

FCC 47 CFR PART 15 SUBPART C AND ANSI C63.4 : 2003

TEST REPORT

For

RANGEBOOSTER N 650 ACCESS POINT

Model : DAP-1353

Trade Name : D-Link

Issued for

D-Link Corporation

No. 289, Sinhu 3rd Rd., Neihu District, Taipei City 114, Taiwan, R.O.C.

Issued by

Compliance Certification Services Inc. Tainan Laboratory No. 8, Jiu Cheng Ling, Jiaokeng Village, Sinhua Township, Tainan Hsien 712, Taiwan R.O.C. TEL: 886-6-580-2201

FAX: 886-6-580-2202

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

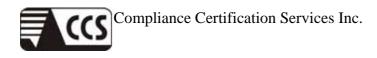
 FCC ID
 : KA2AP1353B1

 Report No. : 90407002-RP1

 Page
 2 of 213

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	06/09/2009	Initial Issue	All Page 213	Jeter Wu


 FCC ID
 : KA2AP1353B1

 Report No.
 : 90407002-RP1

 Page
 3 of
 213

TABLE OF CONTENTS

TITLE	PAGE NO.
1. TEST REPORT CERTIFICATION	
2. EUT DESCRIPTION	
2.1 DESCRIPTION OF EUT & POWER	
3. DESCRIPTION OF TEST MODES	7
4. TEST METHODOLOGY	7
5. FACILITIES AND ACCREDITATIONS	
5.1 FACILITIES	
5.2 EQUIPMENT	
5.3 LABORATORY ACCREDITATIONS LISTINGS	
5.4 TABLE OF ACCREDITATIONS AND LISTINGS	9
6. CALIBRATION AND UNCERTAINTY	
6.1 MEASURING INSTRUMENT CALIBRATION	
6.2 MEASUREMENT UNCERTAINTY	
7. SETUP OF EQUIPMENT UNDER TEST	
8. APPLICABLE LIMITS AND TEST RESULTS	
8.1 6dB BANDWIDTH	
8.2 99% BANDWIDTH	
8.3 MAXIMUM PEAK OUTPUT POWER	
8.4 MAXIMUM PERMISSIBLE EXPOSURE	
8.5 AVERAGE POWER	
8.6 POWER SPECTRAL DENSITY	
8.7 CONDUCTED SPURIOUS EMISSION	
8.8 RADIATED EMISSIONS	
8.8.1 TRANSMITTER RADIATED SUPURIOUS EMSSIONS	
8.8.2 WORST-CASE RADIATED EMISSION BELOW 1 GHz	
8.8.3 TRANSMITTER RADIATED EMISSION ABOVE 1 GHz	
8.8.4 RESTRICTED BAND EDGES	
8.9 POWERLINE CONDUCTED EMISSIONS	
APPENDIX SETUP PHOTOS	209-213

 FCC ID
 : KA2AP1353B1

 Report No. : 90407002-RP1

 Page
 4 of 213

1. TEST REPORT CERTIFICATION

Applicant	:	D-Link Corporation
Address	:	No. 289, Sinhu 3rd Rd., Neihu District, Taipei City 114,
		Taiwan, R.O.C.
Equipment Under Test	•	RANGEBOOSTER N 650 ACCESS POINT
Model	:	DAP-1353
Trade Name	:	D-Link
Tested Date	:	March 07 ~ June 05, 2009

APPLICABLE STANDARD				
STANDARD	TEST RESULT			
FCC Part 15 Subpart C AND ANSI C63.4:2003	No non-compliance noted			

Approved by:

54

Jeter Wu Section Manager

Reviewed by:

Eric ang

Eric Yang Senior Engineer

WE HEREBY CERTIFY THAT: The measurements shown in the attachment were made in accordance with the procedures indicated, and the energy emitted by the equipment was found to be within the limits applicable. We assume full responsibility for the accuracy and completeness of these measurements and vouch for the qualifications of all persons taking them.

 FCC ID
 : KA2AP1353B1

 Report No. : 90407002-RP1

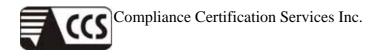
 Page
 5 of 213

2. EUT DESCRIPTION

2.1 DESCRIPTION OF EUT & POWER

Product Name	RANGEBOOSTER N 650 ACCESS POINT
Model Number	DAP-1353
Enguanay Danga	IEEE 802.11b/g, 802.11n HT20 : 2412MHz ~ 2462MHz
Frequency Range	IEEE 802.11n HT40 : 2422MHz ~ 2452MHz
	IEEE 802.11b : 25.81dBm
T	IEEE 802.11g : 25.82dBm
Transmit Power	IEEE 802.11n HT20 : 25.84dBm
	IEEE 802.11n HT40 : 25.74dBm
Channel Spacing	IEEE 802.11b/g, 802.11n HT20/HT40 : 5MHz
Channel Number	IEEE 802.11b/g, 802.11n HT20 : 11 Channels
Channel Number	IEEE 802.11n HT40 :7 Channels
	IEEE 802.11b : 11, 5.5, 2, 1 Mbps
	IEEE 802.11g : 54, 48, 36, 24, 18, 12, 9, 6 Mbps
	IEEE 802.11n HT20 : 144.44, 130, 117, 115.556, 104, 86.667, 78,
	72.2, 65, 58.5, 57.8, 57.778, 52, 43.333, 43.3,
Transmit Data Rate	39, 28.9, 28.889, 26, 21.7, 19.5, 14.444, 14.4,
	13, 7.2, 6.5 Mbps
	IEEE 802.11n HT40 : 300, 270, 243, 240, 216, 180, 162, 150, 135,
	121.5, 120, 108, 90, 81, 60, 54, 45, 40.5, 30,
	27, 15, 13.5Mbps IEEE 802.11b : DSSS (CCK, DQPSK, DBPSK)
Type of Modulation	IEEE 802.11g : OFDM (64QAM, 16QAM, QPSK, BPSK)
Type of Modulation	
	IEEE 802.11n HT20/40 : OFDM (64QAM, 16QAM, QPSK, BPSK)
Frequency Selection	by software / firmware
Antenna Type	Dipole Antenna × 3 ,Antenna Gain 3 dBi
Power Source	5.0VDC (From Power Adapter)
I/O Port	Ethernet LAN port $\times 1$, Power port $\times 1$

No.	Manufacturer	Model No.	Power Input	Power Output				
1	D-Link	CF1505-B	100-120VAC, 50/60Hz, 0.4A	5VDC, 2.5A				
2	D-Link	CF1505-B	100-240VAC, 50/60Hz, 0.4A	5VDC, 2.5A				
3	D-Link	AMS3-0502500SU	100-120VAC, 60Hz, 0.5A	5VDC, 2.5A				
4	D-Link	AMS3-0502500FU	100-240VAC, 50/60Hz, 0.5A	5VDC, 2.5A				


Power Adapter :

Remark:

1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.

2. This submittal(s) (test report) is intended for FCC ID: KA2AP1353B1 filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

3. For more details, please refer to the User's manual of the EUT.

3. DESCRIPTION OF TEST MODES

The EUT is an 802.11n MIMO transceiver in Access Point form factor. It has three transmitter chains and three receive chains (3×3 configurations). The 3×3 configuration is implemented with three outside chains (Chain 0, 1, 2).

The RF chipset is manufactured by Atheros Communications Inc.

IEEE 802.11 b ,802.11g ,802.11n HT20 mode

The EUT had been tested under operating condition.

There are three channels have been tested as following :

Channel	Frequency (MHz)
Low	2412
Middle	2437
High	2462

IEEE 802.11b mode : 1Mbps data rate (worst case) were chosen for full testing. IEEE 802.11g mode : 6Mbps data rate (worst case) were chosen for full testing. IEEE 802.11n HT20 mode : 6.5Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11n HT40 mode

The EUT had been tested under operating condition.

There are three channels have been tested as following :

Channel	Frequency (MHz)
Low	2422
Middle	2437
High	2452

IEEE 802.11n HT40 mode : 13.5Mbps data rate (worst case) were chosen for full testing.

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4:2003 and FCC CRF 47 15.207, 15.209 and 15.247.

 FCC ID
 : KA2AP1353B1

 Report No.
 : 90407002-RP1

 Page
 8 of 213

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No. 8, Jiu Cheng Ling, Jiaokeng Village, Sinhua Township, Tainan Hsien 712, Taiwan R.O.C.

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22.

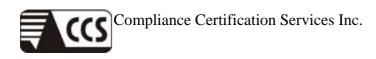
5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."


5.3 LABORATORY ACCREDITATIONS LISTINGS

The test facilities used to perform radiated and conducted emissions tests are accredited by Taiwan Accreditation Foundation for the specific scope of accreditation under Lab Code: 1109 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. In addition, the test facilities are listed with Industry Canada, Certification and Engineering Bureau, IC 2324H-1 for OATS -6.

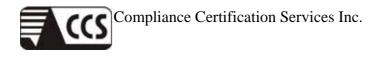
5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FCC 455173 TW-1037
Japan	VCCI	3/10 meter Open Area Test Sites to perform conducted/radiated measurements	VCCI C-2882 R-2635
Taiwan	TAF	CISPR 11, FCC METHOD-47 CFR Part 18, EN 55011, EN 60601-1-2, CISPR 22, CNS 13438, EN 55022, EN 55024, AS/NZS CISPR 22 CISPR 14, EN 55014-1, EN 55014-2, CNS 13783-1, CISPR 22, CNS 13439, EN 55013, FCC Method-47 CFR Part 15 Subpart B, IC ICES-003, VCCI V-3 & V-4 FCC Method-47 CFR Part 15 Subpart C and ANSI C63.4, LP 0002 EN / IEC 61000-4-2 / -3 / -4 / -5 / -6 / -8 / -11 EN 61000-3-2, EN 61000-3-3 EN 61000-6-3, EN 61000-6-1, AS/NZS 4251.1, EN 61000-6-4, EN 61000-6-2, AS/NZS 4251.2, EN 61204-3, EN 50130-4, EN 62040-2, EN 50371, EN 50385, AS/NZS 4268, ETSI EN 300 386 ETSI EN 300 328, ETSI EN 301 489-1/-3/-9/-17 ETSI EN 301 893, ETSI EN 300 220-2/-1 ETSI EN 301 357-2/-1 RSS-310, RSS-210 Issue 7, RSS-Gen Issue 2	Total Control of the second se
Taiwan	BSMI	CNS 13438, CNS 13783-1, CNS13439	SL2-IN-E-0039 SL2-R1/R2-0039 SL2-A1-E-0039
Canada	Industry Canada	RSS210, Issue 7	Canada IC 2324H-1

* No part of this report may be used to claim or imply product endorsement by TAF or any agency of the US Government.

6. CALIBRATION AND UNCERTAINTY

6.1 MEASURING INSTRUMENT CALIBRATION


The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

6.2 MEASUREMENT UNCERTAINTY

The following table is for the measurement uncertainty, which is calculated as per the document CISPR 16-4.

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 1000 MHz	+/- 3.2 dB
Radiated Emission, 1 to 26.5GHz	+/- 3.2 dB
Power Line Conducted Emission	+/- 2.1 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

7. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

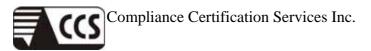
No.	Product	Manufacturer	Model No.	Serial No.	FCC ID
1	Notebook PC	DELL	Latitude D610	CN-0C4708-48643-625-5565	E2K24BNHM
2	Notebook PC	HP	nx6130	CNU543274R	CNTWM3B2200BGA
3	DIY PC				

SETUP DIAGRAM FOR TESTS

EUT & peripherals setup diagram is shown in appendix setup photos.

EUT OPERATING CONDITION

RF

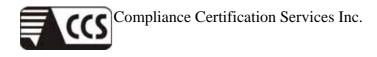

- 1. Set up all computers like the setup diagram.
- 2. The "Atheros Radio Test <ART> Devilib Revision 0.7 BUILD #16 ART_11n" software was used for testing.
- 3. telnet 192.168.0.50

Account Number:admin / No Password

- →alpha sdd21234
- →set art_start

TX Mode:

- \Rightarrow Tx Antenna: ANT_A, [TX99] [Chain masks:0x7(Tx),0x7(Rx)]
- \Rightarrow Tx Data Rate:1Mbps long (IEEE 802.11b mode , chain 0/1/2 TX)
 - 6Mbps (IEEE 802.11g mode , chain 0/1/2 TX)
 - 6.5Mbps (IEEE 802.11n HT20 mode ,chain 0/1/2 TX)
 - 13.5Mbps (IEEE 802.11n HT40 mode, chain 0/1/2 TX)
- \Rightarrow Power control mode
 - Output Power: IEEE 802.11b Channel Low (2412MHz) = 17.5
 - IEEE 802.11b Channel Middle (2437MHz) = 18
 - IEEE 802.11b Channel High (2462MHz) = 16
 - Output Power: IEEE 802.11g Channel Low (2412MHz) = 13
 - IEEE 802.11g Channel Middle (2437MHz) = 17
 - IEEE 802.11g Channel High (2462MHz) = 11.5
 - Output Power: IEEE 802.11n HT20 Channel Low (2412MHz) = 11
 - IEEE 802.11n HT20 Channel Middle (2437MHz) = 17
 - IEEE 802.11n HT20 Channel High (2462MHz) = 10



Output Power: IEEE 802.11n HT40 Channel Low (2422MHz) = 7.5 IEEE 802.11n HT40 Channel Middle (2437MHz) = 17 IEEE 802.11n HT40 Channel High (2452MHz) = 8

- 4. All of the function are under run.
- 5. Start test.

For Normal operating :

- 1. Set up all computers like the setup diagram.
- 2. Notebook PC (2) ping to Notebook PC (3).
- 3. Notebook PC (2) (3) ping 192.168.0.50 -t to EUT.
- 4. All of the function are under run.
- 5. Start test.

FCC ID : KA2AP1353B1 Report No. : 90407002-RP1 Page <u>13</u> of <u>213</u>

8. APPLICABLE LIMITS AND TEST RESULTS

8.1 6dB BANDWIDTH

LIMIT

§ 15.207(a) (2) For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
SPECTRUM ANALYZER	AGILENT	E4446A	MY43360132	06/05/2009
SPECTRUM ANALYZER	AGILENT	E4446A	MY46180323	05/26/2010

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The transmitter output was connected to a spectrum analyzer. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

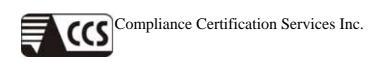
TEST RESULTS

No non-compliance noted

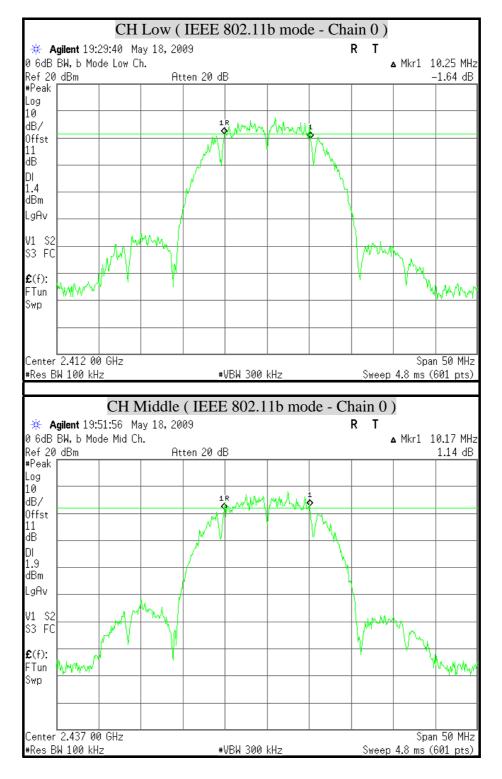
IEEE 802.11b mode (Three TX)

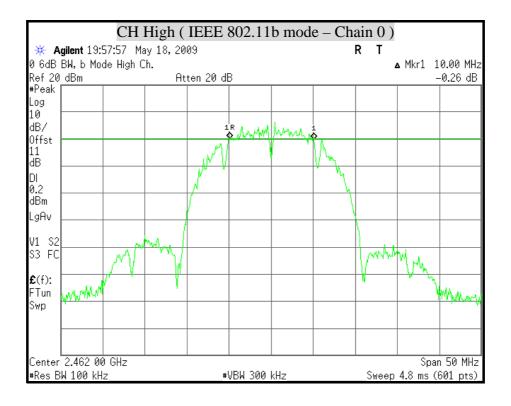
Channel	Channel Frequency	6dB Bandwidth (MHz)			Minimum Limit	Pass / Fail
	(MHz)	Chain 0	Chain 1	Chain 2	(kHz)	
Low	2412	10.25	10.08	10.08	500	PASS
Middle	2437	10.17	10.08	10.08	500	PASS
High	2462	10.00	11.00	11.00	500	PASS

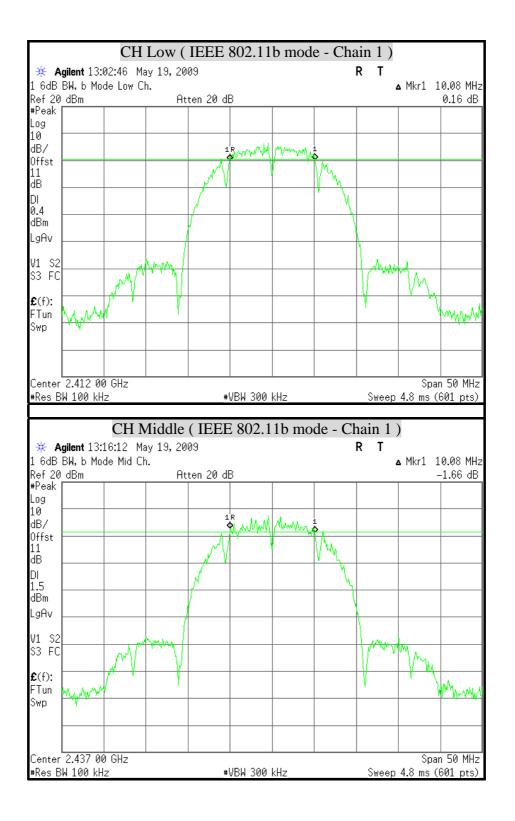
IEEE 802.11g mode (Three TX)

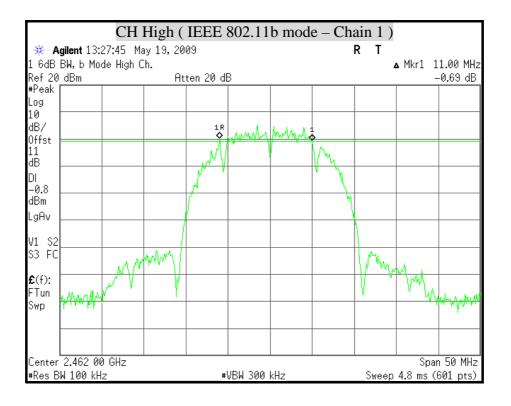

Channel	Channel Frequency	6dB Bandwidth (MHz)			Minimum Limit	Pass / Fail
	(MHz)	Chain 0	Chain 1	Chain 2	(kHz)	
Low	2412	16.50	16.50	16.50	500	PASS
Middle	2437	16.50	16.50	16.50	500	PASS
High	2462	16.42	16.42	16.50	500	PASS

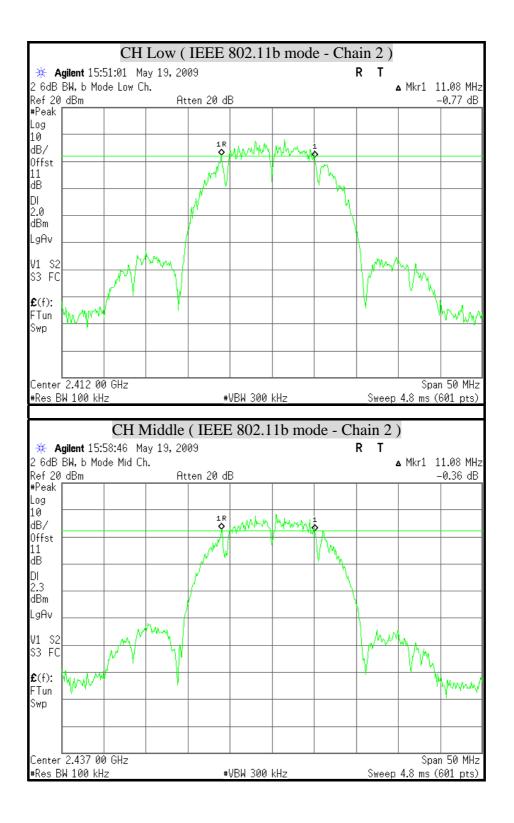
IEEE 802.11n HT20 mode (Three TX)

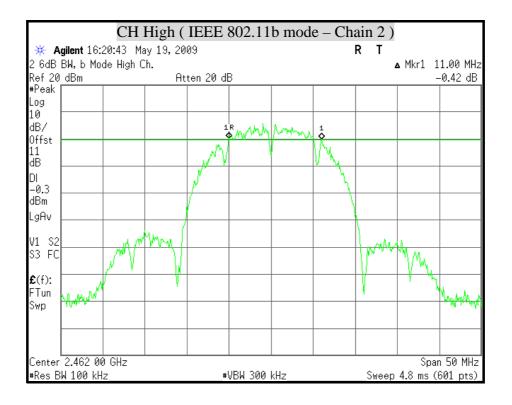

Channel	Channel Frequency	6dB Bandwidth (MHz)			Minimum Limit	Pass / Fail
	(MHz)	Chain 0	Chain 1	Chain 2	(kHz)	
Low	2412	17.25	17.67	17.75	500	PASS
Middle	2437	17.67	17.75	17.83	500	PASS
High	2462	17.83	17.67	17.50	500	PASS

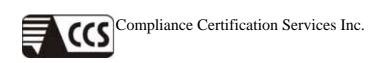

IEEE 802.11n HT40 mode (Three TX)

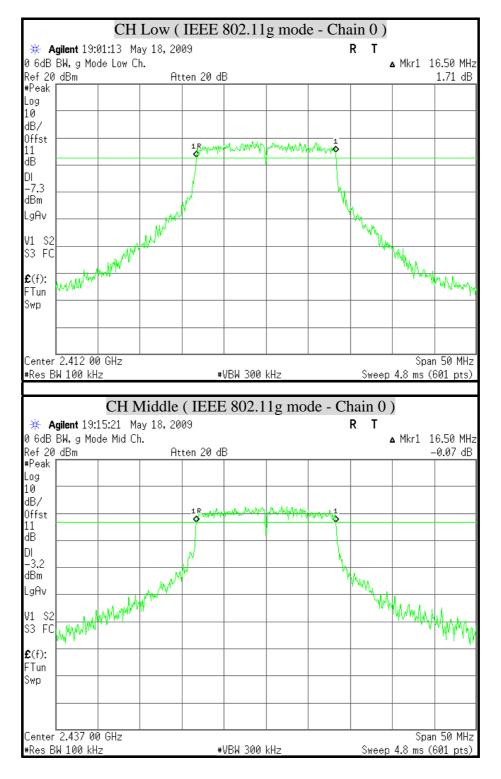

Channel	Channel Frequency	6dB Bandwidth (kHz)			Minimum Limit	Pass / Fail
	(MHz)	Chain 0	Chain 1	Chain 2	(kHz)	
Low	2422	36.42	36.50	36.50	500	PASS
Middle	2437	36.58	36.50	36.42	500	PASS
High	2452	36.58	36.42	36.50	500	PASS

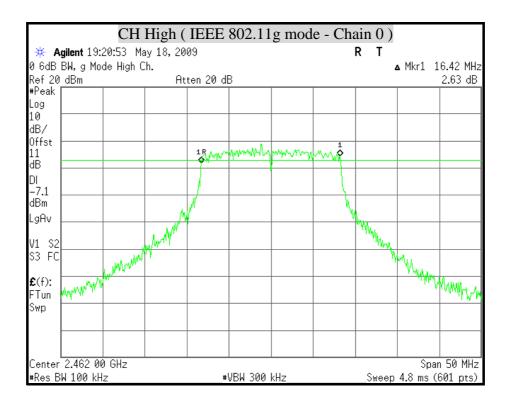


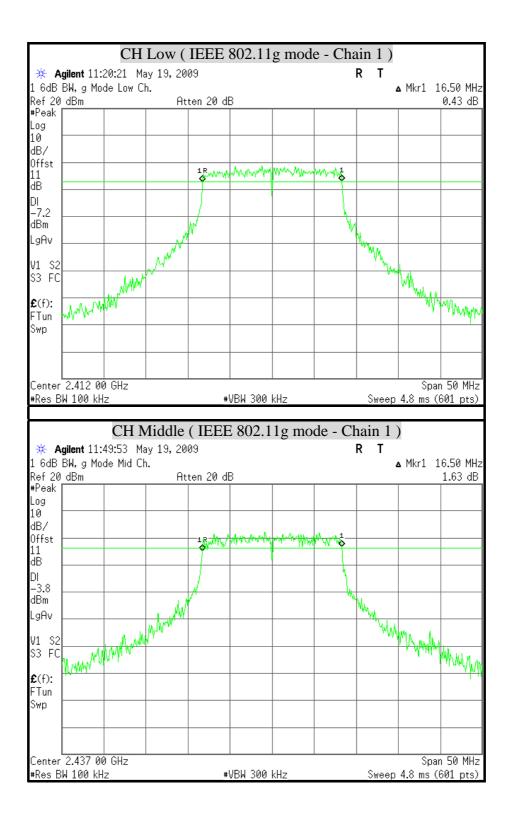

6dB BANDWIDTH (IEEE 802.11b mode)

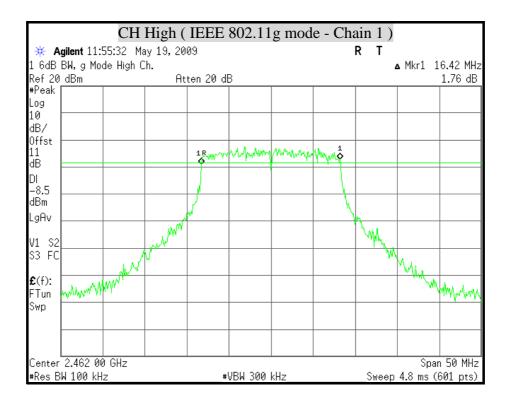


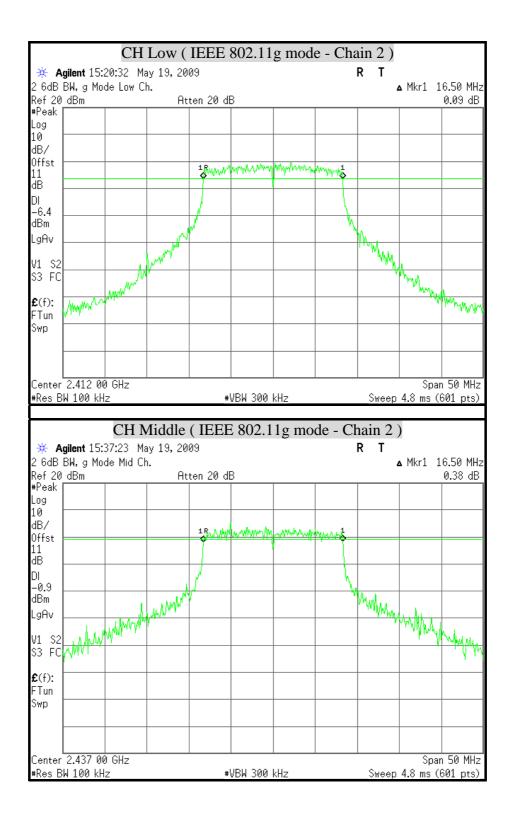


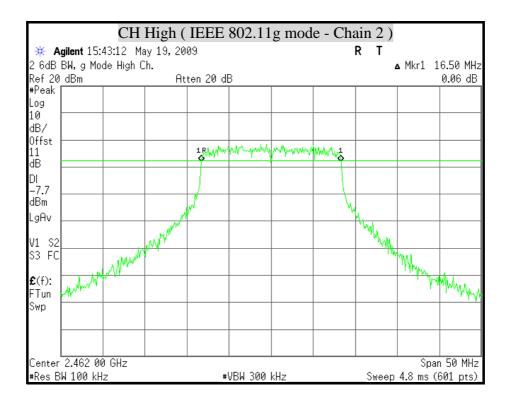


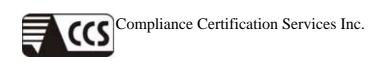


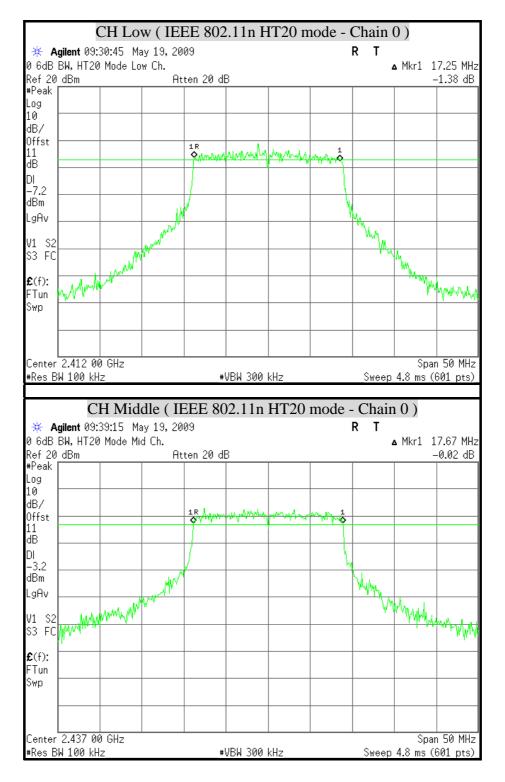


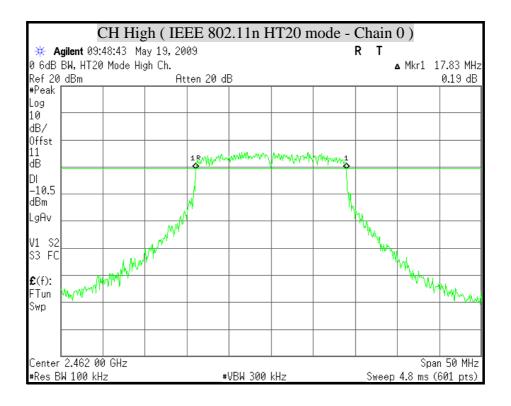


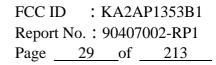

6dB BANDWIDTH (IEEE 802.11g mode)

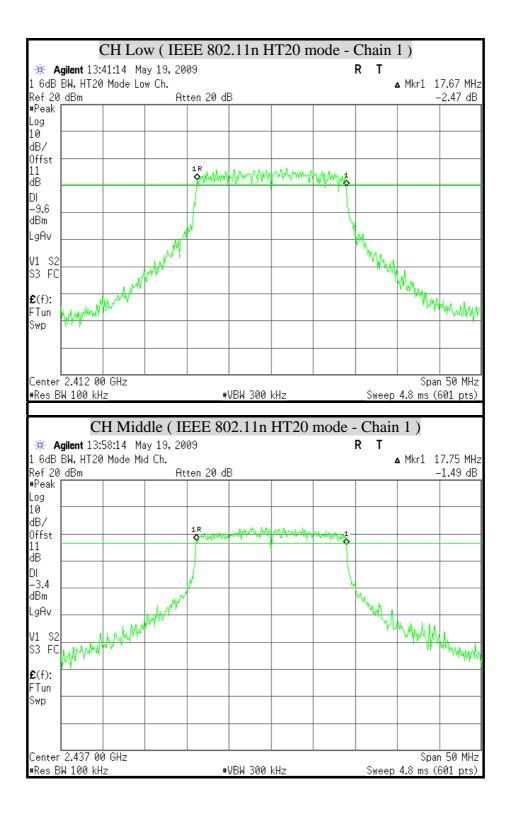


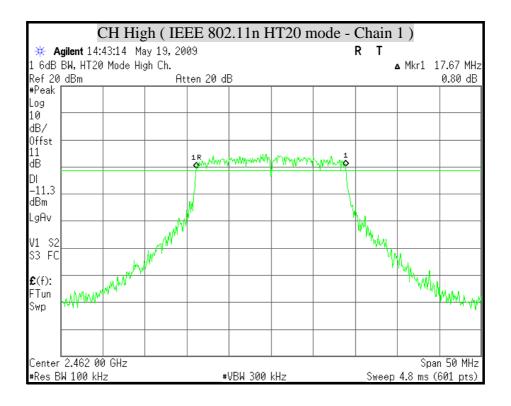


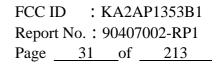


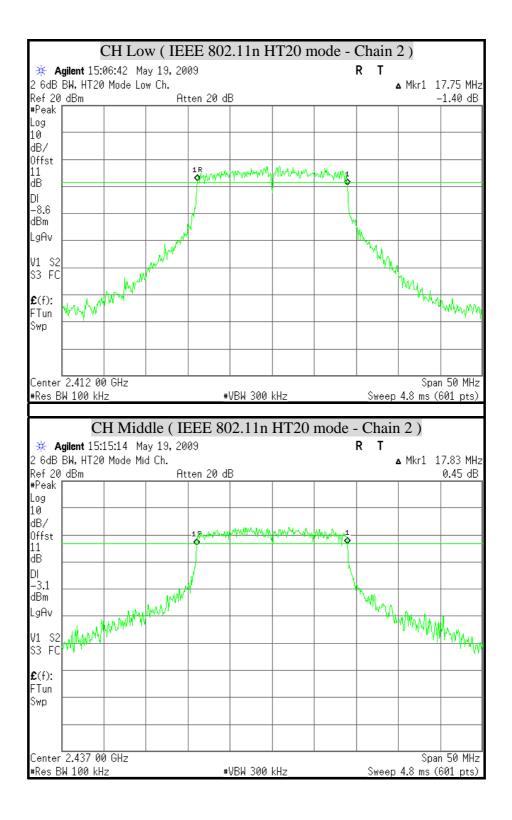


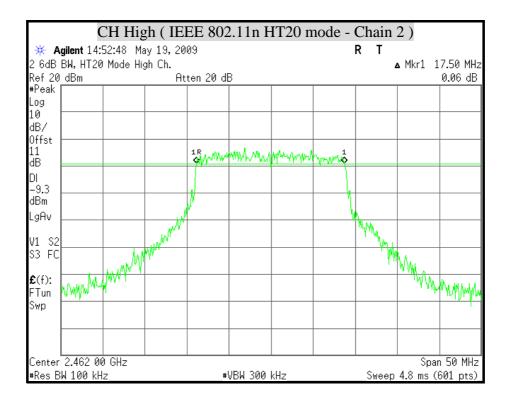


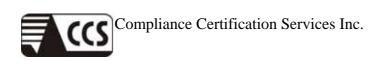


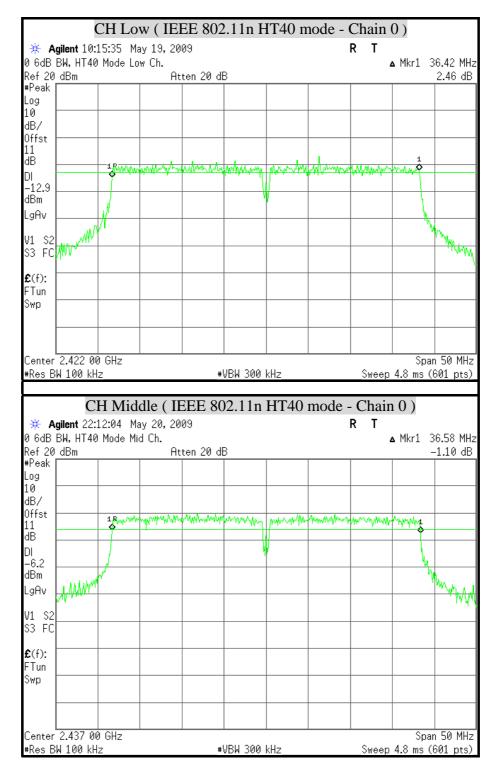

6dB BANDWIDTH (IEEE 802.11n HT20 mode)

