.835	41.433	47.268	-26.732	74.000	PEAK
4		12315.700	8.342	39.154	47.496	-26.504	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 21:02
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11g_2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4921.960	-6.915	45.388	38.472	-15.528	54.000	AVERAGE
2		7388.550	-0.427	38.340	37.913	-16.087	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 21:10
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11g_2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4923.400	-8.808	62.602	53.794	-20.206	74.000	PEAK
2	*	7387.470	0.580	55.162	55.741	-18.259	74.000	PEAK
3		9848.120	5.092	41.974	47.065	-26.935	74.000	PEAK
4		12296.170	7.921	39.204	47.125	-26.875	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 21:12
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11g_2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4921.780	-8.817	47.944	39.127	-14.873	54.000	AVERAGE
2	*	7388.400	0.582	39.686	40.268	-13.732	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 21:18
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n20_2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4825.320	-7.035	67.204	60.169	-13.831	74.000	PEAK
2		7233.270	-0.779	57.020	56.241	-17.759	74.000	PEAK
3		9648.000	5.030	53.559	58.589	-15.411	74.000	PEAK
4		12057.480	8.356	38.689	47.046	-26.954	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 21:20
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n20_2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4824.120	-7.035	51.747	44.711	-9.289	54.000	AVERAGE
2		7235.850	-0.773	41.501	40.727	-13.273	54.000	AVERAGE
3	*	9648.030	5.030	39.956	44.987	-9.013	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 21:25
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n20_2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4825.440	-9.329	68.131	58.802	-15.198	74.000	PEAK
2	*	7242.690	0.194	61.965	62.160	-11.840	74.000	PEAK
3		9647.910	4.197	54.754	58.951	-15.049	74.000	PEAK
4		12065.160	8.099	38.670	46.768	-27.232	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 21:27
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n20_2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4824.000	-9.336	52.260	42.924	-11.076	54.000	AVERAGE
2	*	7235.670	0.176	45.690	45.866	-8.134	54.000	AVERAGE
3		9648.060	4.197	40.758	44.956	-9.044	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.
| Site : CB1 | Time : 2015/07/09 - 21:35 |
|--|---------------------------|
| Limit : FCC_SpartC_15.247_H_03M_PK | Margin : 6 |
| Probe : CB1_FCC_EFS_1-18G_H2 - HORIZONTAL | Power : AC 120V/60Hz |
| EUT : Full HD Ultra-Wide View Wi-Fi Camera | Note : 802.11n20_2437MHz |

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4874.990	-6.973	61.874	54.900	-19.100	74.000	PEAK
2		7316.160	-0.593	52.710	52.118	-21.882	74.000	PEAK
3		9747.970	5.440	43.762	49.201	-24.799	74.000	PEAK
4		12209.810	8.362	38.685	47.047	-26.953	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 21:38
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n20_2437MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4873.970	-6.975	45.648	38.673	-15.327	54.000	AVERAGE
2		7310.730	-0.604	36.540	35.936	-18.064	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 21:42
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n20_2437MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4875.050	-9.065	62.662	53.597	-20.403	74.000	PEAK
2	*	7306.950	0.362	55.589	55.952	-18.048	74.000	PEAK
3		9748.360	4.653	44.726	49.379	-24.621	74.000	PEAK
4		12199.610	8.007	39.058	47.065	-26.935	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 21:44
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n20_2437MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4873.580	-9.073	46.385	37.312	-16.688	54.000	AVERAGE
2	*	7310.850	0.373	38.381	38.754	-15.246	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 21:50
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n20_2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4922.470	-6.915	59.641	52.726	-21.274	74.000	PEAK
2	*	7386.150	-0.433	53.446	53.014	-20.986	74.000	PEAK
3		9837.300	5.790	40.424	46.215	-27.785	74.000	PEAK
4		12321.730	8.340	38.935	47.276	-26.724	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 21:52
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n20_2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4924.930	-6.912	43.432	36.520	-17.480	54.000	AVERAGE
2	*	7388.100	-0.428	36.970	36.542	-17.458	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 22:00
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n20_2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4922.530	-8.813	62.540	53.727	-20.273	74.000	PEAK
2	*	7386.510	0.576	55.472	56.048	-17.952	74.000	PEAK
3		9848.300	5.092	41.634	46.726	-27.274	74.000	PEAK
4		12314.440	7.903	39.823	47.726	-26.274	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 22:04
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n20_2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4925.020	-8.799	45.973	37.173	-16.827	54.000	AVERAGE
2	*	7388.490	0.582	38.081	38.663	-15.337	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 22:12
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n40_2422MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4844.780	-7.011	62.196	55.185	-18.815	74.000	PEAK
2		7271.700	-0.693	51.575	50.882	-23.118	74.000	PEAK
3		9688.240	5.200	47.204	52.405	-21.595	74.000	PEAK
4		12081.500	8.359	38.443	46.802	-27.198	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 22:14
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n40_2422MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4844.210	-7.011	46.217	39.206	-14.794	54.000	AVERAGE
2		7262.700	-0.713	37.503	36.790	-17.210	54.000	AVERAGE
3	*	9688.030	5.200	37.813	43.013	-10.987	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 22:20
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n40_2422MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4844.900	-9.225	63.759	54.534	-19.466	74.000	PEAK
2		7259.473	0.239	54.285	54.523	-19.477	74.000	PEAK
3		9688.090	4.385	47.159	51.544	-22.456	74.000	PEAK
4		12122.990	8.061	38.722	46.783	-27.217	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 22:24
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n40_2422MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4843.730	-9.232	47.190	37.959	-16.041	54.000	AVERAGE
2		7262.490	0.246	39.802	40.048	-13.952	54.000	AVERAGE
3	*	9687.970	4.384	37.763	42.148	-11.852	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 22:30
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n40_2437MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4873.250	-6.976	63.687	56.711	-17.289	74.000	PEAK
2		7306.770	-0.614	55.599	54.986	-19.014	74.000	PEAK
3		9747.640	5.439	45.864	51.302	-22.698	74.000	PEAK
4		12172.550	8.363	39.174	47.538	-26.462	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 22:34
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n40_2437MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4868.360	-6.982	45.697	38.715	-15.285	54.000	AVERAGE
2		7307.850	-0.610	38.496	37.885	-16.115	54.000	AVERAGE
3		9748.090	5.440	33.248	38.688	-15.312	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 22:41
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n40_2437MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4873.040	-9.075	64.384	55.308	-18.692	74.000	PEAK
2	*	7306.410	0.361	57.549	57.910	-16.090	74.000	PEAK
3		9747.970	4.652	46.830	51.481	-22.519	74.000	PEAK
4		12205.970	8.002	38.740	46.742	-27.258	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 22:44
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n40_2437MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4868.330	-9.101	46.324	37.223	-16.777	54.000	AVERAGE
2	*	7314.390	0.382	40.241	40.623	-13.377	54.000	AVERAGE
3		9748.000	4.652	35.607	40.259	-13.741	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 22:50
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n40_2452MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2108.190	-14.368	68.699	54.331	-19.669	74.000	PEAK
2	*	4904.780	-6.937	62.633	55.696	-18.304	74.000	PEAK
3		7343.070	-0.530	55.497	54.966	-19.034	74.000	PEAK
4		9807.640	5.674	45.836	51.510	-22.490	74.000	PEAK
5		12240.800	8.357	39.868	48.225	-25.775	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 22:55
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n40_2452MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2108.100	-14.368	42.343	27.975	-26.025	54.000	AVERAGE
2		4897.340	-6.946	44.654	37.708	-16.292	54.000	AVERAGE
3	*	7345.680	-0.525	38.234	37.709	-16.291	54.000	AVERAGE
4		9808.030	5.677	31.446	37.122	-16.878	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 23:02
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n40_2452MHz

		Frequency Correct Factor		Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4903.250	-8.915	65.256	56.341	-17.659	74.000	PEAK
2		6236.330	-3.186	50.065	46.879	-27.121	74.000	PEAK
3	*	7351.710	0.481	57.994	58.474	-15.526	74.000	PEAK
4		9808.000	4.916	43.667	48.582	-25.418	74.000	PEAK
5		12259.310	7.954	39.027	46.981	-27.019	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2015/07/09 - 23:08
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G_H2 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n40_2452MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4897.700	-8.945	46.687	37.742	-16.258	54.000	AVERAGE
2	*	7346.010	0.466	40.026	40.491	-13.509	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

5. **RF** antenna conducted test

5.1. Test Equipment

The following test equipments are used during the test:

RF antenna conducted test / SR7

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Spectrum Analyzer	Agilent	N9010A-EXA	US47140172	2016/07/13

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

5.2. Test Setup

RF Antenna Conducted Measurement:

ectrum Analyzer	
EUT	
Non-Conducted Table	2
	Non-Conducted Table

5.3. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on an RF conducted or radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.4. Test Procedure

The EUT was setup according to ANSI C63.10 and tested according to DTS test procedure section 11.2 of KDB558074 v03r02 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

5.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247: 2014

5.6. Uncertainty

Conducted is defined as ± 1.27dB

5.7. Test Result

Product	Full HD Ultra-Wide View Wi-Fi Camera							
Test Item	RF antenna conducted test							
Test Mode	Mode 1: Transmitter							
Date of Test	2015/07/11	Test Site	SR7					

IEEE 802.11b, ANT 0

Channel No	Frequency	Measure Level	Limit	Result								
Onamier No.	(MHz)	(dBc)	(dBc)	Result								
1	2412	45.608	≧30	Pass								
6	2437	53.094	≧30	Pass								
11	2462	58.070	≧30	Pass								

Channel 1 (2412MHz)

D Ag	ilent :	Speci	num	Analyzer	Swep	t SA										
Cer	L nter	Fre	50 Q	2.400	0000	000 G	Hz	AC	SE SE	NSE:INT	Avg	Туре	ALIGNAUTO : Log-Pwr	12:45:5 TF	57 AM JUL 11, 2015 RACE 1 2 3 4 5 6	Frequency
					nput: I	RF PI IFC	10: Fast Sain:Low	Ģ	* Trig: Fre #Atten: 3	e Run 0 dB	Avg Ext (Hold: Gain:	>100/100 -1.00 dB			Auto Tupe
10 c	B/div		Rei	20.00	dBn	n_							ΔIV	kr2 14	4.49 MHz 5.608 dB	
Log 10.0						- 1	1	1	1			.3)		Center Fred
0.00	í —	-				-					Marine Marine	why h			1	2.400000000 GH7
-10.0		_								1 pr	1	-Vay	ξ		26 TO 40-	A.3.74.7
-30.0	-	-	-					-	-0-0	1	-	-	1	-	-25.76 dbm	Start Freq 2.350000000 GHz
-40.0									MANS	V			howing			The second second
-60.0	-	underland and		and the state of the	himsense	مرية مومن _ا ين الم	adoption is the state	ur anna a	W**					With Million	*************	Stop Fred
-70.0																2.450000000 GHz
Cer #Re	nter Is B	2.4 W 1	000	0 GHz kHz			#V	BW :	300 kHz				Sweep 1	Span 0.0 ms	100.0 MHz (10001 pts)	CF Step
MKR	MODE	TRO	SCL			X	4.011-		Y	Peril	FUNCTION	I FUN	ICTION WIDTH	FUNC	TION VALUE	Auto Mar
2	Δ3 F	1	f	(Δ)		2.4115	9 MHz 2 GHz	(Δ)	4.245 d 45.608 41.363 d	dB Bm		-		-		
4																Freq Office 0 Hz
6									_							
9							_		_							
11 12																
MSG													STATUS			1

Channel 6 (2437MHz)

D A	ilent S	Spect	rum	Analyzer - Swept	SA									
Cei	nter	Fre	50 Q	2.4370000	00 GHz	4	C SE	Run	r	Avg Ty AvgIHo	ALIGNAUTO	01:01:16 TRA	CE 1 2 3 4 5 6	Frequency
10 (Input: RF PN0: Fast Ing.: Tee Run Argin tot, Tot tot tot Det P NNNN IFGain:Low #Atten: 30 dB Ext Gain: -1.00 dB Det P NNNNN ΔMkr2 44.98 MHz 53.094 dB 53.094 dB											Auto Tune		
Log 10,1 0,0				20.00 4011			и ринин	2∆3	 [Center Freq 2.437000000 GHz
-20.0 -30.0 -40.0									VY				-27,58 dBm	Start Freq 2.387000000 GHz
-50.0 -60.0 -70.0	-	**	m		man	₩V.				www	Wh	اربر الكرين أو رو المراجع المر المراجع المراجع		Stop Freq 2.487000000 GHz
Cei #Re	nter es B	2.4: W 1	370 00	0 GHz kHz	#\	/BW	300 kHz				Sweep 1	Span ′ 0.0 ms (′	100.0 MHz 10001 pts)	CF Step 10.000000 MHz
MKR 1	MODE		sou f	2	2.436 49 GHz		2.421 di	3m	FUNC	TION	FUNCTION WIDTH	FUNCT	ON VALUE	<u>Auto</u> Man
345678	Δ3 F Δ5 F	1 1 1	f f f	(Δ) (Δ) 2	44.98 MHz 2.391 51 GHz -49.21 MHz 2.485 70 GHz	(Δ) (Δ)	53.094 -50.674 df 55.205 -52.785 df	dB 3m dB 3m		4				Freq Offset 0 Hz
9 10 11 12														

Channel 11 (2462MHz)

	ilent :	Spec	num	Analyzer - Swept	SA								
Cei	nter	Fre	50 s eq	2.4835000	00 GHz	AC	SENSE	eint	Avg T	ALIGNAUTO	12:52:27 TRAC	AM Jul 11, 2015 E 1 2 3 4 5 6	Frequency
10 (Bidi		Re	Input: R	F PNO: Fas IFGain:Lov	t 😱 1 w #/	rig: Free R Atten: 30 di	un B	Ext G	ain: -1.00 dB ΔMI	(r2 -33. 58	99 MHz	Auto Tune
Log 10,1 0,0				المر	243								Center Freq 2.483500000 GHz
-20.0 -30.0 -40.0				mmy		1 mm	My has					21.89 dBm	Start Freq 2.433500000 GHz
-50.0 -60.0 -70.0)))	Warth.	1	· · ·			here	n Manaka Malan	.Xan	n an the Manual Station	atificial ^{ion} anuslin	talangantana stat	Stop Fred 2.533500000 GHz
Cei #Re	nter es B	2.4 W 1	835 00	0 GHz kHz	#\	/BW 30	0 kHz			Sweep 10	Span 1).0 ms (1	00.0 MHz 0001 pts)	CF Step
MKR 1	MODE	1 1	f f		2.461 49 GHz	(4)	Y 3.013 dBm		TION	FUNCTION WIDTH	FUNCTIO	IN VALUE	<u>Auto</u> Man
3 4 5 6 7 8 9 10	F	1	f		2.495 48 GHz	<u></u> -5(0.057 dBm	3					Freq Offset 0 Hz
11 12 MSG	_									STATUS			

Product	Full HD Ultra-Wide View Wi-Fi Camera							
Test Item	RF antenna conducted test							
Test Mode	Mode 1: Transmitter							
Date of Test	2015/07/11	Test Site	SR7					

IEEE 802.11g, ANT 0				
Channel No.	Frequency	Measure Level	Limit	Result
	(MHz)	(dBc)	(dBc)	
1	2412	33.924	≧30	Pass
6	2437	54.067	≧30	Pass
11	2462	51.024	≧30	Pass

Channel 1 (2412MHz)

	gilent	Spec	irum	Analyze	r - Swe	pt SA									
Ce	at nter	Fre	50 s eq	2.400	0000	000 0	GHz	AC	Si Tria: Fre	ENSE:INT	Avg	ALIGNAUTO Type: Log-Pwr Hold:> 100/100	12:47:17 TRA	7 AM Jul 11, 2015 ACE 1 2 3 4 5 6 YPE M WANDAMA	Frequency
10			Po	F 20.0	Input:		PNO: Fas FGain:Lo	k Laj	#Atten: 3	0 dB	Ext G	iain: -1.00 dB	Mkr2 13	.45 MHz	Auto Tune
10,0 10,1		V	Re	20.0						لللم	adustrating advalued	A3			Center Freq 2.400000000 GHz
-20.(-30.(-40.(Her Hannahord Street Stre	**		the management	the factor of the second se	-23.09 dBm	Start Freq 2.350000000 GHz
-50.(-60.(-70.()))	Linker,	, Interne	in the territy		*******	all and a second se							11	Stop Freq 2.450000000 GHz
Cei #Re	nter es B	2.4 W 1	000	0 GHz kHz	2		#\	/BW 3	00 kHz			Sweep	Span 10.0 ms (100.0 MHz 10001 pts)	CF Step 10.000000 MHz
MKR 1	MODE	1	f			X 2413	24 GHz		6 911 c	Bm	UNCTION	FUNCTION WIDT	H FUNCT	ION VALUE	<u>Auto</u> Man
23456	Δ3 F	1	f	(Δ)	-	13. 2.399	45 MHz 80 GHz	(Δ) -	33.924 26.948 d	Bm					Freq Offset 0 Hz
7 8 9 10 11 12															
MSG												STAT	us		

Channel 6 (2437MHz)

S0:2 AC SENEEINT ALCHANCE 12:59:48 AM M11,2015 Marker er 2 Δ 44.98000000 MHz Input: RF PR0: Fast U Trig: Free Run Avg Type: Log-Pur RRXE 1: 23:59:48 AM M11,2015 Marker input: RF PR0: Fast U Trig: Free Run Avg Type: Log-Pur RRXE 1: 23:59:48 AM M11, 2015 Marker input: RF PR0: Fast U Trig: Free Run Avg Type: Log-Pur RRXE 1: 23:59:48 AM M11, 2015 Marker idiv Ref 20.00 dBm 20.3 AMK12 44.98 MHz Select Marker 2 idiv Ref 20.00 dBm 20.3 AMK12 44.98 MHz Select Marker 2 idiv Ref 20.00 dBm 20.3 AMK12 44.98 MHz Select Marker 2 idiv Ref 20.00 dBm 20.43 AMK12 44.98 MHz Select Marker 2 idiv Ref 20.00 dBm 20.43 AMK14 44.98 MHz AMK14 44.98 MHz Select Marker 2 idiv Marker 20.43 Span 100.0 MHz Fixedb Fixedb Fixedb Fixedb Select Marker Select Marker	D Ag	ilent S	Spect	nur	Analyzer - S	Swept SA										
Input: RF PN0: Fast Ing: Free Run Avgindid>100/100 Performance Select Marker 2 Vdiv Ref 20.00 dBm 243 AMKr2 44.98 MHz Select Marker 2 Vdiv Ref 20.00 dBm 243 AMKr2 44.98 MHz Normal 2 Vdiv Ref 20.00 dBm 243 AMKr2 44.98 MHz Normal 2 Vdiv Ref 20.00 dBm 243 AMKr2 44.98 MHz Normal 2 Vdiv Ref 20.00 dBm 2007 dbm Delta 2007 dbm Delta Vdiv Ref 20.00 dHz Span 100.0 MHz Fixedb Fixedb Fixedb Fixedb Span 100.0 MHz Span 100.0 MHz Span 100.0 MHz Fixedb Off S1 1 f C(A) 4438 MHz (A) 56.916 dB Properties Properties Properties S1 1 f C(A) 448.833 dBm Start Start Start Start Properties S1 1 f C(A) 448.833 dBm Start Start Start Start Start	Mar	L ker	21	50 G	a 4.9800	00000 M	Hz	A	c i se	NSE:INT		Avg Typ	ALIGNAUTO e: Log-Pwr	12:59:4 TR/	B AM Jul 11, 2015 ACE 1 2 3 4 5 6	Marker
ΔMkr2 44.98 MHz 2' idiv Ref 20.00 dBm 2Δ3 1	1			2	jul	put: RF PI IFC	10: Fast Sain:Lov	, P	#Atten: 30	≥Run)dB		Avg Hold Ext Gain:	:>100/100 -1.00 dB			Select Marker
Image: Solution of the	10 d	B/div		Re	f 20.00 c	dBm				2			ΔN	/lkr2 44 54	.98 MHz 4.067 dB	2
Image: Span 100.0 MHz Span 100.0 MHz Fixed Start Start Start Start Start Start Start Start Start Start Start Start <	Log						1	1		▲2∆3						
Image: Section of the secti	0.00		1						And when had a feature	which had a for	4					Norma
Image: Section of the secti	-10.0			-					/	-						
Image: Non-Market in the second se	-20.0	-	_	+				m	/		1	la.		-	-23.07 dBm	
Image: State of the	-30.0	1	-	-			1 Martin Martin	Person -	1	-		THE				Delta
Fixed Properties State State Fixed Fixed Fixed Properties Properties Image: Set in the set of the set	-40.0	101		-			1				-	14	The Manual water	La start	W	
Err 2.43700 GHz Span 100.0 MHz Fixed BW 100 KHz #VBW 300 kHz Sweep 10.0 ms (10001 pts) Of 109 HRC SCL X Y FUNCTION FUNCTION FUNCTION width FUNCTION value Of 3 1 f (Δ) 44.98 MHz (Δ) 54.067 dB Of Of 3 1 f (Δ) 44.98 MHz (Δ) 56.918 dB Of Of 5 1 f (Δ) 47.11 MHz (Δ) 56.918 dB Of Of 1 f 2.485 36 GHz 48.833 dBm Of Of Of 1 f 2.485 36 GHz 48.833 dBm Of Of Of	-50.0	and great	- /A	O.t.	and the second second											· · · · · · · · · · · · · · · · · · ·
Er 2.43700 GHz Span 100.0 MHz BW 100 kHz #VBW 300 kHz Sweep 10.0 ms (10001 pts) IOE TRC SCL X Y FUNCTION FUNCTION width FUNCTION value N 1 f 2.438 28 GHz 6.930 dBm Got FUNCTION width FUNCTION value N 1 f 2.438 28 GHz 6.930 dBm Properties Of 3 1 f (Δ) 44.98 MHz (Δ) 54.067 dB Properties Properties 5 1 f (Δ) -46.982 dBm Properties Properties 1 f 2.485 36 GHz -48.833 dBm Properties More 1 1 f 2.485 36 GHz -48.833 dBm Properties	-60.0	1.5	£						1							Fixed
BW 100 kHz #VBW 300 kHz Sweep 10.0 ms (10001 pts) 009 HR0 S0U X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE N 1 f 2.438 28 GHz 6.930 dBm 6.930 dBm FUNCTION VALUE 3 1 f 2.438 28 GHz 6.930 dBm FUNCTION FUNCTION VALUE 3 1 f 2.393 27 GHz 46.982 dBm FUNCTION FUNCTION VALUE 5 1 f 2.486 36 GHz -48.833 dBm FUNCTION FUNCTION VALUE 1 f 2.486 36 GHz -48.833 dBm FUNCTION FUNCTION VALUE			2.4	070	0.00									Onen	100.0 0011-	
DEE TRC, SCL X Y FUNCTION FUNCTION wiDTH FUNCTION value N 1 f 2.438 28 GHz 6.930 dBm	#Re	s B	2.4. W 1	00	kHz	_	#V	BW	300 kHz	-			Sweep 1	0.0 ms (10001 pts)	Of
N 1 f 2.438 28 GHz 6.930 dBm	MKR	MODE	TRC	SCL		X			Y		FUNC	TION FL	INCTION WIDTH	FUNC	ION VALUE	
1 f 2.393 27 GHz -46.982 dBm	1	N A3	1	f	(A)	2.438 2	8 GHz 8 MHz		6.930 dl	Bm dB	-					
1 f (Δ) 47.11 MHz (Δ) 55.918 dB Properties - 1 f 2.485 36 GHz -48.833 dBm -	3	F	1	f		2.393 2	7 GHz		-46.982 dl	3m				1		
More 1 of 2	4	<u>Δ5</u> F	1	f	(Δ)	2,485 3	1 MHZ 6 GHZ	<u>(Δ)</u>	-48,833 di	dB 3m	_					Properties
More 1 of 2	6			-				· · · · · · · · · · · · · · · · · · ·						-		
Mon 1 of	8															1
1 of	9								_			1				Mor
	11									-	_					1 of 2
	12	-	_					-			-	-	la-man			

