

Elliott Laboratories Inc. 684 West Maude Avenue www.elliottlabs.com Sunnyvale, CA 94086-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to FCC Part 15, Subpart E (UNII Devices) and Industry Canada RSS 210 Issue 4 (LELEAN Devices) on the D-Link Corporation Model: DW-290

FCC ID: KA22001120013-1 GRANTEE: **D-Link** Corporation No.8, Li-shing Road VII Hsinchu, Taiwan TEST SITE: Elliott Laboratories, Inc. 684 W. Maude Avenue Sunnyvale, CA 94086 **REPORT DATE:** December 28, 2001

FINAL TEST DATE:

December 19 and December 20, 2001

Juan man-

AUTHORIZED SIGNATORY:

Juan Martinez Senior EMC Engineer

This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

DECLARATIONS OF COMPLIANCE

Equipment Name and Model: Mini-PCI module, DW-290

Manufacturer:

D-Link Corporation No.8, Li-shing Road VII Hsinchu, Taiwan

Tested to applicable standards:

RSS-210, Issue 4, December 2000 (Low Power License-Exempt Radiocommunication Devices) FCC Part 15 Subpart E (UNII Devices)

Measurement Facility Description Filed With Department of Industry:

Departmental Acknowledgement Number: IC2845 **SV3**, Dated July 30, 2001 Departmental Acknowledgement Number: IC2845 **SV4**, Dated July 19, 2001

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above mentioned departmental standards (through the use of ANSI C63.4 as detailed in section 5.3 of RSS-210, Issue 4); and that the equipment performed in accordance with the data submitted in this report.

Juan mare

Signature Name Title Company Address

Juan Martinez Senior EMC Engineer Elliott Laboratories Inc. 684 W. Maude Ave Sunnyvale, CA 94086 USA

Date: December 28, 2001

Maintenance of compliance with the above standards is the responsibility of the manufacturer. Any modification of the product, which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

TABLE OF CONTENTS

COVER PAGE	
DECLARATIONS OF COMPLIANCE	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	4
SUMMARY OF RESULTS	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
-	
GENERAL	
ANTENNA ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION DURING TESTING	
ANTENNA REQUIREMENTS	
TEST SITE	9
GENERAL INFORMATION	9
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	10
RECEIVER SYSTEM	10
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
POWER METER	
FILTERS/ATTENUATORS	11
ANTENNAS	11
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	12
EUT AND CABLE PLACEMENT	12
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	14
FCC 15.407 (A) OUTPUT POWER LIMITS	15
RS-210 6.2.2(q1) OUTPUT POWER LIMITS	15
SPURIOUS RADIATED EMISSIONS LIMITS	
AC POWER PORT CONDUCTED EMISSIONS LIMITS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
APPENDIX 1: Test Equipment Calibration Data	
APPENDIX 2: Test Data Log Sheets	2

SCOPE

An electromagnetic emissions test has been performed on the D-Link Corporation model DW-290 pursuant to Subpart E of Part 15 of FCC Rules for Unlicensed National Information Infrastructure (UNII) devices and RSS-210 Issue 4 for licence-exempt local area network (LELAN) devices. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the D-Link Corporation model DW-290 and therefore apply only to the tested sample. The sample was selected and prepared by Shinglin Chung of D-Link Corporation

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart E of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

SUMMARY OF RESULTS

FCC Part 15 Section	RSS 210 Section	Description	Comments	Result
Operation in t	he 5.15 – 5.25 GI	Hz Band		•
		As the device operates in the 5.15 – 5.25 GHz band the antenna must be integral to the device.	Antenna Gain = 3 dBi The antenna is integral	JoyMax Antenna
		As the device operates in the 5.15 – 5.25 GHz band the antenna must be integral to the device.	Antenna Gain = 4 dBi The antenna is integral	Atheros Antenna
15.407(e)		Indoor operation only	Refer to user's manual in Appendix 6	COMPLIES
15.407(a) (1)		26dB Bandwidth	41 – 43.3 MHz in Turbo Mode 29.25 MHz in 802.11a (Normal) Mode	N/A
	6.2.2 q1 (i)	20dB Bandwidth	33 MHz in Turbo Mode 21.17 MHz in 802.11a Mode	N/A
15.407(a) (1)	6.2.2 q1 (i)	Output Power	13.9 dBm in Turbo Mode 11.5 dBm in 802.11a Mode	COMPLIES
15.407(a) (1))	6.2.2 q1 (i)	Power Spectral Density	-1.0 dBm in Turbo Mode -2.0 dBm in 802.11a Mode	COMPLIES
15.407(b) (2)	6.2.2 q1 (ii)	Spurious Emissions above 1GHz	-1.0 dB @ 15750MHz in turbo mode -5.0 dB @ 15540MHz in 802.11a Mode	Atheros Antenna
15.407(b) (2)	6.2.2 q1 (ii)	Spurious Emissions above 1GHz	-1.6 dB @ 15630MHz in turbo mode -0.4 dB @ 15540MHz in 802.11a Mode	JoyMax Antenna
density of spur	rious emissions ir			
		Maximum Antenna	Antenna Gain = 3 dBi	JoyMax
		Gain /Integral Antenna	The antenna is integral	Antenna
		Maximum Antenna	Antenna Gain = 4 dBi	Atheros
		Gain /Integral Antenna	The antenna is integral	Antenna
15.407(a) (1)		26dB Bandwidth	46 MHz in Turbo Mode 29.25 MHz in 802.11a (Normal) Mode	N/A
	6.2.2 q1 (i)	20dB Bandwidth	33 MHz in Turbo Mode 21.17 MHz in 802.11a Mode	N/A
15.407(a) (1)	6.2.2 q1 (i)	Output Power	14.9 dBm in Turbo Mode 12.3 dBm in 802.11a Mode	COMPLIES
15.407(a) (1))	6.2.2 q1 (i)	Power Spectral Density	0.02 dBm in Turbo Mode	
15.407(b) (2)	6.2.2 q1 (ii)	Spurious Emissions above 1GHz	-3.0 dB @ 15870MHz in turbo modeAtheros-2.8 dB @ 15780MHz in 802.11a ModeAntenna	
15.407(b) (2)	6.2.2 q1 (ii)	Spurious Emissions	-2.0 dB @ 15870MHz in turbo mode	JoyMax

General requirements for all bands				
	6.2.2 q(iv)(a)	Digital Modulation	Digital Modulation is used, refer to the "Theory of Operations" (Appendix 9) for a detailed explanation.	COMPLIES
	6.2.2 q(iv)(b)	Peak Spectral Density	9.33 dBm/MHz in turbo mode 10.9 dBm/MHz in 802.11a Mode	COMPLIES
15.407(a)(6)		Peak Excursion Ratio	Less than 13dB	COMPLIES
	6.2.2 q(iv)(c)	Channel Selection	The channels used represent the highest, lowest and center channels available.	N/A
15.407 (c)	6.2.2 q(iv)(d)	Automatic Discontinuation of Operation in the absence of information to transmit	Operation is discontinued in the absence of information to transmit, refer to the "Theory of Operations" in Appendix 9 for a detailed explanation.	COMPLIES
15.407 (g)	6.2.2 q(iv)(e)	Frequency Stability	Frequency stability is 20 ppm, refer to the "Theory of Operations" in Appendix 9 for a detailed analysis.	COMPLIES
	6.2.2 q(iv)(g)	User Manual information	All relevant statements have been included in the user's manuals. Refer to Appendix 6 for details	COMPLIES
15.407 (f)	6.2.2 q(iv)(g)	RF Exposure Requirements	Refer to MPE calculations in Appendix 11	COMPLIES
15.407(b) / 15.207	6.6	AC Conducted Emissions	- 6.6 dB @ 2.18 MHz	COMPLIES