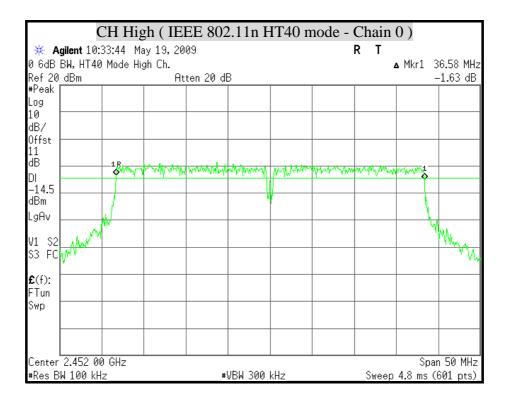


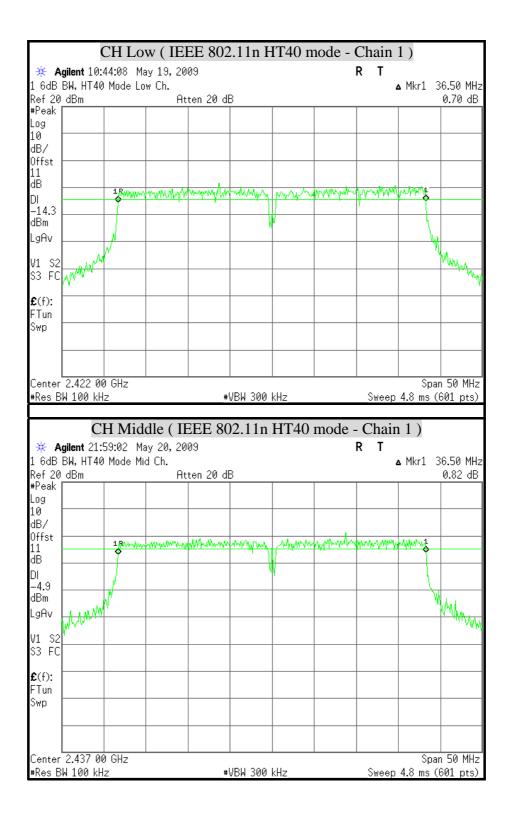


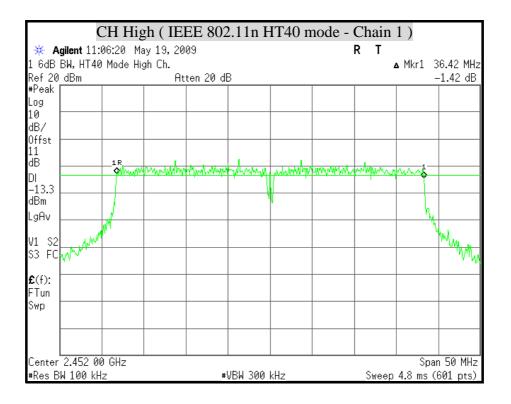


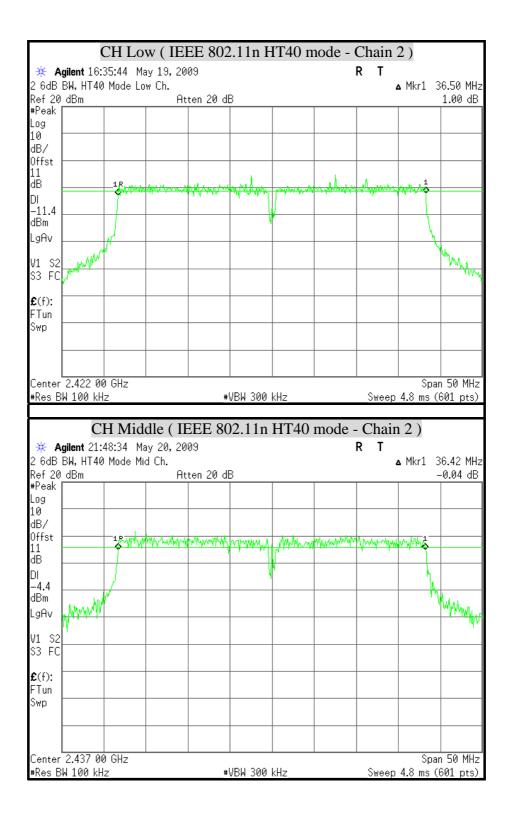


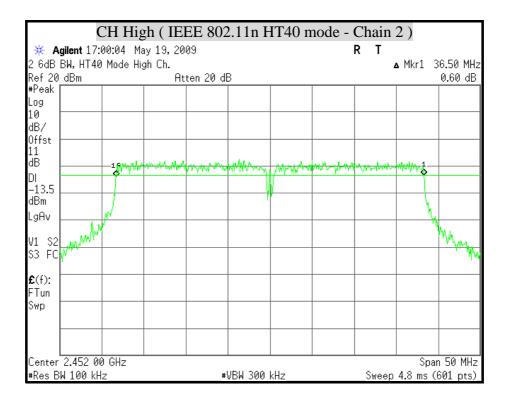


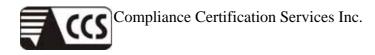







6dB BANDWIDTH (IEEE 802.11n HT40 mode)





8.2 99% **BANDWIDTH**

LIMIT

None; for reporting purposes only.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
SPECTRUM ANALYZER	AGILENT	E4446A	MY43360132	06/05/2009
SPECTRUM ANALYZER	AGILENT	E4446A	MY46180323	05/26/2010

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

- 1. The spectrum shall be set as follows :
 - Span : The minimum span to fully display the emission and approximately 20dB below peak level.

RBW : The set to 1% to 3% of the approximate emission width.

- 2. Compute the combined power of all signal responses contained in the trace by covering all the data points.
- 3. For 99% occupied BW, place the markers at the frequency at which 0.5% of the power lies to the right of the right marker and 0.5% of the power lies to the left of the left marker.
- 4. The 99% BW is the bandwidth between the right and left markers.

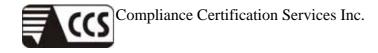
TEST RESULTS

No non-compliance noted

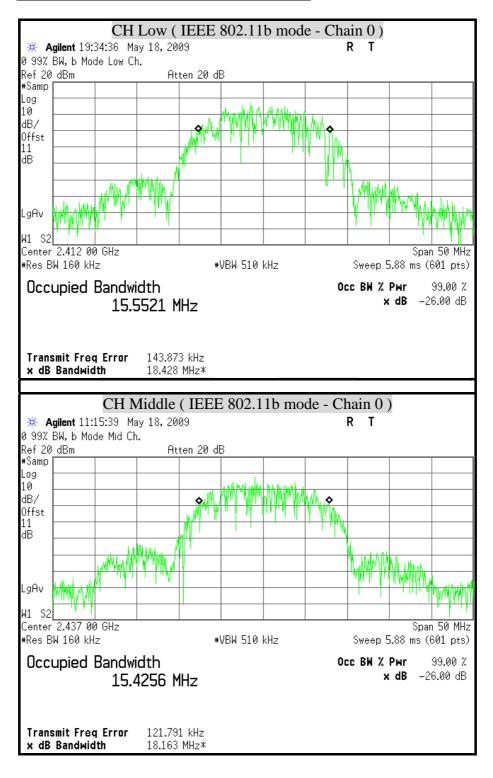
IEEE 802.11b mode (Three TX)

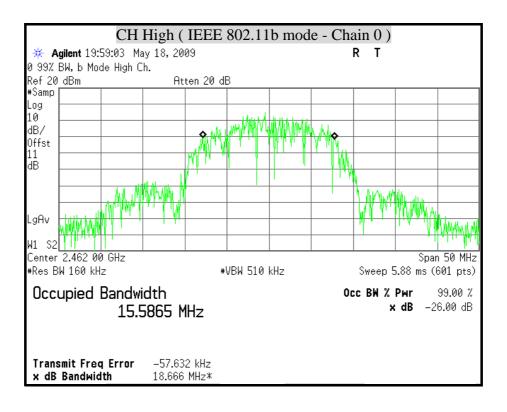
Channel	Channel Frequency (MHz)	99% Occupied power bandwidth (MHz)				
	(1 V1112)	Chain 0	Chain 1	Chain 2		
Low	2412	15.55	15.54	15.73		
Middle	2437	15.42	15.77	15.60		
High	2462	15.58	15.41	15.52		

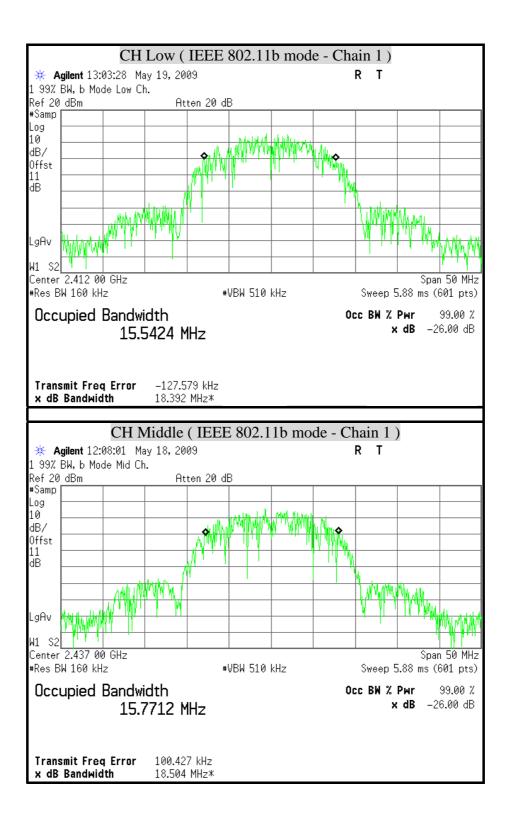
IEEE 802.11g mode (Three TX)

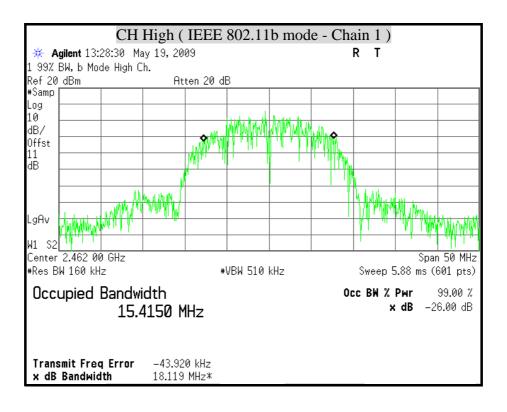

Channel	Channel Frequency (MHz)	99% Occupied power bandwidth (MHz)				
	(1 V1112)	Chain 0	Chain 1	Chain 2		
Low	2412	16.35	16.44	16.33		
Middle	2437	16.37	16.40	16.25		
High	2462	16.37	16.47	16.36		

IEEE 802.11n HT20 mode (Three TX)

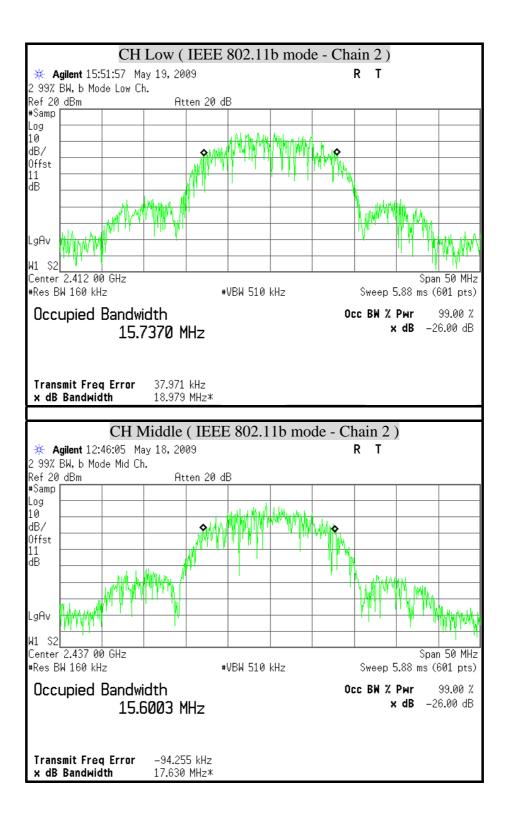

Channel	Channel Frequency (MHz)	99% Occupied power bandwidth (MHz)				
	(1 11112)	Chain 0	Chain 1	Chain 2		
Low	2412	17.65	17.74	17.70		
Middle	2437	17.67	17.66	17.60		
High	2462	17.65	17.57	17.56		

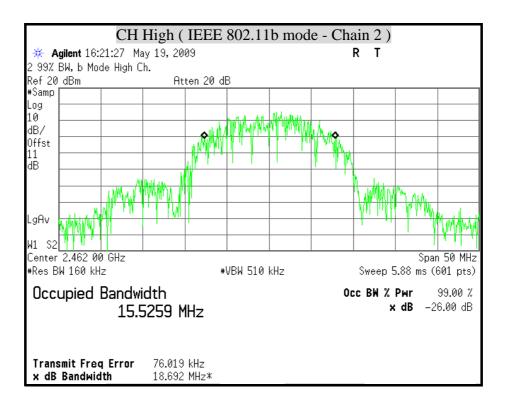

IEEE 802.11n HT40 mode (Three TX)

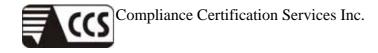

Channel	Channel Frequency (MHz)	99% Occupied power bandwidth (MHz)			
	(1 V1112)	Chain 0	Chain 1	Chain 2	
Low	2422	36.22	36.27	36.28	
Middle	2437	36.23	36.20	36.33	
High	2452	36.37	36.28	36.26	

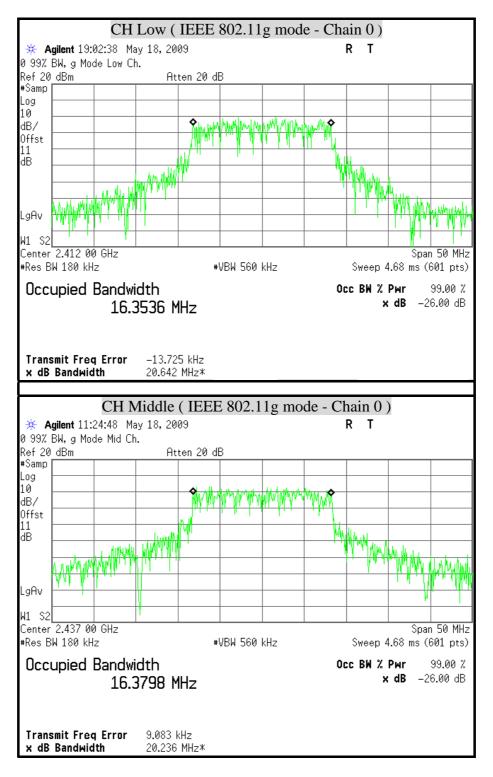


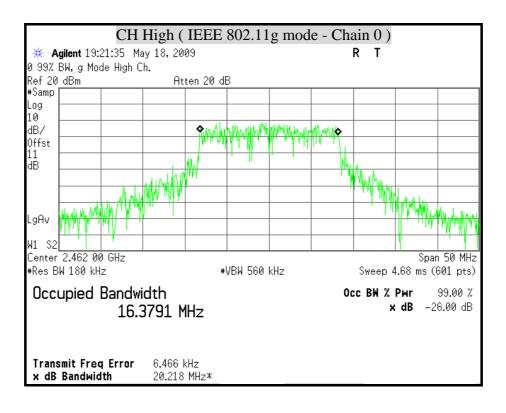
99% BANDWIDTH (IEEE 802.11b mode)

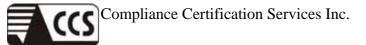


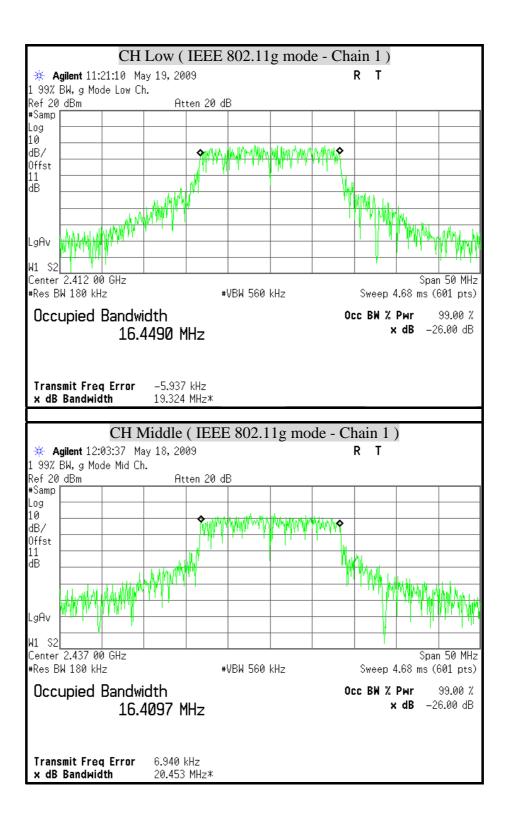


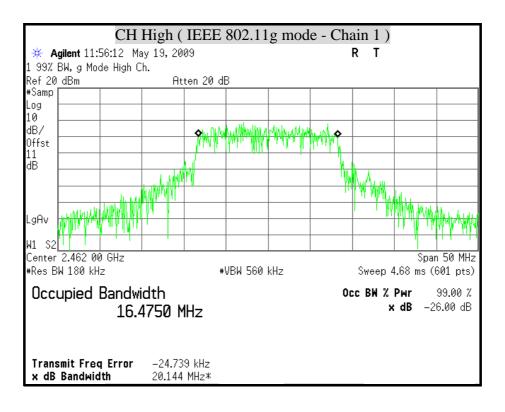


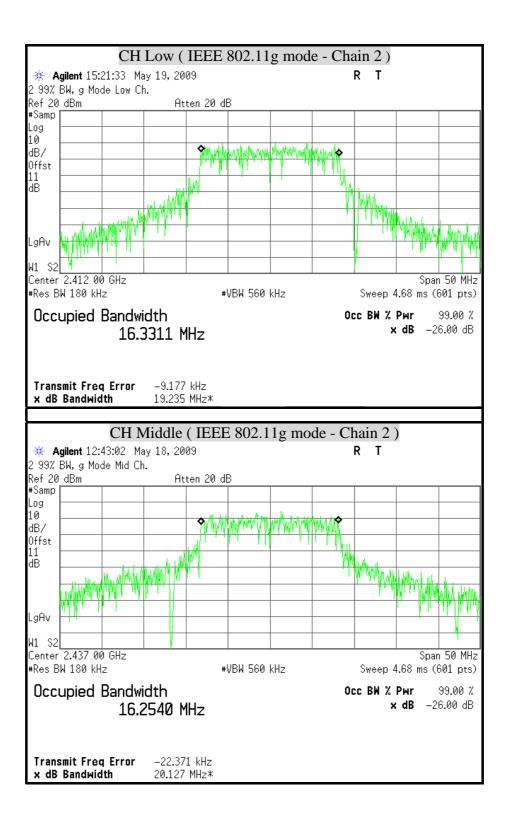


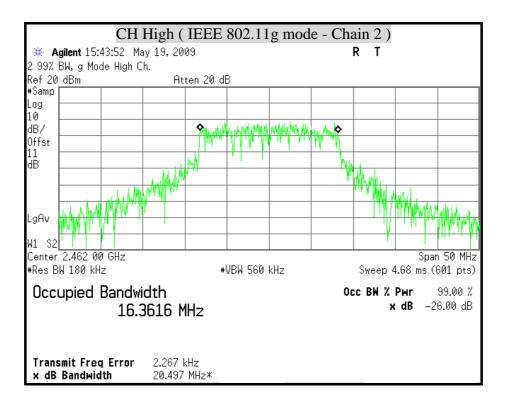


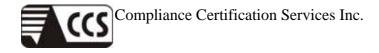


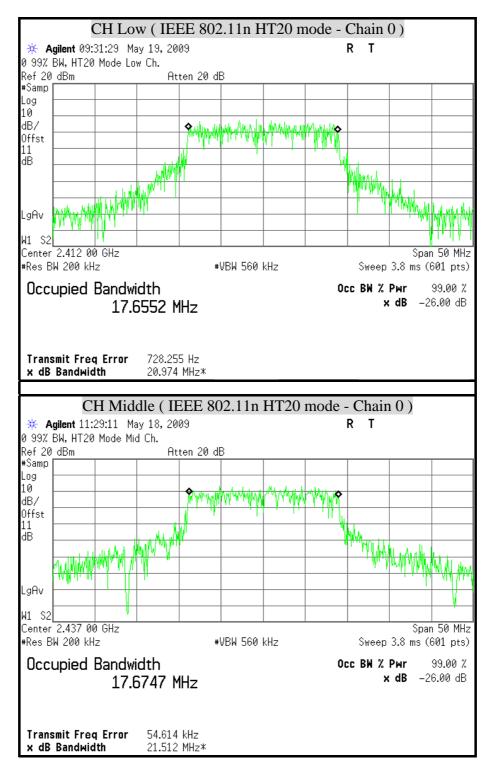

99% BANDWIDTH (IEEE 802.11g mode)

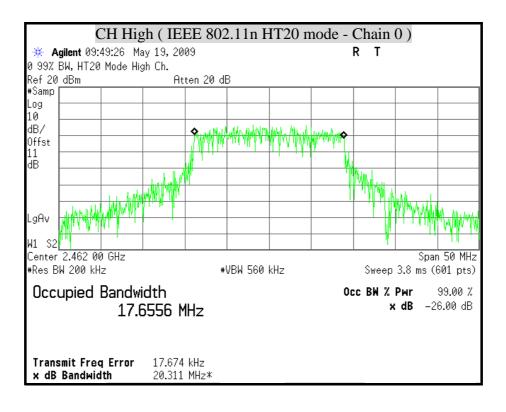


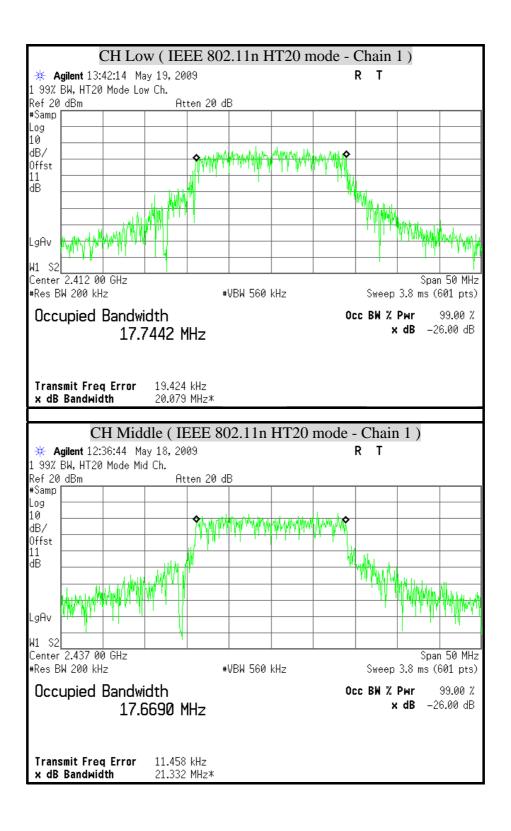




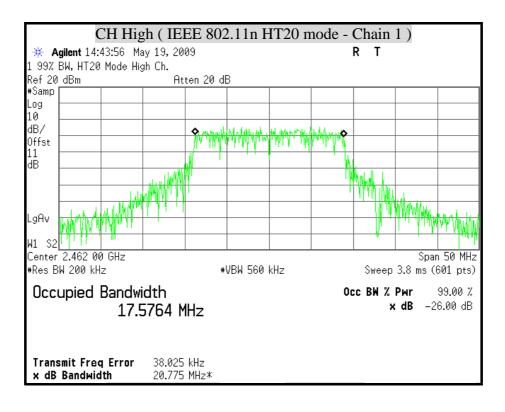


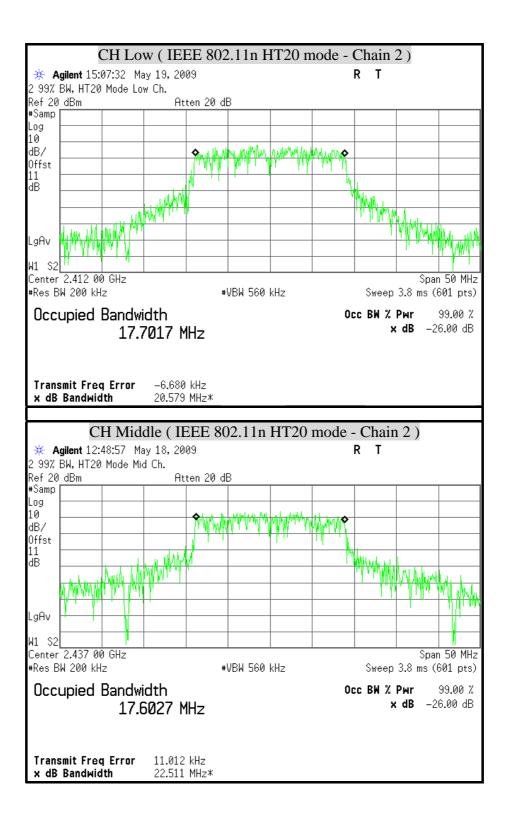


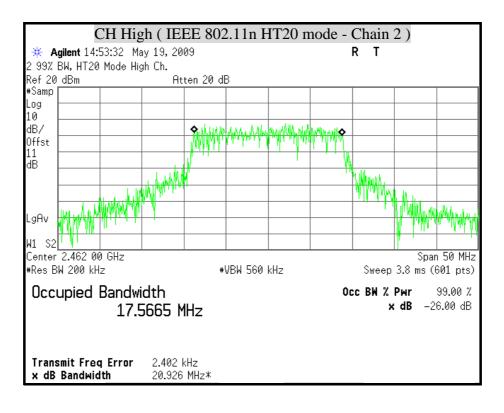


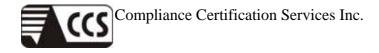


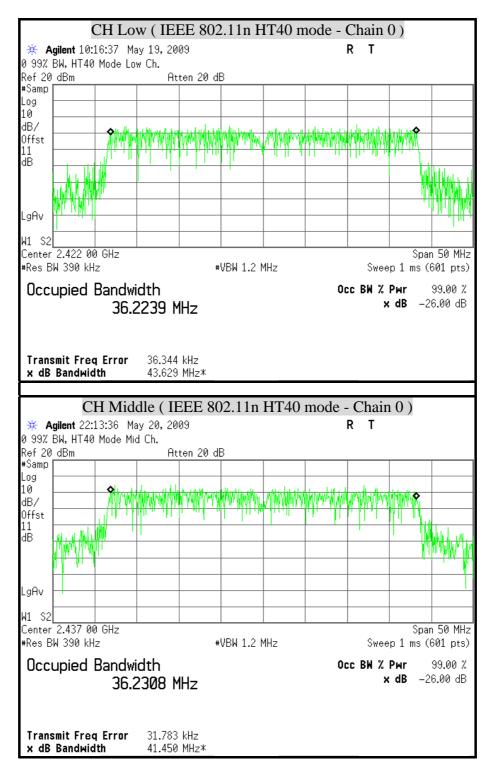
99% BANDWIDTH (IEEE 802.11n HT20 mode)

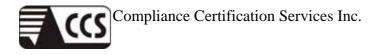


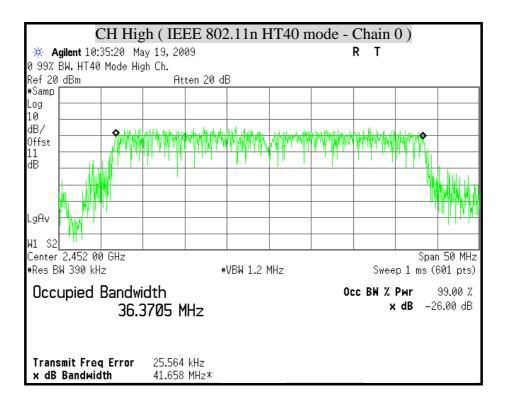


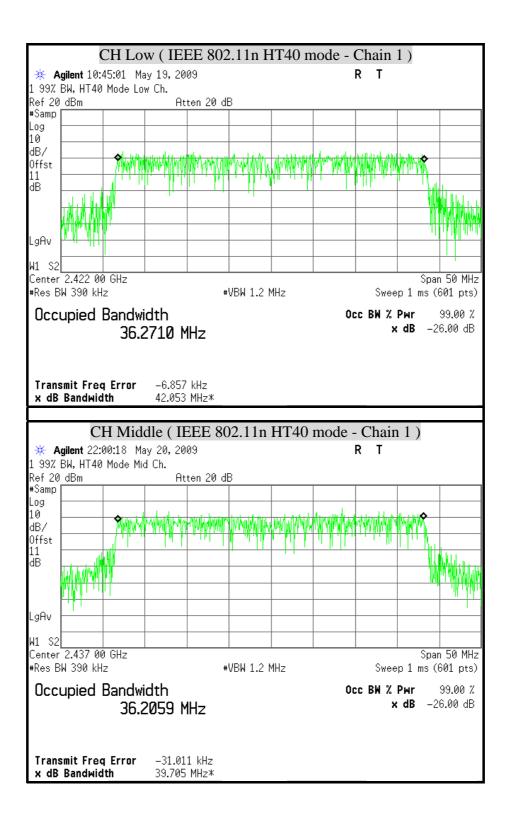


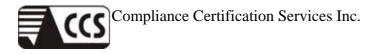




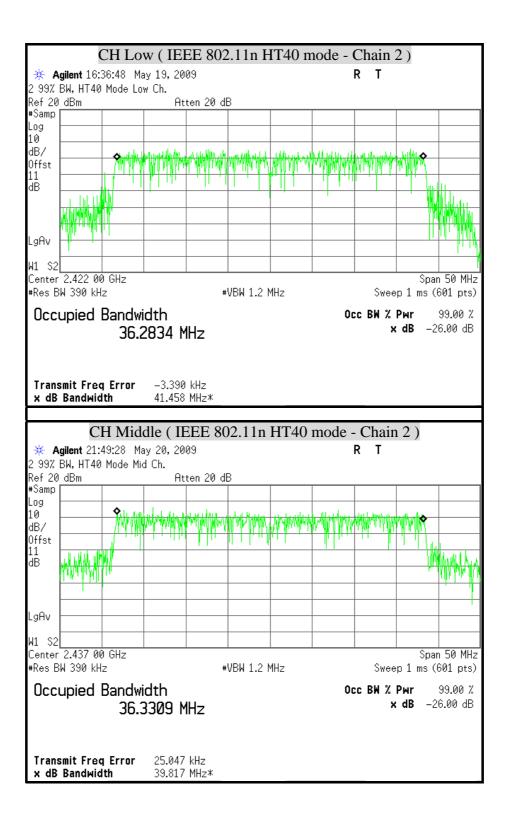


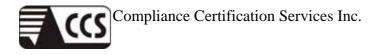


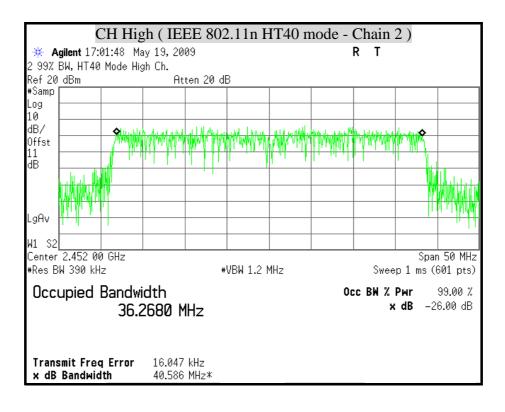


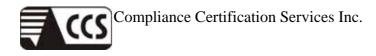

99% BANDWIDTH (IEEE 802.11n HT40 mode)











FCC ID : KA2AP1353B1 Report No. : 90407002-RP1 Page <u>65</u> of <u>213</u>

8.3 MAXIMUM PEAK OUTPUT POWER

LIMIT

§ 15.247(b) The maximum peak output power of the intentional radiator shall not exceed the following :

§ 15.247(b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands : 1 watt.

§ 15.247(b) (4) Except as shown in paragraphs (c) of this section , if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2), and (b)(3) of this section , as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
SPECTRUM ANALYZER	AGILENT	E4446A	MY43360132	06/05/2009
SPECTRUM ANALYZER	AGILENT	E4446A	MY46180323	05/26/2010

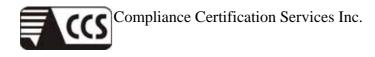
Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

1. The spectrum shall be set as follows :

Span : 1.5 times channel integration bandwidth.


RBW: 1MHz

VBW : 3MHz

Detector : Peak

Sweep : Single trace

- 2. Compute the combined power of all signal responses contained in the trace by covering all the data points.
- 3. For 99% occupied BW, place the markers at the frequency at which 0.5% of the power lies to the right of the right marker and 0.5% of the power lies to the left of the left marker.
- 4. The peak output power is the channel power integrated over 99% bandwidth.

TEST RESULTS

No non-compliance noted

Total peak power calculation formula: 10 log (10[^] (Chain 0 Power / 10) + 10[^] (Chain1 Power / 10) + 10[^] (Chain2 Power / 10))

The maximum antenna gain is 3 dBi, therefore the limit is 30 dBm. In the legacy mode, the effective antenna gain is $3 + 10 \times \text{Log}(3) = 7.77$ dBi.