Channel 11 (2462MHz)

🗊 Ag	ilent S	Speci	mura	Analyzer - S	wept SA											
Cen	L Iter	Fre	eq	2.48350	00000 G	Hz	AC	ser	NSE:INT	r	Avg T AvgIH	ALI (ype: L	GNAUTO	01:03:5: TR/ T	2 AM Jul 11, 2015 ACE 1 2 3 4 5 6 YPE M WWWWWW	Frequency
			-	Inp	ut: RF Pr	10: Fast Jain:Low	* #/	Atten: 30) dB		Ext Ga	ain: -1.0	ΔM	kr2 -20	.45 MHz	Auto Tune
10 di Log 10.0 0.00	B/div		Rei	20.00 a	Bm	2 <u>0</u> 3										Center Fred 2.483500000 GH2
-10.0 -20.0 -30.0 -40.0				-			V. Marris	and a state of the							-27.91 dBm	Start Free 2.433500000 GH2
-50.0 -60.0 -70.0		and in the second					-		1844 A	milaura		******	1999 (n. 1999) 	**********	meliumeluaneatu	Stop Free 2.533500000 GH;
Cen #Re	iter : Is Bi	2.4: W 1	835 100	0 GHz kHz		#VE	3W 30)0 kHz	<u>.</u>			SW	/eep 1	Span 0.0 ms (100.0 MHz 10001 pts)	CF Step 10.000000 MH
MKR 1	MODE		f		× 2.463 2	4 GHz		Y 7.091 d	Bm	FUNC	TION	FUNCT	ION WIDTH	FUNCT	ION VALUE	<u>Auto</u> Mai
3 4 5 6	F F	1	f		2.483 6	9 GHz	<u>4</u> ;	51.024 3.933 df	Bm							Freq Offse 0 H
7 8 9 10 11																
MSG	_		-									_	STATUS			

Product	Full HD Ultra-Wide View Wi-Fi Camera						
Test Item	RF antenna conducted test						
Test Mode	Mode 1: Transmitter						
Date of Test	2015/07/11 Test Site SR7						

IEEE 802.11n (20MHz	z), ANT 0												
Channel No. Frequency Measure Level Limit Result													
	(MHz) (dBc) (dBc)												
1	2412	31.671	≧30	Pass									
6 2437 53.820 ≧30 Pa													
11 2462 47.398 ≧30 Pass													

Channel 1 (2412MHz)

D Ag	ilent :	Spect	rum	Analyzer -	Swept SA									
Cer	L nter	Fre	50 s eq	2.4000	000000	GHz		AC 9		Avg Ty	ALIGNAUTO pe: Log-Pwr d:> 100(100	12:49:00 TRA TY	CE 1 2 3 4 5 6	Frequency
10 d	B/div	v	Re	f 20.00	dBm	PNO: Fas IFGain:Lo	st L	#Atten:3	30 dB	Ext Gai	n: -1.00 dB ΔΝ	ikr2 14 31	.37 MHz .671 dB	Auto Tune
Log 10.0 0.00										€2∆3				Center Freq 2.400000000 GHz
-20.0 -30.0 -40.0								A MARINA MARINE			Wantingthing	Math. Watting	-22.83 dBm	Start Freq 2.350000000 GHz
-50.0 -60.0 -70.0	Kalay ya	H. H. W.	ptom	alaantiiskin		1.4.4.5 pr							Alad and a state of the state o	Stop Freq 2.45000000 GHz
Cen #Re	ter s B	2.4 W 1	000	0 GHz kHz		#\	VBW	300 kH	z	1	Sweep 1	Span ′ 0.0 ms (1	100.0 MHz 10001 pts)	CF Step 10.000000 MHz
MKR 1 2	MODE N	1	f		× 2.41	13 26 GHz		7.171 (31.67	dBm 1 dB	FUNCTION	UNCTION WIDTH	FUNCT	ON VALUE	<u>Auto</u> Man
3 4 5 6 7 8 9 10 11	F	1	f		2.39	889 GH2		-24.499 (iBm					Freq Offset 0 Hz
MSG	-	-	-								STATUS			

Channel 6 (2437MHz)

10 A	gilent	Speci	ามกา	Analyzer -	Swept SA										
Ce	aL nter	Fre	50 s eq	2.4370	00000 GI	Hz	A	C SE	NSE:INT	Av	g Type	ALIGNAUTO	12:57:43 TRA	CE 1 2 3 4 5 6	Frequency
10	Bidi		Rei	In 7 20 00 1	put: RF PI IFC	NO: Fast Sain:Lov	Ŷ	#Atten: 30) dB	Ext	Gain:	-1.00 dB -1.00 dB	1kr2 44 53	13 MHz	Auto Tune
Log 10, 0,0				20.00				militaturitatu	●2∆3 	lary					Center Fred 2.437000000 GH:
-20.) -30.) -40.))))		//			art of the second second	NUM	/		Mitanya	No.	Withmen.		-23.25 dBm	Start Free 2.387000000 GH
-50.) -60.) -70.)) 	de que de la		alayinin takin de								and a second second	لى مەرىپىيە يەرىپىيە يەرىپىلىكى يەرىپىلىكى يەرىپىلىكى يەرىپىلىكى يەرىپىلىكى يەرىپىلىكى يەرىپىلىكى يەرىپىلىكى يە يەرىپىلىكى يەرىپىلىكى يەرىپىلىكى يەرىپىلىكى يەرىپىلىكى يەرىپىلىكى يەرىپىلىكى يەرىپىلىكى يەرىپىلىكى يەرىپىلىكى يە يەرىپىلىكى يەرىپىلىكى يەرىپىلىكى يەرىپىلىكى يەرىپىلىكى يەرىپىلىكى يەرىپىلىكى يەرىپىلىكى يەرىپىلىكى يەرىپىلىكى يە	X	Stop Free 2.487000000 GH
Cei #R	nter es B	2.4 W 1	370 00	0 GHz kHz		#V	'BW	300 kHz				Sweep 1	Span ′ 0.0 ms (1	100.0 MHz 10001 pts)	CF Ster 10.000000 MH
MKR 1	MODE N	1	f	(0)	2.438 2	3 GHz	(A)	6.754 d	Bm JR	UNCTION	de a foi	NCTION WIDTH	FUNCT	ON VALUE	<u>Auto</u> Mar
3 4 5 6 7	Δ5 F	1 1 1	f f f	(Δ) (Δ)	44.1 2.394 1 -47.4 2.485 7	3 GHz 7 MHz 3 GHz	<u>(Δ)</u>	<u>-46.713 dl</u> 56.171 -49.064 dl	dB 3m dB 3m						Freq Offse 0 H:
8 9 10 11 12															
MSG												STATUS	5		

Channel 11 (2462MHz)

D Ag	ilent S	Spect	num	Analyzer -	Swept SA									
Cer	nter	Fre	50 Q 99	2.4835	00000 G	Hz	AC SE	NSE:INT	rl	Avg Typ	ALIGNAUTO e: Log-Pwr d:>100/100	12:50:07 TRA TY	AM Jul 11, 2015 CE 1 2 3 4 5 6 PE M WAAAAAAA	Frequency
10 c	Bidis		Re	f 20.00		10: Fast 🔾 Jain:Low	#Atten: 30	0 dB		Ext Gain	1.00 dΒ ΔΜ	kr2 -20. 47	33 MHz	Auto Tune
Log 10.0 0.00				20.00	- Andre Labord and any pr	2A3								Center Freq 2.483500000 GHz
-20.0 -30.0 -40.0			power and	Alter Manual Mark			Watthewine and the	×3.					-22,99 dDm	Start Freq 2.433500000 GHz
-50.0 -60.0 -70.0									linter the second	<u>personal sectors and a</u>				Stop Fred 2.533500000 GH;
Cer #Re	nter : s Bi	2.43 W 1	835 100	0 GHz kHz		#VB	W 300 kHz	-			Sweep 1	Span 1 0.0 ms (1	00.0 MHz 0001 pts)	CF Step 10.000000 MH;
MKR	MODE N		f	(0)	× 2.463 2	4 GHz	7.010 d	Bm	FUNC:	TION	UNCTION WIDTH	FUNCT	ON VALUE	<u>Auto</u> Mar
345678	F	1	f		2.483 5		47,396 40,388 di	Bm						Freq Offset 0 Hz
9 10 11 12									_		STATUS			

Product	Full HD Ultra-Wide View Wi-Fi Camera						
Test Item	RF antenna conducted test						
Test Mode	Mode 1: Transmitter						
Date of Test	2015/07/11 Test Site SR7						

IEEE 802.11n (40MHz	z), ANT 0												
Channel No.	Channel No.Frequency (MHz)Measure Level (dBc)Limit (dBc)Result												
3	2422	34.944	≧30	Pass									
6	2437	39.986	≧30	Pass									
9 2452 39.254 ≧30 Pass													

Channel 3 (2422MHz)

	ilent	Spec	trum	Analyzer -	Swept SA								
Cei	nter	Fre	50 s eq	2.4000	00000 G	Hz	AC S		Avg T	ALIGNAUTO	12:36:14 TRAC	AM Jul 11, 2015 E 1 2 3 4 5 6	Frequency
				in;	put: RF P	NO: Fast Gain:Low	#Atten:	30 dB	Ext Ga	in: -1.00 dΒ ΔΜ	kr2 26.	24 MHz	Auto Tune
10 c Log 10.0		V	Re	1 20.00 0				البليار	Judalarahalar	2A3	halallu		Center Freq 2.400000000 GHz
-10.0 -20.0 -30.0						1.46.	- Alingtonia dutted			V		-28.17 dBm	Start Freq 2.350000000 GHz
-50.0 -60.0 -70.0)))	wased.		edan territori	an provident and the								Stop Freq 2.450000000 GHz
Cer #Re	nter es B	2.4 W 1	000	0 GHz kHz		#VE	300 KH	z		Sweep 10	Span 1).0 ms (1	00.0 MHz 0001 pts)	CF Step 10.000000 MHz
MKR 1	MODE	1	i sci		× 2 /2/ /	9 CH2	1 826	Bm	UNCTION	FUNCTION WIDTH	FUNCTIO	IN VALUE	<u>Auto</u> Man
23456	Δ3 F	1	f	(Δ)	26.2	4 MHz (5 GHz	∆) 34.94 -33.118 (4 dB dBm					Freq Offset 0 Hz
7 8 9 10 11													
MSG			-	L.		- 4				STATUS			

Channel 6 (2437MHz)

D Ag	ilent	Speci	rum	Analyzer -	Swept SA									
Cer	nter	Fre	50 eq	2.4370	00000 GI	Hz	1	AC SE	NSE:INT	Avg Typ	ALIGNAUTO e: Log-Pwr	12:55:50 TRAC	AM Jul 11, 2015 E 1 2 3 4 5 6 E M WAARAANAA	Frequency
		_		Inj	IFG	iO: Fasi iain:Lov	w	#Atten: 30) dB	Ext Gain	-1.00 dΒ ΔΜΙ	kr4 -49.	99 MHz	Auto Tune
10 d Log	B/di	V	Re	f 20.00 (dBm	1.			A.C.	1	1	51	.220 UB	
10.0 0.00	1 1 1					Autort	بلبابل	what te la balance		which has		¢		Center Freq 2.437000000 GHz
-10.0	L.	_			· · · · · ·	1								
-30.0	-		-		Window .	/					Manual		-26.67 dBm	Start Freq
-40.0	undelto	white the	Marine	A MARCHINAN	Land Mitching at the	i i	1				and the production of the prod	anti-thereased alternation	Muthanita	2.387000000 GHz
-60.0 -70.0														Stop Freq 2.487000000 GHz
Cer #Re	nter es B	2.4 W 1	370	0 GHz kHz		#V	/BW	300 kHz		- 6	Sweep 1	Span 1 0.0 ms (1	00.0 MHz 0001 pts)	CF Step
MKR	MODE	TRC) SCL		×			Y	FUN	CTION F	INCTION WIDTH	FUNCTI	IN VALUE	Auto Man
1	<u>Ν</u> Δ3	1	f	(Δ)	2.434 50	0 GHz 1 MHz	(Δ)	3.326 dl 39.986	Bm dB		-	-		
345	F <u> Δ5</u> F	1 1 1	f f	(Δ)	2.399 49 -49.99 2.484 49	9 GHz 9 MHz 9 GHz	(Δ)	-36.660 df 51.226 -47.900 df	3m dB 3m					Freq Offset 0 Hz
6 7 8														
9 10 11										*				
MSG	-	-	A				L			-	STATUS			

Channel 9 (2452MHz)

Agilent	Spect	rum	Analyzer -	Swept	SA												
RL		50	Ω I		Tr		A	C SE	NSE:INT			AL	IGN AUTO	12:54	14 AM 1	Jul 11, 2015	Frequency
Center Freq 2.483500000 GHz					Tria: Free	Tria: Free Dup		Avg Type: Log-Pwr Avg Hold:>100(100			TRACE 123456		23456	riequency			
Input: RF PNO: Fast 🖵 IFGain:Low						#Atten: 30) dB	Ext Gain:		in: -1.0	00 dB		DET	NNNNN	1.13.127		
dB/di	v	Re	f 20.00	dBm		10						1	ΔM	kr2 -3	5.04 39.2	MHz 54 dB	Auto Tune
'g			. 2/	13	5.70				1			11					1.0000
3,0			•	10	-	1				*				-			Center Fred
.00		-	perlisted at	-	the hole	LUIT	-			-					_		2.483500000 GHz
	Belladin . an		V		UK T UNDER	An An Children and	h			_						_	NUCLEON FLORE LESS CONT
20				-		1	1									-	
J.U				1.1		1										-26.97 dBm	Start Free
J.O							W	Marley und	W/.					11			2 433500000 GH
<u></u>		\rightarrow						a and the first sector when	ABALL	1	-	-	_			-	2.40000000 011
- 01									an office	THEFT	America			1.		in	
						12	12					and the first				(hotelphine)	Ston Free
10																	a contractor of
1.0	_										-						2.533500000 GH
enter	2.4	835	0 GHz	-								-		Spar	n 100	.0 MHz	CESter
tes B	W 1	00	kHz			#V	BW	300 KHZ	-			SN	eep 1	0.0 ms	(100	01 pts)	10.000000 MH
R MODE	TRC	SCL		×				Y	-	FUNCT	ION	FUNCT	ION WIDTH	FUN	ICTION V	ALUE	Auto Mar
1 N	1	f	143	2	.449 49	9 GHz		3.029 dl	Bm					-	-		1
3 E	1	F	<u>(Δ)</u>	2	-35.02	3 GHZ	(Δ)	-36 225 df	an a			_		-			- Charles Codes
4					.404 00	5 GI 12		-00.220 ui	2111		101						Freq Offse
5		_											-				OH
5	_									_	-						
8																	
9	-													-			
0	-	-							_	-			-				
2													-				
1											10	_	Lenen				

D Agilent Spectrum Analyzer - Swep	it SA		,		
(X RL 50Ω	A	SENSE:INT	ALIGNAUTO	01:26:15 AM Jul 11, 2015	Frequency
Start Freq 30.000000 Input:	RF PNO: Fast 😱 IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Hold>10/10 Ext Gain: -1.00 dB	TYPE MWWWWWW DET P N N N N N	
10 dB/div Ref 20.00 dBr	1 560.711 MHz -53.300 dBm	Auto Tune			
Log					Center Fred
10.0					515.00000 MHz
					11.242011412.001
0.00					01-15-1
		1 1			30 000000 MHz
-10.0					30.000000 Mil 12
-20.0					in the second
				-25.76 dBm	Stop Fred
-30.0					1,00000000 GH2
6-2 · · · · · · · · · · · · · · · · · · ·					CE Stop
-40.0					97.000000 MHz
-50.0		1	· · · · · · · · · · · · · · · · · · ·		<u>Auto</u> Man
المتعاطية المتعادة المتقدمين فالمراجع والمتعادين والمتعادين	Marine de destado	as an addition of a standy line to	Lally , want hat its has some as before the	وروجه فالدو فالاحداء فلار أنفذ ومرافل والمانا والاتراء	
-60.0 And the second se	Lances, a. J. Sa. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	n han an an a' shari ka di di ta birni da min parti ya k	and the second		Freq Offset
-543					0 Hz
-70.0					
	- 1. i - 1.	1.22			1
Start 30.0 MHz #Res BW 100 kHz	#VBW	300 kHz	Sween 9	Stop 1.0000 GHz 3.3 ms (40001 pts)	
MSG			STATUS		
17 B			divide		

2412MHz (30MHz-1GHz)-802.11b(ANT 0)

🖡 Agilent Spectrum Analyzer - Swept Si 01:25:09 AM Jul 11, 2015 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N R1 SENSE:INT Frequency Start Freq 1.000000000 GHz Avg Type: Log-Pwr Avg|Hold>10/10 Ext Gain: -1.00 dB Trig: Free Run #Atten: 30 dB PNO: Fast 😱 IFGain:Low Auto Tune Mkr1 6.398 925 GHz -50.297 dBm 10 dB/div Ref 20.00 dBm Center Freq 10.0 4.500000000 GHz 0.00 Start Freq 1.000000000 GHz -10.0 -20.0 Stop Freq -25.76 dBr 8.000000000 GHz -30.0 CF Step 700.000000 MHz <u>uto</u> Man -40.0 ♦1 Auto -50.0 LUCK WA **Freq Offset** -60.0 0 Hz -70.0 Start 1.000 GHz Stop 8.000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 669 ms (40001 pts) STATUS MSG

2412MHz (1GHz-8GHz) -802.11b(ANT 0)

M Agilent Spect	um Analyzer	- Swept SA	á.			,					
(M RL	50 Q		1.0	AC SEI	NSE:INT		ALIGN AUTO	01:24:03	AM Jul 11, 2015	Erequerey	
Start Freq	8.00000	00000	GHz	Toio: Fue	Due	Avg Typ	e: Log-Pwr	TRAC	E 123456	Frequency	
		Input: RF	PNO: Fast 🖵 IFGain:Low	#Atten: 30	dB	Ext Gain:	-1.00 dB	Di	PNNNNN	1.53.271	
10 dB/div	Ref 20.00	dBm					Mk	r1 15.079 -49.9	8 GHz 14 dBm	Auto I une	
Log			1							La solução a	
				1.000						Center Freq	
10,0							1	-		12.000000000 GHz	
0.00											
10111		111	=	1000						Start Freq	
-10.0	-	-		-			-	-		8.00000000 GHz	
	1100			1101			1				
-20.0	-							-		Stop Freq	
						1			-25.76 dBm	16.00000000 GHz	
-30.0						1				A CONTRACTOR	
-40.0						_				CF Step	
										800.000000 MHz	
-50.0	-		11 14 14 14		-				data fact for	<u>Auto</u> Man	
ومتقاله والدمون بلاء	المرودا ومناعله أماد	And Inc. of Lot	مارس بارياط المع الماليين المعارفية ي	andonikalia	والمحدد المعدودية	and the second second second	Lafteraulution				
-60.0 And Analy (11 and	The Party of the P	- Instantial	Transfer of the second second	International Contractory on a	diversion of the second second	Construction of the	Late of high starts	A III		Freq Offset	
			· · · · · · · · ·	1		1 A A		_		0 Hz	
-70.0	-	-		-				-			
	1			1.1.1	-						
Start 8.000	GHz			10000		-11-		Stop 16	.000 GHz		
#Res BW 1	00 kHz		#VBW	300 kHz			Sweep	765 ms (4	0001 pts)		
MSG							STATU)s			

2412MHz (8GHz-16GHz)-802.11b(ANT 0)

2412MHz (16GHz-25GHz) -802.11b(ANT 0)

Agilent Spectru	m Analyzer - Sv	vept SA								
Start Freq	ດລ 16.000000	0000 GH		C SEI] Trig: Free	Run	Avg Type Avg Hold:	ALIGNAUTO : Log-Pwr >10/10	01:22:52 TRAC TY	AM Jul 11, 2015 E 1 2 3 4 5 6 PE MWWWWWW	Frequency
	Input: RF PNO: Fast IFGain:Low					#Atten: 30 dB Ext Gain: -1.00 d				Auto Tune
10 dB/div R	ef 20.00 di	Зm		_			alon C.	-43.2	22 dBm	
10.0						1				Center Fred
10:0										20.500000000 GHz
0.00		$i \equiv i$	1 - 1	127						Start Freq
-10.0				-						16.00000000 GHz
-20.0										Stop Freq
-30.0				-					-25.76 abm	25.000000000 GHz
-40.0									1	CF Step
					al a chuidean	ورو الله المحمد الحر	المعدور لتتقرقا روروا	munuladurante	s Lillable Stars	900.000000 MHz Auto Mar
-50.0	and the second	and a second	linge versiten spanet	Manager States	and in the second state	a and the second se	and the party of t	and the state of the	And a state of the	
-60.0										Freq Offsel 0 Hz
-70.0										
Start 16 000	CHa			~				Stop 25	000 CH2	-
#Res BW 10	0 kHz		#VBW	300 kHz			Sweep 8	361 ms (4	0001 pts)	
MSG	_						STATUS	1	_	

Agilent Spectrum Analyzer - Swe	ept SA		,					
RL 50Ω	A	SENSE:INT	ALIGNAUTO	01:27:54 AM Jul 11, 2015	Frequency			
Start Freq 30.000000	MHZ RF PNO: Fast 🖵 IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold:>10/10 Ext Gain: -1.00 dB	TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P N N N N N	riequency			
Mkr1 712.104 MHz 10 dB/div Ref 20.00 dBm -53.436 dBm								
-og					Contro Free			
10.0					S15 000000 MH			
10.0					515.000000 WH2			
0.00								
					Start Free			
-10.0					30.000000 MHz			
20.0				1				
200				17 59 vBm	Stop Freq			
-30.0		-	-		1.000000000 GHz			
		· · · · · · · · · · · · · · · · · · ·			05.01			
-40.0				1 · · · · · · · · · · · · · · · · · · ·	97.000000 MHz			
50.0			1		<u>Auto</u> Man			
the second seconds	and a sufficient to the state of the	a La constant de la c	1	helious aparticles, presidentioner efforte se				
-60.0		and the second set of the part of the second set of the second set of the second set of the second set of the second	and the second se		Freq Offset			
					0 Hz			
-70.0								
		1			1			
Start 30.0 MHz #Res BW 100 kHz	#VBW	300 kHz	Sweep 9	Stop 1.0000 GHz 3.3 ms (40001 pts)				
ISG			STATUS		0			