MEASUREMENT UNCERTAINTIES

ISO Guide 25 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.2

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The D-Link Corporation model DW-290 is a mini PCI UNII Radio Module, which is designed to operate in the 5.15-5.25GHz and 5.25-5.35GHz UNII/LELEAN bands. The EUT is designed to be installed in the Mini-PCI slot of D-Link's UNII devices, such as the Access Point. A modular approval is being sought for this product.

The sample was received on December 19, 2001 and tested on December 19 and December 20, 2001. The EUT consisted of the following component(s):

Manufacturer/Model/Description	Serial Number
D-Link/DW-290/MINI PCI module	-
D-Link/ DW-1150 & DWL-5000AP/Access Point	-

ANTENNA

The EUT uses an integral antenna with a gain of 3 dBi (JoyMax Antenna) & 4 dBi (Atheros Antenna). The antenna connector will not be accessible by the end user and will be contained within the enclosure of the host system. D-Link will provide clear instructions to ensure that this is done when the module is used in different host systems to meet the requirements of FCC Part 15.203 and RSS-210.

ENCLOSURE

The EUT enclosure is primarily constructed of fabricated sheet steel/plastic. It measures approximately 6 cm wide by .2 cm deep by 6.5 cm high.

MODIFICATIONS

The EUT required the following modification during testing in order to comply with the emission specifications:

1) The original Shield was extended to cover the half potion of the MINI PCI card.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer/Model/Description	Serial Number	FCC ID Number
Dell PP01L Laptop	96FFC AOO	-
HP THINKJET 22256 Printer	2714540166	ZD#D516XU2225

No remote support equipment was used during emissions testing.

EUT INTERFACE PORTS

		Cable(s)		
Port	Connected To	Description	Shielded or Unshielded	Length (m)
Ethernet	Laptop	Access Point	Unshielded	1
Parallel	Printer	Parallel	Shielded	3
Serial	Laptop	Serial	Shielded	3
AC	Adaptor	Two Wire	Unshielded	2

The I/O cabling configuration during emissions testing was as follows:

EUT OPERATION DURING TESTING

The radio was transmitting at full power on the specified channel with a duty cycle of 99% (maximum allowed). The EUT was tested in both normal mode (channel bandwidth of approximately 30 MHz) and turbo mode (channel bandwidth of approximately 60 MHz).

"Normal Mode" allows data rates of up to 54 Mb/s. The device was, therefore, tested in normal mode at the data rate that produced the highest output power for normal mode (6 Mb/s).

"Turbo Mode" allows data rates of up to 72Mb/s. At data rates higher than 12Mb/s the PA gain is reduced to improve signal fidelity. The device was, therefore, tested in turbo mode at the data rate that produced the highest output power in that mode (12Mb/s).

ANTENNA REQUIREMENTS

As the device is intended to operate in the 5.15 - 5.25 GHz band an integral antenna as detailed in 15.407 (d) and RSS-210 6.2.2(q1) (i) is required. The antenna for the device is an integral antenna, which is equipped with a non-standard reverse connector.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on December 19 and December 20, 2001at the Elliott Laboratories Open Area Test Site #4 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Federal Communications Commission. In accordance with Industry Canada rules detailed in RSS 210 Issue 4 and RSS-212, construction, calibration, and equipment data for the test sites have been filed with the Federal Communications Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4-1992. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde and Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

POWER METER

Either a spectrum analyzer or a power meter and thermister mount are used for all direct output power measurements from transmitters.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An Appendix of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Measurement bandwidths (video and resolution) are set in accordance with FCC procedures for the type of radio being tested.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions from the AC power port are given in units of microvolts, the limits for radiated electric field emissions are given in units of microvolts per meter at a specified test distance and the output power limits are given in terms of Watts, milliwatts or dBm. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp) the following formula is used to determine the field strength limit in terms of microvolts per meter at a distance of 3m from the equipment under test:

 $E = \frac{1000000 \text{ v } 30 \text{ P}}{3} \text{ microvolts per meter}$

where P is the eirp (Watts)

For reference, converting the voltage and electric field strength specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. Conversion of power specification limits from linear units (in milliwatts) to decibel form (in dBm) is accomplished by taking the base ten logarithm, then multiplying by 10.

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

RS-210 6.2.2(q1) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	200mW (23 dBm)	10 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

SPURIOUS RADIATED EMISSIONS LIMITS

The table below shows the limits for unwanted (spurious) emissions falling in the restricted bands detailed in Part 15.205 and Industry Canada RSS-210 Table 2.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

The table below shows the limits for unwanted (spurious) emissions outside of the restricted bands above 1GHz.

Operating Frequency (MHz)	EIRP Limit (dBm)	Equivalent Field Strength At 3m (dBuV/m)
5150 - 5250	-27 dBm	68.3 dBuV/m
5250 - 5350	-27 dBm (note 1)	68.3 dBuV/m
5725 - 5825	-27 dBm (note 2)	68.3 dBuV/m
	-17 dBm (note 3)	78.3 dBuV/m

Note 1: If operation is restricted to indoor use only then emissions in the band 5.15 – 5.25 GHz must meet the power spectral density limits for the intentional signals detailed in RSS 210 and FCC Subpart E for devices operating in the 5.15 – 5.25 GHz band.
Note 2: Applies to spurious signals separated by more than 10 MHz from the allocated band.
Note 3: Applies to spurious signals within 10 MHz of the allocated band.

AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in FCC Part 15.205 and Industry Canada RSS-210 section 6.6.