IEEE 802.11b mode

Channel Channel Frequency		P	eak Powo (dBm)	er	Peak Power Total	Peak Power	Pass / Fail
Chamiler	(MHz)	•	Chain 2		Limit (dBm)	1 ass / 1 an	
Low	2412	20.30	20.11	20.63	25.12	28.23	PASS
Middle	2437	20.91	20.33	21.78	25.81	28.23	PASS
High	2462	18.59	18.18	19.51	23.56	28.23	PASS

Remark:

1. At finial test to get the worst-case emission at 1Mbps.

2. The cable assembly insertion loss of 11dB (including 10 dB pad and 1 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

Channel Frequency		Peak Power (dBm)			Peak Power Total	Peak Power	Pass / Fail
Channel	(MHz)	Chain 0	Chain 1	Chain 2		Limit (dBm)	1 ass / 1 an
Low	2412	17.02	16.63	17.18	21.72	28.23	PASS
Middle	2437	20.84	20.51	21.73	25.82	28.23	PASS
High	2462	15.60	15.02	16.10	20.36	28.23	PASS

IEEE 802.11g mode

Remark:

1. At finial test to get the worst-case emission at 6Mbps.

2. The cable assembly insertion loss of 11dB (including 10 dB pad and 1 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

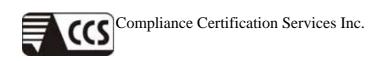
Channel	Channel Peak Power Frequency (dBm)		er	Peak Power Total	Peak Power	Pass / Fail	
	(MHz)	Chain 0	Chain 1	Chain 2	(dBm)	Limit (dBm)	1 a55 / 1 all
Low	2412	14.65	14.46	15.18	19.54	30.00	PASS
Middle	2437	20.75	20.80	21.62	25.84	30.00	PASS
High	2462	13.98	13.15	14.57	18.70	30.00	PASS

IEEE 802.11n HT20 mode (Three TX)

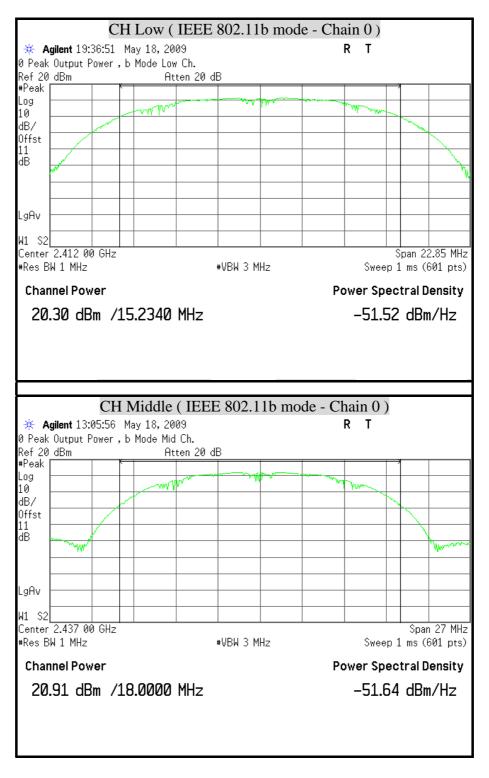
Remark:

1. At finial test to get the worst-case emission at 6.5Mbps.

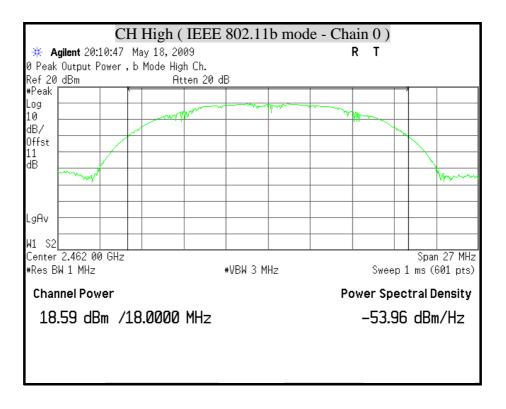
2. The cable assembly insertion loss of 11dB (including 10 dB pad and 1 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

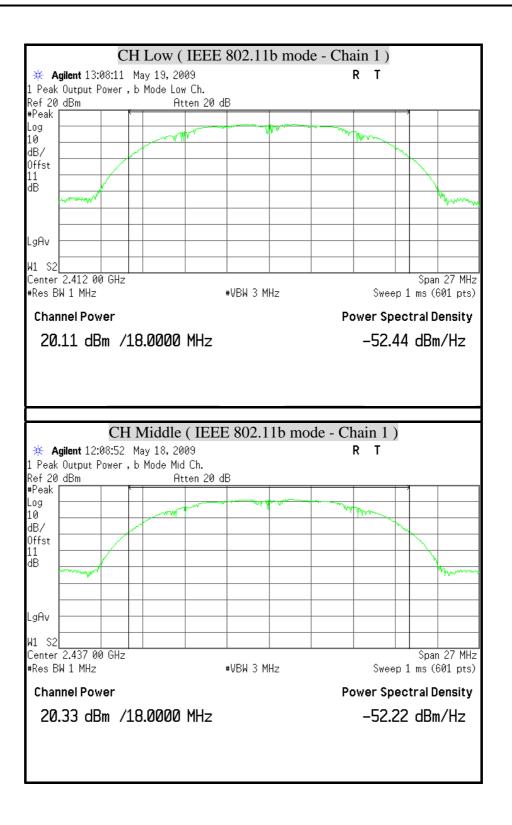

Channel Frequency		Peak Power (dBm)			Peak Power Total	Peak Power	Pass / Fail
Channel	(MHz)	Chain 0	Chain 0 Chain 1 Chain 2		Limit (dBm)	1 ass / 1 an	
Low	2422	11.74	11.72	12.36	16.72	30.00	PASS
Middle	2437	20.98	20.37	21.50	25.74	30.00	PASS
High	2452	12.25	11.93	12.95	17.16	30.00	PASS

IEEE 802.11n HT40 mode (Three TX)

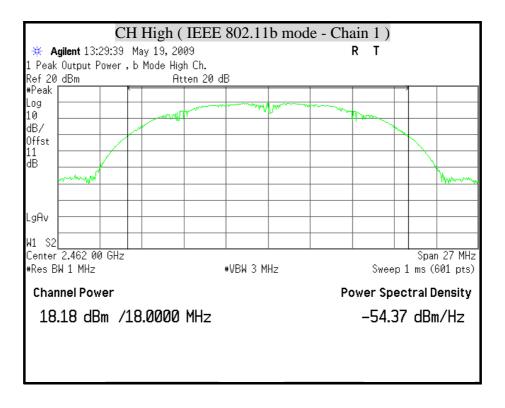

Remark:

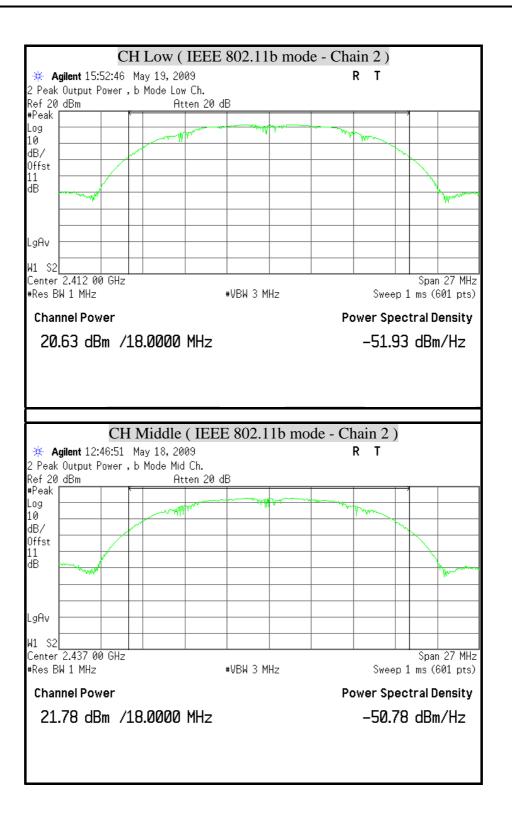
1. At finial test to get the worst-case emission at 13.5Mbps.

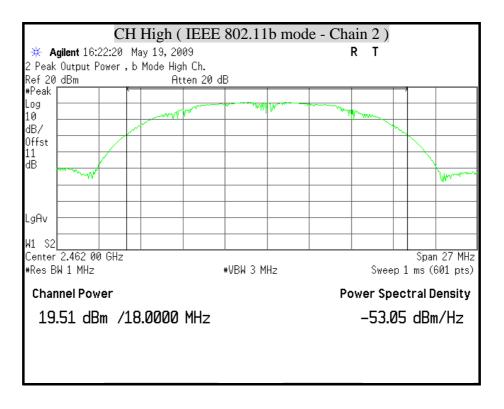

2. The cable assembly insertion loss of 11dB (including 10 dB pad and 1 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

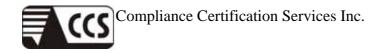


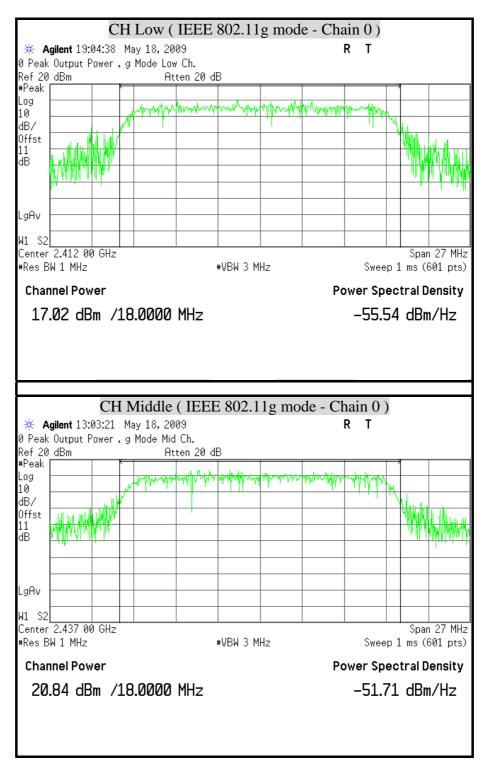
MAXIMUM PEAK OUTPUT POWER (IEEE 802.11b mode)

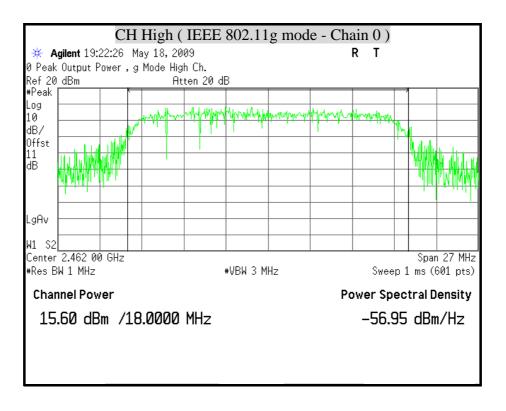


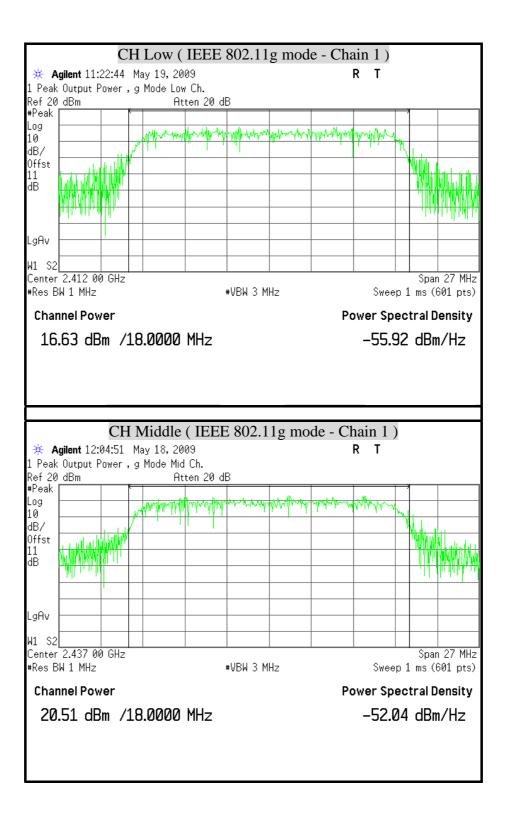


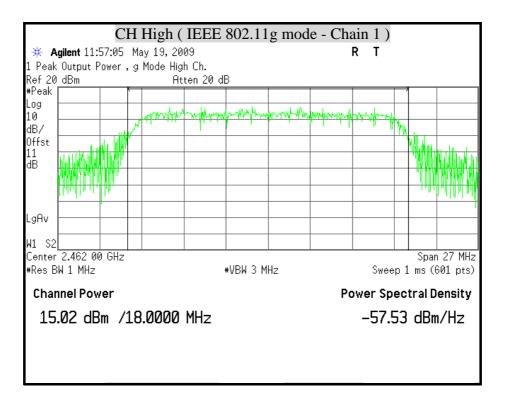


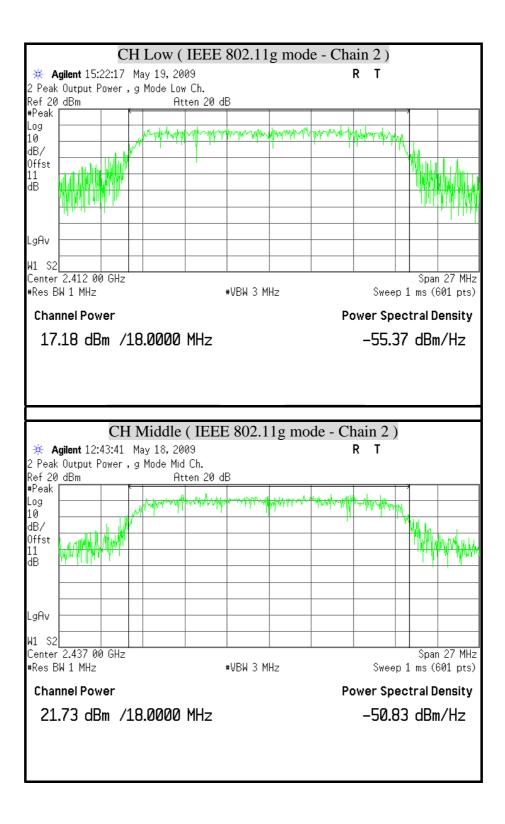


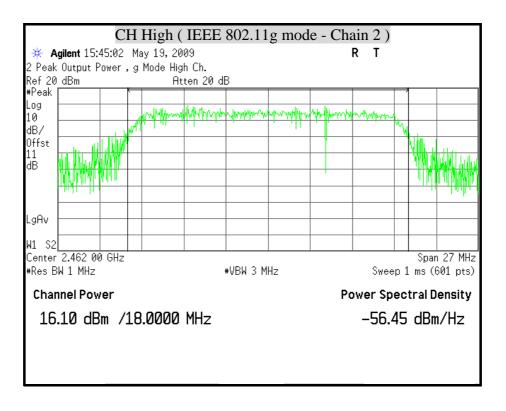


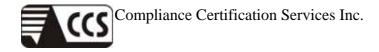



MAXIMUM PEAK OUTPUT POWER (IEEE 802.11g mode)

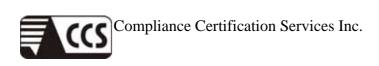


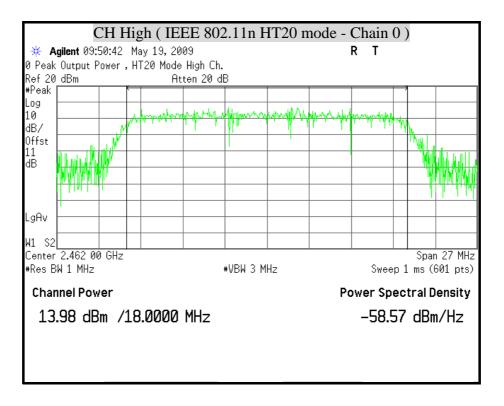


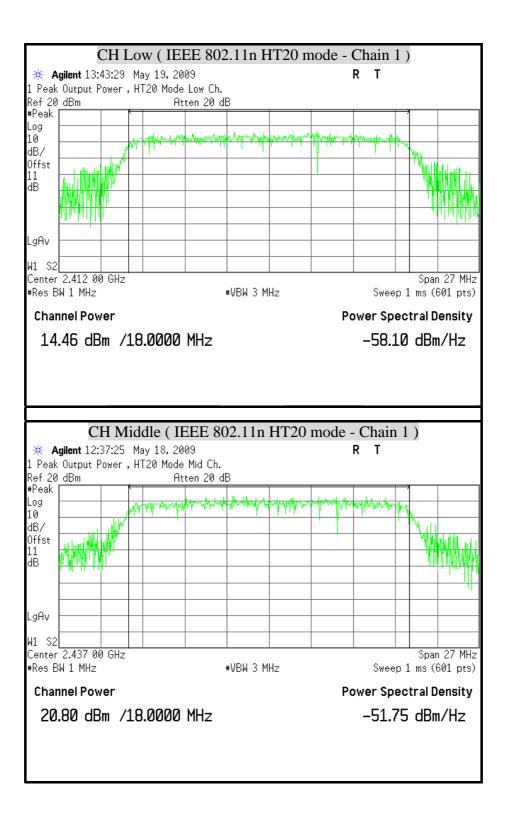




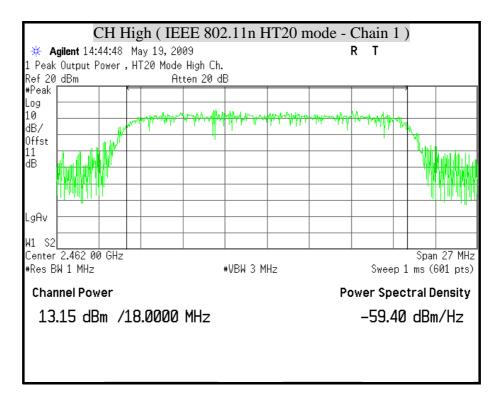


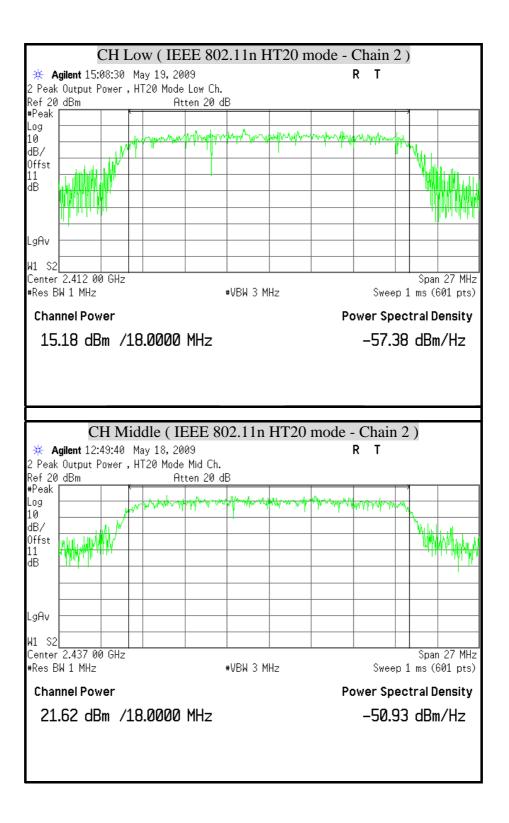


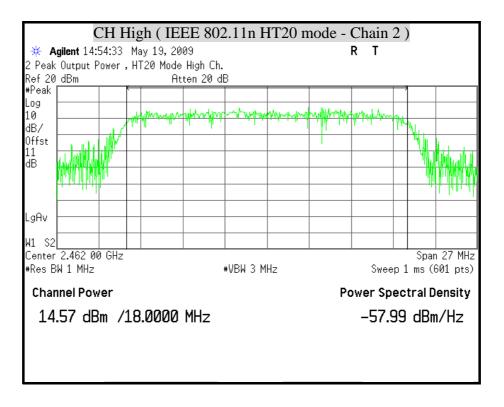


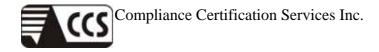


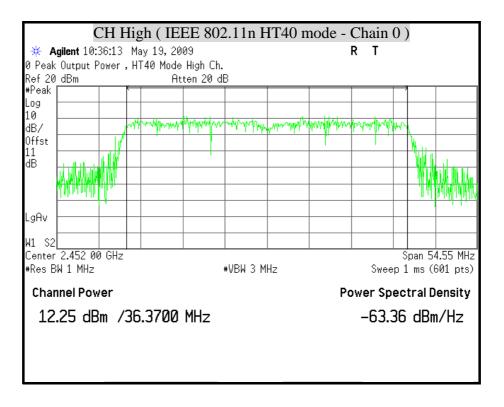
MAXIMUM PEAK OUTPUT POWER (IEEE 802.11n HT20 mode)

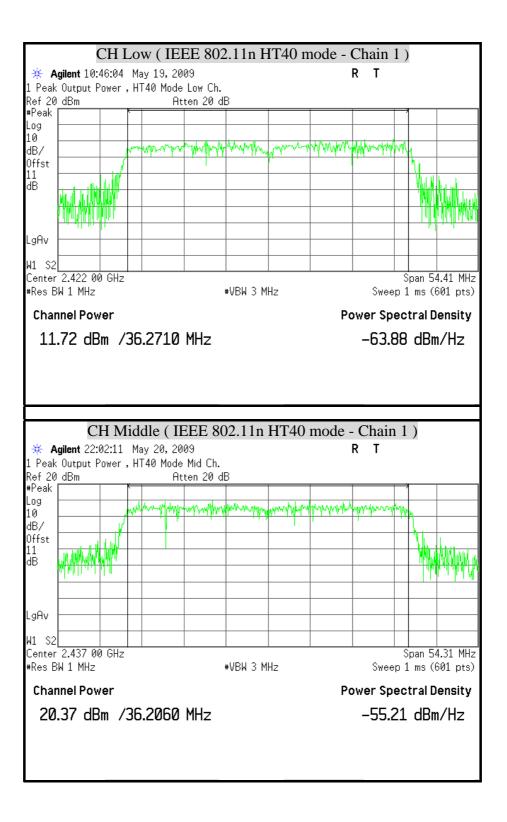




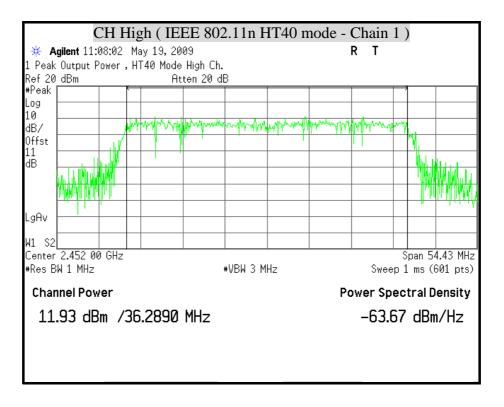


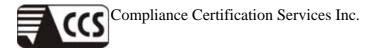


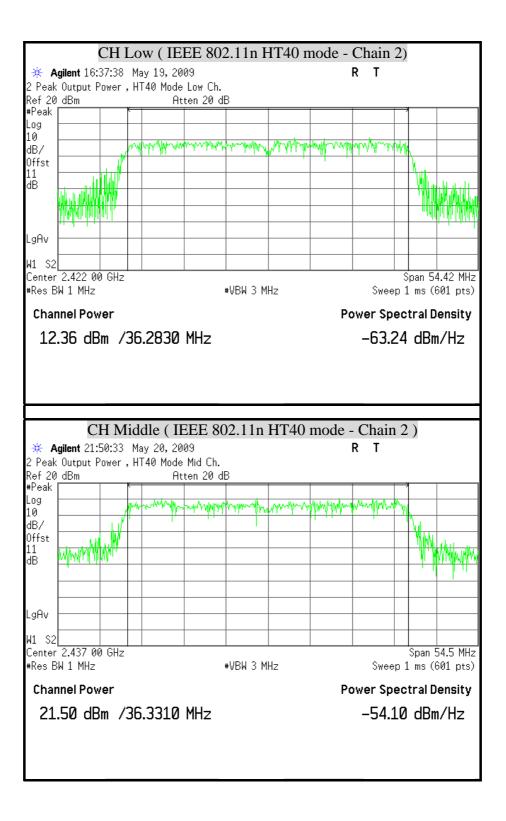


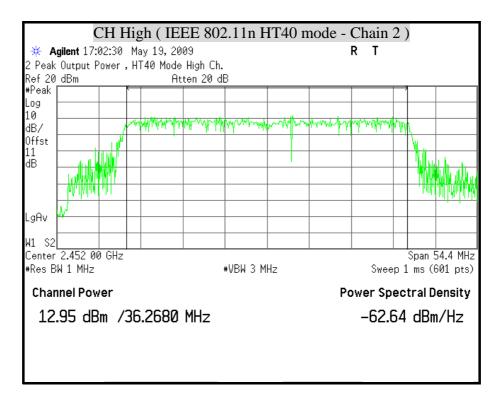


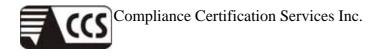
CH Low (IEEE 802.11n HT40 mode - Chain 0) 🔆 Agilent 10:17:32 May 19, 2009 R Т 0 Peak Output Power , HT40 Mode Low Ch. Atten 20 dB Ref 20 dBm #Peak Log 10 dB/ Offst 11 dB LgAv W1 S2 Center 2.422 00 GHz Span 54.34 MHz #Res BW 1 MHz ₩VBW 3 MHz Sweep 1 ms (601 pts) **Channel Power Power Spectral Density** 11.74 dBm /36.2240 MHz -63.85 dBm/Hz CH Middle (IEEE 802.11n HT40 mode - Chain 0) 🔆 Agilent 22:14:35 May 20, 2009 R T 0 Peak Output Power , HT40 Mode Mid Ch. Ref 20 dBm Atten 20 dB #Peak Log Mar 10 dB/ Offst dB LgAv W1 S2 Center 2.437 00 GHz Span 54.35 MHz #Res BW 1 MHz #VBW 3 MHz Sweep 1 ms (601 pts) **Channel Power Power Spectral Density** 20.98 dBm /36.2310 MHz -54.62 dBm/Hz


MAXIMUM PEAK OUTPUT POWER (IEEE 802.11n HT40 mode)









8.4 MAXIMUM PERMISSIBLE EXPOSURE

According to FCC 1.1310 : The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Average Time			
	(A) Limits for Occupational / Control Exposures						
300-1,500			F/300	6			
1,500-100,000			5	6			
	(B) Limits for Genera	al Population / Unco	ontrol Exposures				
300-1,500			F/1500				
1,500-100,000			1	Average Time 6 6 6 30			

CALCULATIONS

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \quad \& \quad S = \frac{E^2}{3770}$$

Where E = Field strength in Volts / meter P = Power in Watts G = Numeric antenna gain d = Distance in meters S = Power density in milliwatts / square centimeter

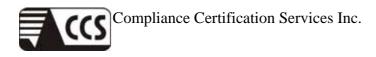
Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and
 $d(cm) = d(m) / 100$

Yields


$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$

Where d = Distance in cm

$$P = Power in mW$$

G = Numeric antenna gain

 $S = Power density in mW/cm^2$

LIMIT

Power Density Limit, S=1.0mW/cm²

TEST RESULTS

No non-compliance noted

Mode	Antenna Gain (dBi)	Minimum separation distance (cm)	Output Power (dBm)	Numeric antenna gain (dB)	Power Density Limit (mW/cm ²)	Power Density at 20cm (mW/cm ²)
IEEE 802.11b	3	20.0	25.81	2	1.00	0.151259
IEEE 802.11g	3	20.0	25.82	2	1.00	0.151607
IEEE 802.11n HT20	3	20.0	25.84	2	1.00	0.152307
IEEE 802.11n HT40	3	20.0	25.74	2	1.00	0.148840

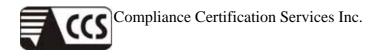
Remark: For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.

8.5 AVERAGE POWER

LIMIT

None; for reporting purposes only.

TEST EQUIPMENT


Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
SPECTRUM ANALYZER	AGILENT	E4446A	MY43360132	06/05/2009
SPECTRUM ANALYZER	AGILENT	E4446A	MY46180323	05/26/2010

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer.

TEST RESULTS

No non-compliance noted

Total avg power calculation formula: 10 log (10[^] (Chain 0 Power / 10) + 10[^] (Chain1 Power / 10) + 10[^] (Chain2 Power / 10))

Channel	Channel Frequency	A	Average Powe (dBm)	Average Power Total	
	(MHz)	Chain 0	Chain 1	(dBm)	
Low	2412	17.72	17.43	18.32	22.61
Middle	2437	18.39	17.73	19.15	23.23
High	2462	15.98	15.69	16.97	21.01

IEEE 802.11b mode (Three TX)

Remark:

1. At finial test to get the worst-case emission at 1Mbps.

2. The cable assembly insertion loss of 11dB (including 10 dB pad and 1 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

Channel	Channel Frequency	A	Average Powe (dBm)	Average Power Total	
	(MHz)	Chain 0	Chain 1	(dBm)	
Low	2412	13.83	13.12	13.73	18.34
Middle	2437	17.39	16.93	18.20	22.30
High	2462	12.00	11.53	12.86	16.93

IEEE 802.11g mode (Three TX)

Remark:

1. At finial test to get the worst-case emission at 6Mbps.

2. The cable assembly insertion loss of 11dB (including 10 dB pad and 1 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

Channel	Channel Frequency	A	Average Powe (dBm)	Average Power Total	
	(MHz)	Chain 0	Chain 1	Chain 2	(dBm)
Low	2412	11.55	11.11	11.96	16.32
Middle	2437	17.37	17.12	18.03	22.29
High	2462	10.83	10.01	11.23	15.49

IEEE 802.11n HT20 mode (Three TX)

Remark:

1. At finial test to get the worst-case emission at 6.5Mbps.

2. The cable assembly insertion loss of 11dB (including 10 dB pad and 1 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

Channel	Channel Frequency	A	Average Powe (dBm)	Average Power Total	
	(MHz)	Chain 0	Chain 1	(dBm)	
Low	2422	8.75	8.39	9.17	13.55
Middle	2437	17.27	16.95	18.05	22.21
High	2452	8.95	8.54	9.72	13.86

IEEE 802.11n HT40 mode (Three TX)

Remark:

1. At finial test to get the worst-case emission at 13.5Mbps.

2. The cable assembly insertion loss of 11dB (including 10 dB pad and 1 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

 FCC ID
 : KA2AP1353B1

 Report No. : 90407002-RP1

 Page
 97 of 213

8.6 POWER SPECTRAL DENSITY

LIMIT

§ 15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

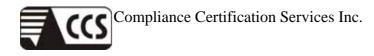
TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
SPECTRUM ANALYZER	AGILENT	E4446A	MY43360132	06/05/2009
SPECTRUM ANALYZER	AGILENT	E4446A	MY46180323	05/26/2010

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

Combined mode


EUT	Chain 0 Chain 1 Chain 2	COMBINED		SPECTRUM ANALYZER
-----	-------------------------------	----------	--	----------------------

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer, the bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW = 3KHz and VBW RBW, set sweep time = span / 3KHz.

The power spectral density was measured and recorded.

The sweep time is allowed to be longer than span / 3KHz for a full response of the mixer in the spectrum analyzer.

TEST RESULTS

No non-compliance noted

Total peak power calculation formula: $10 \log (10^{\circ} (Chain 0 PPSD / 10) + 10^{\circ} (Chain 1 PPSD / 10) + 10^{\circ} (Chain 2 PPSD / 10))$

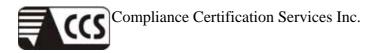
Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)		PPSD Total (dBm)	Maxmum Limit (dBm)	Pass / Fail	
	(191112)	Chain 0	Chain 1	Chain 2		(ubiii)	
Low	2412	-5.47	-5.47	-4.26	-0.25	8	PASS
Middle	2437	-6.34	-5.45	-4.14	-0.44	8	PASS
High	2462	-8.98	-7.36	-5.93	-2.47	8	PASS

IEEE 802.11b mode (Three TX)

Remark:

1. At finial test to get the worst-case emission at 1Mbps.

2. The cable assembly insertion loss of 11dB (including 10 dB pad and 1 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.


Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Maxmum Limit (dBm)	Pass / Fail
Low	2412	3.67	8	PASS
Middle	2437	4.36	8	PASS
High	2462	2.93	8	PASS

IEEE 802.11b Combined mode (Three TX)

Remark:

1. At finial test to get the worst-case emission at 1Mbps.

2. The cable assembly insertion loss of 16.5dB (including 10 dB pad and 6.5 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)		PPSD Total (dBm)	Maxmum Limit (dBm)	Pass / Fail	
	(101112)	Chain 0	Chain 1	Chain 2		(ubiii)	
Low	2412	-11.58	-11.56	-10.53	-6.42	8	PASS
Middle	2437	-6.90	-7.56	-6.29	-2.11	8	PASS
High	2462	-13.60	-13.30	-9.79	-7.09	8	PASS

IEEE 802.11g mode (Three TX)

Remark:

1. At finial test to get the worst-case emission at 6Mbps.

2. The cable assembly insertion loss of 11dB (including 10 dB pad and 1 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Maxmum Limit (dBm)	Pass / Fail
Low	2412	-1.45	8	PASS
Middle	2437	2.58	8	PASS
High	2462	-3.46	8	PASS

IEEE 802.11g Combined mode (Three TX)

Remark:

1. At finial test to get the worst-case emission at 6Mbps.

2. The cable assembly insertion loss of 16.5dB (including 10 dB pad and 6.5 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

Channel	Channel Frequency		al RF Pov el in 3KHz (dBm)		PPSD Total (dBm)	Maxmum Limit	Pass / Fail	
	(MHz)	Chain 0	Chain 1	Chain 2	()	(dBm)		
Low	2412	-11.77	-14.14	-12.75	-8.00	8	PASS	
Middle	2437	-4.97	-8.80	-4.92	-1.12	8	PASS	
High	2462	-10.74	-15.42	-9.47	-6.45	8	PASS	

IEEE 802.11n HT20 mode (Three TX)

Remark:

1. At finial test to get the worst-case emission at 6.5Mbps.

2. The cable assembly insertion loss of 11dB (including 10 dB pad and 1 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Maxmum Limit (dBm)	Pass / Fail
Low	2412	-3.29	8	PASS
Middle	2437	2.72	8	PASS
High	2462	-5.42	8	PASS

IEEE 802.11n HT20 Combined mode (Three TX)

Remark:

1. At finial test to get the worst-case emission at 6.5Mbps.

2. The cable assembly insertion loss of 16.5dB (including 10 dB pad and 6.5 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

Channel	Channel Frequency (MHz)		al RF Pov l in 3KHz (dBm)		PPSD Total (dBm)	Maxmum Limit (dBm)	Pass / Fail	
	(IVIIIZ)	Chain 0	Chain 1	Chain 2		(ubiii)		
Low	2422	-17.93	-19.65	-17.18	-13.36	8	PASS	
Middle	2437	-8.84	-5.15	-4.89	-1.18	8	PASS	
High	2452	-16.49	-14.49	-12.06	-9.19	8	PASS	

IEEE 802.11n HT40 mode (Three TX)

Remark:

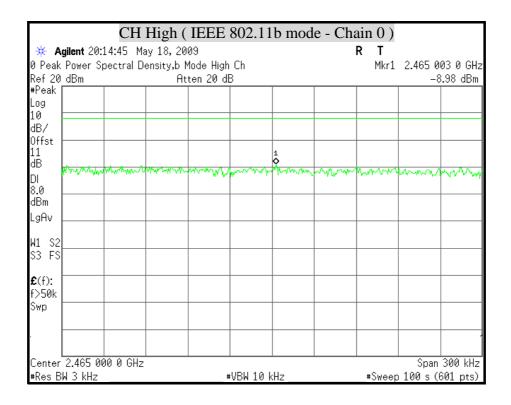
1. At finial test to get the worst-case emission at 13.5Mbps.