2437MHz (30MHz-1GHz)-802.11b(ANT 0)

2437MHz (1GHz-8GHz) -802.11b(ANT 0)

RL SOR AC SENSEINT ALIGNATIO DIBUSIAN MULT, 2015 Frequency Start Freq 1.0000000 GHZ Trig: Free Run AvgHold>10/0 AvgHold>10/0 <td< th=""><th>🗖 Agilent Spectrum A</th><th>nalyzer - Swept SA</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	🗖 Agilent Spectrum A	nalyzer - Swept SA								
Input: RF PNO: Fast IFGain:Low Trg: Free Run #Atten: 30 dB Avgl/folds/10/10 Ext Gain: -1.00 dB Avgl/folds/10/10 Ext Gain: -1.00 dB Auto Tun 10 dB/div Ref 20.00 dBm Center Free -49.280 dBm Center Free 4.500000000 GH -00	Start Freq 1.0	00000000 0	GHz		ISE:INT	Avg Type:	Log-Pwr	01:28:31. TRAC	AM Jul 11, 2015 E 1 2 3 4 5 6	Frequency
Mkr1 6.234 250 GHz -49.280 dBm Auto Tun 10.0 -49.280 dBm -49.280 dBm -45.00000000 GH 10.0 -49.280 dBm -45.00000000 GH -45.00000000 GH 10.0 -49.280 dBm -45.00000000 GH -45.00000000 GH 10.0 -49.280 dBm -45.00000000 GH -45.00000000 GH 10.0 -40.0 -49.280 dBm -45.00000000 GH 10.0 -40.0 -40.0 -40.0 -40.0 40.0 -40.0 -40.0 -40.0 -40.0 -40.0 40.0 -40.0		Input: RF	PNO: Fast 😱 IFGain:Low	#Atten: 30	dB	Ext Gain: -	10/10 1.00 dB	DE		121/27
Out Center Fre 10.0	10 dB/div Ref	20.00 dBm	100				Mkr1	6.234 2 -49.2	50 GHz 80 dBm	Auto Tune
100 4.50000000 GH 100 1 <td></td> <td></td> <td>1.1.1</td> <td>$\{ -, -, -\}$</td> <td></td> <td>-1</td> <td>-</td> <td></td> <td></td> <td>Center Freq</td>			1.1.1	$\{ -, -, -\}$		-1	-			Center Freq
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	10.0								-	4.500000000 GHz
10.0 Start Fre 20.0 Stop Fre 30.0 -27.86 dem 40.0 -27.86 dem 40.0 -27.86 dem 40.0 -27.86 dem 40.0 -27.86 dem 50.0 -27.86 dem 40.0 -27.86 dem 50.0 -27.86 dem 40.0 -27.86 dem 50.0 -27.86 dem 50.0 -27.86 dem 60.0 -27.86 dem <	0.00							-		Oto at Face
200 300 300 400 500 400 500 400 500 400 500 400 500 400 500 5	-10.0									1.000000000 GHz
30.0 -27.58 dbm 8.000000000 GH 40.0 -27.58 dbm 9.00000000 GH 40.0 -1 -1 40.0 -1	-20.0									Stop Freq
40.0 Image: state of the st	-30.0						_		-27.58 dBm	8.000000000 GHz
500 1 700.000000 MH 600 Maxwellen with the first state of the st	-40.0									CF Step
 4.00 <li< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>_∮¹</td><td></td><td></td><td>700.000000 MHz <u>Auto</u> Mar</td></li<>							_ ∮ ¹			700.000000 MHz <u>Auto</u> Mar
	-50.0	المعادية والمعالية المعادية	and a state of the state of	car and called	والم المتعلم والمعالية	المربيط بالمراجع بمقاول	ويدأد والمادينات	with blints and	and dates with Later U.S.	
70.0	-60.0 Hitempire automation	and the second secon	and the second s	an barahahan dan dan dan dari karan dari kar Manan dari karan dari ka	Party and a second s	and the desired of the	a di anglista di an		^{and} Malana and Joseph	Freq Offsel
	-70.0									
Start 1.000 GHz Stop 8.000 GHz	Start 1.000 GHz	2	#\/D\M	200 645			Suson 6	Stop 8	.000 GHz	1
	MSG	.112	#0000	JUO KHZ	_		status	03 115 (4	ooor pisj	

M Agilent Spectr	um Analyzer - Swept S	L.				
Start Freq	50 Ω 8.000000000	GHz	C SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr AvgiHold:>10(10	01:30:10 AM Jul 11, 2015 TRACE 1 2 3 4 5 6 TYPE MUMARAMAN	Frequency
10 dB/div	Ref 20.00 dBm	IFGain:Low	#Atten: 30 dB	Ext Gain: -1.00 dB	_{рет} р NNNNN 1 15.260 4 GHz -49.531 dBm	Auto Tune
10.0						Center Freq 12.000000000 GHz
0.00						Start Freq 8.000000000 GHz
-20.0					-27.58 dBm	Stop Freq 16.00000000 GHz
-40.0					↓ ↓ ¹	CF Step 800.000000 MHz <u>Auto</u> Man
-60.0	an dailan tikka an tikka dan methodak dari kan barang dari kan dari kan dari kan dari kan dari kan dari kan da An dari kan d	Hiteland water franzen beter	nie, 15 koloniul kalenda, indeninalij			Freq Offset 0 Hz
-70.0 Start 8.000 #Res BW 10	GHz 00 kHz	#VBW	300 kHz	Sween	Stop 16.000 GĤz	
MSG	10.0017			STATU	is	

2437MHz (8GHz-16GHz)-802.11b(ANT 0)

2437MHz (16GHz-25GHz) -802.11b(ANT 0)

🗊 Agilent Spectrum Analyzer - Swept SA									
1 / RL 50 Ω	A	SENSEIINT	ALIGNAUTO	01:31:10 AM Jul 11, 2015	Frequency				
Start Freq 16.000000000 Input: RF	GHz PNO: Fast 😱 IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold:>10/10 Ext Gain: -1.00 dB	TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P N N N N N	Frequency				
10 dB/div Ref 20.00 dBm	Mkr1 24.946 000 GHz dB/div Ref 20.00 dBm -42.348 dBm								
10.0					Center Freq 20.500000000 GHz				
-10.0					Start Freq 16.000000000 GHz				
-20.0				-27.58 dBm	Stop Freq 25.00000000 GHz				
-40.0		of transformed by the second	ur ander statisticer une autorizatione autorization	In start for the first start for the start of the	CF Step 900.000000 MHz Auto Man				
-60.0	and the second	Allerands of full states of the states of th	abelet zeren li promonikanis bela jara da jar	A Monte of Long .	Freq Offset 0 Hz				
-70.0 Start 16.000 GHz #Res BW 100 kHz	#VBW	300 kHz	Sweep 8	Stop 25.000 GHz 361 ms (40001 pts)					
MSG			STATUS		0				

DAgilent Spectrum Analyzer - Swept	54		· · · ·						
ທີ RL 50 Ω Start Freq 30.000000 M	Hz A	SENSE:	INT	ALIGNAUTO	01:45:27 AM Jul 11, 20 TRACE 1 2 3 4 5	Frequency			
Input: Ri	F PNO: Fast 🖵 IFGain:Low	#Atten: 30 dE	an Avgji B Ext G	Hold:>10/10 Bain: -1.00 dB	DET P N N N N	N.			
Mkr1 719.719 MHz 10 dB/div Ref 20.00 dBm -53.504 dBm									
Log	. f. 1 . f	1		1		Center Freq			
10,0						515.000000 MHz			
0.00			_						
-10.0						Start Freq 30.000000 MHz			
-20.0					-21.89 uE	Ston Fred			
-30.0						1.000000000 GHz			
-40.0						CF Step			
-50.0				1		97.000000 MHz Auto Man			
led own the two is own at the case to the bold is that	المناعدية المسمولية المسال	Laster designation	Charles to to be all	anticelly citized all	Sumplement of a lake the				
-60.0	ang Maladora ang kana ang ang ang ang ang ang ang ang ang	in the second state of the second state of the second second second second second second second second second s	ani njaratarangaranja ju	dur bereiter fan digener	a ala matanga na ata ang ang ang ang ang ang ang ang ang an	Freq Offset			
-70.0									
Start 30.0 MHz	#1/PM	200 64-2		Swoon (Stop 1.0000 GH	z			
MSG	#vBW	300 KM2		Sweep 9	s a ms (40001 pt)	•)			

2462MHz (30MHz-1GHz)-802.11b(ANT 0)

2462MHz (1GHz-8GHz) -802.11b(ANT 0)

D Agilent Spec	trum Analyzer - Sv	vept SA								
Start Free	50 Ω 1.0000000	000 GHz	AC	SENS	E:INT	Avg Type	ALIGNAUTO	01:45:03 TRA	AM Jul 11, 2015 CE 1 2 3 4 5 6	Frequency
	Inpu	ut: RF PNO: I IFGain:	Fast 🖵 i Low	#Atten: 30 o	dB	Ext Gain:	-1.00 dB	0		
10 dB/div	Ref 20.00 di	Bm					Mkr1	6.643 4 -49.9	100 GHz 13 dBm	Auto Tune
Log		1	. 1	1			-			Center Freq
10.0										4.500000000 GHz
0.00	-		_							Start Eron
-10.0	-		_							1.000000000 GHz
-20.0									-21.89 dBm	P
-30.0										Stop Freq 8.000000000 GHz
	11111									CE Sten
-40.0							12.0	1		700.000000 MHz Auto Man
-50.0	فالمعادلة والمادية	ata Maria Jahar Maria	ulus		والمتحد والمتحد	her of station blood as	an or differently a	Interior Interior	bishting the solution of	
-60.0	des anterior de	and the second	a state		and a parameter	and	and related it is	Beer Lawrence and Prints	a saliana dia alia	Freq Offset
-70.0	_								-	0 112
			-							
Start 1.000 #Res BW 1) GHz 100 kHz		#VBW 3	00 kHz		3	Sweep	Stop 8 669 ms (4	3.000 GHz 0001 pts)	
MSG							STATU	s		

MAgilent Spectr	um Analyzer - Swept	SA	•					
IN RL	50 Q	4	C SEN	ISE:INT		ALIGN AUTO	01:44:09 AM Jul 11, 2015	Frequency
Start Freq	8.000000000) GHz	Tria Free	Dup	Avg Type	e: Log-Pwr ⊳10/10	TRACE 1 2 3 4 5 6	Frequency
1.	Input: R	IF PNO: Fast	#Atten: 30	dB	Ext Gain:	-1.00 dB	DET P NNNN	1.00.000
10 dB/div	Ref 20.00 dBm	1				Mkr1	15.251 2 GHz -49.763 dBm	Auto Tune
Log			· · · · · · ·		1			1 Decomore of
			1					Center Freq
10,0					1			12.00000000 GHz
0.00			1.1.1		11.			
0.00				-				Start Freq
10.0								8.00000000 GHz
-10.0								Manual Ol
-20.0							01-00-JD	A second the little in
20.0					1		-21,03 ubiii	Stop Freq
-30.0								16.00000000 GHz
			a					-
-40.0				_	-			CF Step
							A1	800.000000 MHz
-50.0					140	L. Service M	a transfer of the	Auto Man
فالنظاف ومرونا بال	ومباريته المحافظة والمعهم المعالم والد	والمرجود والمستشاده والمترج والتقافية	dial the hele warmin	Khi and the state	the addres had an of the	of the second seco	abelle bears and a second s	
-60.0 Magnet Party	along the state of the state	attintition or when an an	A BRAILLAND	and the second second second	and the state of t	and a head of such a	and the second	Freq Offset
			1.1.1		1.1			0 Hz
-70.0					-			
Start 8 000	GHz						Stop 16 000 GHz	
#Res BW 1	00 kHz	#VBW	300 kHz			Sweep 7	65 ms (40001 pts)	
MSG						STATUS		

2462MHz (8GHz-16GHz)-802.11b(ANT 0)

2462MHz (16GHz-25GHz) -802.11b(ANT 0)

DAgilent Spectrum	n Analyzer - Swept S <i>i</i>								
(X RL 50	Ω	A	SENSE	INT		ALIGNAUTO	01:42:33 /	M Jul 11, 2015	Frequency
Start Freq 1	6.000000000 Input: RF	GHZ PNO: Fast C IFGain:Low	Trig: Free Ru #Atten: 30 dB	un B	Avg Hold: Ext Gain:	-1.00 dB	TYP	= 1 2 3 4 5 6 E M WAAAAA T P N N N N N	· · · · · · · · · · · · · · · · · · ·
10 dB/div Re	ef 20.00 dBm					Mkr1 24	4.949 8 -42.04	25 GHz 12 dBm	Auto Tune
10.0			11						Center Freq 20.500000000 GHz
-10.0									Start Fred 16.00000000 GHz
-20.0								-21.89 dBm	Stop Freq 25.00000000 GHz
-40.0				والمراقبة والمراقب	ورابية أراوليهم وقالي ويسر	e za tera wali dara ^{ti} ra	u (J. kunhusatela	The sale and the sale of the s	CF Step 900.000000 MHz <u>Auto</u> Mar
-60.0		Lanary, problem (2000, 100, 100, 100, 100, 100, 100, 100,	A (for a time to set of the pass)	and the second secon		an Dalenaire (Freq Offsel 0 Hz
-70.0									
Start 16.000 (#Res BW 100	GHz) kHz	#VBW	300 kHz			Sweep 8	Stôp 25. 61 ms (4)	000 GHz 0001 pts)	
MSG						STATUS			-

DAgilent Spectrum Analyzer - Swept S	Á:		, ,					
(M RL 50Ω	AC	SENSE:INT	ALIGNAUTO	01:17:03 AM Jul 11, 20:	Frequency			
Start Freq 30.000000 MH Input RF	IZ PNO: Fast Trig: Fi IFGain:Low #Atten:	ree Run 30 dB	Avg Type: Log-Pwr Avg Hold:>10/10 Ext Gain: -1.00 dB	TYPE MWWWWW DET P N N N N	N N			
Mkr1 844.679 MHz 10 dB/div Ref 20.00 dBm -52.535 dBm								
Log					0			
10.0					Center Freq			
					515.00000 WH2			
0.00		-						
	- f., it f., it f	-			Start Freq			
-10.0					30.000000 MHz			
-20.0								
				-23.09 dB	Stop Freq			
-30.0		-			1.000000000 GHz			
 Peter II - 1918 		-						
-40.0					97.000000 MHz			
-50.0				i -	Auto Man			
- 56.0	a a a a a a a a a a a a a a a a a a a	ik er bei en trasterer het	atral andrewsky is not drawling	ورواريا اللاريان والمحمد ومارورها الم				
-60.0	ald for a second second second second second pro- rest in the second s	and a state of the s	a na binna a na an an ann an an an an an an an	l Management (A) and a star a star a star a star a star a star a st	Freq Offset 0 Hz			
-70.0								
Start 30.0 MHz #Res BW 100 kHz	#VBW 300 kH	lz	Sweep	Stop 1.0000 GH 93.3 ms (40001 pts	z			
MSG		<u> </u>	STATI	JS	<u>.</u>			

2412MHz (30MHz-1GHz)-802.11g(ANT 0)

🖡 Agilent Spectrum Analyzer – Swept Si 01:16:23 AM Jul 11, 2015 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N R1 SENSE:INT Frequency Start Freq 1.000000000 GHz Avg Type: Log-Pwr Avg|Hold>10/10 Ext Gain: -1.00 dB Trig: Free Run #Atten: 30 dB PNO: Fast 😱 IFGain:Low Auto Tune Mkr1 2.633 275 GHz -50.280 dBm 10 dB/div Ref 20.00 dBm Center Freq 10.0 4.500000000 GHz 0.00 Start Freq 1.000000000 GHz -10.0 -20.0 -23.09 dBr Stop Freq 8.000000000 GHz -30.0 CF Step 700.000000 MHz <u>uto</u> Man -40.0 **∮**[¶] Auto -50.0 **Freq Offset** -60.0 0 Hz -70.0 Start 1.000 GHz Stop 8.000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 669 ms (40001 pts) STATUS MSG

2412MHz (1GHz-8GHz) -802.11g(ANT 0)

M Agilent Spect	rum Analyzer - S	wept SA							
UM RL	50 2			AC SE	NSE:INT		ALIGN AUTO	01:15:12 AM Jul 11, 201	Freductor
Start Freq	8.000000	000 G	iHz	Total Fax	Due	Avg Typ	e: Log-Pwr	TRACE 1 2 3 4 5	Frequency
	Inp	ut: RF	PNO: Fast G	#Atten: 30	dB	Ext Gain	: -1.00 dB	DET P NNNN	N I I I I I I I I I I I I I I I I I I I
10 dB/div	Ref 20.00 d	Bm					Mk	r1 15.245 2 GHz -50.146 dBm	
Log			1					1	1 Sections of
			11 11 11 11	1.000					Center Freq
10,0									12.000000000 GHz
0.00									
0.00									Start Freq
-10.0									8.00000000 GHz
16.5				1.101					<u>10</u>
-20.0			4					_23.09 dBr	
									16 00000000 CHT
-30.0	-					-			10.00000000 0112
				1.000					0.5.0
-40.0			-			-		5	CF Step
100				L	-				Auto Man
-50.0	and the second second	المراد ، ا		the constale	al day on all the lit	al an a maile	h Annala Miles	Alahoun an in a second by alt & distance	
50 D	and the second secon		and the second secon	a fine a second de la seconda d	hal to manual to the	Land Hartson Mar	. League Distriction of	a a line being a the fille of a second second filler	Freg Offset
oolo in pilete									0 Hz
-70.0			-					1 P	1
01000 0 000	011-	-	1.	*				Oten 46 000 OU	
#Res BW 1	GHZ 00 kHz		#VBM	300 kHz			Sweep	765 ms (40001 pts	
MSG	An marks						STAT	US .	

2412MHz (8GHz-16GHz)-802.11g(ANT 0)

2412MHz (16GHz-25GHz) -802.11g(ANT 0)

🗊 Agilent Spectrum Analyzer - Swep	et SA				
(X RL 50 Ω	Ad	SENSE:INT	ALIGNAUTO	01:14:11 AM Jul 11, 2015	Frequency
Start Freq 16.0000000 Input I	00 GHz RF PNO: Fast 😱 IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold>10/10 Ext Gain: -1.00 dB	TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P N N N N N	Trequency
10 dB/div Ref 20.00 dBn	n		Mkr1 2	4.911 800 GHz -42.995 dBm	Auto Tune
10,0					Center Fred 20.500000000 GH:
-10.0					Start Fred 16.00000000 GH:
-20.0				-23,09 dBm	Stop Free 25.000000000 GH
-40.0			والمستقدمة المستقدم والمستقدم المستعد والمستعد	in a second prior of the second	CF Step 900.000000 MH: Auto Mar
-60.0	and a second	and assessed at 1994 and 1997 and 1997 and 1997 and 1997	- for description of the state	and the dispersion of the second s	Freq Offse 0 H:
-70.0				Stop 25.000 GHz	
#Res BW 100 kHz	#VBW	300 kHz	Sweep 8	861 ms (40001 pts)	
MSG STATUS					

	,	•		,		•		Swept SA	ım Analyzer	lent Spectri	🗊 Agil
Frequency	2 AM Jul 11, 2015	01:18:0	ALIGN AUTO	A	ENSE:INT	c s	A		50 Ω		RL RL
1.00	ACE 1 2 3 4 5 6 YPE MWWWWWW DET P N N N N N	T	e: Log-Pwr >10/10 -1.00 dB	Avg Typ Avg Hol Ext Gair	ee Run 30 dB	Trig: Fre #Atten: 3	NO: Fast 😱 Gain:Low	OO MHZ nput: RF P IF	30.0000	t Freq	Star
Auto Tun	659 MHz 657 dBm	r1 936. -53.6	Mkr					dBm	lef 20.00	3/div F	10 dE
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		1	-			1		1100		11	Log
Center Fred			1								10.0
515.000000 MHz											10,0
											0.00
Start Freq							$\sim - 1$	1			
30.000000 MHz	-				-			-	-	-	-10.0
Stop Fred	-23.07 dBm				_					-	-20.0
1.000000000 GHz							1 1 1 1	11111111		1.1	30.0
											-30.0
CF Step						-		-	_		-40.0
97.000000 MHz											
Auto Man			-	-		-				1	-50.0
Transie Cale	فالباسماناليه	al pilot, ou at the	الخارانيين وعاريهما		بالاسارة أعاد الحلاليات	مع المد وروالية			المتعقر المعراني	Lines La deriver	1.14
FreqOffset	Sumplement of the second se	er and a support	the all the state of the	and the second se		and and ships	and the second secon	and all the desired of the second	and had a second	. Handerselferend	-60.0
0 H2				1.1	1.2.1			1111	1.1	1.1.1	70.0
				1.22	12	$\tau = -\tau$				11.1	-70.0
			1			1	1. 2. 1.				
	.0000 GHz 40001 pts)	Stop 1 3.3 ms (Sweep 9:		z	300 kHz	#VBW		Hz 0 kHz	t 30.0 M s BW 10	Star #Res
		s	STATUS								MSG

2437MHz (30MHz-1GHz)-802.11g(ANT 0)

2437MHz (1GHz-8GHz) -802.11g(ANT 0)

🗊 Agilent Spectrum Analyzer - Swe	ot SA							
Start Freq 1.00000000	0 GHz		ALIGNAUTO Avg Type: Log-Pwr	01:18:57 AM Jul 11, 2015 TRACE 1 2 3 4 5 6	Frequency			
Input:	RF PNO: Fast 😱 IFGain:Low	#Atten: 30 dB	Ext Gain: -1.00 dB	DET P NNNN	Auto Tuno			
10 dB/div Ref 20.00 dBm49.388 dBm								
Log	11111		- 1 - 1		Center Free			
10.0					4.500000000 GHz			
0.00					Object Free			
-10.0					1.000000000 GHz			
-20.0				-23.07 dBm	Stop Free			
-30.0					8.00000000 GH			
-40.0					CF Step			
					700.000000 MH: <u>Auto</u> Mar			
-50.0	Hulla Landerschiedung	بالمساهما وروه الامارين أرور و	and different from the state of a particular of	And all the Lot of the local data in the				
-60.0 Approximate the second s	The second s	An and the second s	te and the second second	and the second se	Freq Offse 0 Hi			
-70.0								
Start 1.000 GHz #Res BW 100 kHz	#VBW	300 kHz	Sweep 6	Stop 8.000 GHz 69 ms (40001 pts)				
MSG			STATUS					

