

RF EXPOSURE REPORT

- REPORT NO.: SA120417E04
- MODEL NO.: DAP-1525
 - FCC ID: KA2AP1525B1
 - **RECEIVED:** Apr. 17, 2012
 - TESTED: May 08, 2012
 - **ISSUED:** May 30, 2012
- APPLICANT: D-Link Corporation
 - ADDRESS: No.289, Sinhu 3rd Rd., Neihu District, Taipei City 114, Taiwan, R.O.C.
- **ISSUED BY:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
- LAB ADDRESS: No. 81-1, Lu Liao Keng, 9th Ling,Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan, R.O.C.

This test report consists of 10 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced, except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval or endorsement by any government agency. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

REL	EASE CONTROL RECORD	.3
1.	CERTIFICATION	.4
2.	RF EXPOSURE LIMIT	.5
3.	MPE CALCULATION FORMULA	.5
4.	CLASSIFICATION	.5
5.	ANTENNA GAIN	.6
6.	CALCULATION RESULT OF MAXIMUM CONDUCTED POWER	. 8

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	
SA120417E04	Original release	May 30, 2012

1. CERTIFICATION

PRODUCT:	Wi-Fi Booster Access Point /MediaBridge
BRAND NAME:	D-Link
MODEL NO.:	DAP-1525
TEST SAMPLE:	MASS-PRODUCTION
APPLICANT:	D-Link Corporation
TESTED:	May 08, 2012
STANDARDS:	FCC Part 2 (Section 2.1091)
	FCC OET Bulletin 65, Supplement C (01-01)
	IEEE C95.1

The above equipment (Model: DAP-1525) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY	:, DATE: <u>May 30, 2012</u> (Lori Chung, Specialist)	
APPROVED BY	:, DATE: <u>May 30, 2012</u> ('May Chen, Deputy Manager)	

2. RF EXPOSURE LIMIT

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

FREQUENCY RANGE (MHz)	AVERAGE TIME (minutes)							
LIMITS FOR GENERAL POPULATION / UNCONTROLLED EXPOSURE								
300-1500 F/1500								
1500-100,000			1.0	30				

F = Frequency in MHz

3. MPE CALCULATION FORMULA

 $Pd = (Pout^{*}G) / (4^{*}pi^{*}r^{2})$

where

Pd = power density in mW/cm2

Pout = output power to antenna in mW

G = gain of antenna in linear scale

pi = 3.1416

r = distance between observation point and center of the radiator in cm

4. CLASSIFICATION

The antenna of this product, under normal use condition, is at least 20cm away from the body of the user. So, this device is classified as **Mobile Device**.

5. ANTENNA GAIN

The antennas provided to the EUT, please refer to the following table:

Antenna 1							
Layout	Manufacture	Model name		na Gain	Antenna	Connector	
Layout	Manufacture		For 2.4GHz Gain (dBi)	For 5GHz Gain (dBi)	Туре	Connector	
Vertical	Alpha	WAP-N10S	2.95	5G Band1: 4.00 5G Band2: 3.80 5G Band3: 3.82 5G Band4: 3.89	Dipole	UFL	
Antenna 2							
Layout	Manufacture	Model name	Antenr	na Gain	Antenna	Connector	
Layout	Manufacture		For 2.4GHz Gain (dBi)	For 5GHz Gain (dBi)	Туре	Connector	
Vertical	Alpha	WAP-N10S	3.98	5G Band1: 4.01 5G Band2: 3.55 5G Band3: 3.96 5G Band4: 3.00	Dipole	UFL	
Antenna 3							
Layout	Layout Manufacture Model name Antenna Gain				Antenna	Connector	
Layout	Manufacture	Nodel Hame	For 2.4GHz Gain (dBi)	For 5GHz Gain (dBi)	Туре	Connector	
Horizontal	Alpha	WAP-N10S	3.23	5G Band1: 2.91 5G Band2: 3.11 5G Band3: 3.50 5G Band4: 3.10	Dipole	UFL	
Antenna 4							
Layout	Manufacture	Model name		na Gain	Antenna	Connector	
Layout	Manalaotaro	Model Hamo	For 2.4GHz Gain (dBi)	For 5GHz Gain (dBi)	Туре	Connoctor	
Horizontal	Alpha	WAP-N10S	4.20	5G Band1: 4.10 5G Band2: 3.87 5G Band3: 4.24 5G Band4: 3.63	Dipole	UFL	
Antenna 5							
Layout	Manufacture	Model name		na Gain	Antenna	Connector	
Layout	manufacture		For 2.4GHz Gain (dBi)	For 5GHz Gain (dBi)	Туре	Connector	
				EC Dan 11, 2.20			
Horizontal	Alpha	WAP-N10S	2.65	5G Band1: 3.30 5G Band2: 3.13 5G Band3: 3.96 5G Band4: 4.19	Dipole	UFL	
Horizontal Antenna 6	Alpha	WAP-N10S		5G Band2: 3.13 5G Band3: 3.96 5G Band4: 4.19	Dipole	UFL	
	Alpha Manufacture	WAP-N10S Model name		5G Band2: 3.13 5G Band3: 3.96	Antenna	UFL Connector	
Antenna 6			Antenr	5G Band2: 3.13 5G Band3: 3.96 5G Band4: 4.19 na Gain		-	

For 802.11b: From the above antennas, **antenna 4** was selected as representative antenna for the test and its data was recorded in this report.