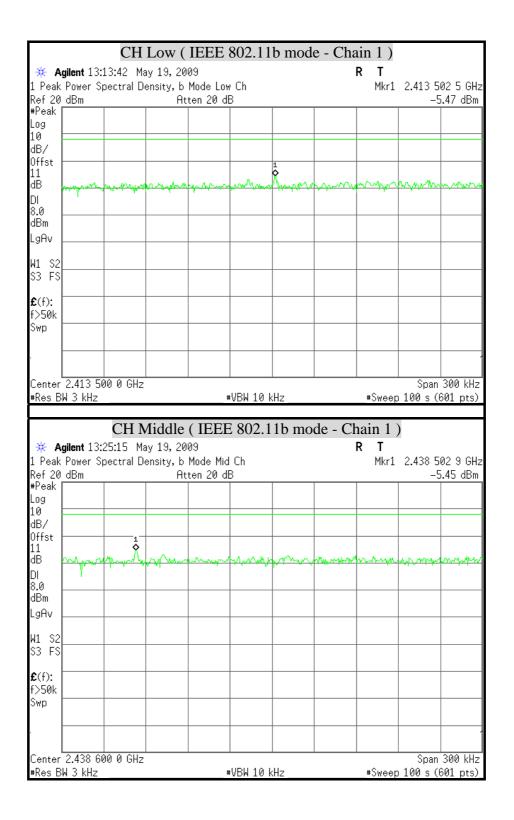
2. The cable assembly insertion loss of 11dB (including 10 dB pad and 1 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

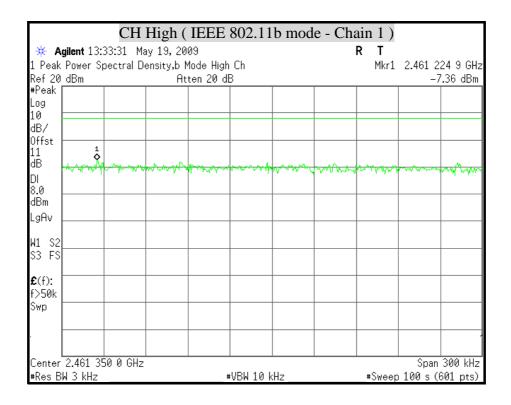
Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Maxmum Limit (dBm)	Pass / Fail
Low	2412	-9.82	8	PASS
Middle	2437	1.88	8	PASS
High	2462	-8.13	8	PASS

IEEE 802.11n HT40 Combined mode (Three TX)

Remark:

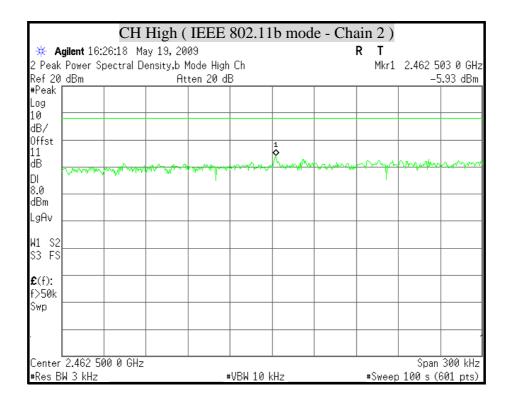

1. At finial test to get the worst-case emission at 13.5Mbps.


2. The cable assembly insertion loss of 16.5dB (including 10 dB pad and 6.5 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.



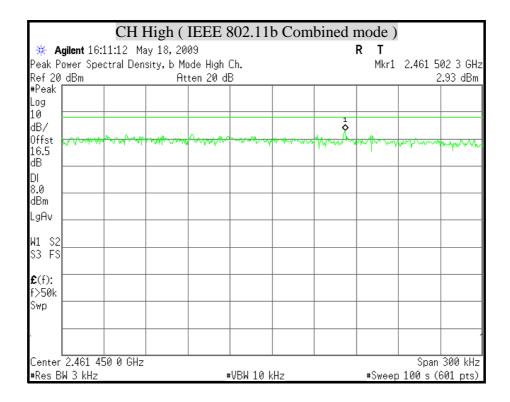
POWER SPECTRAL DENSITY (IEEE 802.11b mode)

		CH	Low (IEEE	802.11	b mod	e - Cha	in 0)		
ж А	gilent 19:	48:02 Ma	ay 18, 20	09				RT		
		pectral D						Mkr1	2.412 5	
Ref 20 #Peak	dBm		At	ten 20 di	B				-5	.47 dBm
нгеак Log										
10										
dB/										
Offst 11										
dB	agam	manty	Mmm	mm	mon	man	mon	mon	mm	Marymon
DI				1						1
8.0 JD										
dBm L∞Ou										
LgAv										
W1 S2										
\$3 F\$										
£ (f):										
f >50k										
Swp	<u> </u>									
	• 2.412 G(00 0 GHz							Span	300 kHz
		00 0 0112								
	2.412 00 3W 3 kHz			+	⊧VBW 10 k	(Hz		#Sweep	o 100 s (I	
			Aiddle				de - Ch		o 100 s (1	
#Res B	3 kHz	CH N		(IEEE			de - Ch	nain 0	o 100 s (1	
₩Res B	W 3 kHz	CH N 54:56 Ma	ay 18, 20	(IEEE 09	E 802.1			nain 0)	601 pts)_
₩Res B	W 3 kHz Agilent 19: Power Sp	CH N	ay 18, 20 ensity, b	(IEEE 09 Mode Mid	E 802.1 I Ch			nain 0) 2.435 0	601 pts)_
# Res B ₩ A 0 Peak Ref 20 # Peak	W 3 kHz Agilent 19: Power Sp	CH N 54:56 Ma	ay 18, 20 ensity, b	(IEEE 09	E 802.1 I Ch			nain 0) 2.435 0	601 pts)_ 02 2 GHz
#Res B ₩ A 0 Peak Ref 20 #Peak Log	W 3 kHz Agilent 19: Power Sp	CH N 54:56 Ma	ay 18, 20 ensity, b	(IEEE 09 Mode Mid	E 802.1 I Ch			nain 0) 2.435 0	601 pts)_ 02 2 GHz
<pre>#Res B</pre>	W 3 kHz Agilent 19: Power Sp	CH N 54:56 Ma	ay 18, 20 ensity, b	(IEEE 09 Mode Mid	E 802.1 I Ch			nain 0) 2.435 0	601 pts)_ 02 2 GHz
#Res B ₩ A 0 Peak Ref 20 #Peak Log 10 dB/ Offst	W 3 kHz Agilent 19: Power Sp	CH N 54:56 Ma	ay 18, 20 ensity, b	(IEEE 09 Mode Mid ten 20 dl	E 802.1 I Ch			nain 0) 2.435 0	601 pts)_ 02 2 GHz
#Res B ₩ A 0 Peak Ref 20 #Peak Log 10 dB/ 0ffst 11	W 3 kHz Agilent 19: Power Sp	CH N 54:56 Ma	ay 18, 20 ensity, b	(IEEE 09 Mode Mid	E 802.1 I Ch			nain O R T Mkr1	2.435 0 -6	601 pts)_ 02 2 GHz
<pre>#Res B #Ref 20 #Peak Log 10 dB/ Offst 11 dB</pre>	W 3 kHz Agilent 19: Power Sp	CH N 54:56 Ma	ay 18, 20 ensity, b	(IEEE 09 Mode Mid ten 20 dl	E 802.1 I Ch			nain 0	2.435 0 -6	601 pts)_ 02 2 GHz
#Res B ₩ A 0 Peak Ref 20 #Peak Log 10 dB/ 0ffst 11	W 3 kHz Agilent 19: Power Sp	CH N 54:56 Ma	ay 18, 20 ensity, b	(IEEE 09 Mode Mid ten 20 dl	E 802.1 I Ch			nain O R T Mkr1	2.435 0 -6	601 pts)_ 02 2 GHz
HRES B ★ A 0 Peak Ref 20 #Peak Log 10 dB/ Offst 11 dB DI 8.0 dBm	W 3 kHz Agilent 19: Power Sp	CH N 54:56 Ma	ay 18, 20 ensity, b	(IEEE 09 Mode Mid ten 20 dl	E 802.1 I Ch			nain O R T Mkr1	2.435 0 -6	601 pts)_ 02 2 GHz
a Res B a Res B 0 Peak Ref 20 a Peak Log 10 dB/ 0ffst 11 dB DI 8.0	W 3 kHz Agilent 19: Power Sp	CH N 54:56 Ma	ay 18, 20 ensity, b	(IEEE 09 Mode Mid ten 20 dl	E 802.1 I Ch			nain O R T Mkr1	2.435 0 -6	601 pts)_ 02 2 GHz
#Res B ₩ A 0 Peak Ref 20 #Peak Log 10 dB/ 0ffst 11 dB DI 8.0 dBm LgAv	SW 3 kHz sgilent 19: Power SI dBm	CH N 54:56 Ma	ay 18, 20 ensity, b	(IEEE 09 Mode Mid ten 20 dl	E 802.1 I Ch			nain O R T Mkr1	2.435 0 -6	601 pts)_ 02 2 GHz
#Res B ₩ A 0 Peak Ref 20 #Peak Log 10 dB/ 0ffst 11 dB DI 8.0 dBm LgAv W1 S2	SW 3 kHz sgilent 19: Power SI dBm	CH N 54:56 Ma	ay 18, 20 ensity, b	(IEEE 09 Mode Mid ten 20 dl	E 802.1 I Ch			nain O R T Mkr1	2.435 0 -6	601 pts)_ 02 2 GHz
#Res B ₩ A 0 Peak Ref 20 #Peak Log 10 dB/ 0ffst 11 dB B 0 dBm LgAv W1 \$2 \$3 F\$	SW 3 kHz sgilent 19: Power SI dBm	CH N 54:56 Ma	ay 18, 20 ensity, b	(IEEE 09 Mode Mid ten 20 dl	E 802.1 I Ch			nain O R T Mkr1	2.435 0 -6	601 pts)_ 02 2 GHz
#Res B ₩ A 0 Peak Ref 20 #Peak Log 10 dB/ 0ffst 11 dB DI 8.0 dBm LgAv W1 \$2 \$3 F\$ £(f):	SW 3 kHz sgilent 19: Power SI dBm	CH N 54:56 Ma	ay 18, 20 ensity, b	(IEEE 09 Mode Mid ten 20 dl	E 802.1 I Ch			nain O R T Mkr1	2.435 0 -6	601 pts)_ 02 2 GHz
#Res B #Res B # Ø Peak Ref 20 #Peak Log 10 dB/ Offst 11 dB DI 8.0 dBm LgAv W1 S2 S3 FS £(f): f>50k	SW 3 kHz sgilent 19: Power SI dBm	CH N 54:56 Ma	ay 18, 20 ensity, b	(IEEE 09 Mode Mid ten 20 dl	E 802.1 I Ch			nain O R T Mkr1	2.435 0 -6	601 pts)_ 02 2 GHz
#Res B ₩ A 0 Peak Ref 20 #Peak Log 10 dB/ 0ffst 11 dB DI 8.0 dBm LgAv W1 \$2 \$3 F\$ £(f):	SW 3 kHz sgilent 19: Power SI dBm	CH N 54:56 Ma	ay 18, 20 ensity, b	(IEEE 09 Mode Mid ten 20 dl	E 802.1 I Ch			nain O R T Mkr1	2.435 0 -6	601 pts)_ 02 2 GHz
#Res B #Res B # Ø Peak Ref 20 #Peak Log 10 dB/ Offst 11 dB DI 8.0 dBm LgAv W1 S2 S3 FS £(f): f>50k	SW 3 kHz sgilent 19: Power SI dBm	CH N 54:56 Ma	ay 18, 20 ensity, b	(IEEE 09 Mode Mid ten 20 dl	E 802.1 I Ch			nain O R T Mkr1	2.435 0 -6	601 pts)_ 02 2 GHz
#Res B #Res B # Ø Peak Ref 20 #Peak Log 10 dB/ Offst 11 dB DI 8.0 dBm LgAv W1 S2 S3 FS £(f): f>50k	SW 3 kHz sgilent 19: Power SI dBm	CH N 54:56 Ma	ay 18, 20 ensity, b	(IEEE 09 Mode Mid ten 20 dl	E 802.1 I Ch			nain O R T Mkr1	2.435 0 -6	601 pts)_ 02 2 GHz
<pre>#Res B #Res B 0 Peak Ref 20 #Peak Log 10 dB/ 0ffst 11 dB DI 8.0 dBm LgAv W1 S2 S3 FS £(f): f>50k Swp Center</pre>	Sgilent 19: • gilent 19: • Ower Si • dBm	CH N 54:56 Ma	ay 18, 20 ensity, b	(IEEE 09 Mode Mid ten 20 dl	E 802.1 I Ch			nain O R T Mkr1	2.435 0 	601 pts)_ 02 2 GHz



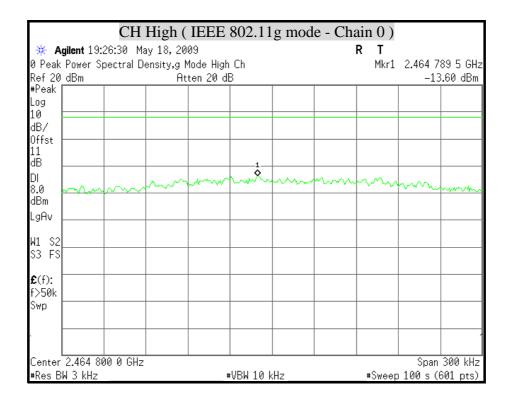
E

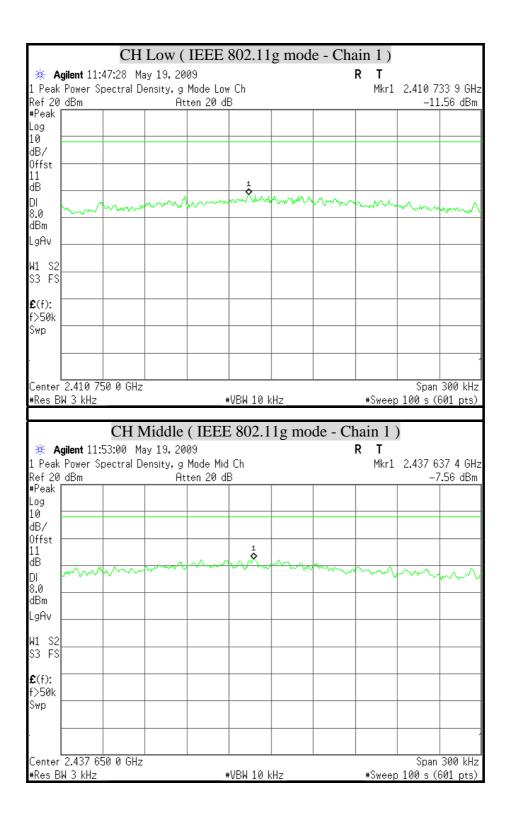
		CH	Low (IEEE	802.11	b mod	e - Cha	in 2)		
ж А	gilent 15:	56:34 Ma	ay 19, 20	09			1	RТ		
	: Power Sp	pectral D						Mkr1		503 0 GHz
Ref 20	dBm		At	ten 20 d	B				-	4.26 dBm
#Peak Log										
10 10										
dB/										
Offst	<u> </u>					1 \$				
11 dB	mon	monther	mon	mon	mon	IA .	www.www	a death and	as	
ub DI			1.64	1.1.11.14	4 1 W 31	- to with	WY WY YIY	- Cherry Print	turt for the second	and the second s
8.0										
dBm										
LgAv										
111 00										
W1 S2 S3 FS										
JJ FJ										
£ (f):										
f>50k										
Swp										
										1
C	2.411 50									300 kHz
	2.411 50 W 3 kHz	00 0 GHZ			⊧VBW 10 k	/H-7		#Swaar		601 pts)
#N03 D	M J NHZ				VDN 10 P	112			100 3 \	001 pt3/_
		CHN	Aiddle	(IEEE	E 802-1	1h mo	de - Cl	nain 2)	
Siz A	ailant 16.				E 802.1	1b mo	de - Cł)	
	gilent 16:0	01:59 Ma	ay 19, 20	09		1b mo		RT		24 1 GHz
2 Peak	Power Sp	01:59 Ma	ay 19, 20 ensity, b	09 Mode Mid	Ch	1b mo		RT	2.436 2	24 1 GHz 4.14 dBm
	Power Sp	01:59 Ma	ay 19, 20 ensity, b	09	Ch	1b mo		RT	2.436 2	224 1 GHz 4.14 dBm
2 Peak Ref 20 #Peak Log	Power Sp	01:59 Ma	ay 19, 20 ensity, b	09 Mode Mid	Ch	1b mo		RT	2.436 2	
2 Peak Ref 20 #Peak Log 10	Power Sp	01:59 Ma	ay 19, 20 ensity, b	09 Mode Mid	Ch	1b mo		RT	2.436 2	
2 Peak Ref 20 #Peak Log 10 dB/	Power Sp	01:59 Ma	ay 19, 20 ensity, b	09 Mode Mid	Ch	1b mo		RT	2.436 2	
2 Peak Ref 20 #Peak Log 10	Power Sp dBm	01:59 Ma	ay 19, 20 ensity, b	09 Mode Mid ten 20 di	I Ch B			R T Mkr1	2.436 2	4.14 dBm
2 Peak Ref 20 #Peak Log 10 dB/ 0ffst 11 dB	Power Sp dBm	01:59 Ma	ay 19, 20 ensity, b	09 Mode Mid	I Ch B			R T Mkr1	2.436 2	4.14 dBm
2 Peak Ref 20 #Peak Log dB/ 0ffst 11 dB DI	Power Sp dBm	01:59 Ma	ay 19, 20 ensity, b	09 Mode Mid ten 20 di	Ch B			R T Mkr1	2.436 2	4.14 dBm
2 Peak Ref 20 #Peak Log dB/ 0ffst 11 dB DI 8.0	Power Sp dBm	01:59 Ma	ay 19, 20 ensity, b	09 Mode Mid ten 20 di	Ch B			R T Mkr1	2.436 2	4.14 dBm
2 Peak Ref 20 HPeak Log dB/ Offst 11 dB DI 8.0 dBm	Power Sp dBm	01:59 Ma	ay 19, 20 ensity, b	09 Mode Mid ten 20 di	Ch B			R T Mkr1	2.436 2	4.14 dBm
2 Peak Ref 20 #Peak Log dB/ 0ffst 11 dB DI 8.0	Power Sp dBm	01:59 Ma	ay 19, 20 ensity, b	09 Mode Mid ten 20 di	Ch B			R T Mkr1	2.436 2	4.14 dBm
2 Peak Ref 20 #Peak Log dB/ Offst 11 dB DI 8.0 dBm LgAv W1 S2	Power Sp dBm	01:59 Ma	ay 19, 20 ensity, b	09 Mode Mid ten 20 di	Ch B			R T Mkr1	2.436 2	4.14 dBm
2 Peak Ref 20 #Peak Log dB/ Offst 11 dB DI 8.0 dBm LgAv	Power Sp dBm	01:59 Ma	ay 19, 20 ensity, b	09 Mode Mid ten 20 di	I Ch B			R T Mkr1	2.436 2	4.14 dBm
2 Peak Ref 20 #Peak Log dB/ Offst 11 dB DI 8.0 dBm LgAv W1 S2 \$3 FS	Power Sp dBm	01:59 Ma	ay 19, 20 ensity, b	09 Mode Mid ten 20 di	I Ch B			R T Mkr1	2.436 2	4.14 dBm
2 Peak Ref 20 #Peak Log dB/ Offst 11 dB DI 8.0 dBm LgAv W1 S2 S3 FS £(f):	Power Sp dBm	01:59 Ma	ay 19, 20 ensity, b	09 Mode Mid ten 20 di	I Ch B			R T Mkr1	2.436 2	4.14 dBm
2 Peak Ref 20 #Peak Log 10 dB/ Offst 11 dB DI 8.0 dBm LgAv W1 \$2 \$3 F\$ £(f): f>50k	Power Sp dBm	01:59 Ma	ay 19, 20 ensity, b	09 Mode Mid ten 20 di	I Ch B			R T Mkr1	2.436 2	4.14 dBm
2 Peak Ref 20 #Peak Log dB/ Offst 11 dB DI 8.0 dBm LgAv W1 S2 S3 FS £(f):	Power Sp dBm	01:59 Ma	ay 19, 20 ensity, b	09 Mode Mid ten 20 di	I Ch B			R T Mkr1	2.436 2	4.14 dBm
2 Peak Ref 20 #Peak Log 10 dB/ Offst 11 dB DI 8.0 dBm LgAv W1 \$2 \$3 F\$ £(f): f>50k	Power Sp dBm	01:59 Ma	ay 19, 20 ensity, b	09 Mode Mid ten 20 di	I Ch B			R T Mkr1	2.436 2	4.14 dBm
2 Peak Ref 20 #Peak Log 10 dB/ Offst 11 dB DI 8.0 dBm LgAv W1 \$2 \$3 F\$ £(f): f>50k	Power Sp dBm	01:59 Ma	ay 19, 20 ensity, b	09 Mode Mid ten 20 di	I Ch B			R T Mkr1	2.436 2	4.14 dBm
2 Peak Ref 20 #Peak Log 10 dB/ Offst 11 dB DI 8.0 dBm LgAv W1 \$2 \$3 F\$ £(f): f>50k \$wp	Power Sp dBm	01:59 Ma Dectral D	ay 19, 20 ensity, b	09 Mode Mid ten 20 dl	I Ch B			R T Mkr1	2.436 2	4.14 dBm



<u>POWER SPECTRAL DENSITY (IEEE 802.11b Combined mode)</u>

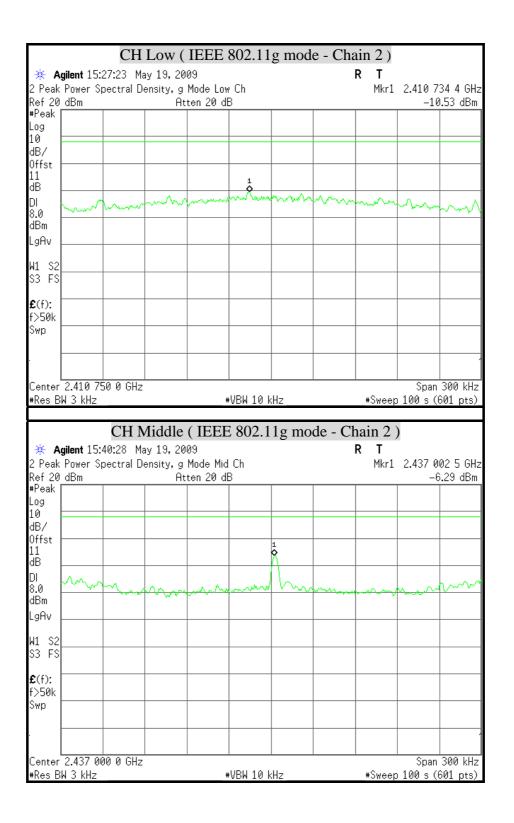
		CH	Low (IEEE 8	302.11	b Com	bined r	node)		
ж А	gilent 15:	49:28 Ma	ay 18, 20	09				RT		
	ower Spe	ctral Den						Mkr1		80 9 GHz
Ref 20 #Peak	dBm	1	At	ten 20 di	3	1	1	1	3	3.67 dBm
Log										
10					1					
dB/ Offst	mout	Same and M	monor	An Church MA		with a site	an un	MAL NO	Anna and De	mar in
16.5	· · · ·				, 1 v 1		1	W WY - Q		and Advant A
dB										
DI										
8.0 dBm										
LgAv										
W1 S2 S3 FS										
55 FS										
£ (f):										
f>50k										
Swp										
	2.412 80	00 0 GHz			1			1		300 kHz
#Res B	3W 3 kHz				VBW 10 k	dl=		#\$110.0m	100 - 0	601 pts)_
				т	NDM IO K			_#>weeb	100 5 (001 pts/_
		СЦМ	fiddlad				nhinad			001 pt3/_
				(IEEE			nbined	mode		001 pt3/_
₩ A	gilent 15:	53 : 53 Ma	ay 18, 20	(IEEE 09	802.1			mode R T)	
₩ A	gilent 15: 'ower Spe	53 : 53 Ma	ay 18, 20 sity, b Mo	(IEEE 09	802.1			mode R T) 2.436 2	23 9 GHz 1.36 dBm
∦ A Peak P Ref 20 #Peak	gilent 15: 'ower Spe	53 : 53 Ma	ay 18, 20 sity, b Mo	(IEEE 09 ode Mid C	802.1			mode R T) 2.436 2	23 9 GHz
<mark>⊯ A</mark> Peak P Ref 20 #Peak Log	gilent 15: 'ower Spe	53 : 53 Ma	ay 18, 20 sity, b Mo	(IEEE 09 ode Mid C	802.1			mode R T) 2.436 2	23 9 GHz
∦ A Peak P Ref 20 #Peak	gilent 15: 'ower Spe	53 : 53 Ma	ay 18, 20 sity, b Mo At	(IEEE 09 ode Mid C	802.1	1b Cor		mode R T) 2.436 2	23 9 GHz
₩ A Peak P Ref 20 #Peak Log 10 dB/ Offst	gilent 15: 'ower Spe	53 : 53 Ma	ay 18, 20 sity, b Mo	(IEEE 09 ode Mid C	802.1	1b Cor		mode R T) 2.436 2	23 9 GHz
★ A Peak P Ref 20 #Peak Log 10 dB/ 0ffst 16.5	gilent 15: 'ower Spe	53 : 53 Ma	ay 18, 20 sity, b Mo At	(IEEE 09 ode Mid C	802.1	1b Cor		mode R T) 2.436 2	23 9 GHz
₩ A Peak P Ref 20 #Peak Log 10 dB/ 0ffst 16.5 dB	gilent 15: 'ower Spe	53 : 53 Ma	ay 18, 20 sity, b Mo At	(IEEE 09 ode Mid C	802.1	1b Cor		mode R T) 2.436 2	23 9 GHz
₩ A Peak P Ref 20 #Peak Log 10 dB/ 0ffst 16.5 dB DI 8.0	gilent 15: 'ower Spe	53 : 53 Ma	ay 18, 20 sity, b Mo At	(IEEE 09 ode Mid C	802.1	1b Cor		mode R T) 2.436 2	23 9 GHz
★ A Peak P Ref 20 #Peak Log 10 dB/ 0ffst 16.5 dB DI 8.0 dBm	gilent 15: 'ower Spe	53 : 53 Ma	ay 18, 20 sity, b Mo At	(IEEE 09 ode Mid C	802.1	1b Cor		mode R T) 2.436 2	23 9 GHz
₩ A Peak P Ref 20 #Peak Log 10 dB/ 0ffst 16.5 dB DI 8.0	gilent 15: 'ower Spe	53 : 53 Ma	ay 18, 20 sity, b Mo At	(IEEE 09 ode Mid C	802.1	1b Cor		mode R T) 2.436 2	23 9 GHz
₩ A Peak Peak Log 10 dB/ 0ffst 16.5 dB DI 8.0 dBm LgAv W1 S2	igilent 15: ower Spe dBm	53 : 53 Ma	ay 18, 20 sity, b Mo At	(IEEE 09 ode Mid C	802.1	1b Cor		mode R T) 2.436 2	23 9 GHz
★ A Peak P Ref 20 #Peak Log 10 dB/ 0ffst 16.5 dB DI 8.0 dBm	igilent 15: ower Spe dBm	53 : 53 Ma	ay 18, 20 sity, b Mo At	(IEEE 09 ode Mid C	802.1	1b Cor		mode R T) 2.436 2	23 9 GHz
₩ A Peak Peak Log 10 dB/ 0ffst 16.5 dB DI 8.0 dBm LgAv W1 \$2 \$3 FS	igilent 15: ower Spe dBm	53 : 53 Ma	ay 18, 20 sity, b Mo At	(IEEE 09 ode Mid C	802.1	1b Cor		mode R T) 2.436 2	23 9 GHz
₩ A Peak P Ref 20 #Peak Log 10 dB/ 0ffst 16.5 dB DI 8.0 dBm LgAv V3 FS \$ \$ <td< td=""><td>igilent 15: ower Spe dBm</td><td>53:53 Ma</td><td>ay 18, 20 sity, b Mo At</td><td>(IEEE 09 ode Mid C</td><td>802.1</td><td>1b Cor</td><td></td><td>mode R T</td><td>) 2.436 2</td><td>23 9 GHz</td></td<>	igilent 15: ower Spe dBm	53 : 53 Ma	ay 18, 20 sity, b Mo At	(IEEE 09 ode Mid C	802.1	1b Cor		mode R T) 2.436 2	23 9 GHz
₩ A Peak Peak Log 10 dB/ 0ffst 16.5 dB DI 8.0 dBm LgAv W1 \$2 \$3 FS	igilent 15: ower Spe dBm	53 : 53 Ma	ay 18, 20 sity, b Mo At	(IEEE 09 ode Mid C	802.1	1b Cor		mode R T) 2.436 2	23 9 GHz
₩ A Peak P Peak Log 10 dB/ 0ffst 16.5 dB DI 8.0 dBm LgAv V1 S2 S3 FS £(f): f>50k	igilent 15: ower Spe dBm	53 : 53 Ma	ay 18, 20 sity, b Mo At	(IEEE 09 ode Mid C	802.1	1b Cor		mode R T) 2.436 2	23 9 GHz
₩ A Peak P Peak Log 10 dB/ 0ffst 16.5 dB DI 8.0 dBm LgAv V1 S2 S3 FS £(f): f>50k	igilent 15: ower Spe dBm	53 : 53 Ma	ay 18, 20 sity, b Mo At	(IEEE 09 ode Mid C	802.1	1b Cor		mode R T) 2.436 2	23 9 GHz
₩ A Peak P Peak Log 10 dB/ 0ffst 16.5 dB DI 8.0 dBm LgAv W1 S2 S3 FS £(f): f>50k Swp	Agilent 15: ower Spe dBm	53:53 Ma ctral Den	ay 18, 20 sity, b Ma At	(IEEE 09 ode Mid C	802.1	1b Cor		mode R T) 2.436 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23 9 GHz I.36 dBm
# A Peak P Peak P Log 10 dB/ 0ffst 16.5 dB DI 8.0 dBm LgAv W1 S2 S3 FS £(f): f>50k Swp Center	igilent 15: ower Spe dBm	53:53 Ma ctral Den	ay 18, 20 sity, b Ma At	(IEEE 09 ode Mid C ten 20 dl	802.1			mode R T Mkr1) 2.436 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23 9 GHz 1.36 dBm

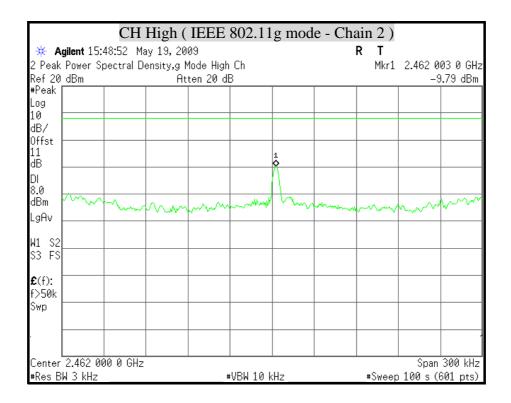


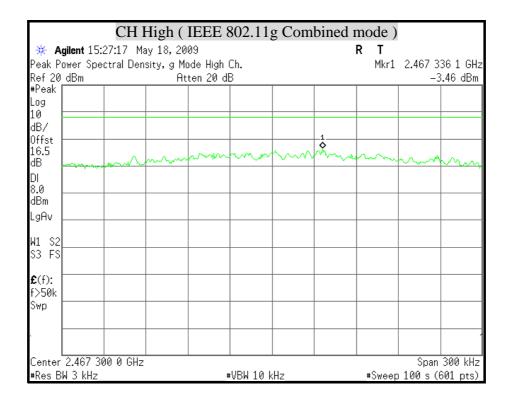


POWER SPECTRAL DENSITY (IEEE 802.11g mode)


		CH	Low (IEEE	802.11	g mod	e - Cha	ain 0)		
∦к А	gilent 19:	09:25 Ma	ay 18, 20	09				RТ		
	Power S				√ Ch			Mkr1	2.410 1	.59 0 GHz
Ref 20				ten 20 d					-1	1.58 dBm
#Peak										
Log										
10										
dB/										
Offst 11										
dB						1				
DI	a		m	man	man	man	an march			
8.0	- www	~~~·	1000 T						NA W	mm
dBm										
LgAv										
Ŭ										
W1 S2										
S3 FS										
£ (f):										
f>50k										
Swp										
										1
	· 2 /10 1	50 0 GHz							Snar	1300 kHz
		50 0 OHZ								
	2.410 1. 3W 3 kHz		<i>I</i> iddla		₩VBW 10		da Cl) 100 s ((601 pts)_
#Res B ₩ A	<u>W 3 kHz</u> Agilent 19: K Power S	CH N 18:39 Ma	ay 18, 20 ensity, g	(IEEE 09	E 802.1 I Ch	^{KHz} 1g mo		nain 0) R T) 2.432 (<u>(601 pts)</u>)01 5 GHz 6.90 dBm
#Res B ₩ A 0 Peak Ref 20 #Peak	<u>W 3 kHz</u> Agilent 19: K Power S	CH N 18:39 Ma	ay 18, 20 ensity, g	(IEEE 09 Mode Mid	E 802.1 I Ch			nain 0) R T) 2.432 (001 5 GHz
<mark>#Res B</mark> ₩ A 0 Peak Ref 20 #Peak Log	<u>W 3 kHz</u> Agilent 19: K Power S	CH N 18:39 Ma	ay 18, 20 ensity, g	(IEEE 09 Mode Mid	E 802.1 I Ch			nain 0) R T) 2.432 (001 5 GHz
#Res B ₩ A 0 Peak Ref 20 #Peak Log 10	<u>W 3 kHz</u> Agilent 19: K Power S	CH N 18:39 Ma	ay 18, 20 ensity, g	(IEEE 09 Mode Mid	E 802.1 I Ch			nain 0) R T) 2.432 (001 5 GHz
#Res B ★ A Ø Peak Ref 20 #Peak Log 10 dB/	<u>W 3 kHz</u> Agilent 19: K Power S	CH N 18:39 Ma	ay 18, 20 ensity, g	(IEEE 09 Mode Mid	E 802.1 I Ch			nain 0) R T) 2.432 (001 5 GHz
#Res B ₩ A 0 Peak Ref 20 #Peak Log 10 dB/ Offst	<u>W 3 kHz</u> Agilent 19: K Power S	CH N 18:39 Ma	ay 18, 20 ensity, g	(IEEE 09 Mode Mid	E 802.1 I Ch			nain 0) R T) 2.432 (001 5 GHz
* Res B № A Ø Peak Ref 20 * Peak Log 10 dB/ 0ffst 11	<u>W 3 kHz</u> Agilent 19: K Power S	CH N 18:39 Ma	ay 18, 20 ensity, g	(IEEE 09 Mode Mid	E 802.1 I Ch			nain 0) R T) 2.432 (001 5 GHz
*Res B	<u>W 3 kHz</u> Agilent 19: K Power S	CH N 18:39 Ma	ay 18, 20 ensity, g	(IEEE 09 Mode Mid	E 802.1 I Ch			nain 0) R T) 2.432 (001 5 GHz
* Res B № A Ø Peak Ref 20 * Peak Log 10 dB/ 0ffst 11	3 <u>W 3 kHz</u> Agilent 19: K Power S	CH N 18:39 Ma	ay 18, 20 ensity, g	(IEEE 09 Mode Mid	E 802.1 I Ch			nain 0) R T) 2.432 (001 5 GHz
#Res B ₩ A Ø Peak Ref 20 #Peak Log 10 dB/ 0ffst 11 dB DI	3 <u>W 3 kHz</u> Agilent 19: K Power S	CH N 18:39 Ma	ay 18, 20 ensity, g	(IEEE 09 Mode Mid	E 802.1 I Ch			nain 0) R T) 2.432 (001 5 GHz
#Res B ₩ A 0 Peak Ref 20 #Peak Log 10 dB/ 0ffst 11 dB DI 8.0	3 <u>W 3 kHz</u> Agilent 19: K Power S	CH N 18:39 Ma	ay 18, 20 ensity, g	(IEEE 09 Mode Mid	E 802.1 I Ch			nain 0) R T) 2.432 (001 5 GHz
★Res B ★ A 0 Peak Ref 20 *Peak Log 10 dB/ 0ffst 11 dB DI 8.0 dBm LgAv	Agilent 19: Agilent 19: Power S dBm	CH N 18:39 Ma	ay 18, 20 ensity, g	(IEEE 09 Mode Mid	E 802.1 I Ch			nain 0) R T) 2.432 (001 5 GHz
★Res B ★ A Ø Peak Ref 20 Peak Log 10 dB/ 0ffst 11 dB DI 8.0 dBm LgAv W1 \$2	Agilent 19: Agilent 19: Power S dBm	CH N 18:39 Ma	ay 18, 20 ensity, g	(IEEE 09 Mode Mid	E 802.1 I Ch			nain 0) R T) 2.432 (001 5 GHz
★Res B ★ A 0 Peak Ref 20 *Peak Log 10 dB/ 0ffst 11 dB DI 8.0 dBm LgAv	Agilent 19: Agilent 19: Power S dBm	CH N 18:39 Ma	ay 18, 20 ensity, g	(IEEE 09 Mode Mid	E 802.1 I Ch			nain 0) R T) 2.432 (001 5 GHz
★Res B ★ A 0 Peak Ref 20 *Peak Log 10 dB/ 0ffst 11 dB DI 8.0 dBm LgAv W1 S2 S3 FS	Agilent 19: Agilent 19: Power S dBm	CH N 18:39 Ma	ay 18, 20 ensity, g	(IEEE 09 Mode Mid	E 802.1 I Ch			nain 0) R T) 2.432 (001 5 GHz
#Res B #	Agilent 19: Agilent 19: Power S dBm	CH N 18:39 Ma	ay 18, 20 ensity, g	(IEEE 09 Mode Mid	E 802.1 I Ch			nain 0) R T) 2.432 (001 5 GHz
	Agilent 19: Agilent 19: Power S dBm	CH N 18:39 Ma	ay 18, 20 ensity, g	(IEEE 09 Mode Mid	E 802.1 I Ch			nain 0) R T) 2.432 (001 5 GHz
#Res B #	Agilent 19: Agilent 19: Power S dBm	CH N 18:39 Ma	ay 18, 20 ensity, g	(IEEE 09 Mode Mid	E 802.1 I Ch			nain 0) R T) 2.432 (001 5 GHz
	Agilent 19: Agilent 19: Power S dBm	CH N 18:39 Ma	ay 18, 20 ensity, g	(IEEE 09 Mode Mid	E 802.1 I Ch			nain 0) R T) 2.432 (001 5 GHz
	Agilent 19: Agilent 19: Power S dBm	CH N 18:39 Ma	ay 18, 20 ensity, g	(IEEE 09 Mode Mid	E 802.1 I Ch			nain 0) R T) 2.432 (001 5 GHz
*Res B * A 0 Peak Ref 20 * Peak Log 10 dB/ 0ffst 11 dB/ 0ffst 11 dB/ 0ffst 11 dB/ 0 dBm LgAv W1 S2 S3 FS £(f): f>50k Swp	Agilent 19: Cover S dBm	CH N 18:39 Ma pectral Do	ay 18, 20 ensity, g At	(IEEE 09 Mode Mid	E 802.1 I Ch			nain 0) R T	2.432 (001 5 GHz 6.90 dBm
*Res B * A 0 Peak Ref 20 * Peak Log 10 dB/ 0ffst 11 dB/ 0ffst 11 dB/ 0ffst 11 8.0 dBm LgAv W1 S2 S3 FS £(f): f>50k Swp Center	Agilent 19: Agilent 19: Power S dBm	CH N 18:39 Ma pectral Do	ay 18, 20 ensity, g At	(IEEF 09 Mode Micten 20 d	E 802.1 I Ch	1g mo		nain 0) R T Mkr1) 100 s (001 5 GHz