I Agilent Spectrum Analyzer - Swe	ept SA	•				
(XIRL 50Ω	4	C SENSE:	NT	ALIGNAUTO	01:21:07 AM Jul 11, 2015	English
Start Freq 8.00000000 GHz Input: RF PNO: Fast I IFGain:Low		Trig: Free Rui #Atten: 30 dB	Avg Tyj n Avg Hol Ext Gair	be: Log-Pwr d:>10/10 h: -1.00 dB	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
10 dB/div Ref 20.00 dB	m			Mkr	1 15.193 2 GHz -49.722 dBm	Auto Tune
Log						Carlo Carlos
10.0						Center Freq
10,0						12.000000000 GHz
0.00						
						Start Freq
-10.0						8.00000000 GHz
-20.0					· · · · · · · · · · · · · · · · · · ·	h mark the Table
				-	-23.07 dBm	Stop Freq
-30.0			_	-		16.000000000 GHz
10.0		1		1		CE Sten
-40.0					1	800.000000 MHz
-50.0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				<u>Auto</u> Man
ومراجع والمراجع والمراجع المحاولة والمحاط المحاوي والمحاول	and the busides in the second	A CALLER AND A CAL	And the state of the		Provide a long the solution of the	
-60.0	and the second	ALL STORE AND A LOSS OF	er til fallet			Freq Offset
						0 Hz
-70.0						
						1 100
Start 8.000 GHz	#\/P\//	300 642		Sween 7	Stop 16.000 GHz	1.0
#RC3 DW 100 KHZ	#VDVV	JUU KHZ		sweep /	05 ms (40001 pts)	
MSG				STATUS	6	

2437MHz (8GHz-16GHz)-802.11g(ANT 0)

2437MHz (16GHz-25GHz) -802.11g(ANT 0)

(X RL 50Ω	AC	SENSE:INT	ALIGNAUTO	01:21:59 AM Jul 11, 2015	Frequency
Start Freq 16.000000000 G	HZ PNO: Fast 😱 FGain:Low	Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold:>10/10 Ext Gain: -1.00 dB	TYPE MWWWWWW DET P N N N N N	· · · · · · · · · · · · · · · · · · ·
10 dB/div Ref 20.00 dBm	Auto Tune				
10.0					Center Fred 20.500000000 GHz
-10.0					Start Fred 16.00000000 GH;
-20.0				-23.07 dBm	Stop Free 25.000000000 GH;
-40.0	nistro e i subare e u	the second se	5 Januari 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (la hanyillari anay milani siya siya	CF Step 900.000000 MH: Auto Mar
-60.0	11 M M M M M M M M M M M M M M M M M M	ta ta seconda da la seconda da seconda da seconda da seconda da la seconda da seconda da seconda da seconda da	Manuel e. S. al a second Helica Second S		Freq Offse 0 Hi
-70.0				Stop 25.000 GHz	
#Res BW 100 kHz	#VBW 3	SOO KHZ	Sweep :	861 ms (40001 pts)	

🐻 Agilent Spectrum Analyzer - Swept	SA		,	- ,		
(M RL 50 Ω	A	SENSE:INT		01:10:42 AM Jul 11, 2015	Frequency	
Start Freq 30.000000 Mi	PNO: Fast CP IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Hold>10/10 Ext Gain: -1.00 dB	TYPE MWWWWWW DET P N N N N N	1.12.12.1	
Mkr1 479.983 MHz 10 dB/div Ref 20.00 dBm -50.915 dBm -						
Log					Center Fred	
10.0					515 000000 MHz	
		di sen di la da		1 min 1	1	
0.00					01-15-01	
	- 1	1 f			Start Fred	
-10.0 -					30.000000 MH2	
-20.0					and the local sectors in the	
		1		-27.91 dBm	Stop Fred	
-30.0					1.00000000 GH2	
					CEStor	
-40.0		1.4		in the second se	97.000000 MHz	
-50.0		• ¹	1.1		<u>Auto</u> Mar	
el Jates er hverker hverket storettimenskerk, uter de bilde andere	للمربعة فأفقر وراجع والمعادية	المروابية والعاملية الأمينية أبؤهر ومطريها	an provide a state of the large term to the provident state	ومرياسة والانتخاب ومريانات ومراس		
-60.0	and an a part of the same plant is the same	and the second	e (tall and a strate (tal) a service a service strate a strate strate a strate strate a strate strate strate s		Freq Offset	
	1.		1 - 1		0 Hz	
-70.0						
the second se	1.1.	1			1 100	
Start 30.0 MHz #Res BW 100 kHz	#VBW	300 kHz	Sweep 9	Stop 1.0000 GHz 3.3 ms (40001 pts)		
MSG		100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	STATUS			

2462MHz (30MHz-1GHz)- 802.11g(ANT 0)

🖡 Agilent Spectrum Analyzer - Swept Si 01:11:56 AM Jul 11, 2015 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N RI SENSE:INT Frequency Avg Type: Log-Pwr Avg|Hold:>10/10 Ext Gain: -1.00 dB Start Freq 1.000000000 GHz Trig: Free Run #Atten: 30 dB Input: RF PNO: Fast 😱 IFGain:Low Mkr1 3.320 150 GHz -49.849 dBm Auto Tune 10 dB/div Ref 20.00 dBm Center Freq 10.0 4.500000000 GHz 0.00 Start Freq 1.000000000 GHz -10.0 -20.0 Stop Freq -27.91 dBr 8.000000000 GHz -30.0 CF Step 700.000000 MHz <u>ito</u> Man -40.0 41 Auto -50.0 **Freq Offset** -60.0 0 Hz -70.0 Start 1.000 GHz Stop 8.000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 669 ms (40001 pts) MSG JFile <PICTURE.PNG> saved STATUS

2462MHz (1GHz-8GHz) -802.11g(ANT 0)

Magilent Spectrum Analyzer - S	Swept SA		and the second second		
M RL 50Ω Start Freq 8.000000	000 GHz	AC SENSE INT	ALIGNAUTO Avg Type: Log-Pwr AvgHold⇒10(10	01:12:37 AM Jul 11, 2015 TRACE 1 2 3 4 5 6 TYPE M MANANAN	Frequency
10 dB/div Ref 20.00 c	IBm	#Atten: 30 dB	Ext Gain: -1.00 dB	DET P NNNNN 15.085 6 GHz -49.986 dBm	Auto Tune
10.0					Center Freq 12.000000000 GHz
-10.0					Start Freq 8.000000000 GHz
-20.0				-27.91 dBm	Stop Freq 16.00000000 GHz
-40.0				↓1	CF Step 800.000000 MHz <u>Auto</u> Man
-60.0 and the state of the stat	lang dipantan distriktisk & falsky systemist Ingening and the system of provident states and a	ed and help and an end of the second s	lah berang di pertangkan kanang pertangkan pertangkan kanangkan kanangkan kanangkan kanangkan kanangkan kanangk Kanangkan kanangkan ka	anifert for an and a set of and an an an an an	Freq Offset 0 Hz
-70.0 Start 8.000 GHz #Res BW 100 kHz	#VBV	V 300 kHz	Sweep 7	Stop 16.000 GHz 65 ms (40001 pts)	1
MSG		<u> </u>	STATUS	·····	

2462MHz (8GHz-16GHz) -802.11g(ANT 0)

2462MHz (16GHz-25GHz) -802.11g(ANT 0)

M Agilent Spectrum Analyzer - Swe	ept SA							
Start Freq 16.000000	000 GHz	C SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr AvglHold⇒10/10	01:13:14 AM Jul 11, 2015 TRACE 1 2 3 4 5 6 TYPE MWWWWWW	Frequency			
Input	IFGain:Low	#Atten: 30 dB	Ext Gain: -1.00 dB	DET P NNNNN	Auto Tuno			
10 dB/div Ref 20.00 dB	Mkr1 24.730 900 GHz -41.018 dBm -41.018 dBm							
10.0					Center Free 20.500000000 GH2			
.00					Start Fred 16.00000000 GH			
-20.0				-27,91 dBm	Stop Fred 25.00000000 GH			
-40.0			المراجع المتقطع والرجاري والانعد أرط الانتقا	م الم الم الم الم الم الم الم الم الم ال	CF Step 900.000000 MH <u>Auto</u> Mar			
-60.0			lanter an ann an tha bar a sa th' sa th' sa the sa		Freq Offse 0 H:			
-70.0								
Start 16.000 GHz #Res BW 100 kHz	#VBW	300 kHz	Sweep 8	Stop 25.000 GHz				
MSG			STATUS					

M Agilent Spect	rum Analyzer - S	iwept SA	(·,			X		
Start Freq	50 Ω 30.00000	0 MHz	A	C SEN	ISE:INT	Avg Type	ALIGNAUTO	01:46:18 A TRACE	M Jul 11, 2015	Frequency
	Inp	nut: RF PI IFC	10: Fast 😱 Gain:Low	⁴ Trig: Free #Atten: 30	Run dB	Avg Hold Ext Gain:	>10/10 -1.00 dB	DET P N N N N N		12122
Mkr1 939.618 MHz 10 dB/div Ref 20.00 dBm -53.666 dBm								Auto Tune		
Log		12.1		1						Center Freq
10.0										515.000000 MHz
0.00									-	01-15-1
-10.0				1		_				30.000000 MHz
-20.0	_								-22.83 dBm	Stop Fren
-30.0										1.000000000 GHz
-40.0								_		CF Step 97.000000 MHz
-50.0	_								-1-	<u>Auto</u> Man
-60.0	skoj nakoj Alto Aldera a dal nakoj nakoj Alto Aldera a dal	andeles del seglet a entre angeles esquere	lang bandi dagi dagi da Manangan sanang	andi ladirand Martinana ang	htanila, dud	. de Jane Landia ha Maleria Manage provincia a Participa	t sani kitu dan kitu Kitu ngangan sana	an a	nan kini taku Mangeonagong	Freq Offset
-70.0				-		-		-		0112
Start 30.0 I #Res BW 1	VHz 00 kHz		#VBW	300 kHz			Sweep 9:	Stop 1.0 3.3 ms (40	000 GHz	
MSG							STATUS			

2412MHz (30MHz-1GHz)- 802.11n (20MHz)(ANT 0)

2412MHz (1GHz-8GHz) -802.11n (20MHz)(ANT 0)

					- Swept SA	ectrum Analyzer -	Agilent Spe
Frequency	01:47:12 AM Jul 11, 2015 TRACE 1 2 3 4 5 6 TYPE MIAMANANAN	ALIGNAUTO Avg Type: Log-Pwr AvgIHold:>10(10	SENSE:INT		RL 50 Ω Start Freq 1.000000000 GHz		
Auto Tune	6.974 675 GHz -49.792 dBm	Ext Gain: -1.00 dB Mkr1	tten: 30 dB	NU: Fast Lui k Gain:Low #	input: RF P IF	Ref 20.00	I0 dB/div
Center Freq 4.500000000 GHz						-	- og 10.0
Start Freq 1.000000000 GH2							10.00
Stop Fred 8.000000000 GHz	-22.83 dBm						20.0
CF Step 700.000000 MHz <u>Auto</u> Mar	• ¹						-40.0
Freq Offsel 0 Hz	annin al mar ann an ann an an an an an an an an an a		red (II., and Id. and a start of south a bar completion of the start of south a bar			a La Barta da Santa da Maria da Cara da	60.0
	Stop 8.000 GHz 69 ms (40001 pts)	Sweep 6) kHz	#VBW 30		00 GHz 100 kHz	Start 1.00 Res BW
GHz 1 pts)	Stop 8.000 69 ms (4000	Sweep 6) kHz	#VBW 30		00 GHz 100 kHz	60.0 70.0 Start 1.00 #Res BW

M Agilent Spectrum	Analyzer - Swept	SA		,		A /	
📕 RL 50	Ω	A	C SENSE:INT		ALIGNAUTO	01:47:50 AM Jul 11, 2015	Engruppin
Start Freq 8	.000000000 Input: R) GHz F PNO: Fast 😱] Trig: Free Run	Avg Typ Avg Hold	e: Log-Pwr I:>10/10	TRACE 1 2 3 4 5 6 TYPE MWWWAAAW	Frequency
	1.2. 0.0	IFGain:Low	#Atten: 30 dB	Ext Gain	: -1.00 dB	DETICIALATA	A
10 dB/div Re	Auto Tune						
Log							1
	1. 1. 1. 1.					-	Center Freq
10.0					-		12.00000000 GHz
0.00							1
	5 T 1						Start Freq
-10.0							8.00000000 GHz
-20.0							1 march 201
						-22.83 dBm	Stop Freq
30.0							16.000000000 GHz
							-
10.0							CE Step
-40.0						24	800.000000 MHz
1000						• • · · · ·	Auto Man
-50.0	بيبار بي	James July 1	- Construction and Advised Advised and the	العامام والالانام والالا	ويتقرعه فالموادين بالحور بالغ	Long bound in the state of a state	
M. Kokad Marted Mart	THE STREET	the state of the state of the	Prote Protection of the Protec	ألادها ومعنادي وبلحو فالعدوالد أح	and the part of the part	alles densities and states and the	Eron Offent
-60.0	C. THEFTORY MANUAL	y site mini fille filler och de staddionen i ber obler var ver sendigt a					Frequiset
	1 La 1 1 L		121.1	- 1 Jun			0 Hz
-70.0							
Stort 9 000 C	49			4.4	-	Ston 16 000 CH-	
#Res BW 100	kHz	#VBW	300 kHz		Sweep 7	65 ms (40001 pts)	
MSG					STATUS		30

2412MHz (8GHz-16GHz)- 802.11n (20MHz)(ANT 0)

2412MHz (16GHz-25GHz) -802.11n (20MHz)(ANT 0)

🇊 Agilent Spectrum Analy	zer - Swept SA								
Start Freq 16.00	Start Freq 16.00000000 GHz		Trig: Free	Run	Avg Typ Avg Hold	ALIGNAUTO e: Log-Pwr I:>10/10	01:48:40 TRAC TY	AM Jul 11, 2015 E 1 2 3 4 5 6 PE MWWWWWW	Frequency
	input re	IFGain:Low	#Atten: 30	dB	Ext Gain	-1.00 dB	DET P N N N N N		T Balak
Mkr1 24.943 750 GHz 10 dB/div Ref 20.00 dBm -41.651 dBm								Auto Tune	
Log							Center Fred		
10,0	-					-			20.500000000 GHz
0.00	_								
		(=)	1						Start Free
-10.0									16.000000000 GHz
-20.0								-22.83 dBm	Oton Eron
-30.0									25.000000000 GHz
2.1								1	CE Stor
-40.0				1	a a till ik om datans is	. Lu Jákanilaha Univ	and Anton Allest	an el a la classifici	900.000000 MHz Auto Man
-50.0 actional take	in the second	an chain an taileister	in the state of the second	Marine Southward J Hard		and the second stand state	the state of the second se	Services of the second	
-60.0		and contract to	ndi-6.2.2	(*	1000				Freq Offset
			· · · · ·						0 Hz
-70.0		1							
Start 16.000 GHz		-	1000			~	Stop 25	.000 GHz	
#Res BW 100 kHz	6	#VBW	300 kHz			Sweep 8	61 ms (4	0001 pts)	
MSG						STATUS			

Agilent Spectr	um Analyzer - Swept SA							
K RL	50 Q	A	SENSE(IN	r I	ALIGNAUTO	01:56:05 AM Jul 11, 2019	Erequency	
Start Freq 30.000000 MHz Input: RF PNO: Fast G IFGain:Low		Trig: Free Run #Atten: 30 dB	Avg Avg H Ext G	lype: Log-Pwr Iold:>10/10 ain: -1.00 dB	TYPE MWAAAAAAA DET P N N N N N			
10 dB/div F	Ref 20.00 dBm				Mkr	1 479.983 MHz -51.681 dBm	Auto Tune	
Log	^{og}							
10.0							Center Free	
10,0							515.000000 MH	
0.00								
		1111	1				Start Fre	
10.0							30.000000 MH	
1								
20.0						-23,25 dBm	Stop Fre	
100							1.000000000 GH	
30.0							a channed as the	
40.0							CF Ste	
			0.41				97.000000 MH	
50.0			- • '				Auto Mai	
1	ومراجعات فلابع ولغائم العروم والأعرب الحر	الطقيلة المعاقله المالية	والمفعد أستا الأسرية فالا	L un the hand a sealth	مع البلية والمعد بالماد العد	والمستاد والمتعادة والمعادية	a contraction	
60.0 Appendic spin and	and and a string on a string and and	Constitution (particular second	aliada ana ang ang ang ang ang ang ang ang an	en lanar han a filmar	ur eksenner ander ander	terin non delara a al ne da en	Freq Offse 0 H	
70.0								
Start 30.0 M	1Hz 10 kHz	#\/B\/	300 kHz		Sween 0	Stop 1.0000 GHz		
	VV MIL		000 MIL		eranic	oro mo (+0001 pro		
00					STATUS			

2437MHz (30MHz-1GHz)- 802.11n (20MHz)(ANT 0)

2437MHz (1GHz-8GHz) -802.11n (20MHz)(ANT 0)

RL SO2 AC SERVE: INT AutoMAUTC DUISS-43 AM Juli, 2015 Frequency Start Freq 1.000000000 GHz Trig: Free Run Avg1ype: Leg.PWr Avg1ype: Leg.PWr Trig: Free Run Avg1ype: Leg.PWr Auto Tu 100 Input: RF PNO: Fast Trig: Free Run Avg1ype: Leg.PWr Avg1ype: Leg.PWr Auto Tu 100 Gellevic Mkr1 6.314 050 GHz 4.000<	🖬 Agilent Spectrum Analyzer - Sv	wept SA				
Input: RF PNO: Fast Trig: Pree Run IFGain: 1.00 dB Avgradies to to Ext Gain: 1.00 dB Auto Ti 10 dB/div Ref 20.00 dBm -49.702 dBm -49.702 dBm -49.702 dBm 10 dB/div Ref 20.00 dBm -49.702 dBm -49.702 dBm -49.702 dBm 10 dB/div Ref 20.00 dBm -49.702 dBm -49.702 dBm -49.702 dBm 10 dB/div Ref 20.00 dBm -23.25 dBm Start F 1.00000000 d 20.0 -23.25 dBm Start F 1.00000000 d -23.25 dBm Start F -000 -20.0 -23.25 dBm -23.25 dBm Start F 1.00000000 d -23.25 dBm Start F -000 <td< th=""><th>RL 50 Ω Start Freq 1.0000000</th><th>000 GHz</th><th>AC SENSEIINT</th><th>ALIGNAUTO Avg Type: Log-Pwr</th><th>01:55:43 AM Jul 11, 2015 TRACE 1 2 3 4 5 6</th><th>Frequency</th></td<>	RL 50 Ω Start Freq 1.0000000	000 GHz	AC SENSEIINT	ALIGNAUTO Avg Type: Log-Pwr	01:55:43 AM Jul 11, 2015 TRACE 1 2 3 4 5 6	Frequency
Mkr1 6.314 050 GHz Center F 10 dB/div Ref 20.00 dBm -49.702 dBm 10.0 -49.702 dBm -49.5000000 d 10.0 -40.5000000 d -40.5000000 d 10.0 -40.5000000 d -40.50000000 d 10.0 -40.50000000 d -50.0 -50.0 -50.0 -40.0 -11 -50.0 -50.0 -50.0	Inpi	ut: RF PNO: Fast 😱 IFGain:Low	#Atten: 30 dB	Ext Gain: -1.00 dB	DET P N N N N N	Auto Tupe
10.0	10 dB/div Ref 20.00 d					
10.0 4.500000000 000 1 10.0 1 20.0 -23.25 dBn 30.0 -23.25 dBn 4.5000000000 4.5000000000 4.5000000000 10.0 -20.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>Center Free</td>						Center Free
000 Image: start F 100 Image: start F 200 Image: start F 200 Image: start F 300 Image: start F 300 Image: start F 400 Image: start F 4000 Image: start F	10.0					4.500000000 GHz
10.0 1.000000000 (200 -23.25 dBm 30.0 -23.25 dBm 40.0 1 40.0 1 60.0 1 1 1	0.00					Start Free
20.0	-10.0					1.000000000 GHz
30.0 S.00000000000 40.0 1 50.0 1 50.0 1 60.0 1 70.0 1 70.0 1 70.0 1 70.0 1 70.0 1 70.0 1	-20.0				-23.25 dBm	Stop Free
-40.0 -40.0 -5	-30.0					8.000000000 GHz
60.0 1 700.000000 / Auto Auto Freq Off 60.0 1 1 1 Freq Off Freq Off C 70.0 1 1 1 1 Freq Off C C	-40.0					CF Step
	.60.0			• • • • • • • • • • • • • • • • • • •		700.000000 MH: <u>Auto</u> Mar
		Instantal a matter the ship is also	معالمين بالتراهية	And a shake of organization will shall be a line of the second statements of the second statemen	and all the set of a set of the first of the set of the	
	-60.0		And the second		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Freq Offse
	-70.0					
Start 1.000 GHZ Stop 6.000 GHZ	Start 1.000 GHz		200 1/11-		Stop 8.000 GHz	
		#VOV	300 KH2	Sweep o	69 MS (40001 pts)	

DAgilent Spectrum Analyzer - Swep	I SA				~ /	
(XI RL 50 Ω	A	SENSE:	INT	ALIGN AUTO	01:51:20 AM Jul 11, 2015	English
Start Freq 8.00000000	OGHz RF PNO: Fast C	Trig: Free Ru	Avg Typ n Avg Holo Ext Gain	e: Log-Pwr i>10/10	TRACE 123456 TYPE MWWWWWW DET P N N N N N	Frequency
10 dB/div Ref 20.00 dBn	1		Est Sum	Mkr	1 15.238 2 GHz -50.045 dBm	Auto Tune
Log				-		
10,0						Center Freq 12.000000000 GHz
0.00		1.0.1	· · · · · · · · · · · · · · · · · · ·	l	· · · · · · · · · · · · · · · · · · ·	
0.00	$\equiv i = i$					Start Freq
					· · · · · · · · · · · · · · · · · · ·	
-20.0					-23.25 dBm	Stop Freq
-30.0						16.000000000 GHz
-40.0						CF Step
50.0					↓ 1	800.000000 MHz <u>Auto</u> Man
- 00.0	المعدر بو اورسان استأسارال	بالماري والغالمين فالمطالب	المسلموس عقاق أوأ بغضار وروا	in the set of the set	La de como principal de la paparación de la	
-60.0 the state of	ar di Animistra (a da La Matri, teranstala fund	ana ini a mata di Carita da Angelan	a na ann an Iolain ann an Annaichtean	1. Bell- de la desana ser a	paral de la constante de	Freq Offset 0 Hz
-70.0						
Start 8.000 GHz					Stop 16.000 GHz	
#Res BW 100 KHz	#VBW	300 KHZ		sweep /	105 ms (40001 pts)	
MSG				STATUS		

2437MHz (8GHz-16GHz)- 802.11n (20MHz)(ANT 0)

2437MHz (16GHz-25GHz) -802.11n (20MHz)(ANT 0)