Frequency		
Range	Limit	Limit
(MHz)	(uV)	(dBuV)
0.450 to 30.000	250	48

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

$$C - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

B = Broadband Correction Factor*

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

* Broadband Level - Per ANSI C63.4, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

- R_r = Receiver Reading in dBuV/m
- F_d = Distance Factor in dB
- R_{c} = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

APPENDIX 1: Test Equipment Calibration Data

APPENDIX 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T 45752 63 Pages

Elliot	t	EM	C Test Data
Client:	D-Link Corporation	Job Number:	J45656
Model:	DW-290 (MINI PCI Module)	T-Log Number:	T45752
		Proj Eng:	Mark Briggs
Contact:	Shinglin Chung		
Emissions Spec:	FCC Part 15 B and E, RSS-210	Class:	В
Immunity Spec:	N/A	Environment:	-

EMC Test Data

For The

D-Link Corporation

Model

DW-290 (MINI PCI Module)

Elliott

EMC Test Data

Client:	D-Link Corporation	Job Number:	J45656
Model:	DW-290 (MINI PCI Module)	T-Log Number:	T45752
		Proj Eng:	Mark Briggs
Contact:	Shinglin Chung		
Emissions Spec:	FCC Part 15 B and E, RSS-210	Class:	В
Immunity Spec:	N/A	Environment:	-

EUT INFORMATION

General Description

The EUT is a mini PCI UNII Radio Module which is designed to operate in the 5.15-5.25GHz and 5.25-5.35GHz UNII/LELEAN bands. The EUT is designed to be installed in the mini-PCI slot of D-Link's UNII devices, such as the Access Point. A modular approval is being sought for this product. The electrical rating for the Access Point is 120Vac, 60Hz. The MINI PCI module card receives its power from the product's pci slot.

Equipment Under Test

-1							
Model	Description	Serial Number	FCC ID				
DW-290	Mini PCI UNII module	N/A	KA22001120013-1				
DW-1150 (USA)	Accesspoint	N/A	KA22001120012-1				
DWL-5000AP (Taiwan)	Accesspoint	N/A	KA22001120012-1				
	DW-290 DW-1150 (USA)	DW-290 Mini PCI UNII module DW-1150 (USA) Accesspoint	DW-290 Mini PCI UNII module N/A DW-1150 (USA) Accesspoint N/A				

Antenna

The EUT uses an integral antenna (JoyMax) with a gain of 3 dBi and (Atheros) with a gain of 4 dBi

The antenna connector will not be accessible by the end user and will be contained within the enclosure of the host system. D-Link will provide clear instructions to ensure that this is done when the module is used in different host systems to meet the requirements of FCC Part 15.203 and RSS-210.

EUT Enclosure (MINI PCI Card)

The EUT enclosure is primarily constructed of fabricated sheet steel/plastic. It measures approximately 6 cm wide by .2 cm deep by 6.5 cm high.

EUT Enclosure (Access Point)

The EUT enclosure is primarily constructed of plastic. It measures approximately 20 cm wide by 13 cm deep by 3 cm high.

Modification History						
Mod. #	Test	Date	Modification			
1	Radio Radiated emissions	12/19/01	The original Shield was extended to cover the half potion of the MINI PCI card.			
	CINISSIONS					

Client: D-Link Corporation

EMC Test Data

Client:	D-Link Corporation	Job Number:	J45656
Model:	DW-290 (MINI PCI Module)	T-Log Number:	T45752
		Proj Eng:	Mark Briggs
Contact:	Shinglin Chung		
Emissions Spec:	FCC Part 15 B and E, RSS-210	Class:	В
Immunity Spec:	N/A	Environment:	-

Test Configuration #1

Local Support Equipment						
Manufacturer	Model	Description	Serial Number	FCC ID		
Dell	PP01L	Laptop	96FFC AOO	DoC		
HP THINKJET	22256	Printer	2714540166	ZD#D516XU2225		

Remote Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID		
NONE						

Interface Ports

		Cable(s)				
Port	Connected To	Description	Shielded or Unshielded	Length(m)		
Paralled printer	Laptop	DB25	shielded	2		
Serial	Laptop	DB9	shielded	2		
Ethernet	Laptop	RJ-45	unshielded	1		

EUT Operation During Emissions Testing (Digital

The radio was continuously transmitting at the stated power on the specified channels at a data rate of 6Mb/s in 802.11a Normal mode.

Client			Job Number: J	15656
	D-Link Corporation DW-290 (MINI PCI Module	<u>,</u>	T-Log Number: T	
wouer.		;)	Proj Eng: N	
Contact [.]	Shinglin Chung	r toj Eng. k	nank briggs	
	FCC Part 15 B and E, RSS	5-210	Class:	В
Immunity Spec:			Environment:	-
		t Configuratio cal Support Equipm		
Manufacturer	Model	Description	Serial Number	FCC ID
Dell	PP01L	Laptop	96FFC AOO	DoC
Deat		Interface Ports	Cable(s)	
			Cable(s)	
Port	Connected To	Description	Shielded or Unshielde	5 (
Serial	Laptop	DB9	shielded	2
Ethernet	Laptop	RJ-45	unshielded	1
e 1: Printer was not c	onnected during measurem	nents above 1 GHz.		
ested in both normal m pproximately 60 MHz) Normal Mode" allows o roduced the highest o Furbo Mode" allows da	ing at full power on the spe ode (chanel bandwidth of a data rates of up to 54 Mb/s. utput power for normal mod ata rates of up to 72Mb/s.	approximately 30 MHz) a The device was, theref le (6 Mb/s). At data rates higher than	Testing (Radio) ty cycle of 99% (maximum all ind turbo mode (channel ban ore, tested in normal mode a 12Mb/s the PA gain is reduc at produced the highest outp	dwidth of t the data rate that ed to improve signa

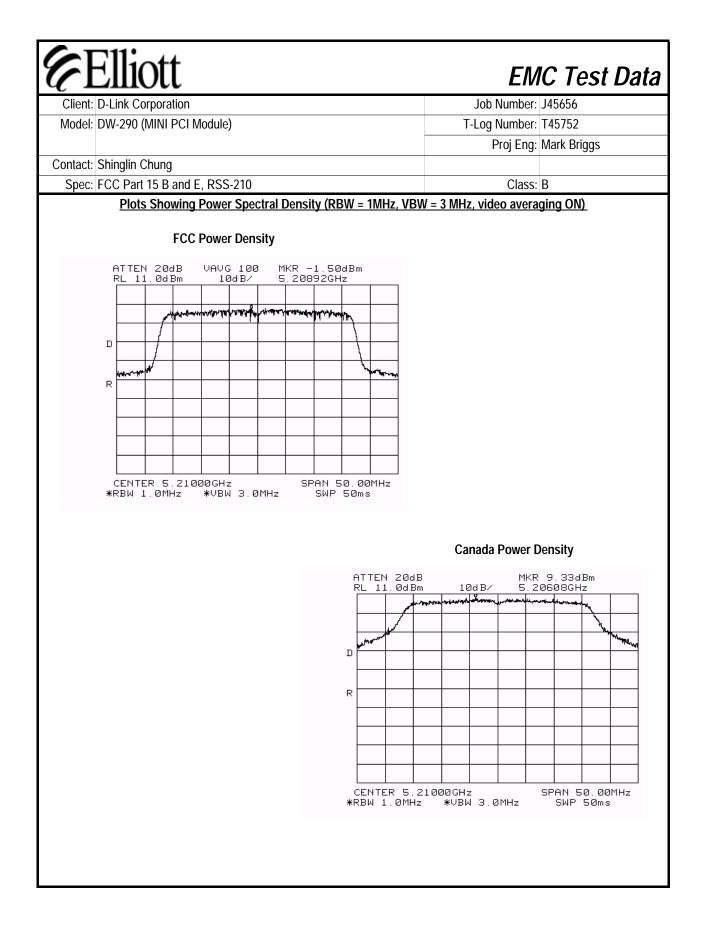
6 Elli	4.4					
	ott			EM	IC Test	t Data
Client: D-Link Co	rporation		J	ob Number:	J45656	
	MINI PCI Module)		T-L	og Number:	T45752	
				Proj Eng:	Mark Briggs	
Contact: Shinglin C	Chung					
Spec: FCC Part	15 B and E, RSS-210			Class:	В	
	Conducted E	missions - Po	ower P	orts		
Test Specifics						
	The objective of this test session specification listed above.	n is to perform final qualifi	ication testi	ng of the EL	JT with respec	t to the
Date of Test:	12/21/01	Config. Used:	1			
Test Engineer:		Config Change:				
Test Location:	•	EUT Voltage:				
80cm from the LISN. A second LISN was used for all local support equipment. Ambient Conditions: Temperature: 11°C Rel. Humidity: 41%						
Ambient Condition						
Ambient Condition	Rel. Humidity:					
	Rel. Humidity: ults Test Performed	41% Limit	Result		argin	
Summary of Res	Rel. Humidity:	41%			argin @ 2.18 MHz	