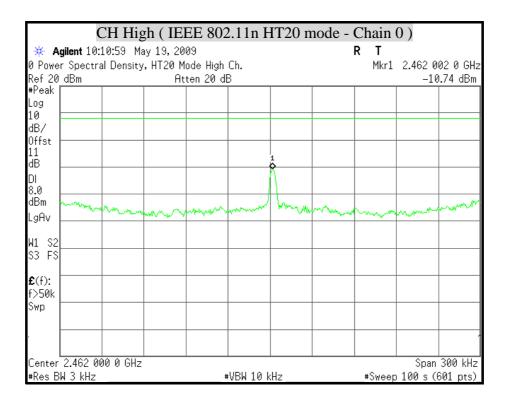






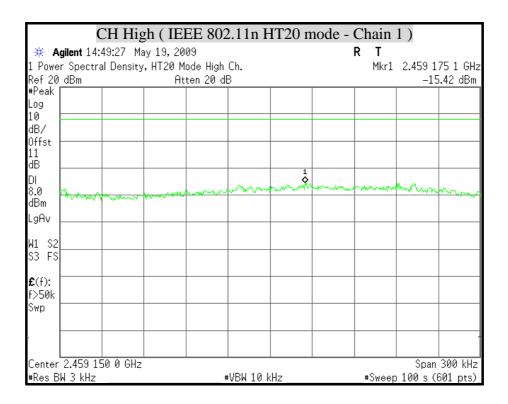
POWER SPECTRAL DENSITY (IEEE 802.11g Combined mode)

		CH	Low (]	IEEE 8	302.11	g Com	bined r	no	de)		
ж А	gilent 15:							R	T		
Peak P	ower Spe		sity, g Mo	ode Low C					Mkr1		27 4 GHz
Ref 20 #Peak			At	ten 20 di	3		1			-1	.45 dBm
+reak Log											
10											
dB/					1						
Offst 16.5				m	h	mon				~	
dB	mm	~~~~~			· · · · ·	· · · ·	rem vu	ww	Ym	mbro	
DI											
8.0 dBm											
LgAv											
_											
W1 S2 S3 FS											
33 FS											
£ (f):											
f>50k											
Swp											
	2.407 65	50 0 GHz					1			Span	300 kHz
											AA4 \
#Res B	3W 3 kHz_			#	VBW 10 K	(Hz		#	Sweep	100 s (601 pts)_
#Res B	3 kHz_	CILL	r• 1 11				1 • 1			_	601 pts)_
				(IEEE			nbined	m	ode	_	601 pts)_
∦ A	gilent 15:	11:05 Ma	ay 18, 20	(IEEE 09	802.1			m R	ode T)	
🔆 🗚 Peak P	gilent 15:: 'ower Spe	11:05 Ma	ay 18, 20 sity, g Mo	(IEEE 09 ode Mid C	802.1 h.			m R	ode T) 2.432 0	02 5 GHz
∦ A	gilent 15:: 'ower Spe	11:05 Ma	ay 18, 20 sity, g Mo	(IEEE 09	802.1 h.			m R	ode T) 2.432 0	
₩ A Peak P Ref 20 #Peak Log	gilent 15:: 'ower Spe	11:05 Ma	ay 18, 20 sity, g Mo	(IEEE 09 ode Mid C	802.1 h.			m R	ode T) 2.432 0	02 5 GHz
¥ A Peak P Ref 20 #Peak Log 10	gilent 15:: 'ower Spe	11:05 Ma	ay 18, 20 sity, g Mo	(IEEE 09 ode Mid C	802.1 h.	1g Cor		m R	ode T) 2.432 0	02 5 GHz
₩ A Peak P Ref 20 #Peak Log	gilent 15:: 'ower Spe	11:05 Ma	ay 18, 20 sity, g Mo	(IEEE 09 ode Mid C	802.1 h.	1g Cor		m R	ode T) 2.432 0	02 5 GHz
₩ A Peak P Ref 20 #Peak Log 10 dB/ 0ffst 16.5	gilent 15:: 'ower Spe	11:05 Ma	ay 18, 20 sity, g Mo	(IEEE 09 ode Mid C	802.1 h. 3	1g Cor		m R	ode T) 2.432 0	02 5 GHz
₩ A Peak P Ref 20 #Peak Log 10 dB/ 0ffst 16.5 dB	gilent 15:: 'ower Spe	11:05 Ma	ay 18, 20 sity, g Mo	(IEEE 09 ode Mid C	802.1 h. 3	1g Cor		m R	ode T) 2.432 0	02 5 GHz
₩ A Peak P Ref 20 #Peak Log 10 dB/ 0ffst 16.5	gilent 15:: 'ower Spe	11:05 Ma	ay 18, 20 sity, g Mo	(IEEE 09 ode Mid C	802.1 h. 3	1g Cor		m R	ode T) 2.432 0	02 5 GHz
₩ A Peak P Ref 20 #Peak Log 10 dB/ 0ffst 0ffst 16.5 dB DI 8.0 dBm	gilent 15:: 'ower Spe	11:05 Ma	ay 18, 20 sity, g Mo	(IEEE 09 ode Mid C	802.1 h. 3	1g Cor		m R	ode T) 2.432 0	02 5 GHz
₩ A Peak P Ref 20 #Peak Log 10 dB/ 0ffst 16.5 dB DI 8.0	gilent 15:: 'ower Spe	11:05 Ma	ay 18, 20 sity, g Mo	(IEEE 09 ode Mid C	802.1 h. 3	1g Cor		m R	ode T) 2.432 0	02 5 GHz
Image: Weight of the second secon	Agilent 15:: Yower Spe	11:05 Ma	ay 18, 20 sity, g Mo	(IEEE 09 ode Mid C	802.1 h. 3	1g Cor		m R	ode T) 2.432 0	02 5 GHz
Image: Weight of the second secon	Agilent 15:: Yower Spe	11:05 Ma	ay 18, 20 sity, g Mo	(IEEE 09 ode Mid C	802.1 h. 3	1g Cor		m R	ode T) 2.432 0	02 5 GHz
Image: Weight of the second secon	Agilent 15:: Yower Spe	11:05 Ma	ay 18, 20 sity, g Mo	(IEEE 09 ode Mid C	802.1 h. 3	1g Cor		m R	ode T) 2.432 0	02 5 GHz
₩ A Peak P Ref 20 #Peak Log 10 dB/ 0ffst 16.5 dB DI 8.0 dBm LgAv V3 FS \$2 \$3 FS £(f):	Agilent 15:: Yower Spe	11:05 Ma	ay 18, 20 sity, g Mo	(IEEE 09 ode Mid C	802.1 h. 3	1g Cor		m R	ode T) 2.432 0	02 5 GHz
₩ A Peak P Peak P Ref 20 #Peak Log 10 dB/ 0ffst 16.5 dB DI 8.0 dBm LgAv W1 S2 S3 FS f>50k f):	Agilent 15:: Yower Spe	11:05 Ma	ay 18, 20 sity, g Mo	(IEEE 09 ode Mid C	802.1 h. 3	1g Cor		m R	ode T) 2.432 0	02 5 GHz
₩ A Peak P Ref 20 #Peak Log 10 dB/ 0ffst 16.5 dB DI 8.0 dBm LgAv V1 S2 S3 FS £(f): ************************************	Agilent 15:: Yower Spe	11:05 Ma	ay 18, 20 sity, g Mo	(IEEE 09 ode Mid C	802.1 h. 3	1g Cor		m R	ode T) 2.432 0	02 5 GHz
₩ A Peak P Peak P Ref 20 #Peak Log 10 10 dB/ 0ffst 16.5 dB DI 8.0 dBm LgAv S3 \$3 FS £(f): f>50k	Agilent 15:: Yower Spe	11:05 Ma	ay 18, 20 sity, g Mo	(IEEE 09 ode Mid C	802.1 h. 3	1g Cor		m R	ode T) 2.432 0	02 5 GHz
** A Peak P Peak P Ref 20 Peak Log 10 dB/ Offst 16.5 dB DI 8.0 dBm LgAv W1 S2 S3 FS f>50k Swp	Agilent 15:: ower Spe dBm	11:05 Ma ctral Den	ay 18, 20 Sity, g Ma	(IEEE 09 ode Mid C	802.1 h. 3	1g Cor		m R	ode T) 2.432 @ 2	02 5 GHz 2.58 dBm
** A Peak P Peak P Ref 20 #Peak Log 10 dB/ Offst 16.5 dB DI 8.0 dBm LgAv W1 S2 S3 FS f>50k Swp Center Center	Agilent 15:: Yower Spe	11:05 Ma ctral Den	ay 18, 20 Sity, g Ma	(IEEE 09 ode Mid C ten 20 dl	802.1 h. 3	1g Cor			ode T Mkr1) 2.432 @ 	02 5 GHz



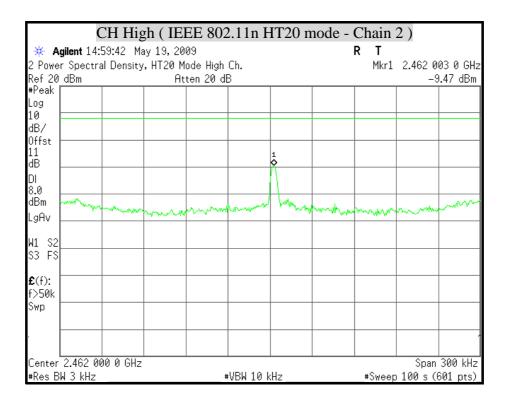
POWER SPECTRAL DENSITY (IEEE 802.11n HT20 mode)

	(CH Lo	w (IEl	EE 802	2.11n H	IT20 n	node - (Chain	0)	
₩ A	gilent 09:	37:08 Ma	ay 19, 20	09				RТ		
		al Density			Ch.				1 2.412 0	001 5 GHz
Ref 20				ten 20 di					-1	1.77 dBm
#Peak										
Log										
10 dB/										
0ffst										
11										
dB						¢				
DI						Λ				
8.0 dBm										
LgAv	and the second	mon	mm	mon	monund	Month	man	ma	mont	an when a
LGHA										
W1 S2										
S3 FS										
£ (f):										
f>50k										
Swp										
										1
Center	2.412 00	 00 0 GHz							Snar	1 300 kHz
	3W 3 kHz	00 0 0112			⊧VBW 10 k	415				601 pts)
								#SWee		
-1100 L					VDN IU K	<u> </u>		_#SW66	9D 100 2 (.001 pts/_
		H Mid	dle (II				mode -			.001 p(3)_
F	C			EEE 80			mode -	Chai		001 p(s)_
* A	C. Agilent 09:	42 : 53 Ma	ay 19,20	E EE 80 09)2.11n			Chai R T	n 0)	
₩ A 0 Powe	C Agilent 09: er Spectra		ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.			Chai R T	n ()) 1 2.437 (002 5 GHz
* A	C Agilent 09: er Spectra	42 : 53 Ma	ay 19, 20 , HT20 M	E EE 80 09)2.11n Ch.			Chai R T	n ()) 1 2.437 (
∰ A 0 Powe Ref 20	C Agilent 09: er Spectra	42 : 53 Ma	ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.			Chai R T	n ()) 1 2.437 (002 5 GHz
∦ ▲ Ø Powe Ref 20 #Peak Log 10	C Agilent 09: er Spectra	42 : 53 Ma	ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.			Chai R T	n ()) 1 2.437 (002 5 GHz
∦ A 0 Powe Ref 20 #Peak Log 10 dB∕	C Agilent 09: er Spectra	42 : 53 Ma	ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.			Chai R T	n ()) 1 2.437 (002 5 GHz
₩ A 0 Powe Ref 20 #Peak Log 10 dB/ Offst	C Agilent 09: er Spectra	42 : 53 Ma	ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.			Chai R T	n ()) 1 2.437 (002 5 GHz
∦ A 0 Powe Ref 20 #Peak Log 10 dB∕	C Agilent 09: er Spectra	42 : 53 Ma	ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.	HT20		Chai R T	n ()) 1 2.437 (002 5 GHz
∦ A Ø Powe Ref 20 #Peak Log dB/ Offst 11 dB	C Agilent 09: er Spectra	42 : 53 Ma	ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.	HT20		Chai R T	n ()) 1 2.437 (002 5 GHz
∦ A 0 Powe Ref 20 #Peak Log 10 dB/ 0ffst 11 dB DI 8.0	C Agilent 09: er Spectra	42 : 53 Ma	ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.	HT20		Chai R T	n ()) 1 2.437 (002 5 GHz
₩ A 0 Powe Ref 20 #Peak Log dB/ 0ffst 11 dB DI 8.0 dBm	C Agilent 09: er Spectra	42 : 53 Ma	ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.	HT20		Chai R T	n ()) 1 2.437 (002 5 GHz
∦ A 0 Powe Ref 20 #Peak Log 10 dB/ 0ffst 11 dB DI 8.0	C Agilent 09: er Spectra	42 : 53 Ma	ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.	HT20		Chai R T	n ()) 1 2.437 (002 5 GHz
₩ A 0 Powe Ref 20 #Peak Log dB/ 0ffst 11 dB dB DI 8.0 dBm LgAv	C sgilent 09: Spectra dBm	42 : 53 Ma	ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.	HT20		Chai R T	n ()) 1 2.437 (002 5 GHz
₩ A 0 Powe Ref 20 #Peak Log dB/ 0ffst 11 dB dB DI 8.0 dBm LgAv	C sgilent 09: Spectra dBm	42 : 53 Ma	ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.	HT20		Chai R T	n ()) 1 2.437 (002 5 GHz
₩ A 0 Powe Ref 20 #Peak Log dB/ 0ffst 11 dB DI 8.0 dBm	C sgilent 09: Spectra dBm	42 : 53 Ma	ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.	HT20		Chai R T	n ()) 1 2.437 (002 5 GHz
Image A Powe Ref 20 #Peak Log dB/ Offst 11 dB DI 8.0 dBm LgAv W1 S2 S3 FS	C sgilent 09: Spectra dBm	42 : 53 Ma	ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.	HT20		Chai R T	n ()) 1 2.437 (002 5 GHz
₩ A 0 Powe Ref 20 #Peak Log dB/ 0ffst 11 dB dB DI 8.0 dBm LgAv	C sgilent 09: Spectra dBm	42 : 53 Ma	ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.	HT20		Chai R T	n ()) 1 2.437 (002 5 GHz
₩ A 0 Powe Ref 20 #Peak Log 10 dB/ 0ffst 11 dB DI 8.0 dBm LgAv W1 S2 \$3 F\$ \$3 F\$	C sgilent 09: Spectra dBm	42 : 53 Ma	ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.	HT20		Chai R T	n ()) 1 2.437 (002 5 GHz
₩ A 0 Powe Ref 20 Ref 20 10 dB/ 10 dB/ 0ffst DI 8.0 dBm LgAv W1 S2 S3 FS £(f): f>50k	C sgilent 09: Spectra dBm	42 : 53 Ma	ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.	HT20		Chai R T	n ()) 1 2.437 (002 5 GHz
₩ A 0 Powe Ref 20 Ref 20 10 dB/ 10 dB/ 0ffst DI 8.0 dBm LgAv W1 S2 S3 FS £(f): f>50k	C sgilent 09: Spectra dBm	42 : 53 Ma	ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.	HT20		Chai R T	n ()) 1 2.437 (002 5 GHz
₩ ₽ 0 Powe Ref 20 Ref 20 10 10 dB/ 0ffst 11 dB 0 dB 20 S3 FS £(f): FS f>50k Swp	C sgilent 09: dBm	42:53 Ma	ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.	HT20		Chai R T	n 0) 1 2.437 (002 5 GHz 4.97 dBm
₩ A 0 Powe Ref 20 #Peak Log 10 dB/ 0ffst 11 dB DI 8.0 dBm LgAv W1 S2 S3 FS £(f): f>50k Swp Center	C sgilent 09: Spectra dBm	42:53 Ma	ay 19, 20 , HT20 M	EEE 8(09 ode Mid (ten 20 dl)2.11n Ch.			Chai R T Mkr	n 0) 1 2.437 (002 5 GHz 4.97 dBm



E

Spectral		ау 19, 20 - штра м		~h			RT Mkr1	2.417	220
ˈspectrai dBm	Density		oae Low (ten 20 di				MKLT		338 14.1
				_					
									_
									-
				1					
	m	مدهمه	man	, Ż.	and a				
hann	matter of the	o hite				many	mound	and the second	200
									+
									+
									-
2.417 350	0 0 GHz							Spa	
CH			EEE 80	02.11n		mode -			(60
jilent 14 : 1 Spectral	4:52 Ma	ay 19, 20 , HT20 M	E EE 80 09 ode Mid (02.11n Ch.			- Chair R T	n 1) 2.432	627
CH jilent 14:1	4:52 Ma	ay 19, 20 , HT20 M	EEE 80 09	02.11n Ch.			- Chair R T	n 1) 2.432	627
CH ilent 14:1 Spectral	4:52 Ma	ay 19, 20 , HT20 M	E EE 80 09 ode Mid (02.11n Ch.			- Chair R T	n 1) 2.432	627
CH ilent 14:1 Spectral	4:52 Ma	ay 19, 20 , HT20 M	E EE 80 09 ode Mid (02.11n Ch.			- Chair R T	n 1) 2.432	627
CH ilent 14:1 Spectral	4:52 Ma	ay 19, 20 , HT20 M	E EE 80 09 ode Mid (02.11n Ch.			- Chair R T	n 1) 2.432	627
CH ilent 14:1 Spectral	4:52 Ma	ay 19, 20 , HT20 M	E EE 80 09 ode Mid (02.11n Ch. 3			- Chair R T	n 1) 2.432	627
CH ilent 14:1- Spectral dBm	4:52 Ma Density	ay 19, 20 , HT20 M	E EE 80 09 ode Mid (02.11n Ch. 3			Chair R T Mkr1	2.432	
CH ilent 14:1- Spectral dBm	4:52 Ma Density	ay 19, 20 , HT20 M At	E EE 80 09 ode Mid (02.11n Ch. 3	HT20		- Chair R T	2.432	627
CH jilent 14:14 Spectral dBm	4:52 Ma Density	ay 19, 20 , HT20 M At	E EE 80 09 ode Mid (02.11n Ch. 3	HT20		Chair R T Mkr1	2.432	627
CH ilent 14:1- Spectral dBm	4:52 Ma Density	ay 19, 20 , HT20 M At	E EE 80 09 ode Mid (02.11n Ch. 3	HT20		Chair R T Mkr1	2.432	627
CH ilent 14:1- Spectral dBm	4:52 Ma Density	ay 19, 20 , HT20 M At	E EE 80 09 ode Mid (02.11n Ch. 3	HT20		Chair R T Mkr1	2.432	627
CH jilent 14:14 Spectral dBm	4:52 Ma Density	ay 19, 20 , HT20 M At	E EE 80 09 ode Mid (02.11n Ch. 3	HT20		Chair R T Mkr1	2.432	627
CH ilent 14:1- Spectral dBm	4:52 Ma Density	ay 19, 20 , HT20 M At	E EE 80 09 ode Mid (02.11n Ch. 3	HT20		Chair R T Mkr1	2.432	627
CH jilent 14:14 Spectral dBm	4:52 Ma Density	ay 19, 20 , HT20 M At	E EE 80 09 ode Mid (02.11n Ch. 3	HT20		Chair R T Mkr1	2.432	627
CH jilent 14:14 Spectral dBm	4:52 Ma Density	ay 19, 20 , HT20 M At	E EE 80 09 ode Mid (02.11n Ch. 3	HT20		Chair R T Mkr1	2.432	627
CH jilent 14:14 Spectral dBm	4:52 Ma Density	ay 19, 20 , HT20 M At	E EE 80 09 ode Mid (02.11n Ch. 3	HT20		Chair R T Mkr1	2.432	627
CH ilent 14:14 Spectral dBm	4:52 Ma Density	ay 19, 20 , HT20 M At	E EE 80 09 ode Mid (02.11n Ch. 3	HT20		Chair R T Mkr1	2.432	627
CF lent 14:1- Spectral Bm	4:52 Ma Density	ay 19, 20 , HT20 M At	E EE 80 09 ode Mid (02.11n Ch. 3	HT20		Chair R T Mkr1	2.432	627

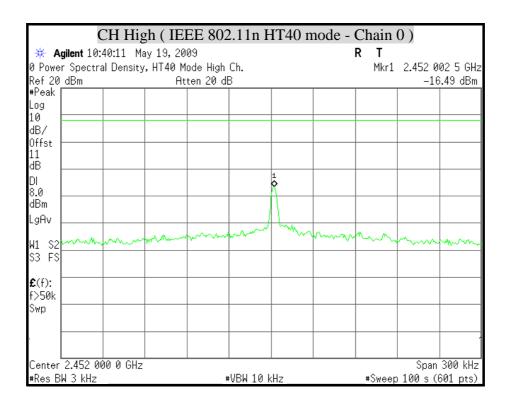


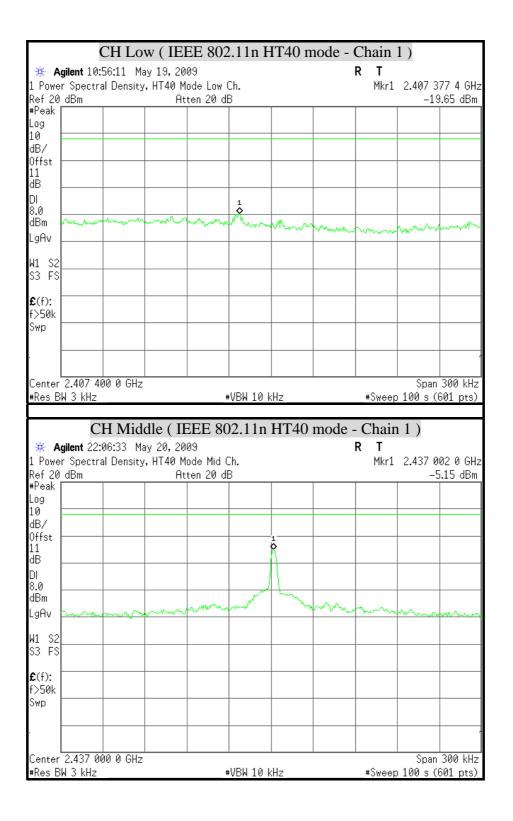
E

					2.11n H	IT20 n	node - (2)	
			ay 19,20					RT		
		al Density	, HT20 M					Mkr1	2.412 0	
20 ak ľ	dBm		Ht	ten 20 di	B				-1.	2.75 dBm
st										
						1				
						ň				
	wan Alto									
,	and the second	- Mary Araba	manin	mm	mond	And the state	month	mark	month	- All
۲ i										
S2										
FS										
,										
): 0k										
_ [
									Spon	300 kH:
	2.412 00	00 0 GHz								
	W 3 kHz				•VBW 10 k)2.11n		mode -		100 s (
s Bl Al	W 3 kHz C gilent 15: r Spectra	H Mid 18:18 Ma	dle (II ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.			Chain R T	<u>100 s (</u> 2) 2.437 0	<u>601 pts)</u> 103 0 GH
s Bl Al	<u>W 3 kHz</u> C gilent 15:	H Mid 18:18 Ma	dle (II ay 19, 20 , HT20 M	EEE 80 09)2.11n Ch.			Chain R T	<u>100 s (</u> 2) 2.437 0	<u>601 pts</u> 103 0 GH
s Bl Ag Dwei 20	W 3 kHz C gilent 15: r Spectra	H Mid 18:18 Ma	dle (II ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.			Chain R T	<u>100 s (</u> 2) 2.437 0	<u>601 pts)</u> 103 0 GH
Ag Dwer 20 ak	W 3 kHz C gilent 15: r Spectra	H Mid 18:18 Ma	dle (II ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.			Chain R T	<u>100 s (</u> 2) 2.437 0	<u>601 pts)</u> 103 0 GH
s Bl Ag Dwei 20	W 3 kHz C gilent 15: r Spectra	H Mid 18:18 Ma	dle (II ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.			Chain R T	<u>100 s (</u> 2) 2.437 0	<u>601 pts)</u> 103 0 GH
AQ Dwen 20 ak	W 3 kHz C gilent 15: r Spectra	H Mid 18:18 Ma	dle (II ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.			Chain R T	<u>100 s (</u> 2) 2.437 0	601 pts)
AQ Dwen 20 ak	W 3 kHz C gilent 15: r Spectra	H Mid 18:18 Ma	dle (II ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.			Chain R T	<u>100 s (</u> 2) 2.437 0	<u>601 pts)</u> 103 0 GH
AQ Dwen 20 ak	W 3 kHz C gilent 15: r Spectra	H Mid 18:18 Ma	dle (II ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.			Chain R T	<u>100 s (</u> 2) 2.437 0	<u>601 pts</u> 103 0 GH
AQ Dwen 20 ak	W 3 kHz C gilent 15: r Spectra	H Mid 18:18 Ma	dle (II ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.			Chain R T	<u>100 s (</u> 2) 2.437 0	<u>601 pts</u> 103 0 GH
s B A Dwen 20 ak	W 3 kHz C gilent 15: r Spectra	H Mid 18:18 Ma	dle (II ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.			Chain R T	<u>100 s (</u> 2) 2.437 0	<u>601 pts)</u> 103 0 GH
Aq 20 ak	<u>W 3 kHz</u> C gilent 15: r Spectra	H Mid 18:18 Ma	dle (II ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.			Chain R T	<u>100 s (</u> 2) 2.437 0	<u>601 pts)</u> 103 0 GH
A A A A A A A A A A A A A A A A A A A	<u>W 3 kHz</u> C gilent 15: r Spectra	H Mid 18:18 Ma	dle (II ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.			Chain R T	<u>100 s (</u> 2) 2.437 0	<u>601 pts</u> 103 0 GH
Aq 20 ak	<u>W 3 kHz</u> C gilent 15: r Spectra	H Mid 18:18 Ma	dle (II ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.			Chain R T	<u>100 s (</u> 2) 2.437 0	<u>601 pts)</u> 103 0 GH
s B A 200 wei 200 ak st st v S22 FS):	<u>W 3 kHz</u> C gilent 15: r Spectra	H Mid 18:18 Ma	dle (II ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.			Chain R T	<u>100 s (</u> 2) 2.437 0	<u>601 pts)</u> 103 0 GH
s B A 20 20 ak st v S2 FS): 0k	<u>W 3 kHz</u> C gilent 15: r Spectra	H Mid 18:18 Ma	dle (II ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.			Chain R T	<u>100 s (</u> 2) 2.437 0	<u>601 pts)</u> 103 0 GH
s B A 200 wei 200 ak st st v S22 FS):	<u>W 3 kHz</u> C gilent 15: r Spectra	H Mid 18:18 Ma	dle (II ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.			Chain R T	<u>100 s (</u> 2) 2.437 0	<u>601 pts</u> 103 0 GH
s B A 20 20 ak st v S2 FS): 0k	<u>W 3 kHz</u> C gilent 15: r Spectra	H Mid 18:18 Ma	dle (II ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.			Chain R T	<u>100 s (</u> 2) 2.437 0	<u>601 pts</u> 103 0 GH
s B A 20 20 ak st v S2 FS): 0k	<u>W 3 kHz</u> C gilent 15: r Spectra	H Mid 18:18 Ma	dle (II ay 19, 20 , HT20 M	E EE 8(09 ode Mid ()2.11n Ch.			Chain R T	<u>100 s (</u> 2) 2.437 0	<u>601 pts</u> 103 0 GH
s Bl 20 20 ak st v S2 FS): 0k	W 3 kHz C glient 15: r Spectra dBm	H Mid 18:18 Ma	dle (II ay 19, 20 , HT20 M At	E EE 8(09 ode Mid ()2.11n Ch.			Chain R T	100 s (1 2) 2.437 0 	<u>601 pts</u> 103 0 GH

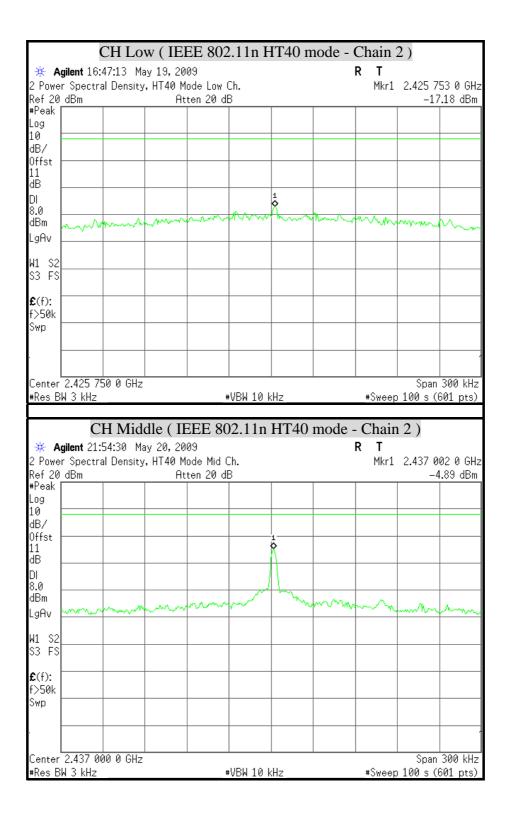
POWER SPECTRAL DENSITY (IEEE 802.11n HT20 Combined mode)