🎟 Agilent Spectrum Analyzer - Swe	ept SA				
(M RL 50Ω		SENSE:INT		01:52:12 AM Jul 11, 2015	Frequency
Start Freq 15.000000	RF PNO: Fast C IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Hold>10/10 Ext Gain: -1.00 dB	TYPE MWWWWW DET P NNNNN	1. 23.007
10 dB/div Ref 20.00 dB	m		Mkr1 2	4.864 325 GHz -42.020 dBm	Auto Tune
10.0					Center Fred 20.500000000 GHz
-10.0					Start Fred 16.00000000 GHz
-20.0				-23,25 dBm	Stop Fred 25.00000000 GHz
-40.0		مالى قى مى الى قى مى الى قى مى الى مى	ral jaso de la cale da tel cale da la cale da		CF Step 900.000000 MH Auto Mar
-60.0		and the second second life (second	ann an ann a fan a fan a san San a San a fan a san San a fan a fan a san San a fan a fan a fan a fan a fan a f		Freq Offse 0 Ha
-70.0					
Start 16.000 GĤz #Res BW 100 kHz	#VBW	300 kHz	Sweep 8	Stop 25.000 GHz 361 ms (40001 pts)	
MSG			STATUS	8	

D Agilent Sp	ectrum Analyzer -	Swept SA	•		-			<i>,</i> ,,	,	
K RL	50 Q		A	C SEI	VSE:INT		ALIGNAUTO	01:56:59 AM J	J 11, 2015	Frequency
Start Fre	eq 30.00000	DOMHZ put:RF PN IFG	IO: Fast 😱 ain:Low	Trig: Free #Atten: 30	Run dB	Avg Ty Avg Hol Ext Gair	pe: Log-Pwr d:>10/10 n: -1.00 dB	TRACE 1 TYPE M DET P	23456 	Trequency
Mkr1 480.032 MHz 10 dB/div Ref 20.00 dBm -52.868 dBm									MHz dBm	Auto Tune
10.0				11	6					Center Freq 515.000000 MHz
.00										Start Freq 30.000000 MHz
-20.0									-22.39 dBm	Stop Freq 1.000000000 GHz
-40.0				<u>_1</u>						CF Step 97.000000 MHz Auto Man
-60.0		ly, pointe desta any any any any any any any any any an	and the second	ongenerenen oogenerenen	housed and hi		n beleventeral gereta net et al fait fait de ser	alligensed birdenses new respectively and	allabladina Allanganaga	Freq Offset 0 Hz
-70.0										
Start 30.0 #Res BW	0 MHz / 100 kHz		#VBW	300 kHz	2.		Sweep 9	Stop 1.000 3.3 ms (400	0 GHz 01 pts)	
MSG							STATUS	1		

2462MHz (30MHz-1GHz)- 802.11n (20MHz)(ANT 0)

2462MHz (1GHz-8GHz) -802.11n (20MHz)(ANT 0)

🗊 Agilent Spectrum Analyzer - Swep	t SA				
M RL 50Ω Start Freq 1.00000000	0 GHz		ALIGNAUTO Avg Type: Log-Pwr AugiHold::: 10(10	01:57:49 AM Jul 11, 2015 TRACE 1 2 3 4 5 6 TYPE MUMANANAN	Frequency
Input: F	RF PNO: Fast 🖵 IFGain:Low	#Atten: 30 dB	Ext Gain: -1.00 dB		Auto Tune
10 dB/div Ref 20.00 dBn	n		IVIKET	-49.664 dBm	
Log	-1017 - H	1	-1-1		Center Freq
10.0					4.500000000 GHz
0.00					Start Freq
-10.0					1.000000000 GHz
-20.0				22.99 dBm	Ston Fred
-30.0	2111221				8.000000000 GHz
-40.0	11111111111				CF Step
				1	700.000000 MHz <u>Auto</u> Man
D.U.C	Makelow Manual all	فالمعرف بالمقابل العمرا وتعريقهم والمسادد	has minible in our light the relation	وفاريمه فروابه أعدانه فتعريبها وبالأخطة	
-60.0 gran pain spectra and sp	Concerned and the second s	(Indexed States (Internet)) is a second statistic	and a start from		Freq Offsel 0 Hz
-70.0					
Start 1.000 GHz		San Ala		Stop 8.000 GHz	
#Res BW 100 kHz	#VBW	300 kHz	Sweep	669 ms (40001 pts)	
MSG			STATU	5	

🗊 Agilent Spectrum Analyzer - Si	wept SA	,		<i>A i</i>	
(XI RL 50Ω		C SENSE(INT	ALIGNAUTO	01:58:34 AM Jul 11, 2015	Englishmetry
Start Freq 8.000000	000 GHz ut: RF PNO: Fast 🖵	Trig: Free Run	Avg Type: Log-Pwr Avg Hold:>10/10	TRACE 123456 TYPE MWWWWWWW DET P N N N N N	Frequency
10 dB/dby Dof 20.00 d	IFGain:Low	#Atten. 30 ab	Mkr	15.680 2 GHz	Auto Tune
Log	DIII	-	1 1		1
10.0					Center Freq 12.000000000 GHz
0.00					
-10.0	1 <u>=</u> ()=(Start Freq 8.00000000 GHz
20.0					
-2010				-22.99 dBm	Stop Freq
-30.0					16.000000000 GHz
-40.0					CF Step
		1			800.000000 MHz <u>Auto</u> Man
-50.0		ماريديا ومرزار بالمقاولة بالمداري وراغه	والمتعادلة ويعيدون الانتظار الدرور ورواحا الما	ول المقرومة بدايه عرفات فالدائد والمروران	
-60.0 grade res lines at a sector and the sector of the se	ayrayaran Ayrayaran Millaik dar kurut nanadine yani shiru, te	n an	alarite (C ^a ge and all) ¹⁰⁴⁰⁰ in patheone ^{de} (Cash	a la configuration de la config	Freq Offset 0 Hz
-70.0					
Start 8.000 GHz		000 6115		Stop 16.000 GHz	
#Res BW 100 KHZ	#VBW	300 KHZ	Sweep 7	65 ms (40001 pts)	
MSG			STATUS		

2462MHz (8GHz-16GHz)- 802.11n (20MHz)(ANT 0)

2462MHz (16GHz-25GHz) -802.11n (20MHz)(ANT 0)

🗊 Agilent Spectrum Analyzer - S	iwept SA				
M RL 50Ω Start Freq 16.00000	0000 GHz		ALIGNAUTO Avg Type: Log-Pwr AugiHald > 10(10	01:59:50 AM Jul 11, 2015 TRACE 1 2 3 4 5 6	Frequency
Inp	ut: RF PNO: Fast 🖕 IFGain:Low	#Atten: 30 dB	Ext Gain: -1.00 dB	DET PNNNNN	Auto Tuno
10 dB/div Ref 20.00 d	IBm		Mkr1 2	4.737 650 GHz -42.168 dBm	Auto Tune
Log	1.11.1	1			Center Free
10.0					20.500000000 GHz
0.00					OtortEros
-10.0					16.000000000 GHz
-20.0				-22.99 dBm	Stop Fred
-30.0		1			25.000000000 GHz
-40.0		1		1	CF Step
50.0 July 1. 4. 14		والأطار والمراجع ومراجع أوراج	مدانا د اسار دمارد از روا سرزوا اعلاما مع مع بعد م	and and the set of the	900.000000 MHz <u>Auto</u> Mar
COLO President and the Construction of the	a na sina na si sa si	alari kara ta shi a sa s	ر. م المريبية المالية المالية المالية من المالية المالية المالية المالية المالية المالية المالية الم	TRANSPORT OF TRANSPORT	1
-60.0					Freq Offsel 0 Hz
-70.0					
Start 16.000 GHz	#\/B\M	300 647	Swaan 9	Stop 25.000 GHz	
MSG	#VDVV	300 KHZ	Sweep 8	or ms (40001 pts)	
			1210-122		

Rt 993 AC SENSEMT Alternation December 2000000000000000000000000000000000000	D Agilent Spectrum Analyzer - Swept S	Ă					
Start Freq 30.00000 MHz Trig: Free Run Avg Type: Log-PWr Trig: Free Run Auto Tune 10 dB/div Ref 20.00 dBm	(M RL 50Ω	A	SENSE:INT	ALIO	NAUTO	02:04:37 AM Jul 11, 2015	
IFGain:Low #Atten: 30 dB Ext Gain: 1.00 dB DEIP NVNNN Mkr1 776.464 MHz -53.311 dBm -53.311 dBm Auto Tune 10 dB/div Ref 20.00 dBm -53.311 dBm -55.311 dBm Center Freq 10 dB/div - - - - 515.00000 MHz 10 dB/div - - - - 515.00000 MHz 10 dB/div - - - - 515.000000 MHz 10 dB/div - - - - - 515.000000 MHz 20 d - - - - - - - - 515.000000 MHz 30.000000 GHz - - - - - - - - - - - 515.000000 GHz -	Start Freq 30.000000 Mi	Hz PNO: Fast 💭] Trig: Free Run	Avg Type: Lo Avg Hold:>10	g-Pwr 110	TRACE 1 2 3 4 5 6 TYPE MWWWWWWW	Frequency
Mkr1 776.464 MHz Auto Tune 10 dB/div Ref 20.00 dBm -53.311 dBm 100 -53.311 dBm -53.311 dBm 100 -515.000000 MHz -515.000000 MHz 200 -53.311 dBm -53.311 dBm -300 -515.000000 MHz -515.000000 MHz -300 -28.17 dBm -515.000000 MHz -400 -50.0000 MHz -28.17 dBm -400 -51.00000 MHz -51.0000 MHz -400 -50.0000 MHz -50.0000 MHz -50.0000 MHz -50.0000 MHz -50.0000 MHz -50.0000 MHz -50.0000 GHz -51.0000 GHz -700 -50.0000 MHz -50.0000 GHz -700 -50.0000 GHz -50.0000 GHz -700 -50.0000 GHz -50.0000 GHz -700		IFGain:Low	#Atten: 30 dB	Ext Gain: -1.0	0 dB	DET IP IN IN IN IN	1000 B (1)
Log Center Freq 100 Center Freq 000 Start Freq 100 Start Start Freq 100 Start Start Freq 100 Start	10 dB/div Ref 20.00 dBm				Mkr1	776.464 MHz -53.311 dBm	Auto Tune
10.0 Center Freq 000 Start Freq 10.0 Start Start Freq 10.0 Start Start Freq 10.0 Start S	Log						
10.0			6			and the second s	Center Freq
0.00	10.0		-				515.000000 MHz
000							1
-10.0 -10.0 Start Freq -20.0 -22.17 abn -22.17 abn -30.0 -22.17 abn -22.17 abn -40.0 -22.17 abn -22.17 abn -40.0 -22.17 abn -22.17 abn -50.0 -22.17 abn -22.17 abn -60.0 -22.17 abn -22.17 abn -70.0 -22.17 abn -22.17 abn -70.0 -22.17 abn -22.17 abn	0.00						
10.0 30.000000 MHz 200 30.000000 MHz 30.0 30.000000 GHz 40.0 30.000000 GHz 40.0 30.000000 GHz 50.0 30.000000 GHz 50.0 1 50.0 1 50.0 1 50.0 1 50.0 1 50.0 1 50.0 1 50.0 1 50.0 1 50.0 1 50.0 1 50.0 1 50.0 1 50.0 1 50.0 1 50.0 1 50.0 1 50.0 1 70.0 1 50.0 1 70.0 1 70.0 1 70.0 1 70.0 1			1				Start Freq
200 300 400 400 500 500 500 500 500 5	-10.0						30.000000 MHz
200 .28 17 den 300 .28 17 den 400 .28 17 den 400 .28 17 den 500 .28 17 den 500 .11 700 .11 700 .11 700 .11 700 .11		11011000	1.181 1.18				
-30.0 -3	-20.0			_			Ston Fred
-30.0 -30.0						-28 17 dBm	1 00000000 CH-
40.0 50.0	-30.0					1	1.000000000000
-40.0 -60.0 -60.0 -70.0 Start 30.0 MHz #Res BW 100 kHz #VBW 300 kHz -60.0 -70.0 -70.							0.5.01
-50.0 -60.0 -60.0 -70.0 Start 30.0 MHz #Res BW 100 kHz #VBW 300 kHz Start 30.0 MHz #VBW 300 kHz -60.0 -6	-40.0						CF Step
-500 -500 -600 -600 -600 -600 -600 -700 Start 30.0 MHz #VBW 300 KHz *VBW 300 KHz *VBW 300 KHz *Stop 1.0000 GHz Stop 1.0000 GHz Stop 1.0000 GHz *VBW 300 KHz							Auto Man
-60.0 -70.0 Start 30.0 MHz #Res BW 100 kHz #VBW 300 kHz Start 30.0 MHz	-50.0						Auto man
-60.0 FreqOffset -70.0 Start 30.0 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 93.3 ms (40001 pts)	فيعادف المعاد المعادية والمتعادية المتعادية		الدراسية فأبلد والأأاس الترجيد	ومطالبه ومعاليه والمحال المراجع و	days lo delar	Constant and the fact of a large state of the	
-70.0 0 Hz Start 30.0 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 93.3 ms (40001 pts) Interval	-60.0	No.	a discrimination of the state o	the design of the second s		na ann a gud tha th' chain strain Allais g	Freq Offset
-70.0 Storp 1.0000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 93.3 ms (40001 pts)	and the second sec	e teate le f			100	1.8% The second se	0 Hz
Start 30.0 MHz Stop 1.0000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 93.3 ms (40001 pts)	-70.0	1	1				
Start 30.0 MHz Stop 1.0000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 93.3 ms (40001 pts)			1				
Start 30.0 MHZ Stop 1.0000 GHZ #Res BW 100 kHz #VBW 300 kHz Sweep 93.3 ms (40001 pts)				-			
MSG STATUS	#Res BW 100 kHz	#VBW	300 kHz	Sw	eep 93	.3 ms (40001 pts)	
	MSG		0.000		STATUS		

2422MHz (30MHz-1GHz)-802.11n(40MHz) (Ant 0)

2422MHz (1GHz-8GHz) -802.11n(40MHz) (Ant 0)

DAgilent Spectri	um Analyzer - Sw	ept SA							
Start Freq	^{50 Ω} 1.0000000	00 GHz	AC S		Avg Type Avg/Hold	ALIGNAUTO	02:03:54 TRAC	AM Jul 11, 2015 E 1 2 3 4 5 6 E M WAAAAAAA	Frequency
	Inpu	IFGain:Low	#Atten:	30 dB	Ext Gain:	-1.00 dB	D		Auto Tune
10 dB/div F	Ref 20.00 dE	3m				MKr1	-49.1	83 dBm	
Log	1 11	1	1 1-1						Center Freq
10.0									4.500000000 GHz
0.00	-			-			-		StartEron
-10.0			_	_	-		_		1.000000000 GHz
-20.0					-				Stop Freq
-30.0				-	-			-28.17 dBm	8.000000000 GHz
-40.0									CF Step
								_	700.000000 MHz <u>Auto</u> Man
-50.0	Louis de Lielling and	higher deal to and the billing	Laure to all takes	والعدائية ومرجاور	يداويه أسويد يستغير وليل والان		and the second second	And we have	
-60.0 upper-tracelo	ter televisionet televisionet	and the second		ALC: NOT THE OWNER OF THE OWNER	and the state of t			an an an aire dia an an	Freq Offset 0 Hz
-70.0		1 1 1							
Start 1.000 (GHz		BW 200 KU		-	Crussen G	Stop 8	.000 GHz	
#RES DW 10		#V	DVV 300 KM	4		sweep o	oa ms (4	ooo i pis)	
1.2.2									

Magilent Spectr	um Analyzer	- Swept SA					•		,	
(# RL	50 n		A	SEN	SE:INT		ALIGNAUTO	02:03:01 AM	1 Jul 11, 2015	Frequency
Start Freq	8.0000	DOOOO GH Input: RF	IZ PNO: Fast 😱 FGain:Low	Trig: Free #Atten: 30	Run dB	Avg Type Avg Hold: Ext Gain:	: Log-Pwr >10/10 -1.00 dB	TRACE TYPE DET	123456 M WWWWW PNNNNN	Frequency
10 dB/div	Ref 20.00) dBm					Mkr	1 15.184 -49.67	4 GHz 4 dBm	Auto Tune
Log										120.002.0
10,0					-					Center Freq 12.000000000 GHz
0.00										
0.00										Start Freq
-10.0										8.000000000 GHz
20.0				1.000						
-2010									Ser. 1	Stop Freq
-30.0		-	-			-			-28.17 dBm	16.000000000 GHz
-40.0								_		CF Step
						111				800.000000 MHz Auto Man
-50.0		kalla	had managed in the st	(Long de Long de Martin de Long	al and had been as	where a stand to stude to make the	والملافع وتلاويم وعر	and a Handheld Hardward a	and believe at the	1
CO.D. Internation		Annual Contest	ann an thairte an the	and the state of the state of the	and a line of the	an stines the second	Manufacture and party		-141 [,] 1144.2.8.784	Freq Offset
-60.0				-						0 Hz
-70.0	_	-								-
				1 · · · · ·	-					1
Start 8.000 #Res BW 1	GHz 00 kHz		* #VBW	300 kHz			Sweep 7	Stop 16.0	000 GHz	
MSG	10.000					_	STATUS			

2422MHz (8GHz-16GHz)-802.11n(40MHz) (Ant 0)

2422MHz (16GHz-25GHz) -802.11n(40MHz) (Ant 0)

DAgilent Spec	trum Analyzer - S	Swept SA								
Start Free	50 Ω 16.00000	0000 GI	Hz	AC SE	NSE:INT	Avg Type AvgIHold	ALIGNAUTO e: Log-Pwr >10/10	02:01:28 TRA	AM Jul 11, 2015 E 1 2 3 4 5 6 PE MWAAAAAA	Frequency
10 dB/div	Ref 20.00 c	J B m	Gain:Low	#Atten: 3	0 dB	Ext Gain:	-1.00 dB Mkr1 2	₀ 4.830 8 -41.8	00 GHz 79 dBm	Auto Tune
10.0	-				-					Center Freq 20.500000000 GHz
0.00 -10.0										Start Free 16.00000000 GHz
-20.0									-28.17 dBm	Stop Fred 25.000000000 GHz
-40.0		and the second second	are a service and a service of a		enter enter All	10. ki n. esseth filoson, e. a	ie constitututorest	n ka njerovih državov		CF Step 900.000000 MH: Auto Mar
-60.0	20 2 10 10 10 10 10 10 10 10 10 10 10 10 10	1948 ******	والألاري لالاديكا ليليه مريا	n fürfa sinn bar (8-10	and the second secon	len in a serie de la constante	r de fan ei fille fil fan ei fil en ei fil fan ei fil en ei fil fan ei fil ei fan ei fil fan ei fil fan ei fil	diation : to 12		Freq Offsel 0 Hz
Start 16.00	00 GHz 100 kHz		#VBW	300 kHz			Sweep 8	Stop 25 61 ms (4	.000 GHz 0001 pts)	
MSG							STATUS	· · · · ·		

M Agilent Spect	um Analyzer - Sw	ept SA					,,,		
K RL	50 Q		AC SE	NSE:INT		ALIGN AUTO	02:05:42	AM Jul 11, 2015	Energyana
Start Freq	30.000000 Input	MHz RF PNO: Fast G	Trig: Free	Run	Avg Type Avg Hold	: Log-Pwr > 10/10	TRAC TYP DE	E 1 2 3 4 5 6 E M WAMAN T P N N N N N	Frequency
10 dB/div	Ref 20.00 dF	IFGain:Low	#Atten. 5	5 GB	Ext Gam.	Mkr	1 480.0	32 MHz 99 dBm	Auto Tune
Log	20.00 01		-	1	-			tel arear	-
10,0							_		Center Freq 515.000000 MHz
0.00						L			
-10.0			1-1						Start Freq 30.000000 MHz
-20.0			1 111						
-30.0								-26.67 dBm	1.000000000 GHz
40.0									CF Step
-40.0			A 1						97.000000 MHz Auto Man
so o di att. Int. I	a	unduring tomothy an haben was	in particulation	Will the H. Wilson	alour strackalablak	الماحان الدرادي وها إدا	ويعال الرورية التريعيا	م الله المراد الله	Freq Offset
-BULU MARANA PARA	a manala manana matrik n	a an	Na observation (and a second	allow a set	and distingtion of the second	a si wala a limaan	e dad e e e e	of a fighter states and	0 Hz
-70.0									
Start 30.0 M #Res BW 1	AHz 00 kHz	#VBV	V 300 kHz			Sweep 9	Stop 1.0	0000 GHz	
MSG						STATUS			

2437MHz (30MHz-1GHz)-802.11n(40MHz) (Ant 0)

2437MHz (1GHz-8GHz) -802.11n(40MHz) (Ant 0)

🗊 Agilent Spectrum Analyzer -	Swept SA						
RL 50 Ω Start Freq 1.00000		AC SEN	ISE:INT	Avg Type: L Avg Hold:>1	IGNAUTO .og-Pwr 0/10	02:10:08 AM Jul 11, 20: TRACE 1 2 3 4 5 TYPE MWWWAW	Frequency
	IFGain:Lu	aw #Atten: 30	dB	Ext Gain: -1.	^{.00 ав} Mkr1 6	0.228 475 GH	Auto Tune
10 dB/div Ref 20.00	dBm				_	-49.852 dBn	Center Free
10.0							- 4.500000000 GHz
-10.0							Start Freq
-20.0						-26.67 dB	Stop Freq 8.000000000 GHz
-40.0					● ¹		CF Step 700.000000 MHz Auto Mar
-60.0		And the second second second		. I environtanti di antanana 1			Freq Offset
-70.0 Start 1.000 GHz						Stop 8.000 GH	z
#Res BW 100 KHz	# IG> saved	VBW 300 KHZ	_	S	STATUS	9 ms (40001 pts	9

M Agilent Spectr	rum Analyzer - Swe	pt SA								
CM RL	50 Ω		AC SEN	SE:INT		ALIGN AUTO	02:07:19/	M Jul 11, 2015	English	
Start Freq	8.00000000 Input:	DO GHZ RF PNO: Fast C	Trig: Free!	Run	Avg Type Avg Hold: Ext Gain:	: Log-Pwr >10/10	TRAC TYP DE	E 123456 E M WAMANN T P N N N N N	Frequency	
10 dB/div	Ref 20.00 dB	iFGain:Low	WALLEN, UV	uв	Ext Sam.	Mk	r1 15.317 -49.22	4 GHz 21 dBm	Auto Tune	
Log			1		1		T	1		
10.0									Center Freq 12.000000000 GHz	
0.00			1.1.1.1.1							
-10.0		21121							Start Freq 8.000000000 GHz	
-20.0	_								Stop Fred	
-30.0				_				-26.67 dBm	16.000000000 GHz	
-40.0									CF Step	
50.0								♦ ¹	800.000000 MHz <u>Auto</u> Man	
-50.0	المالغين والمقالين	والماريل والقوارين والمالية المالية	المراجعة ومعاطية	الارالاد بالمعدد ا	Warm by more Hills in	a leaston dibit.	An an an a strat	the distributer is		
-60.0	ana philosoft, and a shift in a sur	and a state of the second		AND DESCRIPTION OF	And a subscription of party of	n survive fillende			Freq Offset 0 Hz	
-70.0										
Start 8.000 #Res BW 1	GHz 00 kHz	#VB'	W 300 kHz		\$	Sweep	Stop 16. 765 ms (4	.000 GHz		
MSG 🤳 File <p< td=""><td>ICTURE.PNG></td><td>saved</td><td><u></u></td><td></td><td></td><td>STATI</td><td>)s</td><td></td><td></td></p<>	ICTURE.PNG>	saved	<u></u>			STATI)s			