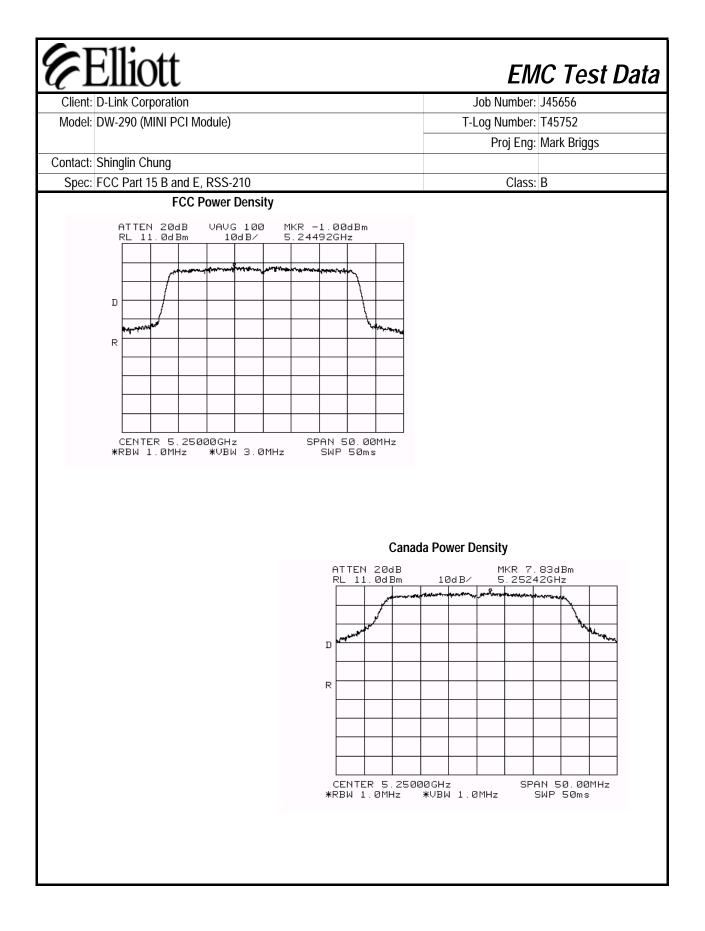
E	Ellio	ott		EN	IC Test Data			
Client:	D-Link Co	orporation	1				Job Number:	J45656
Model:	DW-290 (MINI PC	I Module)				T-Log Number:	T45752
							Proj Eng:	Mark Briggs
Contact:	Shinglin C	Chung						
Spec:	FCC Part	15 B and	1 E, RSS-21	0			Class:	В
Run #1: AC Frequency		ort Cond		<u>ssions, 0.4</u> C B		120V/60Hz Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
2.1790	41.4	n	48.0	-6.6	QP			
2.1910	40.9	Line	48.0	-7.1	QP			
2.8930	35.8	n	48.0	-12.2	QP			
1.0660	35.6	n	48.0	-12.4	QP			
1.0510	33.1	Line	48.0	-14.9	QP			
4.4890	32.8	Line	48.0	-15.2	QP			

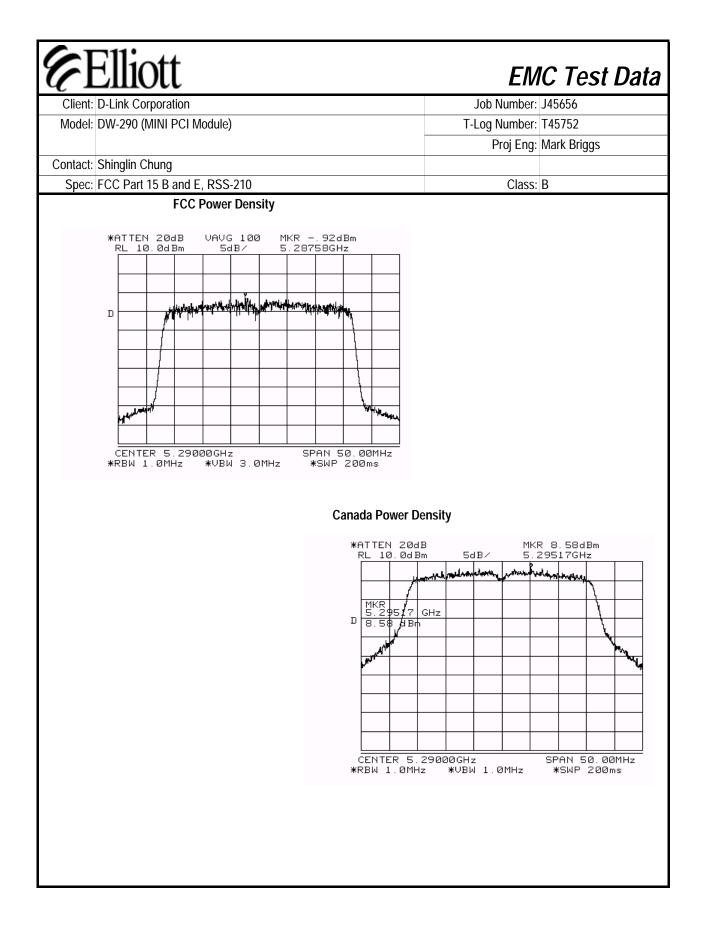
Elliott EMC Test Data Client: D-Link Corporation Job Number: J45656 Model: DW-290 (MINI PCI Module) T-Log Number: T45752 Proj Eng: Mark Briggs Contact: Shinglin Chung Spec: FCC Part 15 B and E, RSS-210 Class: B FCC Part 15 Subpart E Tests: Turbo Mode Test Specifics Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 12/19 & 12/20/2001 Config. Used: 2 Test Engineer: Jmartinez/Rafael Config Change: N/A Test Location: SVOATS# 4 Host Unit Voltage 120Vac, 60Hz General Test Configuration The EUT was located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT unless stated otherwise. When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used. Temperature: 8.9°C Ambient Conditions: Rel. Humidity: 89% Summary of Results: Turbo Mode Run # **Test Performed** Result Comments Limit 13.9dBm@ 5210 MHz, 1 **Output Power** 15.407(a) (1), (2) Pass 14.9dBm@5290 MHz -1dBm@ 5250 MHz, 2 Power Spectral Density (PSD) 15.407(a) (1), (2) Pass -.92dBm@5290MHz 26dB Bandwidth 3 15.407 Pass > 20 MHz 3 20 dB Bandwidth **RSS 210** > 20 MHz Pass Peak to average 4 Peak Excursion Envelope 15.407(a) (6) Pass excursion < 13dB Antenna Conducted - Out of All emissions below the 5 15.407(b) Pass 27dBm/MHz limit Band Spurious RE, 1000 - 40000 MHz -