	C	CH Lov	w (IEE	EE 802	.11n H	T20 C	ombine	ed 1	mod	le)	
ж А	gilent 16:	53:31 Ma	ay 18, 20	09				R	Т		
Power	- Spectral	Density, I	HT20 Mod	le Low Ch					Mkr1		627 4 GHz
Ref 20	dBm		At	ten 20 d	B						3.29 dBm
#Peak											
Log 10											
dB/											
Offst					1						
16.5 JD	h	moun	harrow	many	1 mar	mon	mm	-Mar			
dB	-									month and a	Mary Mary Mary
DI 8.0											
dBm											
LgAv											
-											
W1 S2											
S3 FS											
£ (f):								<u> </u>			
r. (†). f>50k											
Swp	<u> </u>										
	2.412 65	50 0 GHz									n 300 kHz
#Res B	3W 3 kHz			+	ŧVBW 10 k	/H-7		±<	Nucon	100 - 0	(601 pts)_
					- VDA 10 1	112			ποομ	100 3 1	(001 pt0/_
	Cl		dle (IE	EE 802				ned	mo		(001 p(0)_
	Cl gilent 16:	27:41 Ma	ay 18, 20	EE 802 09	2.11n H			ned R	mo T	de)	
Power	C l gilent 16: Spectral	27:41 Ma	ay 18, 20 HT20 Mod	EE 80 2 09 le Mid Ch.	2.11n H			ned R	mo T	de) 2.437 (002 5 GHz
Power Ref 20	C l gilent 16: Spectral	27:41 Ma	ay 18, 20 HT20 Mod	EE 802 09	2.11n H			ned R	mo T	de) 2.437 (
Power	C l gilent 16: Spectral	27:41 Ma	ay 18, 20 HT20 Mod	EE 80 2 09 le Mid Ch.	2.11n H			ned R	mo T	de) 2.437 (002 5 GHz
Power Ref 20 #Peak Log 10	C l gilent 16: Spectral	27:41 Ma	ay 18, 20 HT20 Mod	EE 80 2 09 le Mid Ch.	2.11n H	HT20 C		ned R	mo T	de) 2.437 (002 5 GHz
Power Ref 20 #Peak Log 10 dB/	C l gilent 16: Spectral	27:41 Ma	ay 18, 20 HT20 Mod	EE 80 2 09 le Mid Ch.	2.11n H			ned R	mo T	de) 2.437 (002 5 GHz
Power Ref 20 #Peak Log 10 dB/ Offst	C l gilent 16: Spectral	27:41 Ma	ay 18, 20 HT20 Mod	EE 80 2 09 le Mid Ch.	2.11n H	HT20 C		ned R	mo T	de) 2.437 (002 5 GHz
Power Ref 20 #Peak Log 10 dB/	C l s gilent 16: Spectral	27:41 Ma	ay 18, 20 HT20 Mod At	EE 802 09 le Mid Ch. ten 20 di	2.11n H	HT20 C		ned R	mo T	de) 2.437 (002 5 GHz
Power Ref 20 #Peak Log 10 dB/ 0ffst 16.5 dB	C l s gilent 16: Spectral	27:41 Ma	ay 18, 20 HT20 Mod	EE 802 09 le Mid Ch. ten 20 di	2.11n H	HT20 C		ned R	mo T	de) 2.437 (002 5 GHz
Power Ref 20 #Peak Log dB/ 0ffst dB DI 8.0	C l s gilent 16: Spectral	27:41 Ma	ay 18, 20 HT20 Mod At	EE 802 09 le Mid Ch. ten 20 di	2.11n H	HT20 C		ned R	mo T	de) 2.437 (002 5 GHz
Power Ref 20 #Peak Log 10 dB/ 0ffst 16.5 dB DI 8.0 dBm	C l s gilent 16: Spectral	27:41 Ma	ay 18, 20 HT20 Mod At	EE 802 09 le Mid Ch. ten 20 di	2.11n H	HT20 C		ned R	mo T	de) 2.437 (002 5 GHz
Power Ref 20 #Peak Log dB/ 0ffst dB DI 8.0	C l s gilent 16: Spectral	27:41 Ma	ay 18, 20 HT20 Mod At	EE 802 09 le Mid Ch. ten 20 di	2.11n H	HT20 (ned R	mo T	de) 2.437 (002 5 GHz
Power Ref 20 #Peak Log dB/ 0ffst 16.5 dB DI 8.0 dBm LgAv	Cl sgilent 16: Spectral dBm	27:41 Ma	ay 18, 20 HT20 Mod At	EE 802 09 le Mid Ch. ten 20 di	2.11n H	HT20 (ned R	mo T	de) 2.437 (002 5 GHz
Power Ref 20 #Peak Log dB/ Offst 16.5 dB DI 8.0 dBm LgAv W1 S2	Cl sgilent 16: Spectral dBm	27:41 Ma	ay 18, 20 HT20 Mod At	EE 802 09 le Mid Ch. ten 20 di	2.11n H	HT20 (ned R	mo T	de) 2.437 (002 5 GHz
Power Ref 20 #Peak Log dB/ 0ffst 16.5 dB DI 8.0 dBm LgAv	Cl sgilent 16: Spectral dBm	27:41 Ma	ay 18, 20 HT20 Mod At	EE 802 09 le Mid Ch. ten 20 di	2.11n H	HT20 (ned R	mo T	de) 2.437 (002 5 GHz
Power Ref 20 *Peak Log 10 dB/ 0ffst 16.5 dB DI 8.0 dBm LgAv W1 S2 S3 FS £(f):	Cl sgilent 16: Spectral dBm	27:41 Ma	ay 18, 20 HT20 Mod At	EE 802 09 le Mid Ch. ten 20 di	2.11n H	HT20 (ned R	mo T	de) 2.437 (002 5 GHz
Power Ref 20 *Peak Log 10 dB/ 0ffst 16.5 dB DI 8.0 dBm LgAv W1 \$2 \$3 F\$ £(f): f>50k	Cl sgilent 16: Spectral dBm	27:41 Ma	ay 18, 20 HT20 Mod At	EE 802 09 le Mid Ch. ten 20 di	2.11n H	HT20 (ned R	mo T	de) 2.437 (002 5 GHz
Power Ref 20 *Peak Log 10 dB/ 0ffst 16.5 dB DI 8.0 dBm LgAv W1 S2 S3 FS £(f):	Cl sgilent 16: Spectral dBm	27:41 Ma	ay 18, 20 HT20 Mod At	EE 802 09 le Mid Ch. ten 20 di	2.11n H	HT20 (ned R	mo T	de) 2.437 (002 5 GHz
Power Ref 20 *Peak Log 10 dB/ 0ffst 16.5 dB DI 8.0 dBm LgAv W1 \$2 \$3 F\$ £(f): f>50k	Cl sgilent 16: Spectral dBm	27:41 Ma	ay 18, 20 HT20 Mod At	EE 802 09 le Mid Ch. ten 20 di	2.11n H	HT20 (ned R	mo T	de) 2.437 (002 5 GHz
Power Ref 20 *Peak Log 10 dB/ 0ffst 16.5 dB DI 8.0 dBm LgAv W1 \$2 \$3 F\$ £(f): f>50k	Cl sgilent 16: Spectral dBm	27:41 Ma	ay 18, 20 HT20 Mod At	EE 802 09 le Mid Ch. ten 20 di	2.11n H	HT20 (ned R	mo T	de) 2.437 (002 5 GHz
Power Ref 20 #Peak Log 10 dB/ 0ffst 16.5 dB DI 8.0 dBm LgAv W1 S2 \$3 FS £(f): f>50k Swp	CI sgilent 16: Spectral dBm	27:41 Ma	ay 18, 20 HT20 Mod At	EE 802 09 le Mid Ch. ten 20 di	2.11n H	HT20 (ned R	mo T	de) 2.437 (002 5 GHz 2.72 dBm
Power Ref 20 #Peak Log 10 dB/ Offst 16.5 dB DI 8.0 dBm LgAv W1 S2 \$3 FS £(f): f>50k Swp Center	Cl sgilent 16: Spectral dBm	27:41 Ma	ay 18, 20 HT20 Mod At	EE 802	2.11n H	HT20 (mo T Mkr1	de) 2.437 (002 5 GHz

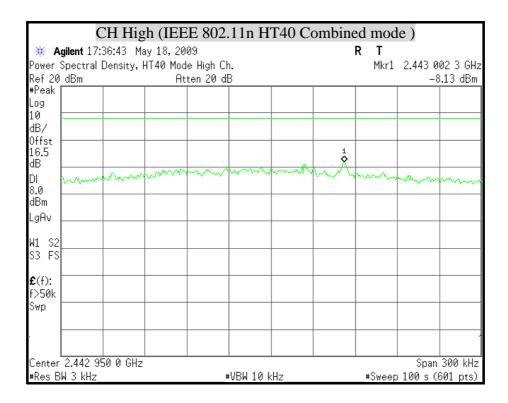


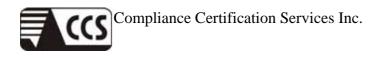

	C	CH Hig	h (IEE	E 802.	11n H	T20 C	ombine	ed mod	le)	
₩ A	gilent 16:	59:34 Ma	ny 18, 20	09				RΤ		
			HT20 Mod		ı.			Mkr1	2.462 9	64 4 GHz
Ref 20	dBm		At	ten 20 di	3				-5	.42 dBm
#Peak										
Log										
10 JD (
dB/ Offst										
16.5										
dB	man and the second	- Alexandre	مسممهم	mon	m	man	$\sim\sim\sim$	mound	mond	man
DI 8.0										
8.0										
dBm										
LgAv										
114 00										
W1 S2 S3 FS										
33 F3										
£ (f):										
f>50k										
Swp										
Center	2.462 90	00 0 GHz							Span	300 kHz
#Res B	W 3 kHz_			#	VBW 10 k	:Hz		#Sweep	b 100 s (M	601 pts)_




POWER SPECTRAL DENSITY (IEEE 802.11n HT40 mode)

	(CH Lo	w (IEl	EE 802	2.11n H	IT40 n	node - (Chain	0)	
ж А	gilent 10:	22 : 39 Ma	ay 19, 20	09				RТ		
	er Spectra				Ch.				2.411 3	76 4 GHz
Ref 20	dBm	_	At	ten 20 di	В				-17	7.93 dBm
#Peak										
Log 10										
dB/										
0ffst										
11										
dB	<u> </u>									
DI 8.0										
o.ø dBm	A 4.00 -	m	man	m	Amer	Munn	min	a so at		
LgAv	1 Contraction	~~~ `						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		mmm
Light										
W1 S2										
S3 FS										
e (s.										
£ (f): f>50k										
Swp										
÷										
	<u> </u>									
Center	2.411 40	00 0 GHz							Span	300 kHz
"Den D										
#Kes B	3W 3 kHz			+	⊧VBW 10 k	(Hz		#Sweep	o 100 s (601 pts)_
#κes Β	SW 3 KHZ			+	⊧VBW 10 k	(Hz		_#Sweep	o 100 s (601 pts)_
#ĸes b		H Mid	dle (II				mode -			601 pts)_
	C			EEE 80			mode -			601 pts)_
∦ A		18:40 Ma	ay 20, 20	EEE 80 09)2.11n			Chain R T	n 0)	601 pts) 02 5 GHz
₩ A 0 Powe Ref 20	C Agilent 22: er Spectra	18:40 Ma	ay 20, 20 4, HT40 M	EEE 80 09)2.11n Ch.			Chain R T	1 0) 2.4370	
∦ A 0 Powe Ref 20 #Peak	C Agilent 22: er Spectra	18:40 Ma	ay 20, 20 4, HT40 M	E EE 8(09 ode Mid ()2.11n Ch.			Chain R T	1 0) 2.4370	02 5 GHz
₩ A 0 Powe Ref 20 #Peak Log	C Agilent 22: er Spectra	18:40 Ma	ay 20, 20 4, HT40 M	E EE 8(09 ode Mid ()2.11n Ch.			Chain R T	1 0) 2.4370	02 5 GHz
₩ A 0 Powe Ref 20 #Peak Log 10	C Agilent 22: er Spectra	18:40 Ma	ay 20, 20 4, HT40 M	E EE 8(09 ode Mid ()2.11n Ch.			Chain R T	1 0) 2.4370	02 5 GHz
₩ A 0 Powe Ref 20 #Peak Log	C Agilent 22: er Spectra	18:40 Ma	ay 20, 20 4, HT40 M	E EE 8(09 ode Mid ()2.11n Ch.			Chain R T	1 0) 2.4370	02 5 GHz
★ A Ø Powe Ref 20 #Peak Log 10 dB/ Offst 11	C Agilent 22: er Spectra	18:40 Ma	ay 20, 20 4, HT40 M	E EE 8(09 ode Mid ()2.11n Ch.			Chain R T	1 0) 2.4370	02 5 GHz
★ A Ø Powe Ref 20 #Peak Log 10 dB/ 0ffst 11 dB	C Agilent 22: er Spectra	18:40 Ma	ay 20, 20 4, HT40 M	E EE 8(09 ode Mid ()2.11n Ch.	HT40		Chain R T	1 0) 2.4370	02 5 GHz
₩ A Ø Powe Ref 20 #Peak Log dB/ Offst 11 dB DI	C Agilent 22: er Spectra	18:40 Ma	ay 20, 20 4, HT40 M	E EE 8(09 ode Mid ()2.11n Ch.	HT40		Chain R T	1 0) 2.4370	02 5 GHz
★ A 0 Powe Ref 20 #Peak Log 10 dB/ 0ffst 11 dB DI 8.0	C Agilent 22: er Spectra	18:40 Ma	ay 20, 20 4, HT40 M	E EE 8(09 ode Mid ()2.11n Ch.	HT40		Chain R T	1 0) 2.4370	02 5 GHz
★ A 0 Powe Ref 20 #Peak Log 10 dB/ 0ffst 11 dB DI 8.0 dBm	C Agilent 22: er Spectra	18:40 Ma	ay 20, 20 4, HT40 M	E EE 8(09 ode Mid ()2.11n Ch.	HT40		Chain R T	1 0) 2.4370	02 5 GHz
★ A 0 Powe Ref 20 #Peak Log 10 dB/ 0ffst 11 dB DI 8.0	C Agilent 22: er Spectra	18:40 Ma	ay 20, 20 4, HT40 M	E EE 8(09 ode Mid ()2.11n Ch.	HT40		Chain R T	1 0) 2.4370	02 5 GHz
★ A 0 Powe Ref 20 #Peak Log 10 dB/ 0ffst 11 dB DI 8.0 dBm LgAv W1 S2	C sgilent 22: or Spectra dBm	18:40 Ma	ay 20, 20 4, HT40 M	E EE 8(09 ode Mid ()2.11n Ch.	HT40		Chain R T	1 0) 2.4370	02 5 GHz
Image: Weight of the second secon	C sgilent 22: or Spectra dBm	18:40 Ma	ay 20, 20 4, HT40 M	E EE 8(09 ode Mid ()2.11n Ch.	HT40		Chain R T	1 0) 2.4370	02 5 GHz
✗ A 0 Powe Ref 20 #Peak Log 10 dB/ 0ffst 11 dB DI 8.0 dBm LgAv S3	C sgilent 22: or Spectra dBm	18:40 Ma	ay 20, 20 4, HT40 M	E EE 8(09 ode Mid ()2.11n Ch.	HT40		Chain R T	1 0) 2.4370	02 5 GHz
₩ A 0 Powe Ref 20 Ref 20 10 dB/ 10 dB/ 0ffst 11 dB DI 8.0 dBm LgAv W1 S2 S3 FS €(f): :	C sgilent 22: or Spectra dBm	18:40 Ma	ay 20, 20 4, HT40 M	E EE 8(09 ode Mid ()2.11n Ch.	HT40		Chain R T	1 0) 2.4370	02 5 GHz
₩ A 0 Powe Ref 20 Ref 20 10 dB/ 10 0ffst 11 dB 0 dB/ 0 0ffst 11 dB S.0 dBm LgAv W1 S2 S3 FS f>50k	C sgilent 22: or Spectra dBm	18:40 Ma	ay 20, 20 4, HT40 M	E EE 8(09 ode Mid ()2.11n Ch.	HT40		Chain R T	1 0) 2.4370	02 5 GHz
₩ A 0 Powe Ref 20 Ref 20 10 dB/ 10 dB/ 0ffst 11 dB DI 8.0 dBm LgAv W1 S2 S3 FS €(f): :	C sgilent 22: or Spectra dBm	18:40 Ma	ay 20, 20 4, HT40 M	E EE 8(09 ode Mid ()2.11n Ch.	HT40		Chain R T	1 0) 2.4370	02 5 GHz
₩ A 0 Powe Ref 20 Ref 20 10 dB/ 10 0ffst 11 dB 0 dB/ 0 0ffst 11 dB S.0 dBm LgAv W1 S2 S3 FS f>50k	C sgilent 22: or Spectra dBm	18:40 Ma	ay 20, 20 4, HT40 M	E EE 8(09 ode Mid ()2.11n Ch.	HT40		Chain R T	1 0) 2.4370	02 5 GHz
₩ A 0 Powe Ref 20 Ref 20 10 dB/ 10 0ffst 11 dB 0 dB/ 0 0ffst 11 dB S.0 dBm LgAv W1 S2 S3 FS f>50k	C sgilent 22: or Spectra dBm	18:40 Ma	ay 20, 20 4, HT40 M	E EE 8(09 ode Mid ()2.11n Ch.	HT40		Chain R T	1 0) 2.4370	02 5 GHz
₩ A 0 Powe Ref 20 Ref 20 10 dB/ 10 0ffst 11 dB 0 dB/ 0 0ffst 11 dB 8.0 dBm LgAv W1 S2 S3 FS f>50k Swp	C sgilent 22: or Spectra dBm	18:40 Ma	ay 20, 20 , HT40 M At	E EE 8(09 ode Mid ()2.11n Ch.	HT40		Chain R T	2.437 0 {	02 5 GHz



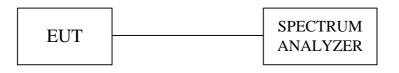


POWER SPECTRAL DENSITY (IEEE 802.11n HT40 Combined mode)

	C	CH Lov	w (IEE	EE 802	.11n H	T40 C	ombine	ed mod	le)	
₩ А	gilent 17:	14 : 57 Ma	ay 18, 20	09			I	RТ		
	Spectral	Density, H						Mkr1	2.412 6	626 9 GHz
Ref 20	dBm		At	ten 20 d	3				_!	9.82 dBm
#Peak										
Log 10										
dB/										
Offst										
16.5										
dB	A		Linn	ham	In.	mon				
DI 8.0	rm	$\sim\sim$				Ť	0,000	winner	han	mm
dBm										
LgAv										
Lariv										
W1 S2										
S3 FS										
A/05										
£ (f): f>50k										
f>50K Swp										
νπρ										
										<u> </u>
-										
Center	2.412 65	50 0 GHz		1	I	1			Span	300 kHz
#Res B	3W 3 kHz			+	VBW 10 k	Hz		#Sweep) 100 s (601 pts)_
#Res B				+	VBW 10 k	(Hz		_#Sweep)100 s (601 pts)_
#Res B	3W 3 kHz		dle (IE				Combir			601 pts)_
	BW 3 kHz	H Mide		EE 802			Combin	ed mo		601 pts)_
∦ A	<u>W 3 kHz</u> Cl Agilent 22:	H Mide 24:45 Ma	ay 20, 20	EE 802 09	2.11n H			ied mo R T	ode)	
∦ A	<u>Cl</u> Cl gilent 22: Spectral	H Mide 24:45 Ma	ay 20, 20 HT40 Mod	EE 802 09	2.11n H			ied mo R T	de) 2.437 @	601 pts) 002 0 GHz 1.88 dBm
🔆 🗚 Power	<u>Cl</u> Cl gilent 22: Spectral	H Mide 24:45 Ma	ay 20, 20 HT40 Mod	EE 80 2 09 e Mid Ch.	2.11n H			ied mo R T	de) 2.437 @)02 0 GHz
₩ A Power Ref 20 #Peak Log	<u>Cl</u> Cl gilent 22: Spectral	H Mide 24:45 Ma	ay 20, 20 HT40 Mod	EE 80 2 09 e Mid Ch.	2.11n H			ied mo R T	de) 2.437 @)02 0 GHz
₩ A Power Ref 20 #Peak Log 10	<u>Cl</u> Cl gilent 22: Spectral	H Mide 24:45 Ma	ay 20, 20 HT40 Mod	EE 80 2 09 e Mid Ch.	2.11n H			ied mo R T	de) 2.437 @)02 0 GHz
₩ A Power Ref 20 #Peak Log 10 dB/	<u>Cl</u> Cl gilent 22: Spectral	H Mide 24:45 Ma	ay 20, 20 HT40 Mod	EE 80 2 09 e Mid Ch.	2.11n H	HT40 (ied mo R T	de) 2.437 @)02 0 GHz
₩ A Power Ref 20 #Peak Log 10	<u>Cl</u> Cl gilent 22: Spectral	H Mide 24:45 Ma	ay 20, 20 HT40 Mod	EE 80 2 09 e Mid Ch.	2.11n H	HT40 (ied mo R T	de) 2.437 @)02 0 GHz
₩ A Power Ref 20 #Peak Log 10 dB/ Offst	<u>Cl</u> Cl gilent 22: Spectral	H Mide 24:45 Ma	ay 20, 20 HT40 Mod	EE 80 2 09 e Mid Ch.	2.11n H	HT40 (ied mo R T	de) 2.437 @)02 0 GHz
₩ A Power Ref 20 #Peak Log dB/ 0ffst 16.5 dB DI	<u>Cl</u> Cl gilent 22: Spectral	H Mide 24:45 Ma	ay 20, 20 HT40 Mod	EE 80 2 09 e Mid Ch.	2.11n H	HT40 (ied mo R T	de) 2.437 @)02 0 GHz
Power Ref 20 #Peak Log 10 dB/ 0ffst 16.5 dB DI 8.0	<u>Cl</u> Cl gilent 22: Spectral	H Mide 24:45 Ma	ay 20, 20 HT40 Mod	EE 80 2 09 e Mid Ch.	2.11n H	HT40 (ied mo R T	de) 2.437 @)02 0 GHz
Power Ref 20 #Peak Log 10 dB/ 0ffst 16.5 dB DI 8.0 dBm	<u>Cl</u> Cl gilent 22: Spectral	H Mide 24:45 Ma	ay 20, 20 HT40 Mod	EE 80 2 09 e Mid Ch.	2.11n H	HT40 (ied mo R T	de) 2.437 @)02 0 GHz
Power Ref 20 #Peak Log 10 dB/ 0ffst 16.5 dB DI 8.0	<u>Cl</u> Cl gilent 22: Spectral	H Mide 24:45 Ma	ay 20, 20 HT40 Mod	EE 80 2 09 e Mid Ch.	2.11n H	HT40 (ied mo R T	de) 2.437 @)02 0 GHz
₩ A Power Ref 20 #Peak Log 10 dB/ 0ffst 16.5 dB B DI 8.0 dBm LgAv	SW 3 kHz Cl Agilent 22: Spectral I dBm	H Mide 24:45 Ma	ay 20, 20 HT40 Mod	EE 80 2 09 e Mid Ch.	2.11n H	HT40 (ied mo R T	de) 2.437 @)02 0 GHz
Power Ref 20 #Peak Log 10 dB/ 0ffst 16.5 dB DI 8.0 dBm	SW 3 kHz Cl Agilent 22: Spectral I dBm	H Mide 24:45 Ma	ay 20, 20 HT40 Mod	EE 80 2 09 e Mid Ch.	2.11n H	HT40 (ied mo R T	de) 2.437 @)02 0 GHz
₩ A Power Ref 20 #Peak Log 10 dB/ 0ffst 16.5 dB DI 8.0 dBm LgAv S3	SW 3 kHz Cl Agilent 22: Spectral I dBm	H Mide 24:45 Ma	ay 20, 20 HT40 Mod	EE 80 2 09 e Mid Ch.	2.11n H	HT40 (ied mo R T	de) 2.437 @)02 0 GHz
₩ A Power Ref 20 Ref 20 10 dB/ 10 0ffst 16.5 dB DI 8.0 dBm LgAv \$3 K1 \$2 \$3 F\$ €(f): \$2	SW 3 kHz Cl Agilent 22: Spectral I dBm	H Mide 24:45 Ma	ay 20, 20 HT40 Mod	EE 80 2 09 e Mid Ch.	2.11n H	HT40 (ied mo R T	de) 2.437 @)02 0 GHz
₩ A Power Ref 20 Ref 20 10 dB/ 10 0ffst 16.5 dB 0 dB/ 0 0ffst 16.5 dB S.0 dBm LgAv W1 S2 S3 FS f>50k f)	SW 3 kHz Cl Agilent 22: Spectral I dBm	H Mide 24:45 Ma	ay 20, 20 HT40 Mod	EE 80 2 09 e Mid Ch.	2.11n H	HT40 (ied mo R T	de) 2.437 @)02 0 GHz
₩ A Power Ref 20 Ref 20 10 dB/ 10 0ffst 16.5 dB DI 8.0 dBm LgAv \$3 K1 \$2 \$3 F\$ €(f): \$2	SW 3 kHz Cl Agilent 22: Spectral I dBm	H Mide 24:45 Ma	ay 20, 20 HT40 Mod	EE 80 2 09 e Mid Ch.	2.11n H	HT40 (ied mo R T	de) 2.437 @)02 0 GHz
₩ A Power Ref 20 Ref 20 10 dB/ 10 0ffst 16.5 dB 0 dB/ 0 0ffst 16.5 dB S.0 dBm LgAv W1 S2 S3 FS f>50k f)	SW 3 kHz Cl Agilent 22: Spectral I dBm	H Mide 24:45 Ma	ay 20, 20 HT40 Mod	EE 80 2 09 e Mid Ch.	2.11n H	HT40 (ied mo R T	de) 2.437 @)02 0 GHz
₩ A Power Ref 20 Ref 20 10 dB/ 10 0ffst 16.5 dB 0 dB/ 0 0ffst 16.5 dB S.0 dBm LgAv W1 S2 S3 FS f>50k f)	SW 3 kHz Cl Agilent 22: Spectral I dBm	H Mide 24:45 Ma	ay 20, 20 HT40 Mod	EE 80 2 09 e Mid Ch.	2.11n H	HT40 (ied mo R T	de) 2.437 @)02 0 GHz
₩ A Power Ref 20 Ref 20 10 dB/ 10 0ffst 16.5 dB 0 dB/ 0 dB/ 0 dB 8.0 dBm LgAv W1 S2 S3 FS f>50k Swp	SW 3 kHz	H Midd 24:45 Ma Density, I	ay 20, 20 HT40 Mod At	EE 80 2 09 e Mid Ch.	2.11n H	HT40 (ied mo R T	de)	002 0 GHz 1.88 dBm
A Power Ref 20 #Peak Log 10 dB/ Offst 16.5 dB DI 8.0 dBm LgAv W1 S2 S3 FS £(f): f>50k Swp Center	SW 3 kHz Cl Agilent 22: Spectral I dBm	H Midd 24:45 Ma Density, I	ay 20, 20 HT40 Mod At	EE 802	2.11n H			ed mo R T Mkr1	de) 2.437 @)02 0 GHz

8.7 CONDUCTED SPURIOUS EMISSION

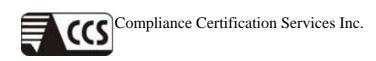
LIMITS


§ 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the and that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

TEST PROCEDURE

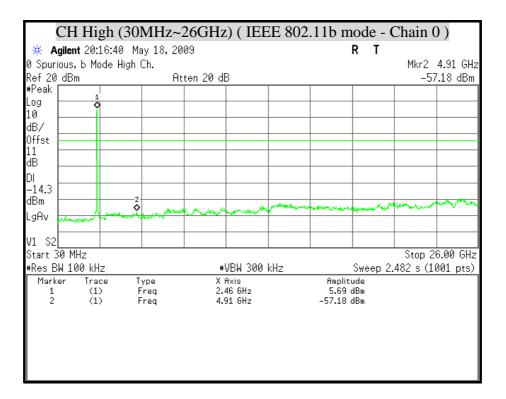
The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

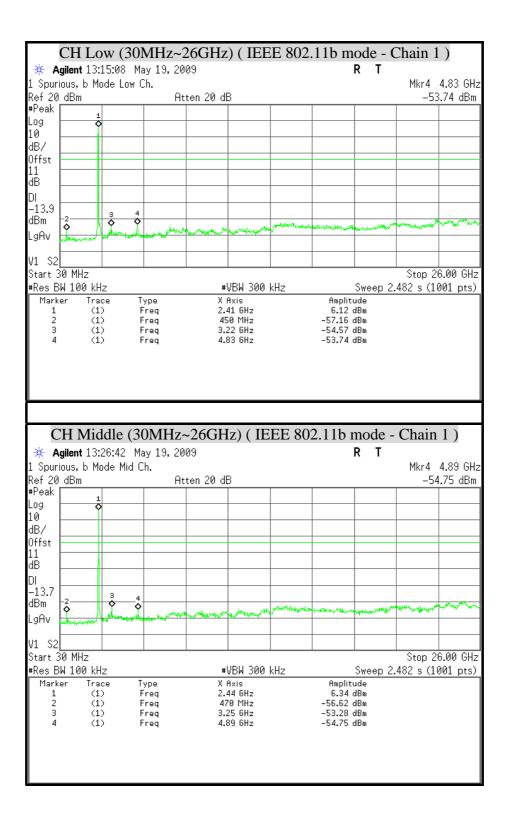
The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

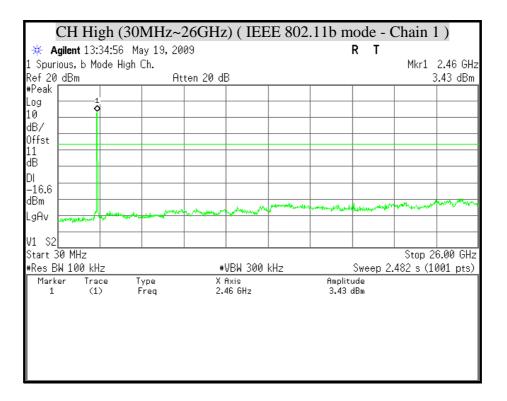

TEST SETUP

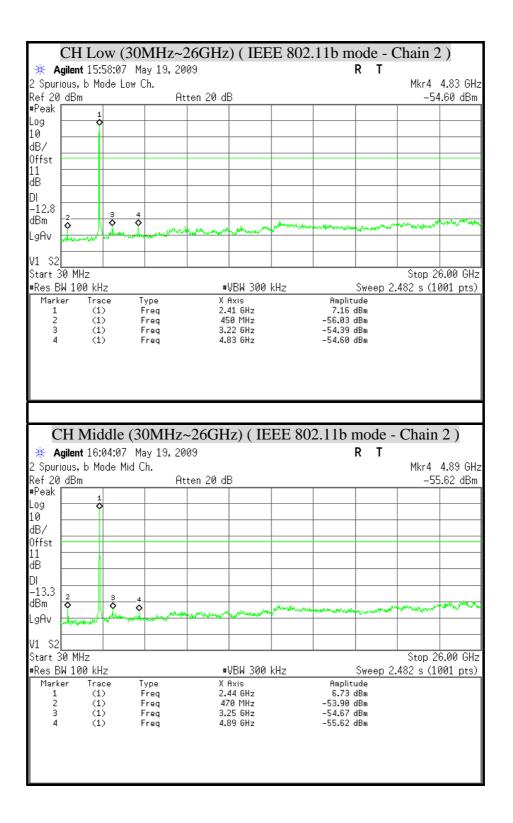
Combine	ed mode		
EUT	Chain 0 Chain 1 Chain 2	COMBINED	 SPECTRUM ANALYZER

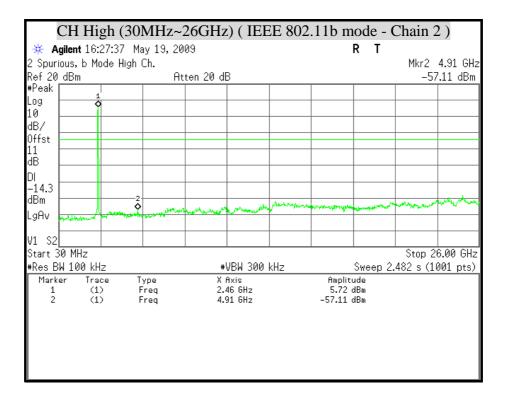
TEST RESULTS

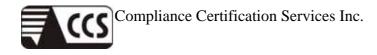

No non-compliance noted

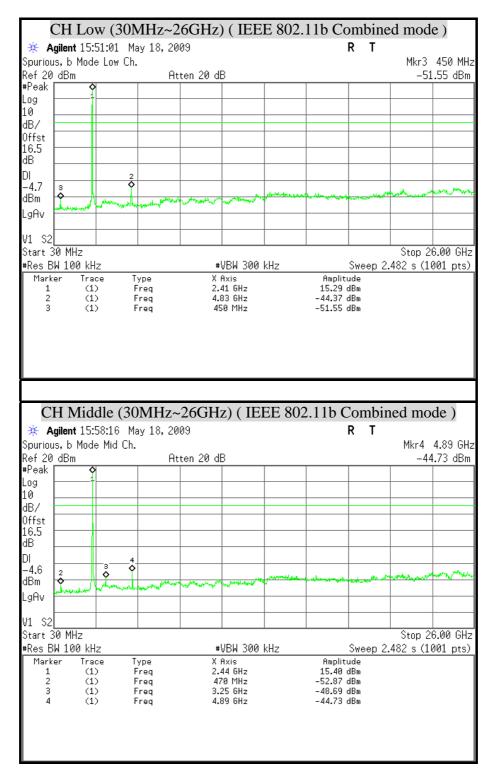


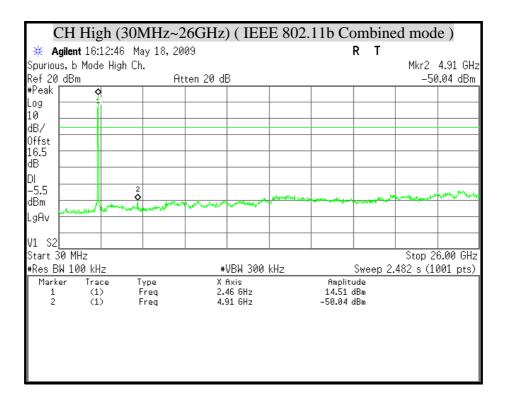

OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT

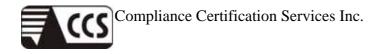

CH Low (30MHz~26GHz) (IEEE 802.11b mode - Chain 0) 🔆 Agilent 17:50:45 May 19, 2009 R Т 0 Spurious, b Mode Low Ch. Mkr3 4.83 GHz Ref 20 dBm Atten 20 dB -54.27 dBm #Peak Log 10 dB/ Offst 11 dB DI –14.5 dBm ŏ 0 LgAv V1 S2 Start 30 MHz Stop 26.00 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.482 s (1001 pts) Marker Trace X Axis Amplitude Туре 2.41 GHz 450 MHz 1 2 (1) (1) 5.53 dBm -55.45 dBm Freq Frea 3 (1)Freq 4.83 GHz -54.27 dBm CH Middle (30MHz~26GHz) (IEEE 802.11b mode - Chain 0) 🔆 Agilent 17:52:22 May 19, 2009 R Т 0 Spurious, b Mode Mid Ch. Mkr3 4.89 GHz Ref 20 dBm Atten 20 dB -56.25 dBm #Peak Log 10 dB/ Offst 11 dB DL -13.4 dBm 0 ٥ LgAv V1 S2 Stop 26.00 GHz Start 30 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.482 s (1001 pts) Type Amplitude Marker Trace X Axis (1) Freq 2.44 GHz 6.59 dBm 1 2 (1) (1) Freq 470 MHz -56.14 dBm 3 4.89 GHz -56.25 dBm Frea


(IEEE 802.11b mode)

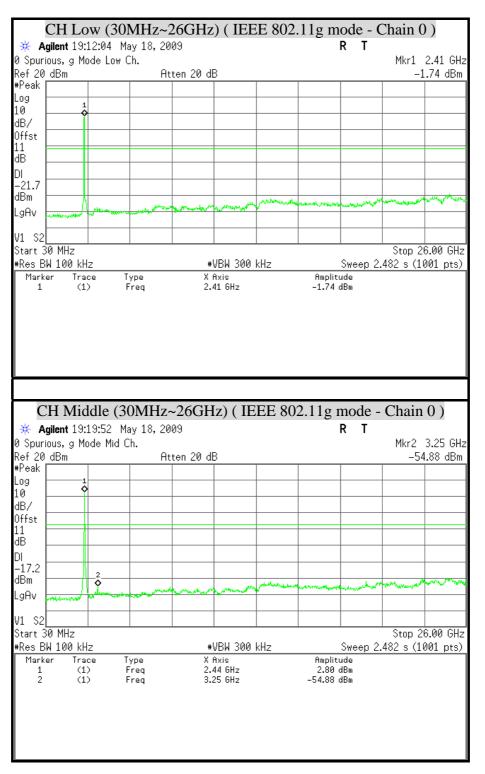


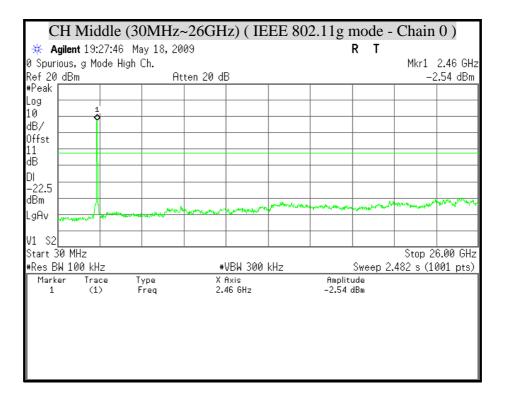


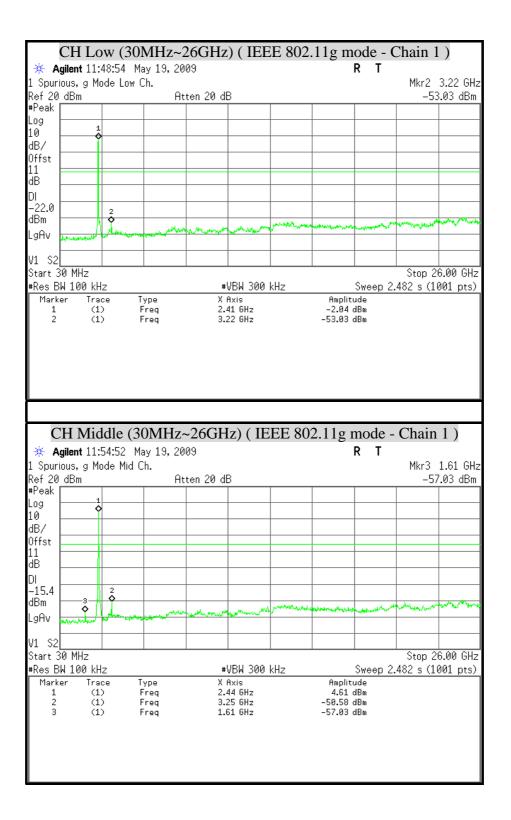


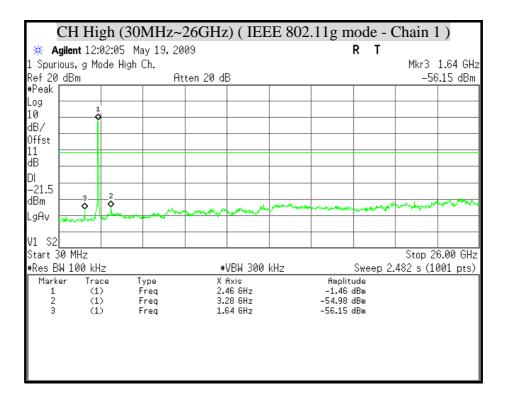


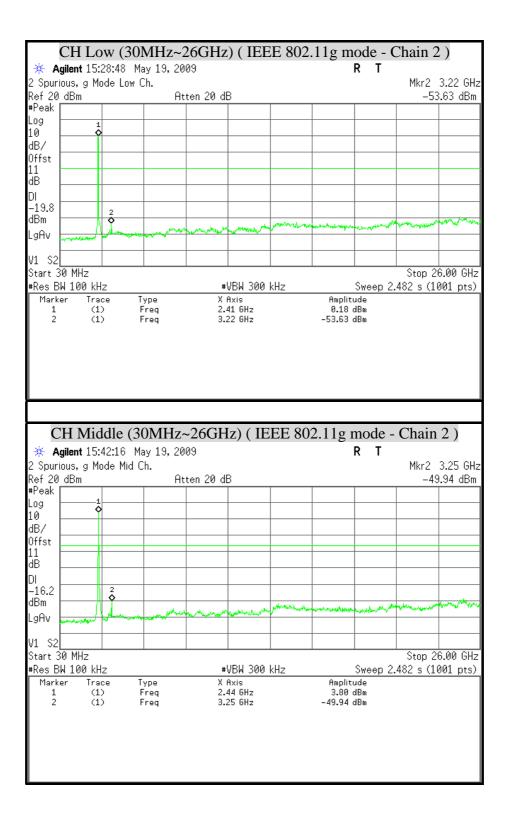
OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT

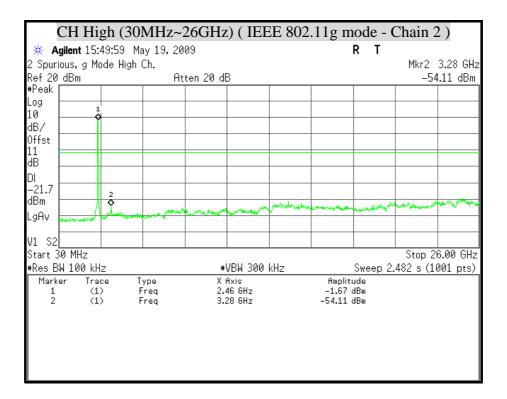

(IEEE 802.11b Combined mode)

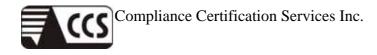


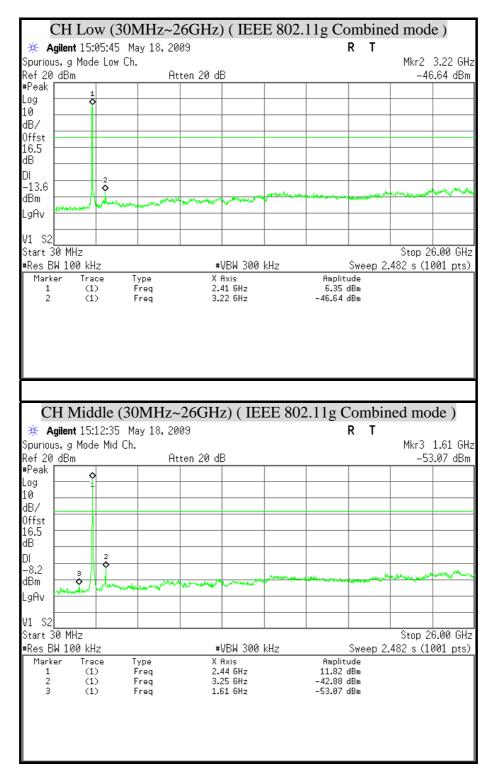

OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT

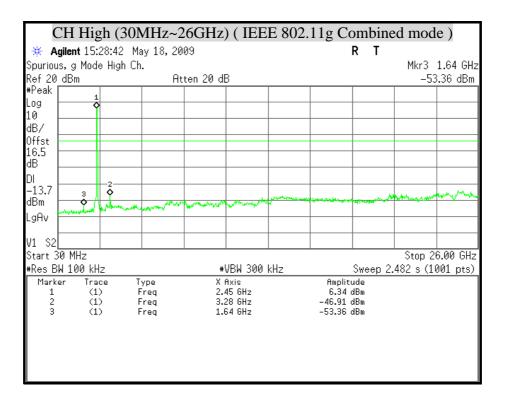


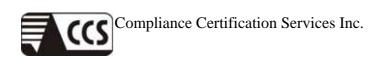

(IEEE 802.11g mode)

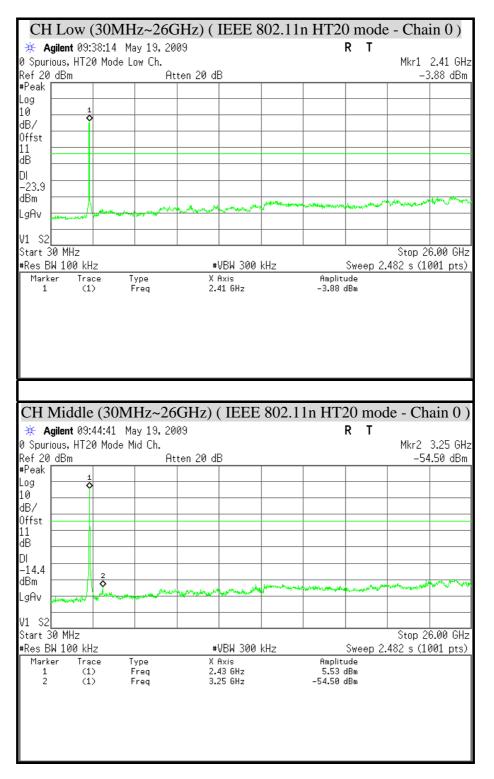


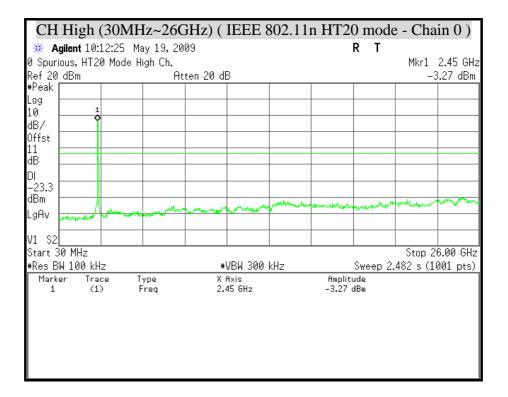


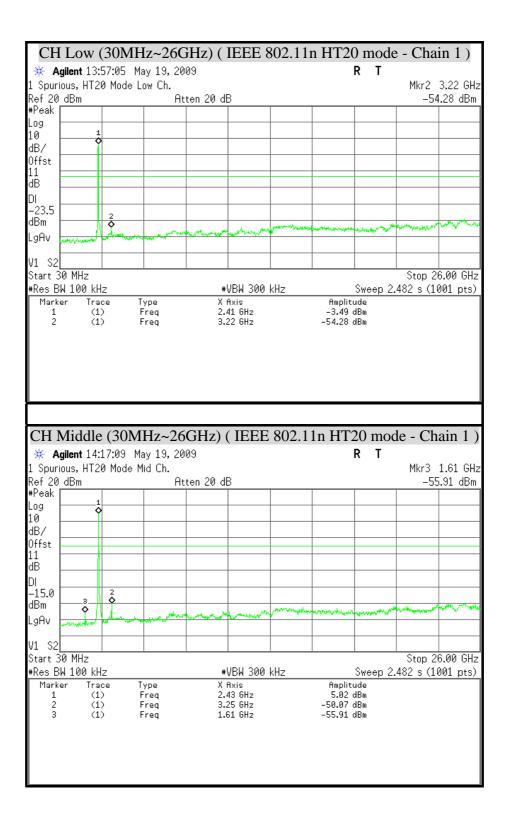




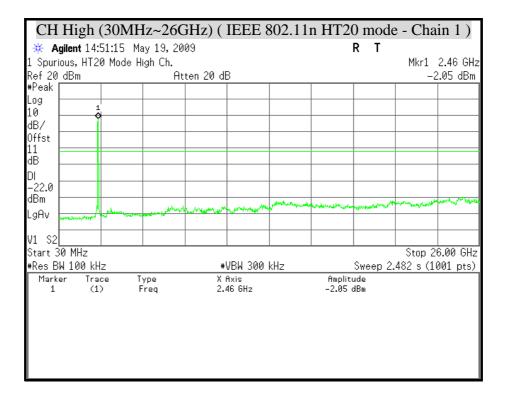


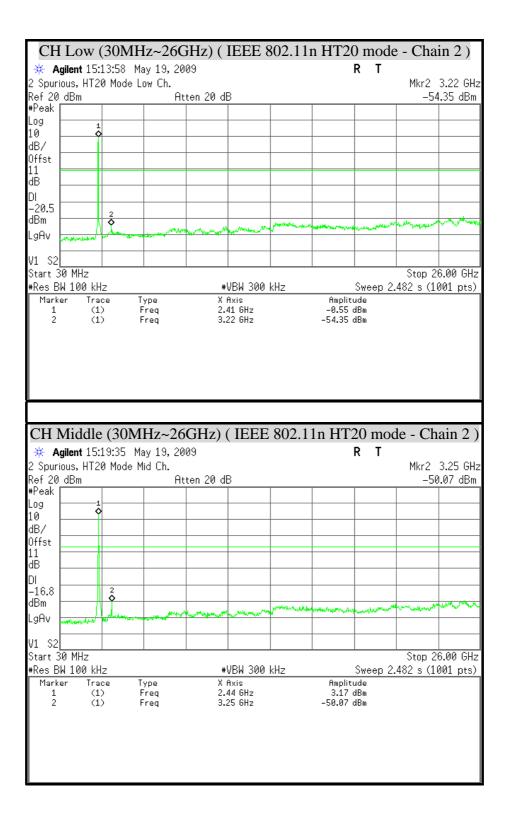

(IEEE 802.11g Combined mode)

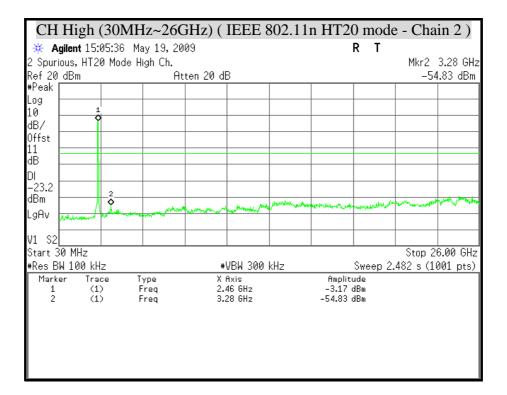


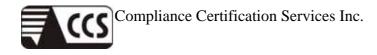


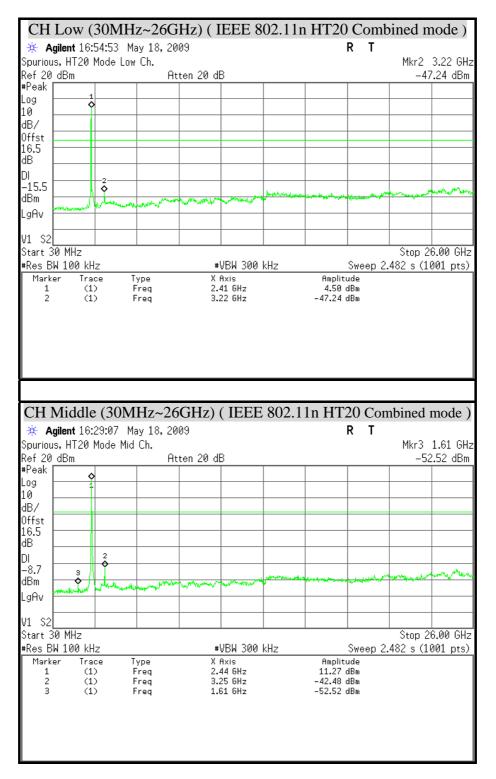
(IEEE 802.11n HT20 mode)

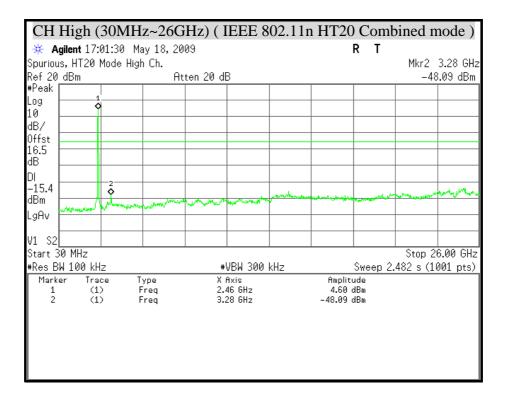


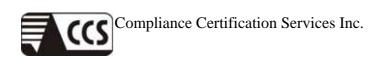




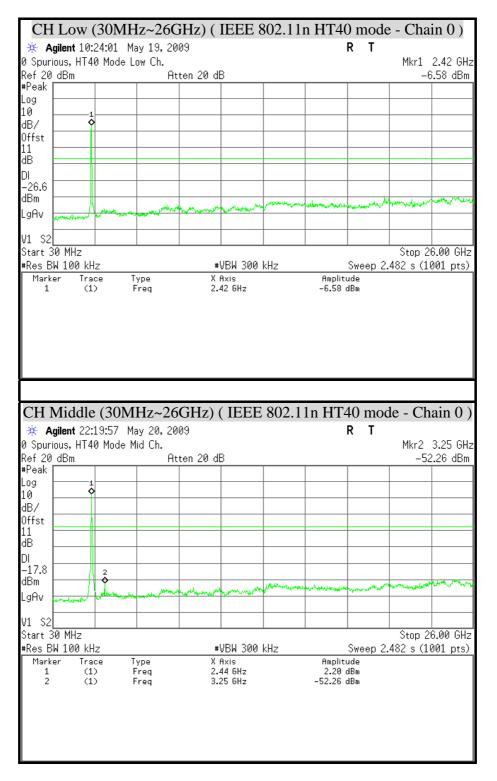


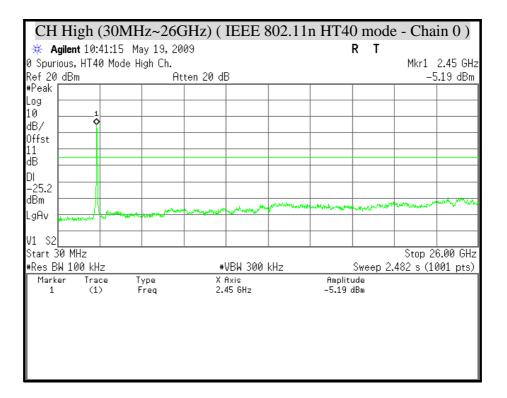


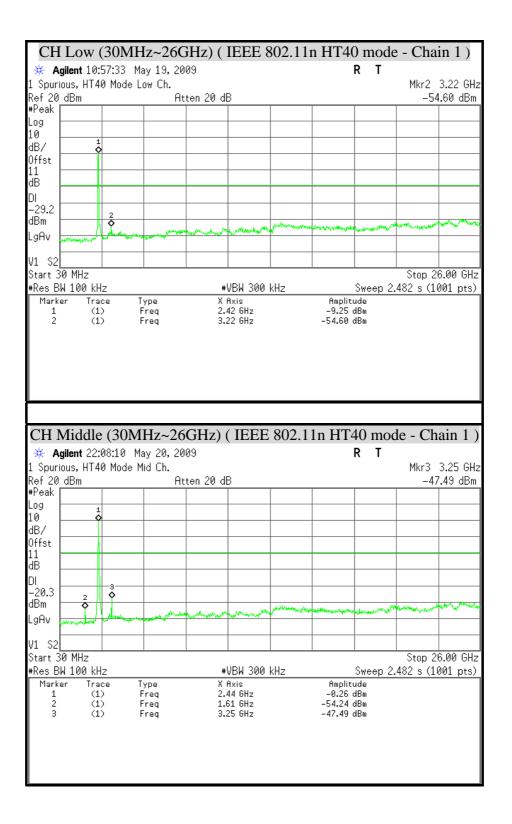




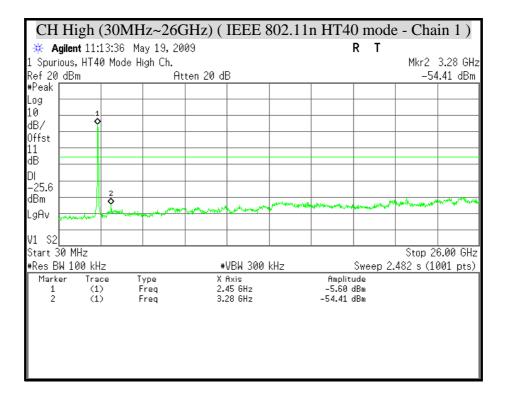
(IEEE 802.11n HT20 Combined mode)

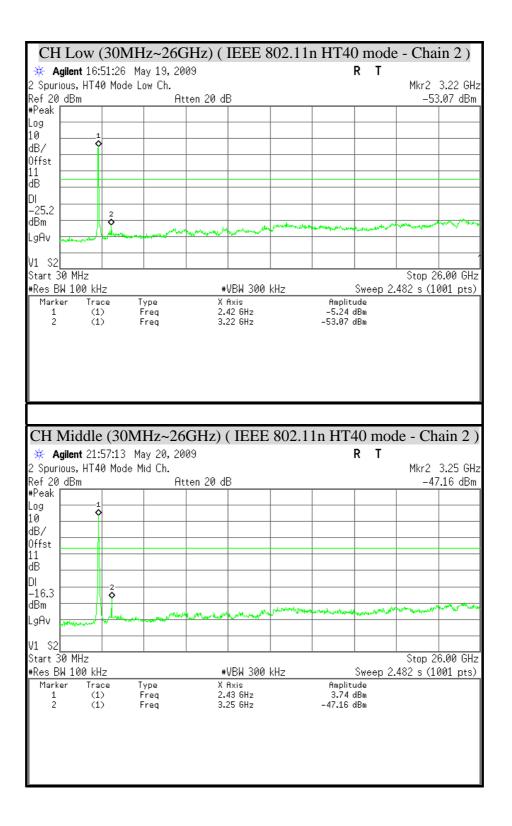


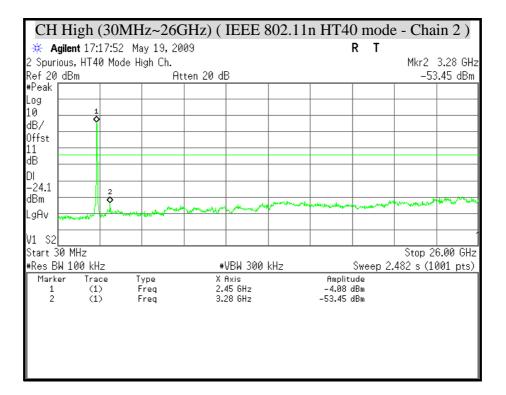


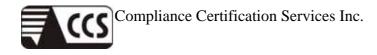


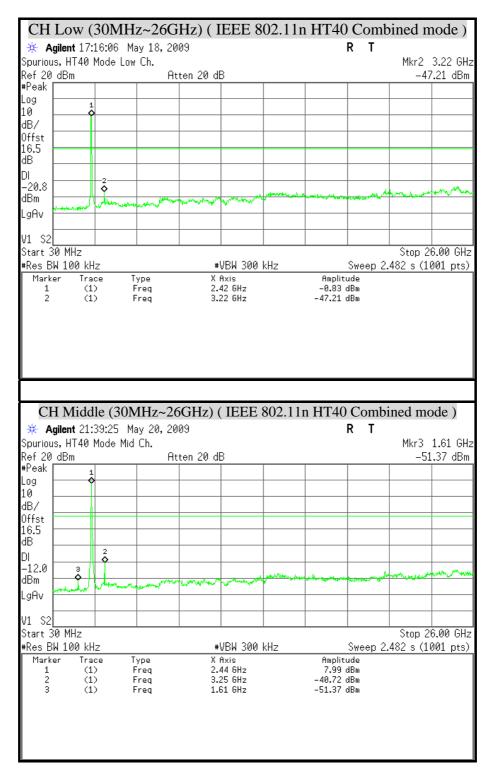
(IEEE 802.11n HT40 mode)

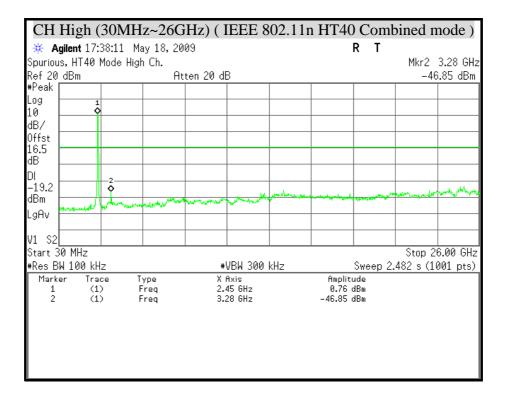


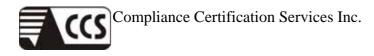










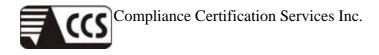


(IEEE 802.11n HT40 Combined mode)

8.8 RADIATED EMISSIONS

8.8.1 TRANSMITTER RADIATED SUPURIOUS EMSSIONS

LIMITS


§ 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 -1710	10.6 -12.7
6.26775 - 6.26825	108 -121.94	1718.8 - 1722.2	13.25 -13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 – 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 -16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3338	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

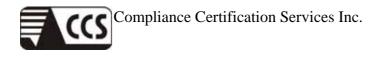
¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§ 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

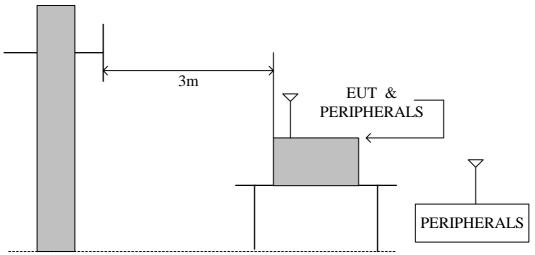
§ 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

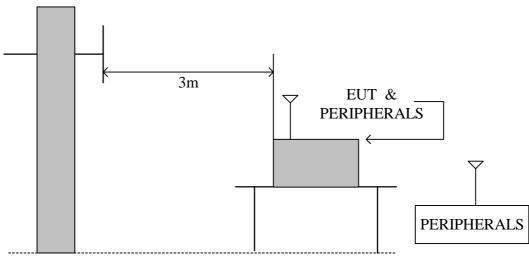

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz, However, operation within these frequency bands is permitted under other sections of this Part, e-g, Sections 15.231 and 15.241.

§ 15.209 (b) In the emission table above, the tighter limit applies at the band edges.

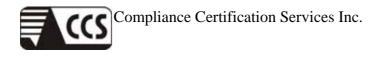
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
SPECTRUM ANALYZER	$\Delta(\dot{\tau})$		MY43360132	06/05/2009
EMI TEST RECEIVER	R & S	ESCI	100221	05/17/2010
BILOG ANTENNA	SCHWARZBECK	VULB	9168_249	09/17/2009
3117 Double Ridge (HORN) ANTENNA	ETS LINDGREN	EMCO-0746	00078732	05/19/2010
PRE-AMPLIFIER	EM	EM30265	07032612	05/21/2010
Notch Filters Band Reject	Micro-Tronics	BRM50702-01	009	N.C.R.
RF COAXIAL CABLE	HUBERSUHNER	SUCOFLEX 104PEA	SN31350	07/21/2009


TEST EQUIPMENT

Remark: 1. Each piece of equipment is scheduled for calibration once a year. 2. N.C.R = No Calibration Request.


TEST SETUP

The diagram below shows the test setup that is utilized to make the measurements for emission from below 1GHz.



Antenna Elevation Variable

The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz.

Antenna Elevation Variable

TEST PROCEDURE

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. White measuring the radiated emission below 1GHz, the EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. White measuring the radiated emission above 1GHz, the EUT was set 3 meters away from the interference-receiving antenna.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarization of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Note :

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

TEST RESULTS

No non-compliance noted

8.8.2 WORST-CASE RADIATED EMISSION BELOW 1 GHz

This EUT have four adapter with 4 testing modes of CH Low, Middle, High and Normal Link. After verified, we chose the Power Adapter (2) Normal Link as the worst case.

Product Name	RANGEBOOSTER N 650 ACCESS POINT	Test Date	2009/04/16
Model	DAP-1353	Test By	Rick Lin
Test Mode	Normal operating / Power Adapter (2) (worst-case)	TEMP & Humidity	23.9 [°] C, 57%

			Horizontal			
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
30.00	65.85	-32.25	33.60	40.00	-6.40	Peak
49.40	57.63	-30.27	27.37	40.00	-12.63	Peak
169.68	61.49	-31.32	30.17	43.50	-13.33	Peak
236.61	67.27	-31.24	36.03	46.00	-9.97	Peak
241.46	64.94	-30.78	34.16	46.00	-11.84	Peak
476.20	61.22	-25.55	35.67	46.00	-10.33	Peak
574.17	56.85	-23.83	33.02	46.00	-12.98	Peak
649.83	55.28	-22.62	32.66	46.00	-13.34	Peak
			Vertical			
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
50.37	66.80	-30.33	36.47	40.00	-3.53	QP
81.41	67.93	-36.20	31.74	40.00	-8.26	Peak
168.71	65.12	-31.24	33.88	43.50	-9.62	Peak
249.22	63.46	-30.34	33.12	46.00	-12.88	Peak
363.68	64.92	-27.51	37.41	46.00	-8.59	Peak
476.20	62.27	-25.55	36.72	46.00	-9.28	Peak
600.36	57.43	-23.31	34.12	46.00	-11.88	Peak
902.03	57.61	-18.98	38.64	46.00	-7.36	Peak

Remark:

1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.

2. Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) - PreAmp.Gain (dB)

- 4. Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

8.8.3 TRANSMITTER RADIATED EMISSION ABOVE 1 GHz

Product Name	RANGEBOOSTER N 650 ACCESS POINT	Test Date	2009/05/15
Model	DAP-1353	Test By	Rueyyan Lin
Test Mode	IEEE 802.11b TX (CH Low)	TEMP & Humidity	25.1°C, 59%

	Horizontal								
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)		Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
2414.00	118.68		-8.94	109.74					Carrier
				Vertical	[1			
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)		Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
2414.00	122.38		-8.94	113.44					Carrier
3217.50	55.44		-7.79	47.65		74.00	54.00	-6.35	Peak
4822.50	59.36	55.90	-4.56	54.80	51.34	74.00	54.00	-2.66	AVG

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Product Name	RANGEBOOSTER N 650 ACCESS POINT	Test Date	2009/05/15
Model	DAP-1353	Test By	Rueyyan Lin
Test Mode	IEEE 802.11b TX (CH Middle)	TEMP & Humidity	25.1°C, 59%

	Horizontal								
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)		Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
2438.00	117.54		-8.92	108.62					Carrier
				Vertical	l				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)		Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
2438.00	124.70		-8.92	115.78					Carrier
3247.50	54.77		-7.75	47.02		74.00	54.00	-6.98	Peak
4875.00	60.35	56.73	-4.42	55.93	52.31	74.00	54.00	-1.69	AVG

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Product Name	RANGEBOOSTER N 650 ACCESS POINT	Test Date	2009/05/15
Model	DAP-1353	Test By	Rueyyan Lin
Test Mode	IEEE 802.11b TX (CH High)	TEMP & Humidity	25.1°C, 59%

	Horizontal								
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)		Limit-PK (dBµV/m)		Margin (dB)	Remark
2462.00	115.08		-8.89	106.19					Carrier
				Vertical	1				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)		Limit-PK (dBµV/m)		Margin (dB)	Remark
2462.00	122.19		-8.89	113.30					Carrier
4927.50	53.50		-4.29	49.21		74.00	54.00	-4.79	Peak

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Product Name	RANGEBOOSTER N 650 ACCESS POINT	Test Date	2009/05/15
Model	DAP-1353	Test By	Rueyyan Lin
Test Mode	IEEE 802.11g TX (CH Low)	TEMP & Humidity	25.1°C, 59%

	Horizontal								
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)		Margin (dB)	Remark
2416.00	114.89		-8.94	105.95					Carrier
				Vertical	l				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)		Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
2418.00	119.18		-8.94	110.24					Carrier
3217.50	55.26		-7.79	47.47		74.00	54.00	-6.53	Peak

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Product Name	RANGEBOOSTER N 650 ACCESS POINT	Test Date	2009/05/15
Model	DAP-1353	Test By	Rueyyan Lin
Test Mode	IEEE 802.11g TX (CH Middle)	TEMP & Humidity	25.1°C, 59%

	Horizontal									
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)		-	Limit-AV (dBµV/m)	Margin (dB)	Remark	
2436.00	121.37		-8.92	112.45					Carrier	
3247.50	53.69		-7.75	45.94		74.00	54.00	-8.06	Peak	
	Vertical									
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)		-	Limit-AV (dBµV/m)	Margin (dB)	Remark	
2434.00	126.25		-8.92	117.33					Carrier	
				57.00	53.70	74.00	54.00	-0.30	AV/C	
3247.50	64.97	61.45	-7.75	57.22	55.70	74.00	54.00	-0.30	AVG	

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Product Name	RANGEBOOSTER N 650 ACCESS POINT	Test Date	2009/05/15
Model	DAP-1353	Test By	Rueyyan Lin
Test Mode	IEEE 802.11g TX (CH High)	TEMP & Humidity	25.1°C, 59%

				Horizont	al				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)			Limit-AV (dBµV/m)	Margin (dB)	Remark
2462.00	112.88		-8.89	103.99					Carrier
4995.00	52.14		-4.12	48.03		74.00	54.00	-5.97	Peak
7372.50	49.82		-0.79	49.03		74.00	54.00	-4.97	Peak
				Vertical	l				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)		Limit-AV (dBµV/m)	Margin (dB)	Remark
2458.00	121.24		-8.90	112.34					Carrier
3285.00	55.52		-7.69	47.82		74.00	54.00	-6.18	Peak
4995.00	52.20		-4.12	48.08		74.00	54.00	-5.92	Peak

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Product Name	RANGEBOOSTER N 650 ACCESS POINT	Test Date	2009/05/15
Model	DAP-1353	Test By	Rueyyan Lin
Test Mode	IEEE 802.11n HT20 TX (CH Low)	TEMP & Humidity	25.1°C, 59%

	Horizontal									
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)		Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark	
2408.00	114.51		-8.95	105.55					Carrier	
3427.50	53.33		-7.48	45.85		74.00	54.00	-8.15	Peak	
				Vertical	l					
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)		Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark	
2410.00	117.51		-8.95	108.56					Carrier	
3217.50	55.03		-7.79	47.23		74.00	54.00	-6.77	Peak	

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(AV) Remark AVG = Result(AV) – Limit(AV)

Product Name	RANGEBOOSTER N 650 ACCESS POINT	Test Date	2009/05/15
Model	DAP-1353	Test By	Rueyyan Lin
Test Mode	IEEE 802.11n HT20 TX (CH Middle)	TEMP & Humidity	25.1°C, 59%

				Horizont	al				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)		Limit-AV (dBµV/m)	Margin (dB)	Remark
2442.00	121.90		-8.91	112.99					Carrier
3247.50	54.91		-7.75	47.16		74.00	54.00	-6.84	Peak
7320.00	48.81		-0.83	47.99		74.00	54.00	-6.01	Peak
				Vertical	l				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
2442.00	126.50	116.71	-8.91	117.58	107.80				Carrier
3247.50	65.23	61.99	-7.75	57.48	54.24	97.58	87.80	-33.56	AVG
4867.50	53.29		-4.44	48.84		74.00	54.00	-5.16	Peak
7312.50	50.74		-0.83	49.90		74.00	54.00	-4.10	Peak

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(AV)

Remark AVG = Result(AV) - Limit(AV)

Product Name	RANGEBOOSTER N 650 ACCESS POINT	Test Date	2009/05/15
Model	DAP-1353	Test By	Rueyyan Lin
Test Mode	IEEE 802.11n HT20 TX (CH High)	TEMP & Humidity	25.1°C, 59%

	Horizontal									
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark	
2462.00	110.35		-8.89	101.46					Carrier	
3322.50	52.54		-7.64	44.90		74.00	54.00	-9.10	Peak	
			-	Vertical	l	-			-	
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark	
2458.00	118.30		-8.90	109.40					Carrier	
2430.00										
3285.00	55.17		-7.69	47.48		74.00	54.00	-6.52	Peak	

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Product Name	RANGEBOOSTER N 650 ACCESS POINT	Test Date	2009/05/15
Model	DAP-1353	Test By	Rueyyan Lin
Test Mode	IEEE 802.11n HT40 TX (CH Low)	TEMP & Humidity	25.1°C, 59%

Horizontal									
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)		-		Margin (dB)	Remark
2412.00	107.04		-8.95	98.10					Carrier
Vertical									
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)		Limit-PK (dBµV/m)		Margin (dB)	Remark
2414.00	111.59		-8.94	102.65					Carrier
3232.50	55.26		-7.77	47.49		74.00	54.00	-6.51	Peak

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Product Name	RANGEBOOSTER N 650 ACCESS POINT	Test Date	2009/05/15
Model	DAP-1353	Test By	Rueyyan Lin
Test Mode	IEEE 802.11n HT40 TX (CH Middle)	TEMP & Humidity	25.1°C, 59%

	Horizontal								
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)		-	Limit-AV (dBµV/m)	Margin (dB)	Remark
2426.00	118.89		-8.93	109.95					Carrier
3247.50	52.99		-7.75	45.24		74.00	54.00	-8.76	Peak
	Vertical								
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)		-	Limit-AV (dBµV/m)	Margin (dB)	Remark
	105.01		0.01	116.31					~ .
2448.00	125.21		-8.91	110.51					Carrier
2448.00 3247.50	63.31	58.89	-8.91	55.56	51.14	74.00	54.00	-2.86	Carrier AVG

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

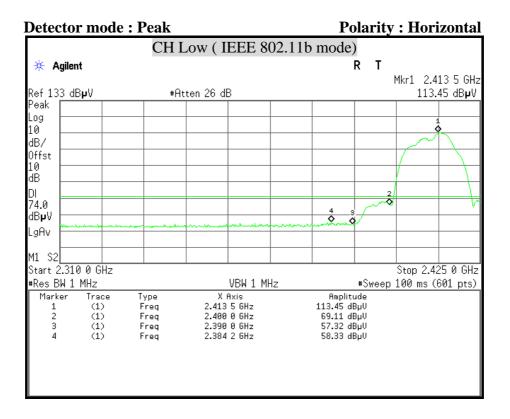
3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(AV) Remark AVG = Result(AV) – Limit(AV)