2437MHz (8GHz-16GHz)-802.11n(40MHz) (Ant 0)

2437MHz (16GHz-25GHz) -802.11n(40MHz) (Ant 0)

🚺 Agilent Spectrum Analyzer - Swe	pt SA				
22 RL 50Ω Start Freq 16.0000000	000 GHz	C SENSE::INT	ALIGNAUTO Avg Type: Log-Pwr AvalHold:>10/10	02:11:24 AM Jul 11, 2015 TRACE 1 2 3 4 5 6 TYPE MWWWAWW	Frequency
Inpuc	IFGain:Low	#Atten: 30 dB	Ext Gain: -1.00 dB Mkr1 2	DET P NNNNN 24.813 025 GHz	Auto Tune
10 dB/div Ref 20.00 dB	m			-42.515 dBm	
10.0					Center Freq 20.50000000 GHz
-10.0					Start Freq 16.00000000 GHz
-20.0				-26.67 dBm	Stop Freq 25.000000000 GHz
-40.0	Here and the following of		La for descritantificities, consider a formation of the state	A second shape and the part of the	CF Step 900.000000 MHz <u>Auto</u> Mar
-60.0		ngging flassisking (na agantinis (M))	<u>. ب را ممانية ماريمة من من من محمد بالمان.</u>	And the second se	Freq Offset 0 Hz
-70.0 Start 16.000 GHz				Stop 25.000 GHz	
#Res BW 100 KHz	#vBW	300 KHZ	Sweep status	son ms (40001 pts)	

M Agilent Spectr	um Analyzer -	Swept SA								
CXI RL	50 n		A	SEI	NSE:INT		ALIGNAUTO	02:16:08	AM Jul 11, 2015	Erequency
Start Freq	30.0000	DO MHZ iput: RF P IFI	NO: Fast 😱 Gain:Low	Trig: Free #Atten: 30	Run dB	Avg Type Avg Hold: Ext Gain:	:: Log-Pwr >10/10 -1.00 dB	TY D	CE 123456 PE MWWWWW ET P NNNN	riequency
Mkr1 480.007 MHz 10 dB/div Ref 20.00 dBm -52.075 dBm								Auto Tune		
Log										1
10.0										Center Freq 515.000000 MHz
						10.0				
0.00		121		122						Start Freq 30.000000 MHz
-10.0										
-20.0				1.000		1.000				
									-26.97 dBm	Stop Freq 1.000000000 GHz
-30.0				1.000						
-40.0	-			-		-				CF Step
-50.0				61	-			-		Auto Man
Catternal mus	والمعاد الأسال مراد وم	-	المعادي والأليان وبأوليدال	a. a contribute	it is the state of	to plat a desit alkidetadad.	ik printera an	hann otragula	the fight and produces	The second second
-60.0	itator mana ti tu intadi Kanala (ta	19 tadi ar Keskikisi I Jawa a	a comparative states in the second states of states	ales and the state	10-1190 - A-	o di kana di seri di seri di selano	Same of A days of a loss of	- The Party of the	and the state	Freq Offset 0 Hz
-70.0						-				
		1.1		1						
#Res BW 1	00 kHz		#VBW	300 kHz			Sweep 9	Stop 1. 3.3 ms (4	0000 GHZ 0001 pts)	
MSG 🤳 File <p< td=""><td>ICTURE.PN</td><td>G> saved</td><td></td><td></td><td></td><td></td><td>STATU</td><td>5</td><td></td><td></td></p<>	ICTURE.PN	G> saved					STATU	5		

2452MHz (30MHz-1GHz)-802.11n(40MHz) (Ant 0)

2452MHz (1GHz-8GHz) -802.11n(40MHz) (Ant 0)

🗊 Agilent Spectrum Analyzer -	Swept SA						
RL 50 Ω Start Freq 1.00000	0000 GHz	Trig: Free Run	ALIGNAUTO Avg Type: Log-Pwr AvglHold:>10/10	02:18:10 AM Jul 11, 2015 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency		
IFGain:Low #Atten: 30 dB Ext Gain: -1.00 dB DETIP NNNNN Mkr1 6.411 175 GHz -49.057 dBm							
10.0					Center Freq 4.500000000 GHz		
-10.0					Start Fred 1.000000000 GHz		
-20.0				26.97 dBm	Stop Fred 8.000000000 GHz		
-40.0			↓ ↓ ↓ 1		CF Step 700.000000 MHz Auto Mar		
-60.0					Freq Offsel 0 Hz		
-70.0 Start 1.000 GHz #Res BW 100 kHz	#VBW	300 kHz	Sweep	Stop 8.000 GHz			
MSG		140 / 27 / 28	STATUS				

Magilent Spect	rum Analyzer -	Swept SA						, , ,	
CM RL	50 Q		A	SEN	ISE:INT		ALIGN AUTO	02:14:10 AM Jul 11, 201	5 Exercise Provider
Start Freq 8.00000000 G		10000 GHz	IO: Fast 🖵	Trig: Free #Atten: 30	Run	Avg Type Avg Hold: Ext Gain:	: Log-Pwr >10/10 -1.00 dB	TRACE 1 2 3 4 5 TYPE MWWWWW DET P N N N N	6 Frequency
10 dB/div	Ref 20.00	dBm	anicow				Mkr	1 14.209 2 GH: -49.976 dBn	Auto Tune
Log									1 second of
10.0									Center Freq 12.000000000 GHz
0.00				1.01.1.1					
-10.0		$ i \equiv i $	$1 \equiv 4$				-		Start Freq 8.00000000 GHz
- 10.0				1.001					A CONTRACTOR OF CONT
-20.0	-			-					Stop Freq
-30.0								-26.97 dbi	16.000000000 GHz
-40.0	_								CF Step
									Auto Man
-50.0	14.0	Ziĥa	and an order		المرافا المراجع والم	العاسي ويعامل	ومالعين المحين م	واوال بالماري والادرة الألم والمعالية والمراجع وال	
-60.0	and an of the same	an a		an a	and the state of the state of	an a	essentite _{de} l s	i ing ta patina and a ta jina ang ta ang ta dag li (a sa dag ti (a sa dag ti (a sa dag ti (a sa dag ti (a sa d	Freq Offset
-70.0									UHZ
					_				
Start 8.000 #Res BW 1	GHz 00 kHz		#VBW	300 kHz			Sweep 7	Stop 16.000 GH: 65 ms (40001 pts	2)
MSG							STATUS		

2452MHz (8GHz-16GHz)-802.11n(40MHz) (Ant 0)

2452MHz (16GHz-25GHz) -802.11n(40MHz) (Ant 0)

🚺 Agilent Sp	eetrum Analyzer -	Swept SA								
Start Fre	^{50 Ω} q 16.00000	00000 G	Hz	C SEI	Bun	Avg Type Avg/Hold	ALIGNAUTO : Log-Pwr >10/10	02:12:54 TRAC TY	AM Jul 11, 2015 E 1 2 3 4 5 6 PE MWAAAAAA	Frequency
10 dB/div	Ref 20.00	dBm	FGain:Low	#Atten: 30	#Atten: 30 dB Ext Gain: -1.00			¤ 4.880 7 -42.2	Auto Tune	
10.0	-									Center Freq 20.500000000 GHz
0.00 -10.0										Start Freq 16.00000000 GHz
-20.0									-26.97 dBm	Stop Freq 25.000000000 GHz
-40.0 -50.0	nus sector de la contraction d	Meriland American	ikalappiani i	en i san sa karistika	الغمارية فارتبعا	Carden terres and the second		alana () (dashda ashrar		CF Step 900.000000 MHz <u>Auto</u> Man
-60.0	and the second sec	n nime , og se sjør	at his manager for the second	արու աշրջացույս Դուս աշրջացույ			a diata a			Freq Offsel 0 Hz
-70.0 Start 16.0 #Res BW	000 GHz 100 kHz		#VBW	300 kHz			Sweep 8	Stop 25 361 ms (4	.000 GHz 0001 pts)	
MSG							STATUS			

6. Radiated Emission Band Edge

6.1. Test Equipment

The following test equipments are used during the test:

Radiated Emission Band Edge / CB1

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Double Ridged Guide	Schwarzback	BBHA 9120	D743	2016/01/26
Horn Antenna				
Spectrum Analyzer	Agilent	E4440A	MY46187335	2016/01/07
k Type Cable	Huber Suhner	Sucoflex 102	25623/2	2016/01/26

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

6.2. Test Setup

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

6.4. Test Procedure

The EUT was setup according to ANSI C63.10 and tested according to DTS test procedure of KDB558074 v03r02 for compliance to FCC 47CFR 15.247 requirements.

The EUT and its simulators are placed on a turn table which is 1.5 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10 on radiated measurement.

6.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247: 2014

6.6. Uncertainty

The measurement uncertainty ± 3.9 dB above 1GHz

6.7. Test Result

Radiated is defined as

Site : CB1	Time : 2015/07/09 - 00:00
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : B133-BBHA-9120_3m_4 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11b_2412MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 - 00:02
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : B133-BBHA-9120_3m_4 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11b_2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	11.189	42.485	-11.515	54.000	AVERAGE
2		2388.758	31.613	11.665	43.278	-10.722	54.000	AVERAGE
3		2390.000	31.618	11.248	42.866	-11.134	54.000	AVERAGE
4	*	2411.247	31.703	66.686	98.389	44.389	54.000	AVERAGE
5		2483.500	31.994	11.229	43.223	-10.777	54.000	AVERAGE
6		2499.803	32.057	11.248	43.304	-10.696	54.000	AVERAGE
7		2500.000	32.057	11.220	43.277	-10.723	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 - 00:12
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : B133-BBHA-9120_3m_4 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11b_2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	23.355	54.651	-19.349	74.000	PEAK
2		2384.360	31.595	25.196	56.791	-17.209	74.000	PEAK
3		2390.000	31.618	23.769	55.387	-18.613	74.000	PEAK
4	*	2410.947	31.702	69.492	101.194	27.194	74.000	PEAK
5		2483.500	31.994	23.582	55.576	-18.424	74.000	PEAK
6		2494.005	32.036	24.843	56.879	-17.121	74.000	PEAK
7		2500.000	32.057	23.085	55.142	-18.858	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 – 00:14
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : B133-BBHA-9120_3m_4 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11b_2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	10.996	42.292	-11.708	54.000	AVERAGE
2		2389.758	31.617	11.190	42.807	-11.193	54.000	AVERAGE
3		2390.000	31.618	11.315	42.933	-11.067	54.000	AVERAGE
4	*	2411.147	31.702	65.807	97.510	43.510	54.000	AVERAGE
5		2483.500	31.994	11.186	43.180	-10.820	54.000	AVERAGE
6		2499.803	32.057	11.211	43.267	-10.733	54.000	AVERAGE
7		2500.000	32.057	11.205	43.262	-10.738	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 - 00:16
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : B133-BBHA-9120_3m_4 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11b_2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	22.743	54.039	-19.961	74.000	PEAK
2		2366.469	31.523	25.236	56.759	-17.241	74.000	PEAK
3		2390.000	31.618	22.460	54.078	-19.922	74.000	PEAK
4	*	2463.021	31.911	69.193	101.104	27.104	74.000	PEAK
5		2483.500	31.994	23.569	55.563	-18.437	74.000	PEAK
6		2485.410	32.001	25.366	57.367	-16.633	74.000	PEAK
7		2500.000	32.057	22.581	54.638	-19.362	74.000	PEAK

. Note:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 - 00:22
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : B133-BBHA-9120_3m_4 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11b_2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	11.060	42.356	-11.644	54.000	AVERAGE
2		2389.558	31.616	10.959	42.575	-11.425	54.000	AVERAGE
3		2390.000	31.618	10.950	42.568	-11.432	54.000	AVERAGE
4	*	2461.222	31.904	65.548	97.452	43.452	54.000	AVERAGE
5		2483.500	31.994	11.383	43.377	-10.623	54.000	AVERAGE
6		2499.803	32.057	11.412	43.468	-10.532	54.000	AVERAGE
7		2500.000	32.057	11.419	43.476	-10.524	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 - 00:24
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : B133-BBHA-9120_3m_4 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11b_2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	23.607	54.903	-19.097	74.000	PEAK
2		2387.759	31.609	24.918	56.527	-17.473	74.000	PEAK
3		2390.000	31.618	23.803	55.421	-18.579	74.000	PEAK
4	*	2463.021	31.911	68.613	100.524	26.524	74.000	PEAK
5		2483.500	31.994	24.400	56.394	-17.606	74.000	PEAK
6		2497.903	32.050	25.356	57.406	-16.594	74.000	PEAK
7		2500.000	32.057	23.834	55.891	-18.109	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 - 00:30
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : B133-BBHA-9120_3m_4 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11b_2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	11.021	42.317	-11.683	54.000	AVERAGE
2		2389.258	31.615	10.947	42.562	-11.438	54.000	AVERAGE
3		2390.000	31.618	10.968	42.586	-11.414	54.000	AVERAGE
4	*	2462.721	31.910	64.907	96.817	42.817	54.000	AVERAGE
5		2483.500	31.994	11.327	43.321	-10.679	54.000	AVERAGE
6		2499.503	32.055	11.316	43.371	-10.629	54.000	AVERAGE
7		2500.000	32.057	11.381	43.438	-10.562	54.000	AVERAGE

. Note:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 - 00:36
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : B133-BBHA-9120_3m_4 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11g_2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	23.662	54.958	-19.042	74.000	PEAK
2		2388.258	31.611	35.664	67.275	-6.725	74.000	PEAK
3		2390.000	31.618	33.972	65.590	-8.410	74.000	PEAK
4	*	2413.446	31.712	72.270	103.982	29.982	74.000	PEAK
5		2483.500	31.994	24.627	56.621	-17.379	74.000	PEAK
6		2484.310	31.997	24.755	56.752	-17.248	74.000	PEAK
7		2500.000	32.057	23.400	55.457	-18.543	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 - 00:38
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : B133-BBHA-9120_3m_4 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11g_2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	11.386	42.682	-11.318	54.000	AVERAGE
2		2389.758	31.617	16.938	48.555	-5.445	54.000	AVERAGE
3		2390.000	31.618	17.387	49.005	-4.995	54.000	AVERAGE
4	*	2410.547	31.701	58.971	90.671	36.671	54.000	AVERAGE
5		2483.500	31.994	11.251	43.245	-10.755	54.000	AVERAGE
6		2499.803	32.057	11.303	43.359	-10.641	54.000	AVERAGE
7		2500.000	32.057	11.288	43.345	-10.655	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 - 00:42
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : B133-BBHA-9120_3m_4 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11g_2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	23.635	54.931	-19.069	74.000	PEAK
2		2387.958	31.610	35.858	67.468	-6.532	74.000	PEAK
3		2390.000	31.618	33.362	64.980	-9.020	74.000	PEAK
4	*	2413.346	31.712	71.660	103.372	29.372	74.000	PEAK
5		2483.500	31.994	23.287	55.281	-18.719	74.000	PEAK
6		2498.903	32.053	24.380	56.433	-17.567	74.000	PEAK
7		2500.000	32.057	24.068	56.125	-17.875	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 - 00:44
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : B133-BBHA-9120_3m_4 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11g_2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	11.181	42.477	-11.523	54.000	AVERAGE
2		2389.957	31.618	17.769	49.387	-4.613	54.000	AVERAGE
3		2390.000	31.618	17.895	49.513	-4.487	54.000	AVERAGE
4	*	2411.247	31.703	58.346	90.049	36.049	54.000	AVERAGE
5		2483.500	31.994	11.196	43.190	-10.810	54.000	AVERAGE
6		2499.503	32.055	11.252	43.307	-10.693	54.000	AVERAGE
7		2500.000	32.057	11.219	43.276	-10.724	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
| Site : CB1 | Time : 2015/07/09 - 00:50 |
|--|---------------------------|
| Limit : FCC_SpartC_15.209_03M_PK | Margin : 6 |
| Probe : B133-BBHA-9120_3m_4 - HORIZONTAL | Power : AC 120V/60Hz |
| EUT : Full HD Ultra-Wide View Wi-Fi Camera | Note : 802.11g_2462MHz |

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	23.504	54.800	-19.200	74.000	PEAK
2		2387.958	31.610	24.119	55.729	-18.271	74.000	PEAK
3		2390.000	31.618	22.554	54.172	-19.828	74.000	PEAK
4	*	2463.521	31.914	72.063	103.976	29.976	74.000	PEAK
5		2483.111	31.992	32.379	64.371	-9.629	74.000	PEAK
6		2483.500	31.994	30.871	62.865	-11.135	74.000	PEAK
7		2500.000	32.057	23.308	55.365	-18.635	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 - 00:52
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : B133-BBHA-9120_3m_4 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11g_2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	11.192	42.488	-11.512	54.000	AVERAGE
2		2389.558	31.616	11.037	42.653	-11.347	54.000	AVERAGE
3		2390.000	31.618	11.026	42.644	-11.356	54.000	AVERAGE
4	*	2462.721	31.910	58.446	90.356	36.356	54.000	AVERAGE
5		2483.500	31.994	16.080	48.074	-5.926	54.000	AVERAGE
6		2483.611	31.994	15.926	47.920	-6.080	54.000	AVERAGE
7		2500.000	32.057	11.517	43.574	-10.426	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 - 00:58
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : B133-BBHA-9120_3m_4 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11g_2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	22.970	54.266	-19.734	74.000	PEAK
2		2387.958	31.610	24.215	55.825	-18.175	74.000	PEAK
3		2390.000	31.618	22.931	54.549	-19.451	74.000	PEAK
4	*	2463.421	31.913	70.281	102.194	28.194	74.000	PEAK
5		2483.500	31.994	28.654	60.648	-13.352	74.000	PEAK
6		2484.210	31.997	28.952	60.949	-13.051	74.000	PEAK
7		2500.000	32.057	23.195	55.252	-18.748	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 – 01:00
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : B133-BBHA-9120_3m_4 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11g_2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	10.949	42.245	-11.755	54.000	AVERAGE
2		2389.558	31.616	11.030	42.646	-11.354	54.000	AVERAGE
3		2390.000	31.618	11.031	42.649	-11.351	54.000	AVERAGE
4	*	2462.721	31.910	56.829	88.739	34.739	54.000	AVERAGE
5		2483.500	31.994	14.310	46.304	-7.696	54.000	AVERAGE
6		2483.910	31.996	13.865	45.860	-8.140	54.000	AVERAGE
7		2500.000	32.057	11.411	43.468	-10.532	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 - 01:04
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : B133-BBHA-9120_3m_4 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n20_2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	23.587	54.883	-19.117	74.000	PEAK
2		2388.858	31.614	38.654	70.267	-3.733	74.000	PEAK
3		2390.000	31.618	37.152	68.770	-5.230	74.000	PEAK
4	*	2410.647	31.701	72.039	103.740	29.740	74.000	PEAK
5		2483.500	31.994	23.397	55.391	-18.609	74.000	PEAK
6		2496.904	32.047	25.389	57.436	-16.564	74.000	PEAK
7		2500.000	32.057	23.868	55.925	-18.075	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 - 01:05
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : B133-BBHA-9120_3m_4 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n20_2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	11.439	42.735	-11.265	54.000	AVERAGE
2		2389.458	31.615	18.710	50.326	-3.674	54.000	AVERAGE
3		2390.000	31.618	19.612	51.230	-2.770	54.000	AVERAGE
4	*	2410.547	31.701	57.857	89.557	35.557	54.000	AVERAGE
5		2483.500	31.994	11.221	43.215	-10.785	54.000	AVERAGE
6		2483.910	31.996	11.237	43.232	-10.768	54.000	AVERAGE
7		2500.000	32.057	11.283	43.340	-10.660	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 - 01:10
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : B133-BBHA-9120_3m_4 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n20_2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	22.820	54.116	-19.884	74.000	PEAK
2		2388.458	31.611	38.661	70.273	-3.727	74.000	PEAK
3		2390.000	31.618	37.791	69.409	-4.591	74.000	PEAK
4	*	2410.847	31.702	71.558	103.260	29.260	74.000	PEAK
5		2483.500	31.994	22.820	54.814	-19.186	74.000	PEAK
6		2485.810	32.003	24.951	56.954	-17.046	74.000	PEAK
7		2500.000	32.057	23.703	55.760	-18.240	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 - 01:12
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : B133-BBHA-9120_3m_4 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n20_2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	11.242	42.538	-11.462	54.000	AVERAGE
2		2389.957	31.618	20.161	51.779	-2.221	54.000	AVERAGE
3		2390.000	31.618	20.250	51.868	-2.132	54.000	AVERAGE
4	*	2410.547	31.701	57.532	89.232	35.232	54.000	AVERAGE
5		2483.500	31.994	11.217	43.211	-10.789	54.000	AVERAGE
6		2483.811	31.994	11.257	43.252	-10.748	54.000	AVERAGE
7		2500.000	32.057	11.270	43.327	-10.673	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 - 01:18
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : B133-BBHA-9120_3m_4 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n20_2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	22.265	53.561	-20.439	74.000	PEAK
2		2386.359	31.603	25.249	56.852	-17.148	74.000	PEAK
3		2390.000	31.618	22.899	54.517	-19.483	74.000	PEAK
4	*	2463.121	31.911	70.919	102.831	28.831	74.000	PEAK
5		2483.500	31.994	33.635	65.629	-8.371	74.000	PEAK
6		2484.410	31.997	34.930	66.927	-7.073	74.000	PEAK
7		2500.000	32.057	23.982	56.039	-17.961	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 - 01:20
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : B133-BBHA-9120_3m_4 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n20_2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	11.192	42.488	-11.512	54.000	AVERAGE
2		2389.558	31.616	11.072	42.688	-11.312	54.000	AVERAGE
3		2390.000	31.618	11.028	42.646	-11.354	54.000	AVERAGE
4	*	2463.421	31.913	57.162	89.075	35.075	54.000	AVERAGE
5		2483.500	31.994	17.239	49.233	-4.767	54.000	AVERAGE
6		2483.910	31.996	16.544	48.539	-5.461	54.000	AVERAGE
7		2500.000	32.057	11.518	43.575	-10.425	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 - 01:25
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : B133-BBHA-9120_3m_4 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n20_2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	23.873	55.169	-18.831	74.000	PEAK
2		2386.059	31.602	24.736	56.338	-17.662	74.000	PEAK
3		2390.000	31.618	23.721	55.339	-18.661	74.000	PEAK
4	*	2463.121	31.911	69.527	101.439	27.439	74.000	PEAK
5		2483.500	31.994	31.957	63.951	-10.049	74.000	PEAK
6		2484.310	31.997	33.320	65.317	-8.683	74.000	PEAK
7		2500.000	32.057	24.058	56.115	-17.885	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 - 01:30
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : B133-BBHA-9120_3m_4 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n20_2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	10.940	42.236	-11.764	54.000	AVERAGE
2		2389.558	31.616	11.032	42.648	-11.352	54.000	AVERAGE
3		2390.000	31.618	11.051	42.669	-11.331	54.000	AVERAGE
4	*	2463.621	31.914	55.764	87.678	33.678	54.000	AVERAGE
5		2483.500	31.994	15.500	47.494	-6.506	54.000	AVERAGE
6		2483.611	31.994	15.306	47.300	-6.700	54.000	AVERAGE
7		2500.000	32.057	11.438	43.495	-10.505	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 - 01:40
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : B133-BBHA-9120_3m_4 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n40_2422MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	24.309	55.605	-18.395	74.000	PEAK
2		2389.558	31.616	39.215	70.831	-3.169	74.000	PEAK
3		2390.000	31.618	39.472	71.090	-2.910	74.000	PEAK
4	*	2425.040	31.759	67.809	99.568	25.568	74.000	PEAK
5		2483.500	31.994	23.681	55.675	-18.325	74.000	PEAK
6		2499.303	32.054	24.444	56.499	-17.501	74.000	PEAK
7		2500.000	32.057	24.505	56.562	-17.438	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 - 01:42
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : B133-BBHA-9120_3m_4 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n40_2422MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	11.419	42.715	-11.285	54.000	AVERAGE
2		2389.758	31.617	20.958	52.575	-1.425	54.000	AVERAGE
3		2390.000	31.618	21.012	52.630	-1.370	54.000	AVERAGE
4	*	2419.743	31.737	50.450	82.187	28.187	54.000	AVERAGE
5		2483.500	31.994	11.278	43.272	-10.728	54.000	AVERAGE
6		2483.611	31.994	11.266	43.260	-10.740	54.000	AVERAGE
7		2500.000	32.057	11.340	43.397	-10.603	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 - 01:48
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : B133-BBHA-9120_3m_4 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n40_2422MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	23.910	55.206	-18.794	74.000	PEAK
2		2389.758	31.617	40.403	72.020	-1.980	74.000	PEAK
3		2390.000	31.618	40.292	71.910	-2.090	74.000	PEAK
4	*	2424.940	31.758	67.555	99.313	25.313	74.000	PEAK
5		2483.500	31.994	23.960	55.954	-18.046	74.000	PEAK
6		2488.009	32.012	25.329	57.341	-16.659	74.000	PEAK
7		2500.000	32.057	24.012	56.069	-17.931	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 - 01:52
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : B133-BBHA-9120_3m_4 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n40_2422MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	11.231	42.527	-11.473	54.000	AVERAGE
2		2389.558	31.616	21.775	53.391	-0.609	54.000	AVERAGE
3		2390.000	31.618	21.864	53.482	-0.518	54.000	AVERAGE
4	*	2419.743	31.737	50.558	82.295	28.295	54.000	AVERAGE
5		2483.500	31.994	11.246	43.240	-10.760	54.000	AVERAGE
6		2499.503	32.055	11.300	43.355	-10.645	54.000	AVERAGE
7		2500.000	32.057	11.289	43.346	-10.654	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 - 01:59
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : B133-BBHA-9120_3m_4 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n40_2452Mz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	23.578	54.874	-19.126	74.000	PEAK
2		2386.559	31.604	24.994	56.598	-17.402	74.000	PEAK
3		2390.000	31.618	23.582	55.200	-18.800	74.000	PEAK
4	*	2454.125	31.875	68.348	100.224	26.224	74.000	PEAK
5		2483.500	31.994	37.556	69.550	-4.450	74.000	PEAK
6		2484.310	31.997	39.774	71.771	-2.229	74.000	PEAK
7		2500.000	32.057	25.961	58.018	-15.982	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 - 02:03
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : B133-BBHA-9120_3m_4 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n40_2452Mz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	11.275	42.571	-11.429	54.000	AVERAGE
2		2389.558	31.616	11.167	42.783	-11.217	54.000	AVERAGE
3		2390.000	31.618	11.193	42.811	-11.189	54.000	AVERAGE
4	*	2454.125	31.875	51.310	83.186	29.186	54.000	AVERAGE
5		2483.500	31.994	21.487	53.481	-0.519	54.000	AVERAGE
6		2483.711	31.994	21.242	53.237	-0.763	54.000	AVERAGE
7		2500.000	32.057	12.548	44.605	-9.395	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 - 02:07
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : B133-BBHA-9120_3m_4 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n40_2452Mz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	23.401	54.697	-19.303	74.000	PEAK
2		2385.860	31.602	24.805	56.406	-17.594	74.000	PEAK
3		2390.000	31.618	23.842	55.460	-18.540	74.000	PEAK
4	*	2455.425	31.881	67.309	99.190	25.190	74.000	PEAK
5		2483.500	31.994	35.916	67.910	-6.090	74.000	PEAK
6		2484.410	31.997	37.832	69.829	-4.171	74.000	PEAK
7		2500.000	32.057	25.051	57.108	-16.892	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2015/07/09 - 02:10
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : B133-BBHA-9120_3m_4 - VERTICAL	Power : AC 120V/60Hz
EUT : Full HD Ultra-Wide View Wi-Fi Camera	Note : 802.11n40_2452Mz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	31.296	11.038	42.334	-11.666	54.000	AVERAGE
2		2389.558	31.616	11.170	42.786	-11.214	54.000	AVERAGE
3		2390.000	31.618	11.199	42.817	-11.183	54.000	AVERAGE
4	*	2450.027	31.859	50.496	82.355	28.355	54.000	AVERAGE
5		2483.500	31.994	19.600	51.594	-2.406	54.000	AVERAGE
6		2483.910	31.996	19.426	51.421	-2.579	54.000	AVERAGE
7		2500.000	32.057	12.110	44.167	-9.833	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. DTS Bandwidth