6&7

Spurious Emissions

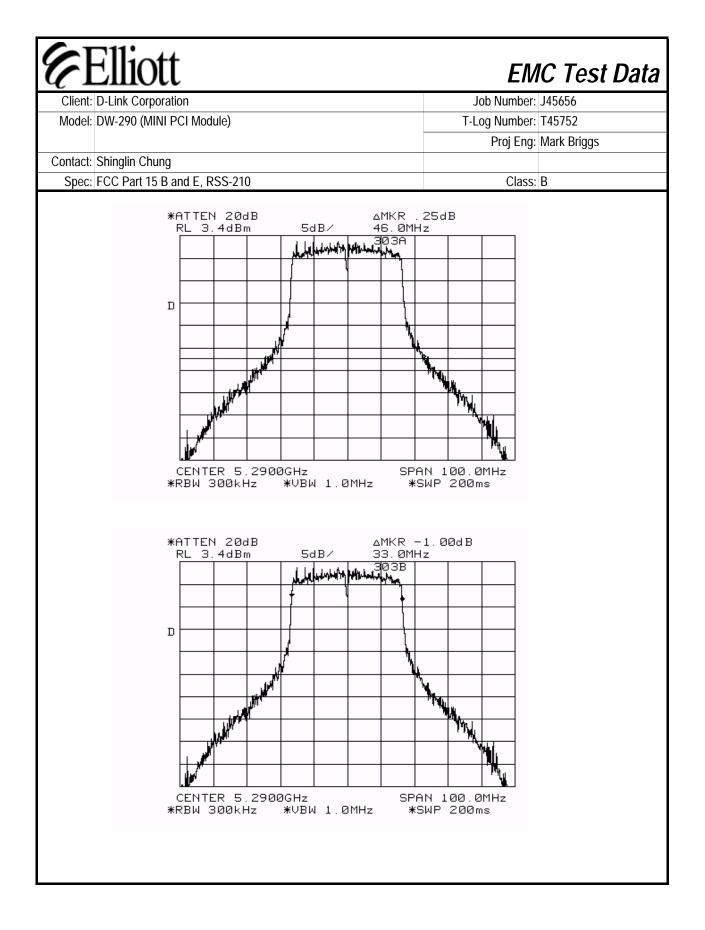

15.407(b)(6)