According to the above antennas for 802.11a/g/n, there are two antennas will transmit simultaneously (one is Horizontal and the other one is Vertical). As the antenna combination must be supplied with one Horizontal and one Vertical antennas, therefore the following antenna combination modes could be chosen as below table:

Antenna Configuration			
CHAIN(1)	CHAIN(0)		
Antenna 3 - H	Antenna 1 - V		
Antenna 3 - H	Antenna 2 - V		
Antenna 3 - H Antenna 6 - V			
Antenna 4 - H	Antenna 1 - V		
Antenna 4 - H Antenna 2 - V			
Antenna 4 - H	Antenna 6 - V		
Antenna 5 - H	Antenna 1 - V		
Antenna 5 - H	Antenna 2 - V		
Antenna 5 - H	Antenna 6 - V		
	CHAIN(1) Antenna 3 - H Antenna 3 - H Antenna 3 - H Antenna 4 - H Antenna 4 - H Antenna 4 - H Antenna 5 - H Antenna 5 - H		

Note: 1. This report Chose the max. Antenna gain to do final test.

2. For 2.4GHz & 5GHz Band1: Mode 5 was selected as representative antennas for the test.

3. For 5GHz Band2~3: Mode 6 was selected as representative antennas for the test.

4. For 5GHz Band4: Mode 7 was selected as representative antennas for the test.

6. CALCULATION RESULT OF MAXIMUM CONDUCTED POWER

For 15.247(2.4GHz):

802.11b:

FREQUENCY BAND (MHz)	MAX POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/ cm ²)	LIMIT (mW/cm²)
2412-2462	194.984	4.2	20	0.102	1.00

802.11g:

FREQUENCY BAND (MHz)	MAX POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/ cm ²)	LIMIT (mW/cm²)
2412-2462	720.176	7.1	20	0.735	1.00

Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2]$

Effective Legacy Gain (dBi) = 7.1

The effective legacy gain is 7.1 dBi.

802.11n(20MHz):

FREQUENCY BAND (MHz)	MAX POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/ cm²)	LIMIT (mW/cm²)
2412-2462	727.889	7.1	20	0.743	1.00

Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2]$ Effective Legacy Gain (dBi) = 7.1

The effective legacy gain is 7.1 dBi.

802.11n(40MHz):

FREQUENCY BAND (MHz)	MAX POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/ cm²)	LIMIT (mW/cm²)
2422-2452	677.688	7.1	20	0.691	1.00

Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2]$ Effective Legacy Gain (dBi) = 7.1

The effective legacy gain is 7.1 dBi.

For 15.247(5GHz):

802.11a:

FREQUENCY BAND (MHz)	MAX POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/ cm ²)	LIMIT (mW/cm²)
5745 ~ 5825	694.209	7.05	20	0.700	1.00

Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2/2]$

Effective Legacy Gain (dBi) = 7.05

The effective legacy gain is 7.05 dBi.

802.11n(20MHz):

FREQUENCY BAND (MHz)	MAX POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/ cm²)	LIMIT (mW/cm²)
5745 ~ 5825	578.183	7.05	20	0.583	1.00

Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2/2]$

Effective Legacy Gain (dBi) = 7.05

The effective legacy gain is 7.05 dBi.

802.11n(40MHz):

FREQUENCY BAND (MHz)	MAX POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/ cm ²)	LIMIT (mW/cm²)
5755 ~ 5795	663.843	7.05	20	0.670	1.00

Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2/2]$ Effective Legacy Gain (dBi) = 7.05

The effective legacy gain is 7.05 dBi.

For 15.407(5GHz): 802.11a:

FREQUENCY BAND (MHz)	MAX POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/ cm²)	LIMIT (mW/cm²)
5180 ~ 5240	26.366	7.07	20	0.027	1.00

Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2/2]$ Effective Legacy Gain (dBi) = 7.07 The effective legacy gain is 7.07 dBi.

802.11n(20MHz):

FREQUENCY BAND (MHz)	MAX POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/ cm ²)	LIMIT (mW/cm²)
5180 ~ 5240	32.067	7.07	20	0.032	1.00

Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2]$ Effective Legacy Gain (dBi) = 7.07 The effective legacy gain is 7.07 dBi.

802.11n(40MHz):

FREQUENCY BAND (MHz)	MAX POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/ cm ²)	LIMIT (mW/cm²)
5190 ~ 5230	38.553	7.07	20	0.039	1.00

Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2]$

Effective Legacy Gain (dBi) = 7.07

The effective legacy gain is 7.07 dBi,

--- END ----