7.1. Test Equipment

The following test equipments are used during the test:

DTS Bandwidth / SR7

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Spectrum Analyzer	Agilent	N9010A-EXA	US47140172	2016/07/13

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

7.2. Test Setup

7.3. Test Procedures

The EUT was setup according to ANSI C63.10; tested procedure section 8.1 of KDB558074 v03r02 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 100KHz, Set the VBW \geq 3xRBW, Sweep Time=Auto, Set Peak Detector.

7.4. Limits

The 6 dB bandwidth must be greater than 500 kHz.

7.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247: 2014

7.6. Uncertainty

The measurement uncertainty is defined as ±150Hz

7.7. Test Result

Product	Full HD Ultra-Wide View Wi-Fi Camera					
Test Item	DTS Bandwidth					
Test Mode	Mode 1: Transmitter					
Date of Test	2015/07/11	Test Site	SR7			

802.11 b, ANT 0					
Channel No.	Frequency	Measurement Level	Required Limit	Result	
Channel No.	(MHz)	(MHz)	(MHz)	Result	
1	2412	9.552	≧0.5	Pass	
6	2437	9.087	≧0.5	Pass	
11	2472	10.020	≧0.5	Pass	

Channel 1 (2412MHz)

📕 Agilent Spectrun	n Analyzer - Occupied	IBW							
Center Freq	AC) GHz #IFGain:Low	SEN Center Fr Trig: Free #Atten: 30	vse:INT eq: 2.41200 Run I dB	00000 GHz Avg Hold: Ext Gain:	ALIGNAUTO > 100/100 -1.00 dB	12:14:07 Radio Sto Radio De	' AM Jul 11, 2015 I: None vice: BTS	Freq / Channel	
10 dB/div	Ref 20 dBm			_			_		·
		and manuf	anny	manna	working	Avr.			Center Freq 2.412000000 GHz
-20		V			V	www.	Arr and		
-40 -50 -60							V	m	
-70					_				CF Step 3.000000 MHz
Res BW 10	0 kHz		#VB	Span #VBW 300 kHz Sweep 3				3.333 ms	<u>Auto</u> Man
Occupied Bandwidth 14.208 MH			Iz	Total Power		20.16 dBm			
Transmit	Hz OBW Power		99.00 %						
x dB Bandwidth 9.552 N		Hz	x dB		-6.	00 dB			
MSG		_				STATUS	5		· · · · · · · · · · · · · · · · · · ·

Channel 6 (2437MHz)

Channel 11 (2462MHz)

Product	-ull HD Ultra-Wide View Wi-Fi Camera						
Test Item	DTS Bandwidth	DTS Bandwidth					
Test Mode	Mode 1: Transmitter	Vode 1: Transmitter					
Date of Test	2015/07/11 Test Site SR7						

IEEE 802.11g, ANT 0

Channel No.	Frequency (MHz)	Measurement Level (MHz)	Required Limit (MHz)	Result
1	2412	15.100	≧0.5	Pass
6	2437	15.110	≧0.5	Pass
11	2472	15.110	≧0.5	Pass

Channel 1 (2412MHz)

🗊 Agilent Spec	trum Analyzer -	Occupied B	w							
Center Fr	RL 50 Ω AC SENSE:INT ALIGNAUTO 12:13:00 AM Jul 11, 2015 Center Freq 2.412000000 GHz Center Freq: 2.412000000 GHz Radio Std: None Input: RF Center Freq: 2.412000000 GHZ Avg Hold:>100/100 Radio Device: BTS #IFGain:Low #Atten: 30 dB Ext Gain: -1.00 dB Radio Device: BTS							Freq / Channel		
	Rei 20	And the second s	damlanda	adamla	in montherm	manhamata	miliamtron			Center Freq 2.412000000 GHz
-20 -30	wantennorth							Wand Work	parten	
-50										CF Step
Center 2.4 #Res BW	12 GHz 100 kHz			#\	/BW 300	kHz		Spa Sweep	an 30 MHz 3.333 ms	<u>Auto</u> Man
Occupied Bandwidth 16.329 MHz			Bandwidth Tot 16.329 MHz		Total I	Total Power		23.13 dBm		
Transmit Freq Error -19377				7 Hz	OBW	Power	9	9.00 %		
x dB Ba	andwidth		15.10	MHz	x dB		-6	.00 dB		
MSG							STATU	8		

Channel 6 (2437MHz)

🗊 Agilent Spec	etrum Analyzer - O	ccupied Bl	W							
Center Fr	RL 50 Ω AC SENSE:INT ALIGNAUTO 12:17:46 AM Jul 11, 2015 Center Freq 2.437000000 GHz Center Freq: 2.437000000 GHz Radio Std: None Input: RF Free Run Avg Hold:>100/100 Radio Device: BTS #IFGain:Low #Atten: 30 dB Ext Gain: -1.00 dB Radio Device: BTS								Freq / Channel	
		Jundham	Apandonantus	Maximbara	frankrout	numberson las	whenthey			Center Freq 2.437000000 GHz
-20 -30 /////// -40	manusant	/						white the wards	mwyanyany	
-50 -60 -70										CE Sten
Center 2. #Res BW	437 GHz 100 kHz		Ô.	#V	BW 300 I	KHz		Sp: Sweep	an 30 MHz 3.333 ms	3.000000 MHz Auto Man
Occup	oied Bandy	width 16.3	334 MI	Ηz	Total F	ower	23.39) dBm		
Transmit Freq Error-21069 Hzx dB Bandwidth15.11 MHz				Hz 1Hz	OBW Power x dB		99 -6.).00 % 00 dB		
MSG							STATUS			

Channel 11 (2462MHz)

🗊 Agilent Spectrum Analy	zer - Occupied BV	N							
Center Freq 2.46	32000000 C Input RF #II	AC SHZ FGain:Low	Center Fr Center Fr Trig: Free #Atten: 30	NSE:INT 'eq: 2.46200 ≥ Run) dB	00000 GHz Avg Hold Ext Gain	ALIGNAUTO d:>100/100 n: -1.00 dB	12:16:4 Radio St Radio De	4 AM Jul 11, 2015 d: None :vice: BTS	Freq / Channel
		Anndrauders	ununun	producent	montenandar	whowhy			Center Fred 2.462000000 GHz
-20 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30							Marine Marine	VM-UNANA	
-60 -70 Center 2.462 GHz #Res BW 100 kHz			#VE	300 I	kHz		Sp	an 30 MHz 3.333 ms	CF Step 3.000000 MH: <u>Auto</u> Mar
Occupied Ba	ndwidth 16.3	326 MF	łz	Total F	ower	23.18	3 dBm		
Transmit Freq x dB Bandwidt	Transmit Freq Error-17025 Hx dB Bandwidth15.11 MH		Hz OBW Power Hz x dB		99.00 % -6.00 dB				
MSG 🤳 File < PICTURE	.PNG> saved					STATUS	5		

Product	Full HD Ultra-Wide View Wi-Fi Camera						
Test Item	DTS Bandwidth						
Test Mode	Mode 1: Transmitter						
Date of Test	2015/07/11	Test Site	SR7				

IEEE 802.11n (20MHz), ANT 0										
Channel No.	Frequency (MHz)	Measurement Level (MHz)	Required Limit (MHz)	Result						
1	2412	15.110	≧0.5	Pass						
6	2437	15.100	≧0.5	Pass						
11	2472	15.110	≧0.5	Pass						

Channel 1 (2412MHz)

🖩 Agilent Speci	rum Analyzer -	Occupied BW	i							
Center Fro	50 Ω eq 2.4120 In	100000 G Iput: RF #IF	iHz Gain:Low	AC SE Center F Trig: Fre #Atten: 3	NSE:INT req: 2.41200 e Run 0 dB	00000 GHz Avg Hold Ext Gain:	ALIGNAUTO > 100/100 -1.00 dB	12:19:05 Radio Sto Radio De	5 AM Jul 11, 2015 I: None vice: BTS	Freq / Channel
10 dB/div Log	Ref 20	dBm	1	-	-	1			1	N
10 0		month	handraado	mannlun	monthingh	and mundary	whenter			Center Freq 2.412000000 GHz
-10		1						the second		
-30 mbmak	wwww			· · · · · ·				"WW	Amanymy	
-40	1									
-60	-						-		-	
-70										CF Step
Center 2.4 #Res BW	12 GHz 100 kHz			#VE	300 K	Hz		Spa Sweep	an 30 MHz 3.333 ms	3.000000 MHz <u>Auto</u> Man
Occup	ied Banc	lwidth 17.5	508 MI	Hz	Total P	ower	22.89) dBm		
Transm	Transmit Freq Error -9699		Hz	OBW P	ower	99	9.00 %			
x dB Ba	ndwidth		15.11 N	ЛНz	x dB		-6.	00 dB		
MSG				_			STATUS	5	-	

Channel 6 (2437MHz)

D Agilent Spec	strum Analyzer -	Occupied BW								
Center Fr	eq 2.4370	00000 G put: RF #IF	Hz Gain:Low	AC SE Center F Trig: Fre #Atten: 3	nse:INT req: 2.43700 e Run 0 dB	00000 GHz Avg Hold Ext Gain	ALIGNAUTO 4:>100/100 : -1.00 dB	12:19:4 Radio Sto Radio De	1 AM Jul 11, 2015 1: None vice: BTS	Freq / Channel
10 dB/div Log 10	Ref 20 c	1Bm mahrind	mAnnadae	alogehour	hink	nahamutan	Monthing			Center Fre 2.437000000 GH
-10 -20 -30	halphyman							har manager	-	
-50 -60 -70										05.01
Center 2.4 #Res BW	437 GHz 100 kHz			#VI	3W 300 H	KHz		Spa Sweep	an 30 MHz 3.333 ms	3.000000 MH Auto Ma
Occup	ied Band	width 17.5	607 MI	Hz	Total P	ower	22.8	1 dBm		
Transn x dB Ba	Transmit Freq Error-14910 Hzx dB Bandwidth15.10 MHz) Hz /IHz	z OBW Power z x dB		99.00 % -6.00 dB				
MSG							STATUS			

Channel 11 (2462MHz)

MAgilent Spect	rum Analyzer -	Occupied BW	İ							
Center Fre	eq 2.4620	00000 G put: RF #IF	Hz Gain:Low	SE Center F Trig: Fre #Atten: 3	NSE:INT req: 2.46200 e Run 0 dB	00000 GHz Avg Hold Ext Gain	ALIGNAUTO 4:>100/100 : -1.00 dB	12:25:0 Radio Sto Radio De	6 AM Jul 11, 2015 d: None wice: BTS	Freq / Channel
10 dB/div Log 10	Ref 20 c	1Bm martine		Mundunay	formland	hundren	-Aumontown			Center Freq 2.462000000 GHz
-10 -20 -30 ~4/1//*//*	nonnan							Mar and a start of the	uninnin	
-50										
Center 2.4 #Res BW	62 GHz 100 kHz			#VE	300 H	KHz		Sp: Sweep	an 30 MHz 3.333 ms	CF Step 3.000000 MHz <u>Auto</u> Man
Occup	ied Band	width 17.5	505 MH	z	Total P	ower	23.7	1 dBm		
Transm x dB Ba	Transmit Freq Error-15097 Ix dB Bandwidth15.11 MI		Hz OBW Power IHz x dB		ower	99.00 % -6.00 dB				
MSG							STATUS	8		

Product	Full HD Ultra-Wide View Wi-Fi Camera						
Test Item	DTS Bandwidth						
Test Mode	Mode 1: Transmitter						
Date of Test	2015/07/11	Test Site	SR7				

IEEE 802.11n (40MHz), ANT 0										
Channel No.	Frequency (MHz)	Measurement Level (MHz)	Required Limit (MHz)	Result						
3	2422	35.080	≧0.5	Pass						
6	2437	35.080	≧0.5	Pass						
9	2452	35.070	≧0.5	Pass						

Channel 3 (2422MHz)

📕 Agilent Spectrum Analyzer - Occupied BW	_ 🗆 🛃
Imput: RF AC SENSE:INT ALLGN/AUTO 12:26:16 AM Jul 11, 2015 Input: RF Center Freq: 2.422000000 GHz Center Freq: 2.422000000 GHz Radio Std: None Input: RF #IFGain:Low #Atten: 30 dB Ext Gain: -1.00 dB Radio Device: BTS	annel
10 dB/div Ref 20 dBm	
10 Cent 0 Ludicherdenterverberberberberberberberberberberberberbe	er Freq 000 GHz
-30 With the second sec	
-50	
-60	
-70,	F Step
Center 2.422 GHz 5.000 #Res BW 100 kHz #VBW 300 kHz Sweep 6 ms	000 MHz Man
Occupied Bandwidth Total Power 21.21 dBm	
35.710 MHz	
Transmit Freq Error -42499 Hz OBW Power 99.00 %	
x dB Bandwidth 35.08 MHz x dB -6.00 dB	
MSG STATUS	

Channel 6 (2437MHz)

🗊 Agilent Spect	rum Analyzer -	Occupied BW							
Center Fre	eq 2.4370	00000 GH put: RF #IFGa	Z in:Low AC Cente Trig: F #Atten	SENSE:INT r Freq: 2.4370 ree Run : 30 dB	00000 GHz Avg Hold Ext Gain	ALIGNAUTO 4:>100/100 : -1.00 dB	12:27:1 Radio Sto Radio De	3 AM Jul 11, 2015 d: None vice: BTS	Freq / Channel
10 dB/div Log 10	Ref 20 d	1BM		way provident	and here to have been and the	hydrochardrachu			Center Freq 2.437000000 GHz
-10 -20 -30 -40	Mar Warney and			V			h whether	allemanthesistemation	
-50 -60 -70									CESten
Center 2.4 #Res BW	37 GHz 100 kHz		#	VBW 300	kHz		Sp: Sw	an 60 MHz eep 6 ms	6.000000 MHz Auto Man
Occup	ied Band	width 35.74	4 MHz	Total I	Power	22.54	4 dBm		
Transm x dB Ba	it Freq Err Indwidth	ror	-30035 Hz 35.08 MHz	OBW x dB	Power	9: -6.	9.00 % .00 dB		
MSG 🧼 File <f< td=""><td>PICTURE.PN</td><td>G> saved</td><td></td><td>4.45</td><td></td><td>STATUS</td><td>3</td><td></td><td></td></f<>	PICTURE.PN	G> saved		4.45		STATUS	3		

Channel 9 (2452MHz)

🗊 Agilent Spect	rum Analyzer - Occu	pied BW							
Center Fre	50 Ω 2.4520000 Input: R	IOO GHz IF #IFGain:Low	AC Center Trig: Fr #Atten:	SENSE:INT Freq: 2.4520 'ee Run '30 dB	00000 GHz Avg Hold Ext Gain	ALIGNAUTO d:>100/100 h: -1.00 dB	12:27:55 Radio Sto Radio De	5 AM Jul 11, 2015 I: None vice: BTS	Freq / Channel
10 dB/div Log	Ref 20 dBm	<u>í</u>	1	-1	T	1	1	-	
10 0		างประวงใหละใจคะประวงระบงไรเหน่า	ullew traduction	m paralantint	methyerteasterserver	They down a how a low at low a			Center Freq 2.452000000 GHz
-10 -20	+			¥					
-30 -40	Marthalian and						MWW W	New Waysham In	
-50									
-70									CF Step
Center 2.4 #Res BW	52 GHz 100 kHz		#\	/BW 300	kHz		Spa Sw	an 60 MHz eep 6 ms	Auto Man
Occupi	ied Bandwid	^{dth} 35.731 N	IHz	Total F	ower	22.0	8 dBm		
Transm	it Freq Error	-3455	0 Hz	OBW	Power	91	9.00 %		
x dB Ba	ndwidth	35.07	MHz	x dB		-6.	00 dB		
MSG 🤳 File <f< td=""><td>PICTURE.PNG> s</td><td>aved</td><td></td><td></td><td></td><td>STATUS</td><td>8</td><td></td><td>×</td></f<>	PICTURE.PNG> s	aved				STATUS	8		×

8. Occupied Bandwidth

8.1. Test Equipment

The following test equipments are used during the test:

Occupied Bandwidth / SR7

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Spectrum Analyzer	Agilent	N9010A-EXA	US47140172	2016/07/13

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

8.2. Test Setup

8.3. Test Procedures

The EUT was setup according to ANSI C63.10; tested according to DTS test procedure section 8.1 of KDB558074 v03r02 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 100KHz, VBW \geq 3xRBW, Sweep time=Auto, Set Peak detector.