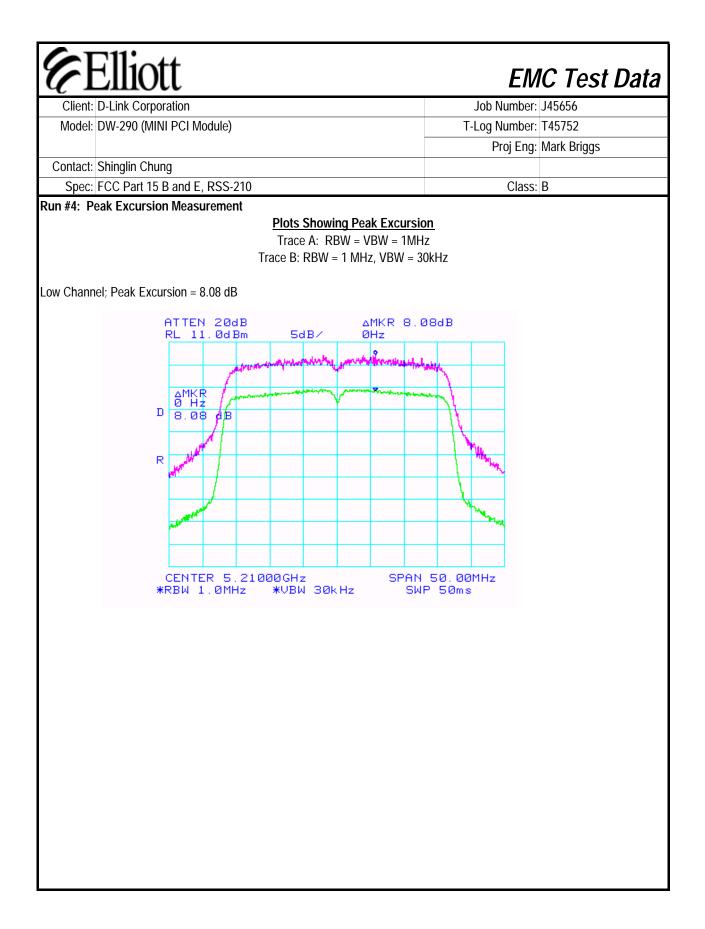

Pass

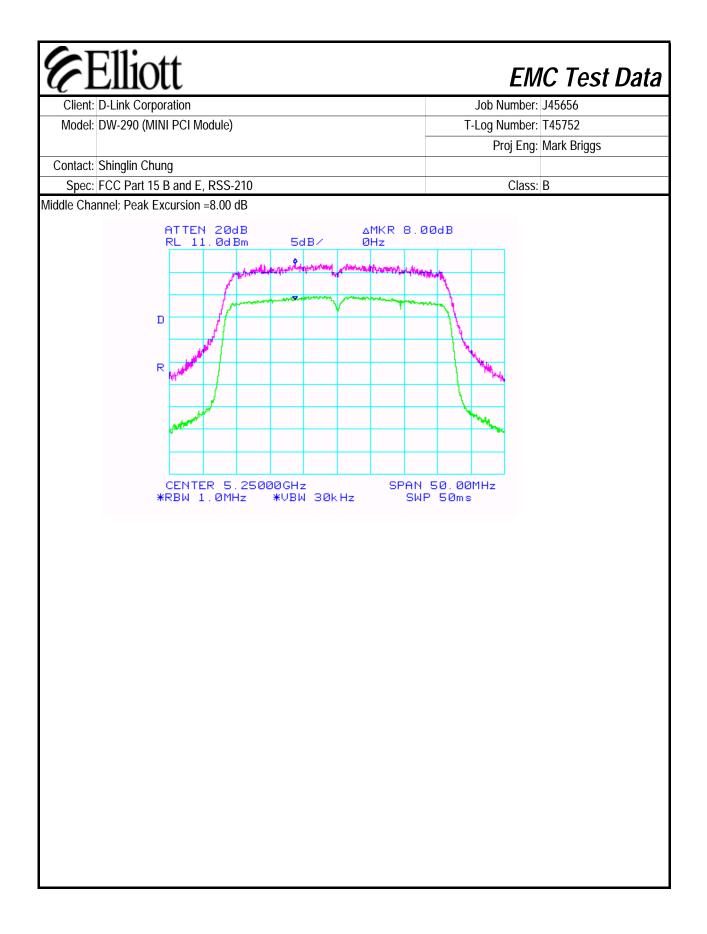

Refer to individual

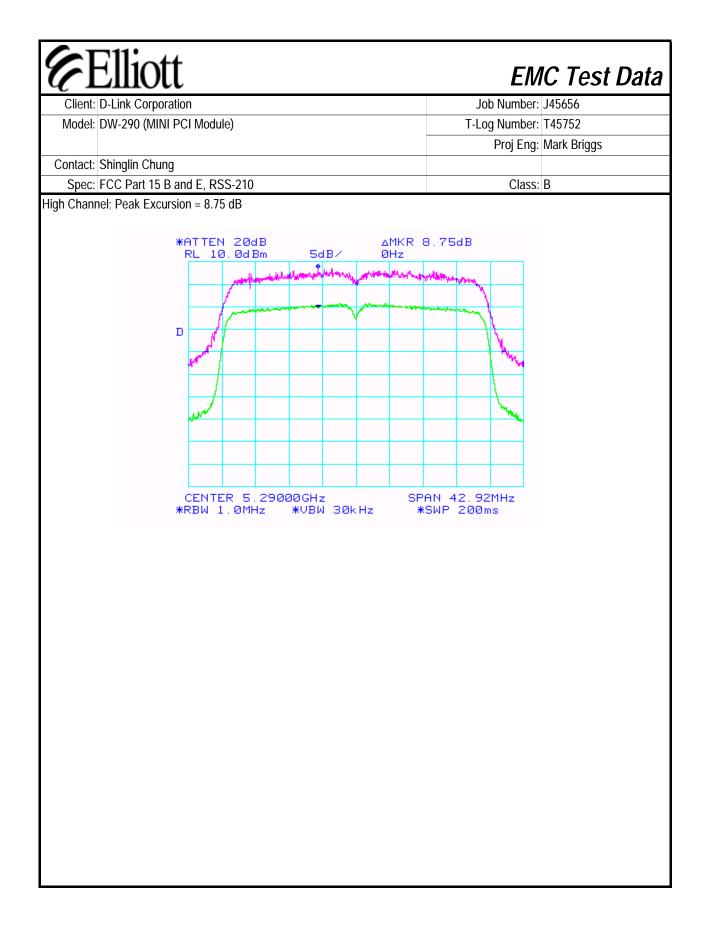
E	Ellic	ott				IC Test Data
Client:	D-Link Co	rporation	Job Number:	J45656		
Model:	DW-290 (MINI PCI Module)		T-Log Number:	T45752	
					Proj Eng:	Mark Briggs
Contact:	Shinglin C	hung			, , ,	
	<u> </u>	15 B and E, RSS-21	0		Class:	В
0,000	. corun		-		01033.	-
No modi	fications we	de During Testin ere made to the EUT	•	ng		
	itions were					
	Antenr	na Gain: 4	dBi (Used t	ne highest gain antenna)	
	Channel	Frequency (MHz)	PC_DAC	Output Power (dBm)	FCC Limit (dBm) (note 3)	Comments
	Low	5210	11	13.7	17.0	Note 2
	LUW	5210	11	13.9	17.0	Note 1/ (101)
	Mid	5250	12	13.6	17.0	Note 2
	wiid	5250	12	13.8	17.0	Note 1 / (102)
	High	5290	16	14.7	24.0	Note 2
		5290	16	14.9	24.0	Note 1 / (103)
Note 1:		using spectrum ana over the occupied b			n (RBW = 1MHz, VBW =	30kHz) which summed
Note 2:		using a Power Meter				
					than the FCC limit. This	limit is based on the
Note 3:		pandwidth and opera				

Client	nt: D-Link Corporation					Job Number: J45656		
	el: DW-290 (MINI PCI Module)				T-Log Number: T45752			
					Proj Eng: Mark Briggs			
Contact	Shinglin C	Chung						
Spec: FCC Part 15 B and E, RSS-210					Class: B			
un #2: P		ctral Density						
	Antenr	na Gain: 4	dBi (Used the highest	gain antenna)				
	Channel	Frequency (MHz)	Power Spectral Density (dBm/MHz)	FCC Limit (d	IBm) note 2	Peak Power Spectral Density (dBm)		
	low	5210	-1.50	4.		9.33	Note 1	
	mid	5250	-1.00	4.		7.83	Note 1	
	high	5290	-0.92	11	.0	8.58	Note 1	
ote 1: ote 2:	the peak e not excee band) so r	excursion measurem d the maximum pern no restriction is place	ents (run #4). The pea	k PSD (meau 0dBm (5.15 t or average PS	sred with RE o 5.25 GHz SD with resp		dBm di	
	the peak e not excee band) so r	excursion measurem d the maximum pern no restriction is place	ents (run #4). The pea nitted average PSD of 1 ed on the output power	k PSD (meau 0dBm (5.15 t or average PS	sred with RE o 5.25 GHz SD with resp	3W=VBW=1MHz) of 9.33 band) or 11dBm (5.25-5. ect to RSS 210.	dBm di	
	the peak e not excee band) so r	excursion measurem d the maximum pern no restriction is place	ents (run #4). The pea nitted average PSD of 1 ed on the output power	k PSD (meau 0dBm (5.15 t or average PS	sred with RE o 5.25 GHz SD with resp	3W=VBW=1MHz) of 9.33 band) or 11dBm (5.25-5. ect to RSS 210.	dBm di	
	the peak e not excee band) so r	excursion measurem d the maximum pern no restriction is place	ents (run #4). The pea nitted average PSD of 1 ed on the output power	k PSD (meau 0dBm (5.15 t or average PS	sred with RE o 5.25 GHz SD with resp	3W=VBW=1MHz) of 9.33 band) or 11dBm (5.25-5. ect to RSS 210.	dBm di	
	the peak e not excee band) so r	excursion measurem d the maximum pern no restriction is place	ents (run #4). The pea nitted average PSD of 1 ed on the output power	k PSD (meau 0dBm (5.15 t or average PS	sred with RE o 5.25 GHz SD with resp	3W=VBW=1MHz) of 9.33 band) or 11dBm (5.25-5. ect to RSS 210.	dBm di	