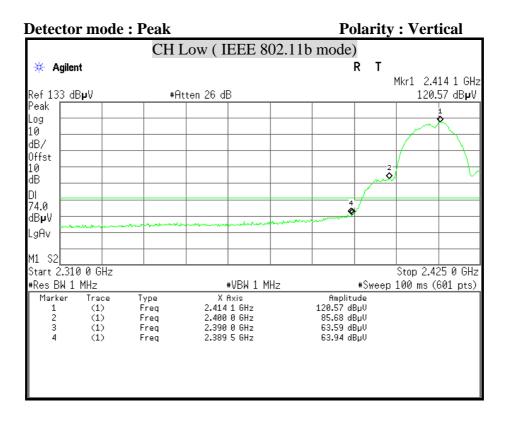
Product Name	RANGEBOOSTER N 650 ACCESS POINT	Test Date	2009/05/15
Model	DAP-1353	Test By	Rueyyan Lin
Test Mode	IEEE 802.11n HT40 TX (CH High)	TEMP & Humidity	25.1°C, 59%

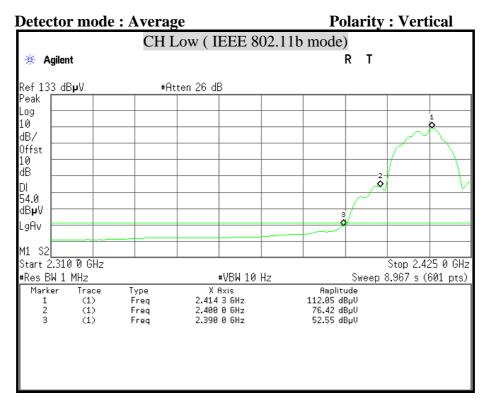
	Horizontal								
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)		Margin (dB)	Remark
2436.00	110.04		-8.92	101.12					Carrier
				Vertical		•			
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)		Limit-AV (dBµV/m)	Margin (dB)	Remark
2458.00	117.70		-8.90	108.80					Carrier
3270.00	55.19		-7.71	47.48		74.00	54.00	-6.52	Peak

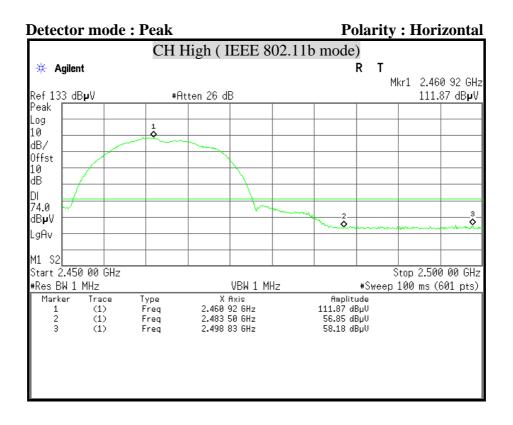
1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

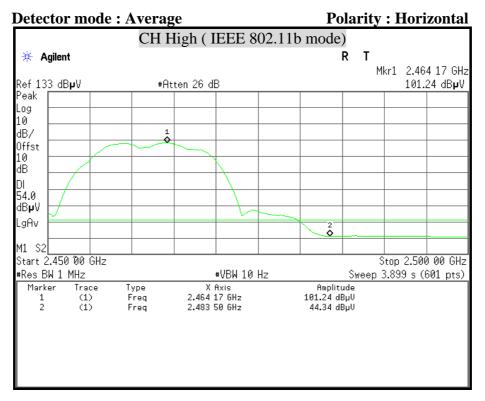

2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

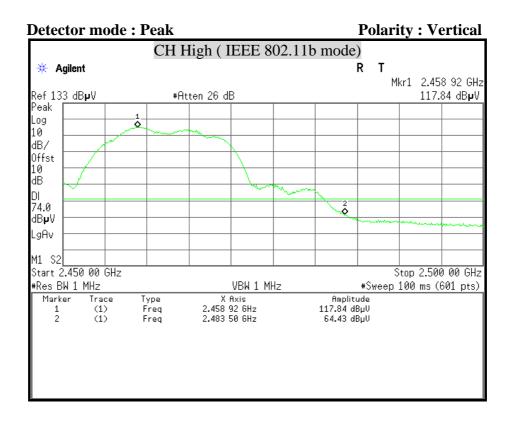
3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

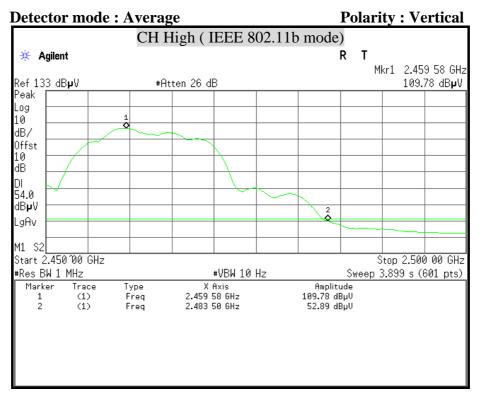

4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(AV) Remark AVG = Result(AV) – Limit(AV)

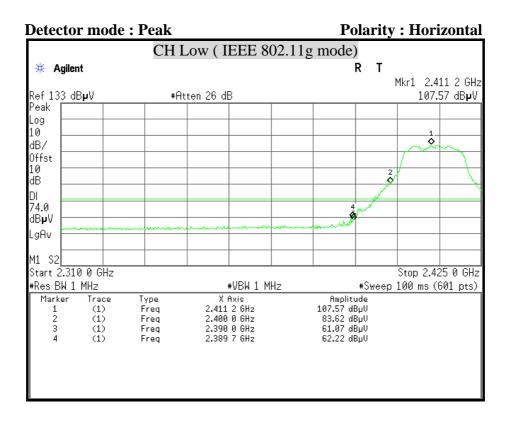


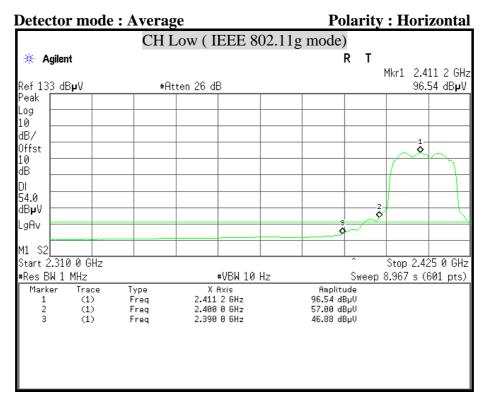

8.8.4 RESTRICTED BAND EDGES

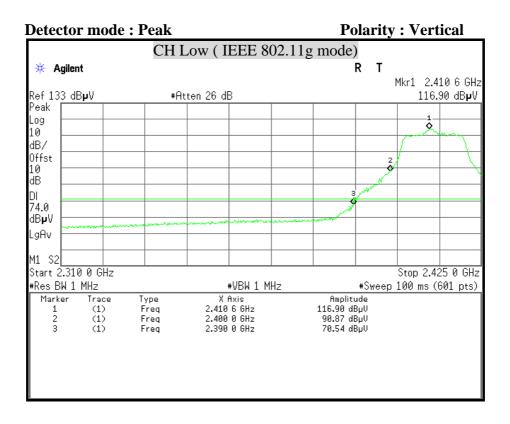


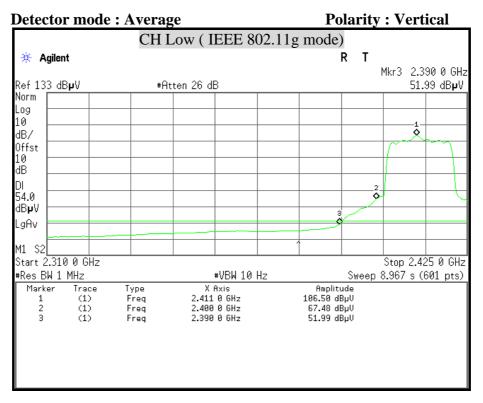

Detect	tor mode	: Avera	ge		Polarity	y : Hori	izontal
		CH	Low (IEEE 80)2.11b mo	ode)		
🔆 Ag	ilent				RΤ		
							14 6 GHz
Ref 133 Peak 🛛 🗍	GR h A	#H	ltten 26 dB			104.	.60 dBµV
10							
ä₿∕ [
Offst							
10						$+ \sim$	
dB							\vdash
pi,							
54.0 [JD						2	
dB₽V							И
LgAv ⊨					å,		
M1 S2							
	310 0 GHz				^	Stop 2.4	25 0 GHz
#Res Bh			#VBW 10 H	Ηz	Sweep	8.967 s (
Marke	r Trace	Туре	X Axis	f	implitude		
1	(1) (1)	Freq	2.414 6 GHz 2.400 0 GHz		.60 dBµV .38 dBµV		
2 3	(1)	Freq Freq	2.390 0 GHz		.за авµV .95 dBµV		

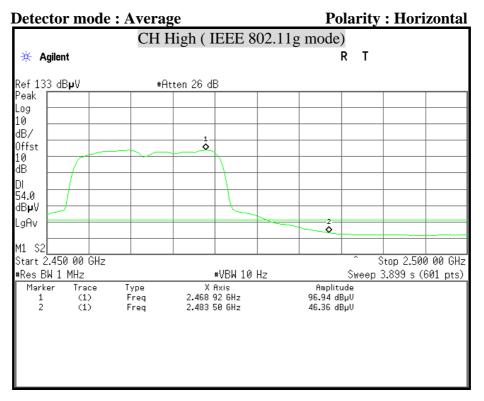


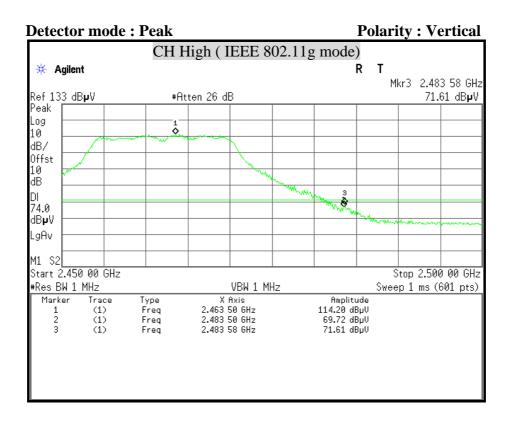


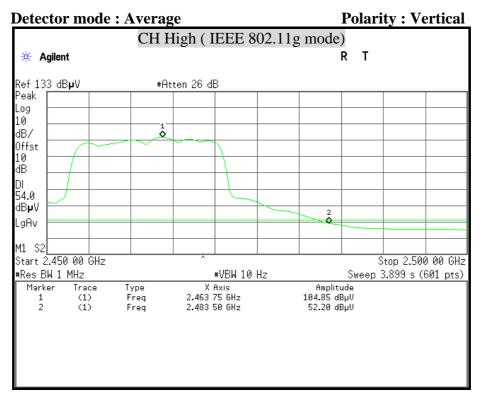


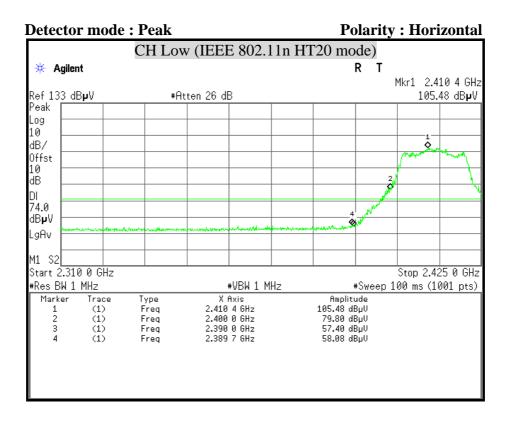


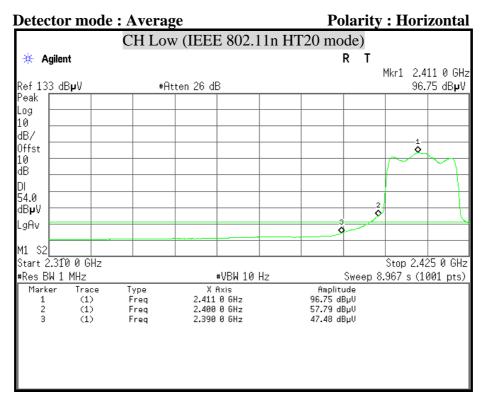


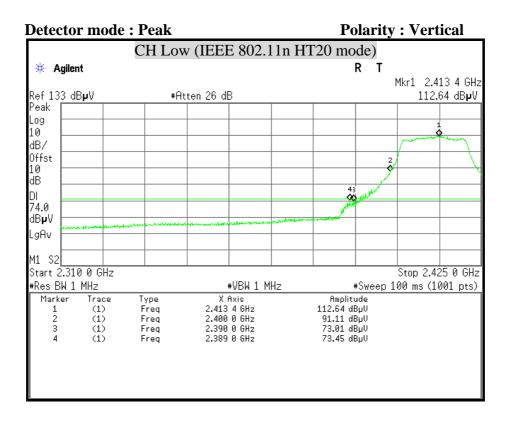


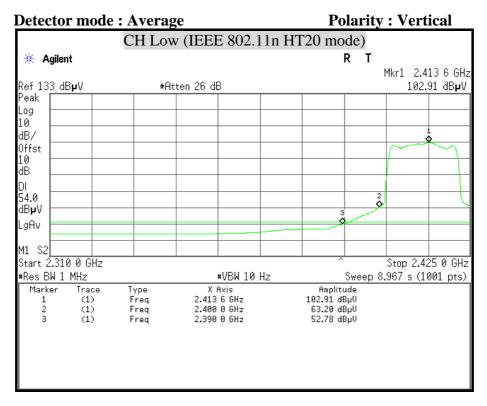


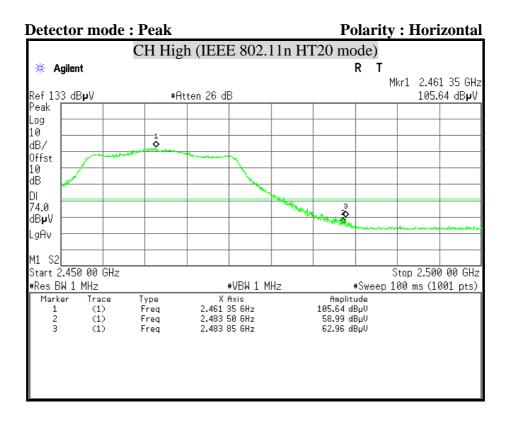


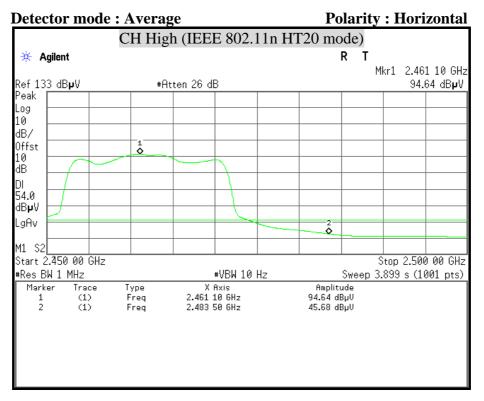


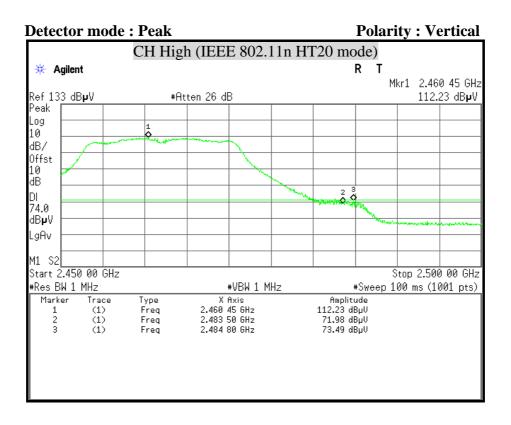


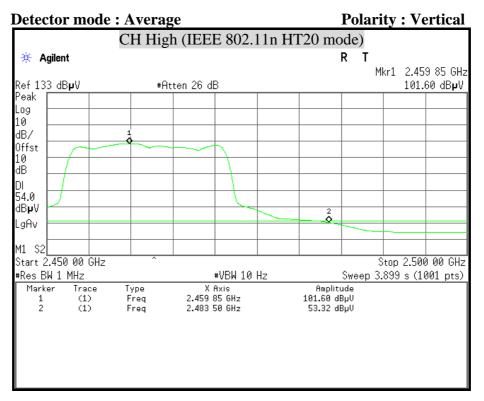


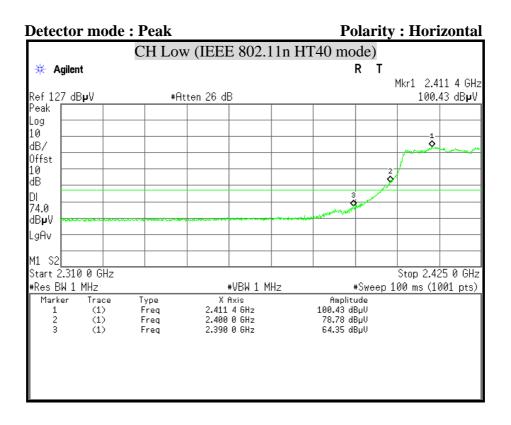


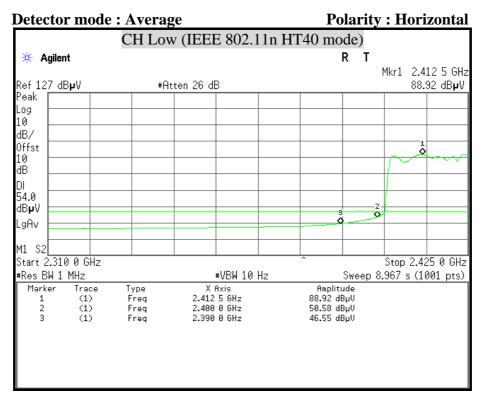


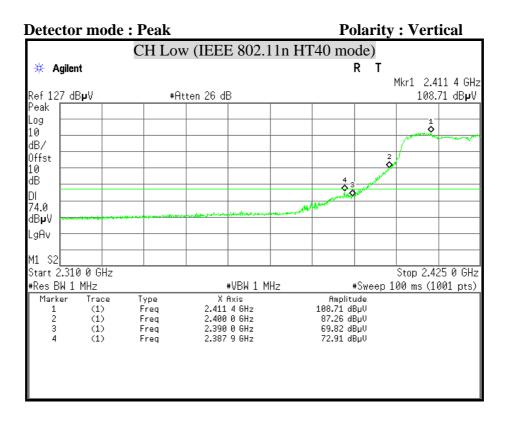


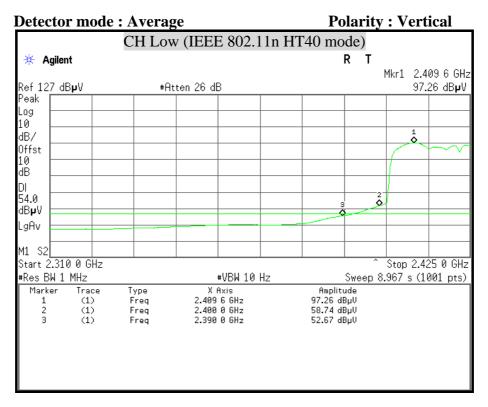


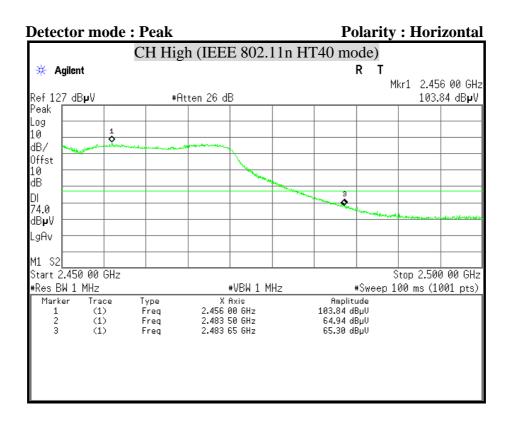


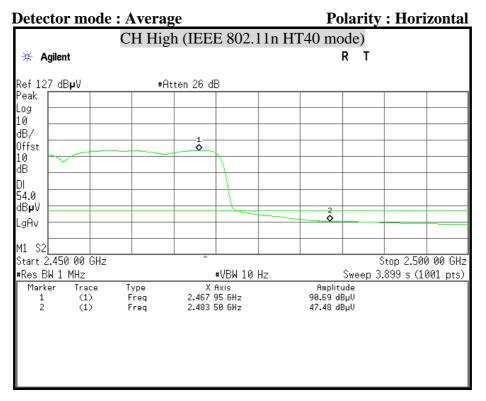


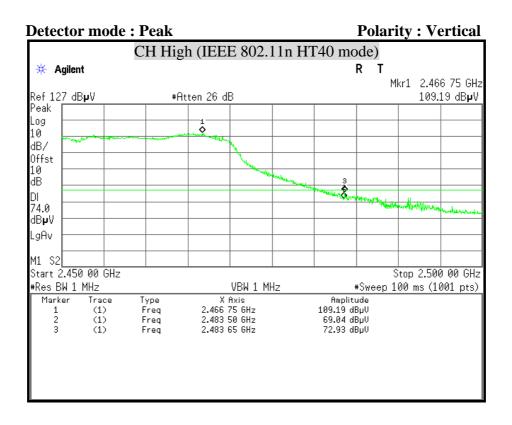


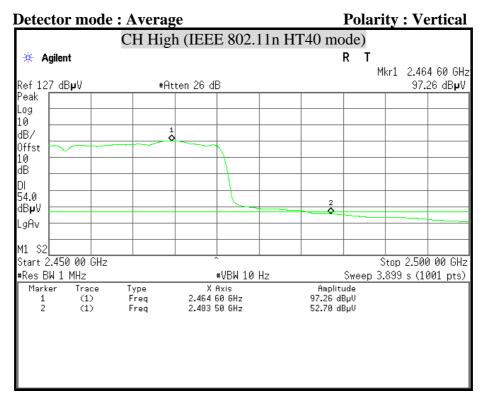








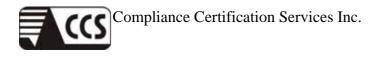




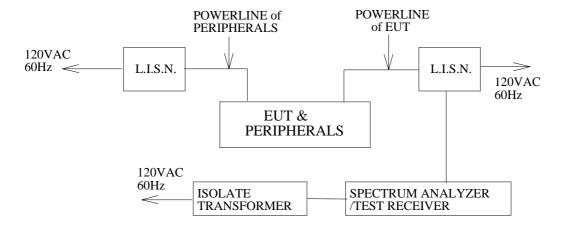
8.9 POWERLINE CONDUCTED EMISSIONS

LIMITS

§ 15.207 (a) Except as shown in paragraph (b) and (c) this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.


The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted limit (dBµv)		
	Quasi-peak	Average	
0.15 - 0.5	66 to 56	56 to 46	
0.5 - 5	56	46	
5 - 30	60	50	


TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-465	08/13/2009
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-473	10/12/2009
TEST RECEIVER	R & S	ESHS30	838550/003	02/02/2010
PULSE LIMIT	R & S	ESH3-Z2	100117	09/23/2009
N TYPE COAXIAL CABLE	BELDEN	8268 M17/164	003	09/13/2009

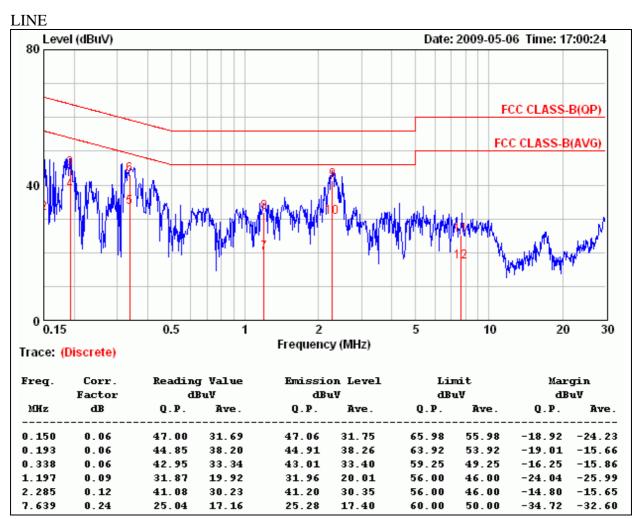
Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80cm above the horizontal ground plane. The EUT IS CONFIGURED IN ACCORDANCE WITH ANSI C63.4:2003.

The resolution bandwidth is set to 9 kHz for both quasi-peak detection and average detection measurements.


Line conducted data is recorded for both NEUTRAL and LINE.

TEST RESULTS

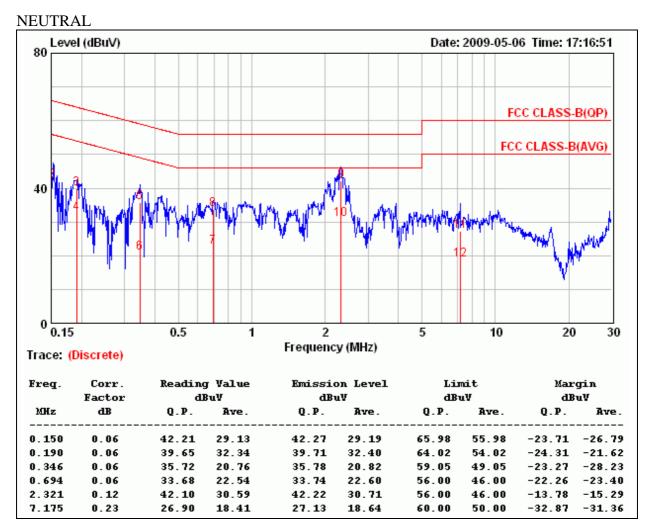
No non-compliance noted

CONDUCTED RF VOLTAGE MEASUREMENT

Product Name	RANGEBOOSTER N 650 ACCESS POINT	Test Date	2009/05/06
Model	DAP-1353	Test By	Rueyyan Lin
Test Mode	Normal operating / Power Adapter (1)	TEMP & Humidity	23.4°C, 50%

Remark:

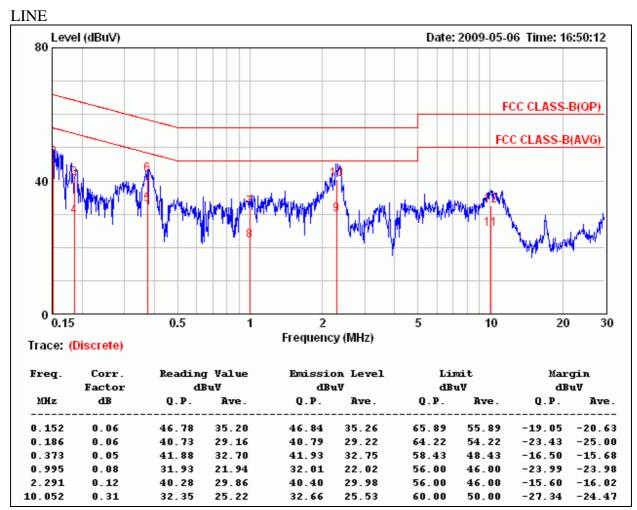
1. Correction Factor = Insertion loss + cable loss



 FCC ID
 : KA2AP1353B1

 Report No.
 : 90407002-RP1

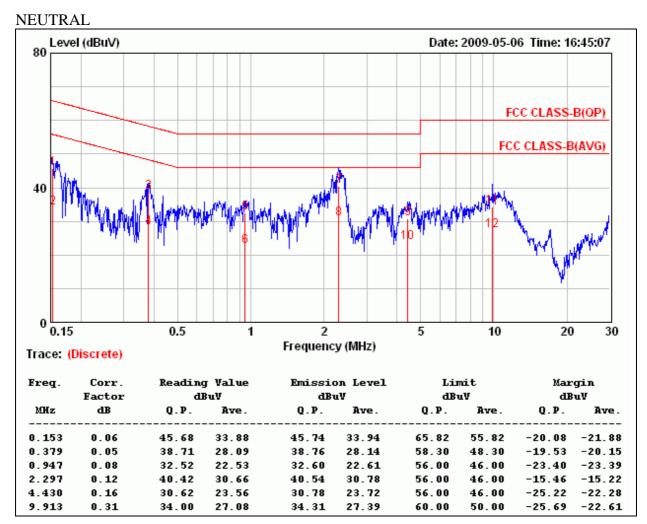
 Page
 202
 of
 213


Product Name	RANGEBOOSTER N 650 ACCESS POINT	Test Date	2009/05/06
Model	DAP-1353	Test By	Rueyyan Lin
Test Mode	Normal operating / Power Adapter (1)	TEMP & Humidity	23.4°C, 50%

Remark:

1. Correction Factor = Insertion loss + cable loss

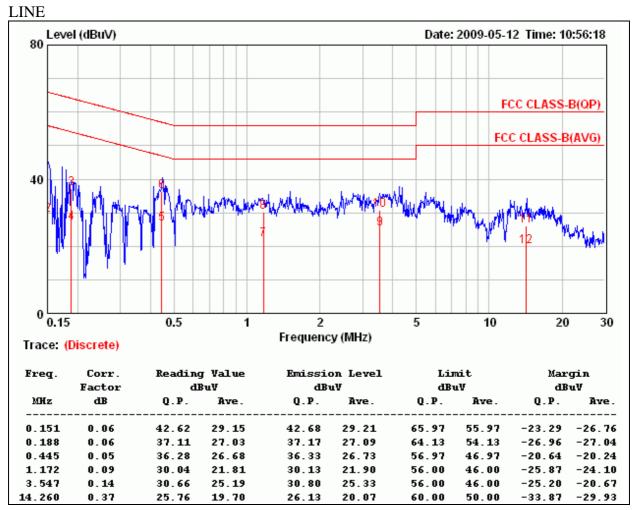
Product Name	RANGEBOOSTER N 650 ACCESS POINT	Test Date	2009/05/06
Model	DAP-1353	Test By	Rueyyan Lin
Test Mode	Normal operating / Power Adapter (2)	TEMP & Humidity	23.4°C, 50%



1. Correction Factor = Insertion loss + cable loss

FCC ID : KA2AP1353B1 Report No. : 90407002-RP1 Page ______0f _____13

Product Name	RANGEBOOSTER N 650 ACCESS POINT	Test Date	2009/05/06
Model	DAP-1353	Test By	Rueyyan Lin
Test Mode	Normal operating / Power Adapter (2)	TEMP & Humidity	23.4°C, 50%


Remark:

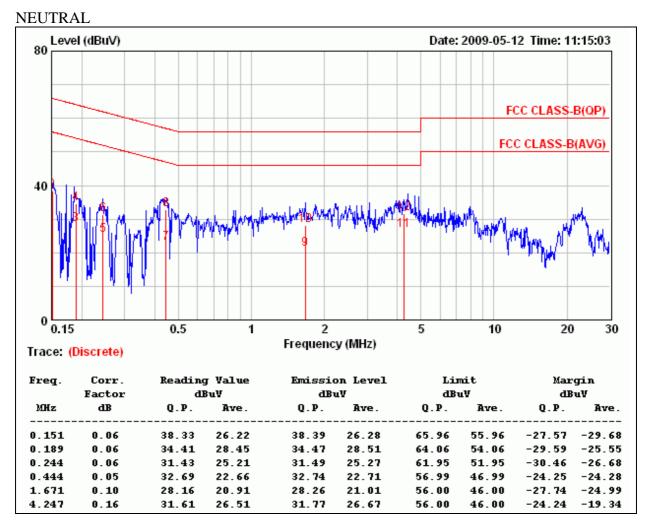
- 1. Correction Factor = Insertion loss + cable loss
- 2. Margin value = Emission level Limit value

FCC ID : KA2AP1353B1 Report No. : 90407002-RP1 Page _______ of ______ 213

Product Name	RANGEBOOSTER N 650 ACCESS POINT	Test Date	2009/05/12
Model	DAP-1353	Test By	Rueyyan Lin
Test Mode	Normal operating / Power Adapter (3)	TEMP & Humidity	25.1°C, 57%

Remark:

1. Correction Factor = Insertion loss + cable loss

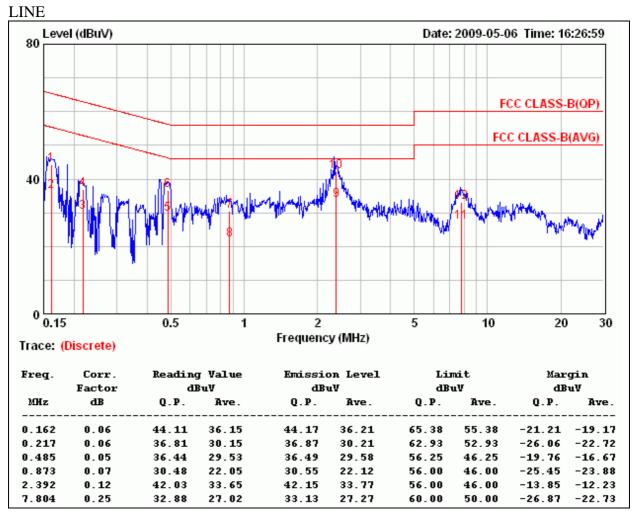


 FCC ID
 : KA2AP1353B1

 Report No.
 : 90407002-RP1

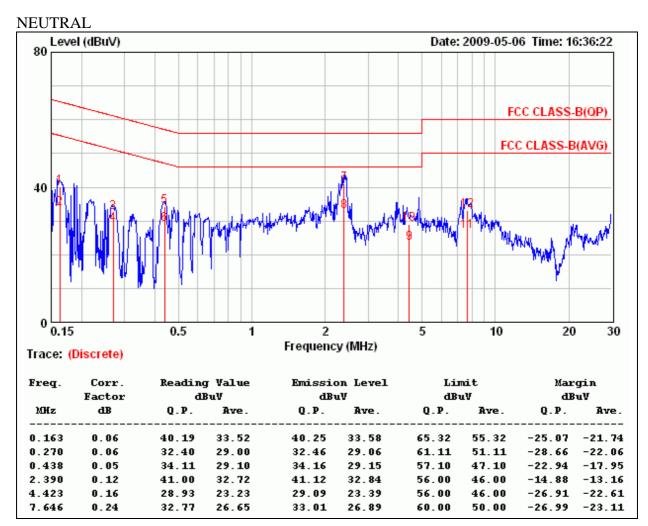
 Page
 206 of 213

Product Name	RANGEBOOSTER N 650 ACCESS POINT	Test Date	2009/05/12
Model	DAP-1353	Test By	Rueyyan Lin
Test Mode	Normal operating / Power Adapter (3)	TEMP & Humidity	25.1°C, 57%


Remark:

1. Correction Factor = Insertion loss + cable loss

FCC ID : KA2AP1353B1 Report No. : 90407002-RP1 Page _______ of ______ 213


Product Name	RANGEBOOSTER N 650 ACCESS POINT	Test Date	2009/05/06
Model	DAP-1353	Test By	Rueyyan Lin
Test Mode	Normal operating / Power Adapter (4)	TEMP & Humidity	23.4°C, 50%

Remark:

1. Correction Factor = Insertion loss + cable loss

Product Name	RANGEBOOSTER N 650 ACCESS POINT	Test Date	2009/05/06
Model	DAP-1353	Test By	Rueyyan Lin
Test Mode	Normal operating / Power Adapter (4)	TEMP & Humidity	23.4°C, 50%

- 1. Correction Factor = Insertion loss + cable loss
- 2. Margin value = Emission level Limit value