8.4. Limits

NA

8.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247: 2014

8.6. Uncertainty

The measurement uncertainty is defined as ±150Hz

8.7. Test Result

Product	Full HD Ultra-Wide View Wi-Fi Camera					
Test Item	Occupied Bandwidth					
Test Mode	Mode 1: Transmitter					
Date of Test	2015/07/10	Test Site	SR7			

802.11 b, ANT 0								
Channel No.	Frequency (MHz)	Measurement Level (MHz)	Required Limit (MHz)	Result				
1	2412	14.199	-	Pass				
6	2437	14.154		Pass				
11	2462	14.366		Pass				

Channel 1 (2412MHz)

🇊 Agilent Spo	ectrum Analyzer - Occupie	d BW	_						
M RL 50 Ω A Center Freq 2.412000000 GHz Input: RF #IFGain:Low		C SENSE:INT ALIGN) Center Freq: 2.412000000 GHz Trig: Free Run Avg Hold:>100/1 #Atten: 30 dB Ext Gain: -1.00 (ALIGN'AUTO 1:>100/100 : -1.00 dB	GNAUTO 11:09:58 PM Jul 10, 2015 Radio Std: None 10/100 10 dB Radio Device: BTS		Freq / Channel		
10 dB/div	Ref 20 dBm		_						
			~~~~	~~~~	my				Center Freq 2.412000000 GHz
-10						1 Nor	~		
-40								~~~	
-60 -70									CF Step
Center 2.412 GHz #Res BW 510 kHz #			#VE	SW 1.5 N	IHz	h	Spa Sweep	n 30 MHz 1.333 ms	3.000000 MHz <u>Auto</u> Man
Occupied Bandwidth 14.199 MH;			lz	Total Power 15.99 dBm					
Transmit Freq Error -34655		Hz OBW Power		99.00 %					
x dB E	Sandwidth	9.779 M	Hz	x dB		-6	.00 dB		
MSG						STATUS	6		

# Channel 6 (2437MHz)

🗊 Agilent Spec	strum Analyzer - Occupier	d BW			
Center Fr	req 2.43700000( Input: RF Ref. 20 dBm	O GHz Cente #IFGain:Low #Atter	SENSE:INT r Freq: 2.437000000 GHz Free Run Avg Hold n: 30 dB Ext Gain	ALIGNAUTO 11:15:35 PM Jul 10, 20 Radio Std: None d:>100/100 : -1.00 dB Radio Device: BTS	Freq / Channel
10		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Center Freq 2.437000000 GHz
-20 -30 -40 -50					-
-60 -70 Center 2.4 #Res BW	437 GHz 510 kHz		VBW 1.5 MHz	Span 30 Mł Sweep 1.333 n	CF Step 3.000000 MHz 1z Auto Man
Occupied Bandwidth 14.154 MHz			Total Power	14.48 dBm	
Transn x dB Ba	Transmit Freq Error-34954 Hx dB Bandwidth9.749 MH		OBW Power x dB	99.00 % -6.00 dB	
MSG				STATUS	




Product	Full HD Ultra-Wide View Wi-Fi Camera					
Test Item	Occupied Bandwidth					
Test Mode	Mode 1: Transmitter					
Date of Test	2015/07/10 Test Site SR7					

IEEE 802.11g, ANT 0									
Channel No.	Frequency	Measurement Level	Measurement Level Required Limit						
Channel No.	(MHz)	(MHz)	(MHz)	Result					
1	2412	17.058		Pass					
6	2437	17.078		Pass					
11	2462	17.104		Pass					

🗊 Agilent Spectrum Ana	lyzer - Occupied	IBW								
RL   50 Ω   AC   SENSE:INT   ALIGNAUTO   11:24:23 PM Jul 10, 2015     Center Freq   2.412000000 GHz   Center Freq: 2.412000000 GHz   Radio Std: None     Input: RF   Free Run   Avg Hold:> 100/100   Radio Device: BTS     #IFGain:Low   #Atten: 30 dB   Ext Gain: -1.00 dB   Radio Device: BTS								Freq / Channel		
10 dB/div Rer Log 10	20 dBm			P-iznistion	Seattle and the seattle	the second s			Center Freq 2.412000000 GHz	
-10 -20 -30							The second second	AT MARKAN MANA		
-40										
-70 Center 2.412 GH #Res BW 510 kH	-70 Center 2.412 GHz #Res BW 510 kHz #VBW						Span 30 MHz .5 MHz Sweep 1.333 ms			
Occupied B	Occupied Bandwidth 17.058 MHz Transmit Freq Error -57620 Hz		z	Total Po	wer	23.19 dBm				
Transmit Free x dB Bandwig			) Hz OBW Power		ower	99.00 %				
MSG		10.00 100				STATUS				









Product	Full HD Ultra-Wide View Wi-Fi Camera					
Test Item	Occupied Bandwidth					
Test Mode	Mode 1: Transmitter					
Date of Test	2015/07/10	Test Site	SR7			

IEEE 802.11n (20MHz), ANT 0								
Channel No.	Frequency	Measurement Level	Required Limit	Result				
	(MHz)	(MHz)	(MHz)					
1	2412	17.952		Pass				
6	2437	17.954		Pass				
11	2462	17.963		Pass				

🗊 Agilent S	pectrum Analyzer - Oc	cupied BW							
	RL 50.Ω   Center Freq 2.412000000 GHz   Input: RF #IFGain:Low			SENSE:INT r Freq: 2.41200 ree Run : 30 dB	00000 GHz Avg Hold Ext Gain:	ALIGNAUTO >100/100 -1.00 dB	Radio Sto	r PM Jul 10, 2015 I: None vice: BTS	Freq / Channel
									Center Freq 2.412000000 GHz
-10 -20							Mum	weild war with the star	
-40									
-60									
Center #Res BV	2.412 GHz V 510 kHz		#	VBW 1.5 M	IHz		Spa Sweep	an 30 MHz 1.333 ms	CF Step 3.000000 MHz <u>Auto</u> Man
Οςςι	Occupied Bandwidth 17.952 MHz			Total Power 23.22 dBm					
Trans	Transmit Freq Error-2005x dB Bandwidth17.23		0052 Hz	OBW F	ower	9	9.00 %		
x dB			23 MHz	MHz x dB		-6.0			
MSG 🤳 File	e <picture.png< td=""><td>&gt; saved</td><td></td><td></td><td></td><td>STATUS</td><td>S</td><td></td><td></td></picture.png<>	> saved				STATUS	S		



D Agilent Spee	rum Analyzer - Oce	upied BW							
	RL   50 Ω   AC   SENSE:INT   ALIGNAUTO   11:40:44 PM Jul 10, 2015     enter Freq   2.437000000 GHz   Center Freq: 2.437000000 GHz   Radio Std: None     Input: RF   #IFGain:Low   #Atten: 30 dB   Ext Gain: -1.00 dB   Radio Device: BTS     0 dB/div   Ref   20 dBm   20 dBm   Ref   20 dBm								Freq / Channel
		n terrent terrent terrent			-				Center Freq 2.437000000 GHz
-10 -20	munow						~~~~	and a stranger	
-30									
-60									
Center 2.4 #Res BW	-70 Center 2.437 GHz #Res BW 510 kHz #				MHz	Span 30 MHz Sweep 1.333 ms			CF Step 3.000000 MHz <u>Auto</u> Man
Occup	Occupied Bandwidth 17.954 MHz Transmit Freq Error x dB Bandwidth 17.13 MHz		1Hz	Total F	Power 23.35 dBm				
Transm			7 Hz	Hz OBW Power 1Hz x dB		99	9.00 %		
x dB Ba			MHz			-6.00 dB			
MSG 🧼 File <	PICTURE.PNG>	saved				STATUS	\$		

🗊 Agilent Spectrum Analyzer - Occ	upied BW					
AC Center Freq 2.462000000 GHz Input: RF #IFGain:Low		Center Freq: 2.4620 Trig: Free Run #Atten: 30 dB	ALIGI 00000 GHz Avg Hold:>100 Ext Gain: -1.00	VAUTO   11:44:16 Radio Std /100 dB Radio Dev	PM Jul 10, 2015 : None rice: BTS	Freq / Channel
				~		Center Freq 2.462000000 GHz
-20 -30						
Center 2.462 GHz #Res BW 510 kHz		#VBW 1.5 M	ЛНz	Spa Sweep	n 30 MHz 1.333 ms	CF Step 3.000000 MHz <u>Auto</u> Man
Occupied Bandw	Total I Z	Total Power 23.44 dBm				
Transmit Freq Error x dB Bandwidth	Transmit Freq Error-9632x dB Bandwidth17.11 Million		Power	99.00 % -6.00 dB		
MSG				STATUS		



Product	Full HD Ultra-Wide View Wi-Fi Camera					
Test Item	Occupied Bandwidth					
Test Mode	Mode 1: Transmitter					
Date of Test	2015/07/10	Test Site	SR7			

IEEE 802.11n (40MHz), ANT 0									
Channel No.	Frequency (MHz)	Measurement Level (MHz)	Required Limit (MHz)	Result					
3	2422	35.957		Pass					
6	2437	36.001		Pass					
9	2452	35.962		Pass					

# Channel 3 (2422MHz)

🗊 Agilent S	Spectrum Analyzer -	Decupied BW							
Center	RL     50 Ω     AC     SENSE:INT     ALIGNAUTO     11:47:54 PM Jul 10, 2015       enter Freq     2.422000000 GHz     Center Freq: 2.42200000 GHz     Radio Std: None       Input: RF     Frig: Free Run     Avg Hold>100/100     Radio Device: BTS       #IFGain:Low     #Atten: 30 dB     Ext Gain: -1.00 dB     Radio Device: BTS       0 dB/div     Ref     20 dBm     Ref     20 dBm								
10 0 -10		manna		er promose	-	- Marine the			Center Freq 2.422000000 GHz
-20 -30 <b>*****</b> -40	-						h		
-50 -60 -70									CF Step
Center #Res B	2.422 GHz W 510 kHz		#	VBW 1.5 P	ИНz		Sp Sweep	an 60 MHz 1.333 ms	6.000000 MHz <u>Auto</u> Man
Occi	Occupied Bandwidth 35.957 MHz Transmit Freq Error x dB Bandwidth 34.77 MHz		ИНz	Total I	Power	21.74 dBm			
Tran: x dB			64 Hz 7 MHz	Hz OBW Power Hz x dB		99.00 % -6.00 dB			
msg 🧼 Fil	e <picture.pn< td=""><td>G&gt; saved</td><td></td><td></td><td></td><td>STATUS</td><td>58</td><td></td><td></td></picture.pn<>	G> saved				STATUS	58		



# Channel 9 (2452MHz)

🗊 Agilent Sp	ectrum Analyzer - Occupier	IBW							
Center F	50 Ω req 2.452000000 Input: RF	) GHz #IFGain:Low	SENS Center Free Trig: Free F #Atten: 30 c	E:INT q: 2.452000 Run 18	000 GHz Avg Hold: Ext Gain:	ALIGNAUTO >100/100 -1.00 dB	11:59:00 Radio Std Radio Dev	PM Jul 10, 2015 : None /ice: BTS	Freq / Channel
10 dB/div Log 10	Ref 20 dBm			water of the					Center Freq
-10			¥			-			2.452000000 GHz
-30	Harris Harris						^у унуунун 	a talana waka podrimika iy	
-50 -60 -70.									
Center 2 #Res BW	.452 GHz 510 kHz		#VBV	V 1.5 MI	łz		Spa Sweep	ın 60 MHz 1.333 ms	CF Step 6.000000 MHz <u>Auto</u> Man
Occu	Occupied Bandwidth 35.962 MHz Transmit Freq Error -32916 Hz x dB Bandwidth 35.05 MHz		łz	Total Po	wer	22.00	) dBm		
Trans			Hz OBW Power		ower	99	9.00 %		
x dB E			Bandwidth 35.05 MHz		Hz	x dB		-6.	-6.00 dB
Msg 🤳 File	<picture.png> save</picture.png>	ed				STATUS	3		

# 9. Power Density

# 9.1. Test Equipment

The following test equipment is used during the test:

Power Density / SR7

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Spectrum Analyzer	Agilent	N9010A-EXA	US47140172	2016/07/13

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

#### 9.2. Test Setup



#### 9.3. Limits

The peak power spectral density conducted from the intentional radiated to the antenna shall not be greater than +8dBm in any 3kHz band during any time interval of continuous transmission.

## 9.4. Test Procedures

The EUT was setup according to ANSI C63.10; tested according to DTS test procedure section 10.2 of KDB558074 v03r02 for compliance to FCC 47CFR 15.247 requirements. Set 3KHz  $\leq$  RBW $\leq$ 100 kHz, Set VBW $\geq$ 3xRBW, Sweep time=Auto, Set Peak detector; The tested according to section E)c) of KDB662911 v02v01.

## 9.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247: 2014

#### 9.6. Uncertainty

The measurement uncertainty is defined as ±1.27dB.

#### 9.7. Test Result

Product	Full HD Ultra-Wide View Wi-Fi Camera				
Test Item	Power Density				
Test Mode	Mode 1: Transmitter				
Date of Test	2015/07/10	Test Site	SR7		

IEEE 802.11b, ANT 0										
Channel No.	Frequency	Measure Level	Limit	Deput						
Channel No.	(MHz)	(dBm)	(dBm)	Result						
1	2412	-13.037	≦8	Pass						
6	2437	-14.959	≦8	Pass						
11	2462	-7.696	≦8	Pass						





🗊 Agilent Spec	strum Analyzer - Swept	SA					
Center Fr	eq 2.4370000	00 GHz	AC SENSE	INT Avg Ty Avg Ty Avg Ha	ALIGNAUTO ype: Pwr(RMS)	11:19:33 PM Jul 10, 2 TRACE 1 2 3 4 TYPE & WARNER	5 6 Frequency
	Input: Ri	PNO: Fast G IFGain:Low	#Atten: 30 dE	B Ext Ga	in: -1.00 dB	DET A N N N	N N
10 dB/div	Ref 20.00 dBm		_		Mkr1 2	-14.959 dB	
		- 11 11 1	1				Center Freq
10.0				*			2.437000000 GHz
0.00	-				-		
-10.0			- 1	1			2.422000000 GHz
-20.0	-	- martin	man	the second second			Stop Freq
-30.0		$\sim$	¥		m		2.452000000 GHz
-40.0		y					CF Step
-50.0					n		Auto Man
-60.0		11 11 1			-		Freq Offset
-70.0	$\mathcal{M}$						0 Hz
						V T	
Center 2.4 #Res BW	3700 GHz 10 kHz	#VBI	N		Sweep 37	Span 30.00 Mi 1 ms (10001 pt	Hz (s)
MSG					STATUS		







Product	Full HD Ultra-Wide View Wi-Fi Camera				
Test Item	Power Density				
Test Mode	Mode 1: Transmitter				
Date of Test	2015/07/10	Test Site	SR7		

IEEE 802.11g, ANT 0										
Channel No	Frequency	Measurement	Limit	Desult						
Channel No.	(MHz)	(dBm)	(dBm)	Result						
1	2412	-11.115	≦8	Pass						
6	2437	-11.177	≦8	Pass						
11	2462	-11.028	≦8	Pass						

D Agilent Spectrum Analyzer -	Swept SA				
Center Freq 2.4120	000000 GHz	C SENSE:INT	ALIGN AUTO Avg Type: Pwr(RMS)	11:26:49 PM Jul 10, 2015 TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref 20.00	uput: RF PNO: Fast 😱 IFGain:Low	* Trig: Free Run #Atten: 30 dB	Avg Held:>100/100 Ext Gain: -1.00 dB Mkr1	2.411 334 GHz -11.115 dBm	Auto Tune
10.0					Center Freq 2.412000000 GHz
-10.0		1	<b>A</b> h <b>1 1 1 1 1 1 1 1 1 1</b>		Start Freq 2.397000000 GHz
-20.0	MWWWWWWWWWW	araaaaa ()xaaaaaaaa	MANAN MANAN Y		<b>Stop Freq</b> 2.427000000 GHz
-40.0	<i>r</i>			A WANNAMANA	CF Step 3.000000 MHz <u>Auto</u> Man
-60.0					Freq Offset 0 Hz
Center 2.41200 GHz #Res BW 10 kHz	#VBW	-	Sweep 3	Span 30.00 MHz 71 ms (10001 pts)	



🗊 Agilent Spectrum Analyzer -	Swept SA				
Center Freq 2.4370	00000 GHz	AC SENSE INT	Aug Type: Pwr(RMS)	11:30:23 PM Jul 10, 2015 TRACE 1 2 3 4 5 6	Frequency
In dB/div Ref 20.00	iput: RF PNO: Fast G IFGain:Low	#Atten: 30 dB	Ext Gain: -1.00 dB	2.436 697 GHz -11.177 dBm	Auto Tune
10.0					Center Freq 2.437000000 GHz
-10.0		1 	11		Start Freq 2.422000000 GHz
-20.0	MMMMMM	AMAAXAAAA ( ) AAAAAAAA	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM		<b>Stop Freq</b> 2.452000000 GHz
-40.0	<b>/</b>			Non white the second	CF Step 3.000000 MHz <u>Auto</u> Man
-60.0					Freq Offset 0 Hz
Center 2.43700 GHz				Span 30.00 MHz	
#Kes BW 10 KHZ	#VBN		Sweep 3	/ 1 ms (10001 pts)	







	•						
Product	Full HD Ultra-Wide View Wi-Fi Camera						
Test Item	Power Density						
Test Mode	Mode 1: Transmitter	Mode 1: Transmitter					
Date of Test	2015/07/10	Test Site	SR7				

IEEE 802.11n (20MHz), ANT 0										
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result						
1	2412	-11.156	≦8	Pass						
6	2437	-11.091	≦8	Pass						
11	2462	-11.100	≦8	Pass						

D Agilent Spectrum Analyzer -	Swept SA								
Contor From 2 4120	00000 CL	A(	C ) SE	NSE:INT		ALIGNAUTO	11:39:02 TRA	PM Jul 10, 2015	Frequency
Center Frey 2.4120	put: RF PN	0: Fast 😱 ain:Low	Trig: Free #Atten: 30	e Run 0 dB	Avg Hold: Ext Gain:	>100/100 -1.00 dB	TY		1.23.167.1
10 dB/div Ref 20.00	dBm					Mkr1	2.410 7 -11.1	'37 GHz 56 dBm	Auto Tune
Log					1.1				Center Fren
10.0					-				2.412000000 GHz
0.00					_				
-10.0		1							Start Freq 2.397000000 GHz
10.0	mulak	AKARAMAN	ANNINA	MANAN	MALARAAAAA	matrice		1	U. and the sould
-20.0,	WWWW	****	*******	//**/4*¥	<u>idianákak</u> tá	MMMM			Stop Freq
-30.0					_	-	-		2.427000000 GHz
-40.0		1111	1.101	-	1		n.		CF Step
-50.0							MAN	MANAN	3.000000 MHz <u>Auto</u> Man
-60.0			1 1						Freq Offset
									0 Hz
-70.0									
Center 2.41200 GHz	-	-	-			had to be the	Span 3	80.00 MHz	
#Res BW 10 kHz		#VBW				Sweep 3	171 ms (1	0001 pts)	
MSG						STATUS			



🗊 Agilent Spectrum Analyzer - 🗄	Swept SA								
Center Freq 2.4370	00000 GH	Z		NSE:INT	Avg Type	ALIGNAUTO	11:43:02 TRAC	PM Jul 10, 2015	Frequency
10 dB/div Ref 20.00 d	put: RF PNO IFGa <b>JBm</b>	: Fast 😱 in:Low	#Atten: 30	) dB	Ext Gain:	-1.00 dB Mkr1	2.435 7 -11.0	37 GHz 91 dBm	Auto Tune
10.0									Center Freq 2.437000000 GHz
-10.0			1 						Start Freq 2.422000000 GHz
-20.0	MMMM	ήνηνη	dana da anti-	u a a <b>a</b> a a a a a a a a a a a a a a a a	nwwwwyy	wwww			Stop Freq 2.452000000 GHz
-40.0 -50.0							MAN WANT	MAMMAN	CF Step 3.000000 MHz <u>Auto</u> Man
-60.0									Freq Offset 0 Hz
Center 2.43700 GHz #Res BW 10 kHz	3> saved	#VBW	<del></del>			Sweep 3	Span 3 171 ms (1	0.00 MHz 0001 pts)	







	-						
Product	Full HD Ultra-Wide View Wi-Fi Camera						
Test Item	Power Density						
Test Mode	Mode 1: Transmitter						
Date of Test	2015/07/10	Test Site	SR7				

IEEE 802.11n (40MHz), ANT 0								
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result				
3	2422	-16.214	≦8	Pass				
6	2437	-14.638	≦8	Pass				
9	2452	-15.528	≦8	Pass				

# Channel 3 (2422MHz)

D Agilent Spectrum Analyzer	Swept SA								
Center Freq 2.4220	000000 GH	Z	C SE	NSE:INT	Avg Type	ALIGNAUTO Pwr(RMS)	11:57:27 TRAC	PM Jul 10, 2015	Frequency
10 dB/div Ref 20.00	iput: RF PN( IFG2 dBm	): Fast 😱 iin:Low	#Atten: 30	≥Run )dB	Ext Gain:	-1.00 dB Mkr1	2.425 4 -16.2	44 GHz 14 dBm	Auto Tune
10.0								A	Center Freq 2.422000000 GHz
-10.0				<b>A</b> 1					Start Freq 2.392000000 GHz
-20.0		WWWWW	white white the second s	Handara and a second	WWWWWWWW	WWWWWWWW			Stop Freq 2.452000000 GHz
-40.0									CF Step 6.000000 MHz <u>Auto</u> Man
-60.0									Freq Offset 0 Hz
Center 2.42200 GHz #Res BW 10 kHz		#VBW	-			Sweep 7	Span 6 41 ms (1	0.00 MHz 0001 pts)	



D Agilent Spectrum Analyzer -	Swept SA				
🚧 RL 50 ລ Center Freq 2.4370	000000 GHz	AC SENSE:INT	ALIGNAUTO Avg Type: Pwr(RMS)	11:53:57 PM Jul 10, 2015 TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref 20.00	iput: RF PNO: Fas IFGain:Lo dBm	w ₩Atten: 30 dB	Ext Gain: -1.00 dB	2.440 444 GHz -14.638 dBm	Auto Tune
10.0					Center Freq 2.437000000 GHz
-10.0					Start Freq 2.407000000 GHz
-20.0		MANANANANANA MANANANA Mananananananananananananananananananan	haddan an a		Stop Freq 2.467000000 GHz
-40.0				Automatic res	CF Step 6.000000 MHz <u>Auto</u> Man
					Freq Offset 0 Hz
Center 2.43700 GHz #Res BW 10 kHz	#\	/BW	Sweep 7	Span 60.00 MHz 41 ms (10001 pts)	



# Channel 9 (2452MHz)

D Agilent Spectrum Analyzer -	Swept SA								
(XIRL 50Ω		A	C SE	NSE:INT		ALIGN AUTO	12:01:44	AM Jul 11, 2015	Frequency
Center Freq 2.4520	IDOOOO GH	IZ 0: Fast 😱 ain:Low	Avg Type: Pwr(RMS)     TRACE     1 2 3 4 5 6       Trig: Free Run     Avg Hold>100/100     TYPE A     WWWWWW       #Atten: 30 dB     Ext Gain: -1.00 dB     DET A NNNN		Frequency				
10 dB/div Ref 20.00	dBm	unicon				Mkr1	2.449 4 -15.5	92 GHz 28 dBm	Auto Tune
Log		1.1				-			Center Freq
10,0									2.452000000 GHz
0.00			-			1		-	Start Fred
-10.0			1-						2.422000000 GHz
-20.0			WHIMM		MALMANA	ANALMALIANALL.			Ston Fren
-30.0	Millingaliande	utilatalitasi.	1000		n a shaddad	diminitani (	í I		2.482000000 GHz
-40.0				S			L		CF Step
							<b>N</b>		6.000000 MHz <u>Auto</u> Man
							THE		
-60.0 411111111111111111111111							1/54	an chite and the	Freq Offset 0 Hz
-70.0									
Center 2.45200 GHz	_						Span 6	0.00 MHz	
#Res BW 10 kHz		#VBW				Sweep 7	'41 ms (1	0001 pts)	
MSG JFile <picture.pn< td=""><td>G&gt; saved</td><td></td><td></td><td></td><td></td><td>STATUS</td><td></td><td></td><td></td></picture.pn<>	G> saved					STATUS			