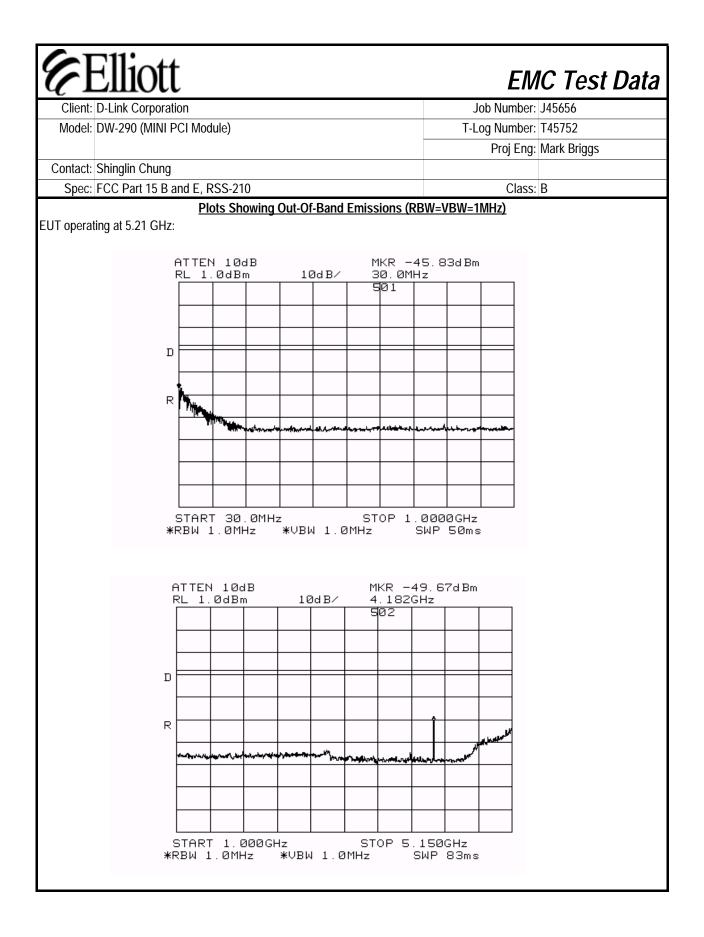


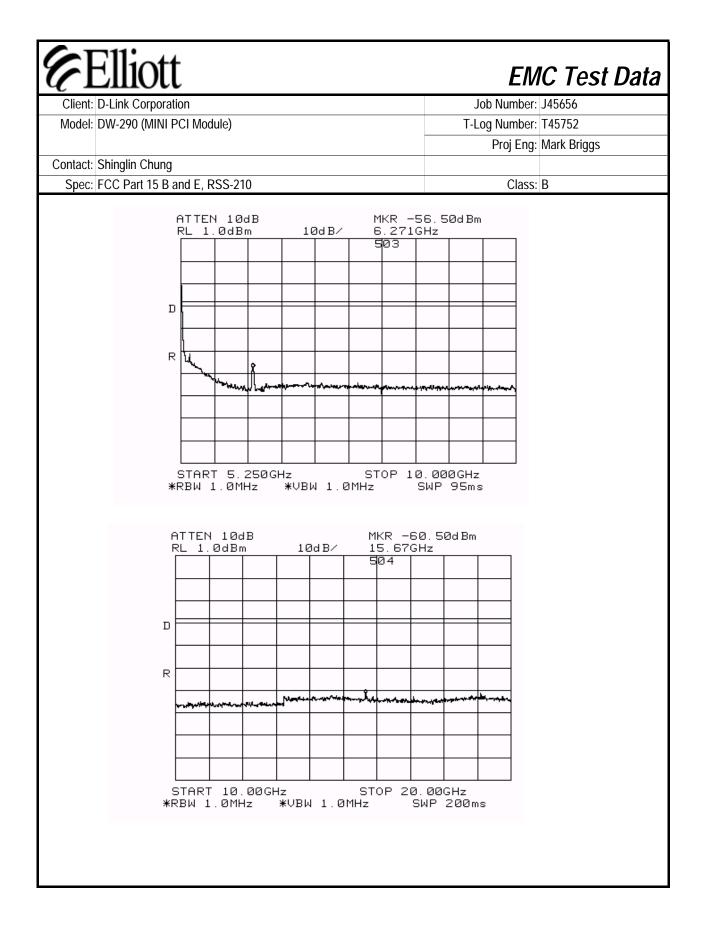

Elliott EMC Test Data Client: D-Link Corporation Job Number: J45656 Model: DW-290 (MINI PCI Module) T-Log Number: T45752 Proj Eng: Mark Briggs Contact: Shinglin Chung Spec: FCC Part 15 B and E, RSS-210 Class: B Run #3: Signal Bandwidth Resolution 26 dB Signal Bandwidth 20 dB Signal Frequency (MHz) Channel Graph reference # Bandwidth (MHz) Bandwidth (MHz) low 5210 300 kHz 41.00 33.00 301A and 301B 5250 300 kHz 43.30 33.00 302A and 302B mid 46.00 303A and 303B high 5290 300 kHz 33.00 Plots Showing Signal Bandwidth ATTEN 20dB RL 11.0dBm ∆MKR -.67dB 41.0MHz 10d B⁄ 301A D WAR W WAYN Len Mar R mar CENTER 5.2100GHz *RBW 300kHz *VBI SPAN 100.0MHz SWP 50ms *VBW 1.0MHz ATTEN 20dB RL 11.0dBm ∆MKR -1.83dB 33.0MHz 301B 10d B/ ∆MKR 33.0 MH: D -1. \$3 d∄ W WWW R m CENTER 5.2100GHz *RBW 300kHz *VB SPAN 100.0MHz SWP 50ms *VBW 1.0MHz

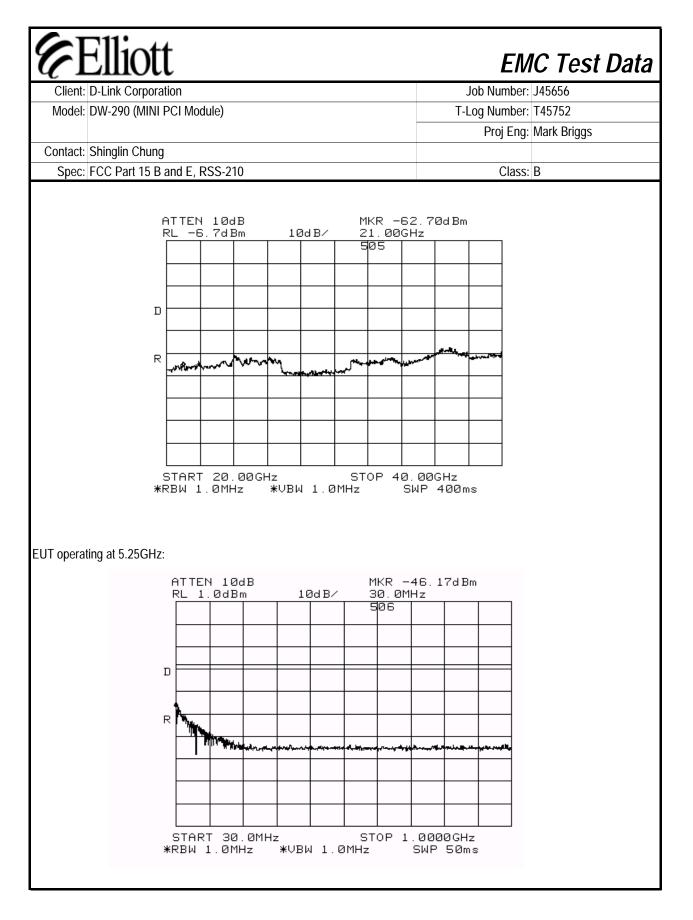
Client: D-Link Corporation Job Number: J45656 Model: DW-290 (MINI PCI Module) T-Log Number: T45752 Proj Eng: Mark Briggs

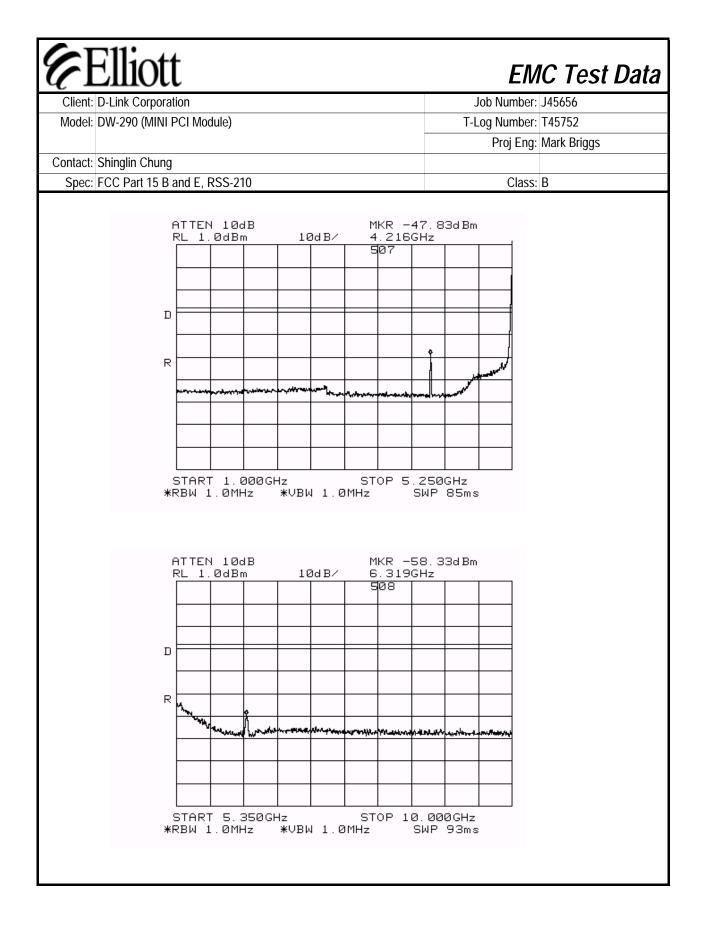
Contact: Shinglin Chung

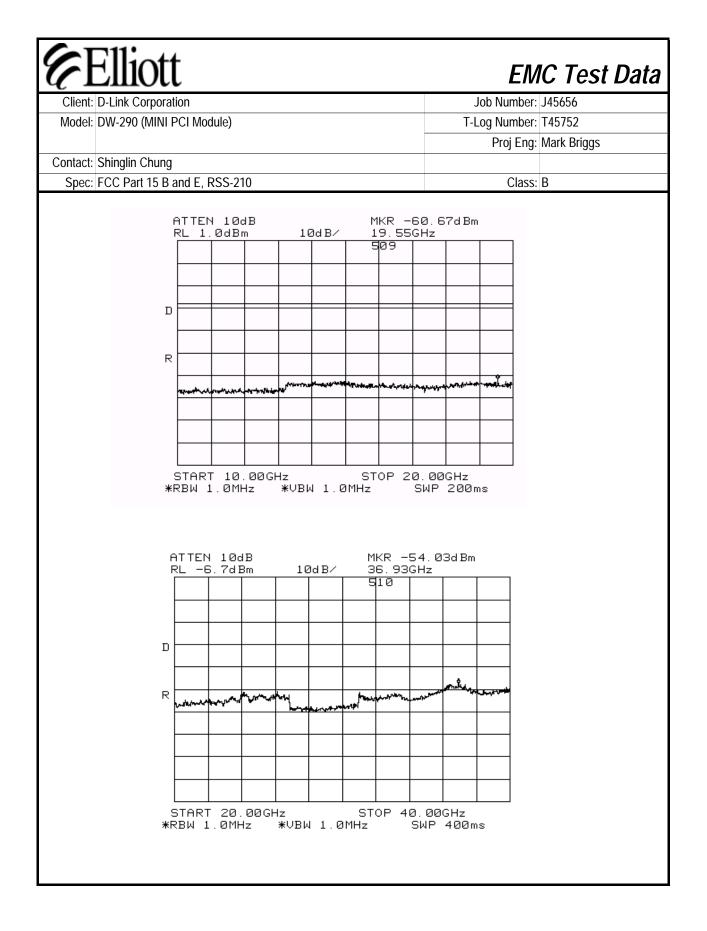
Class: B

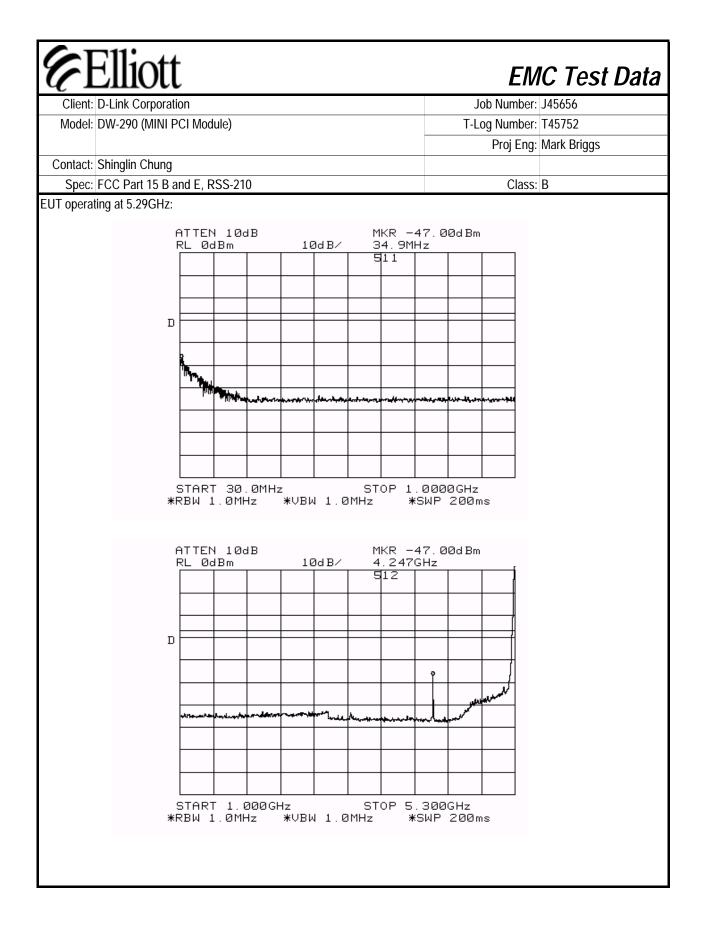

Spec: FCC Part 15 B and E, RSS-210

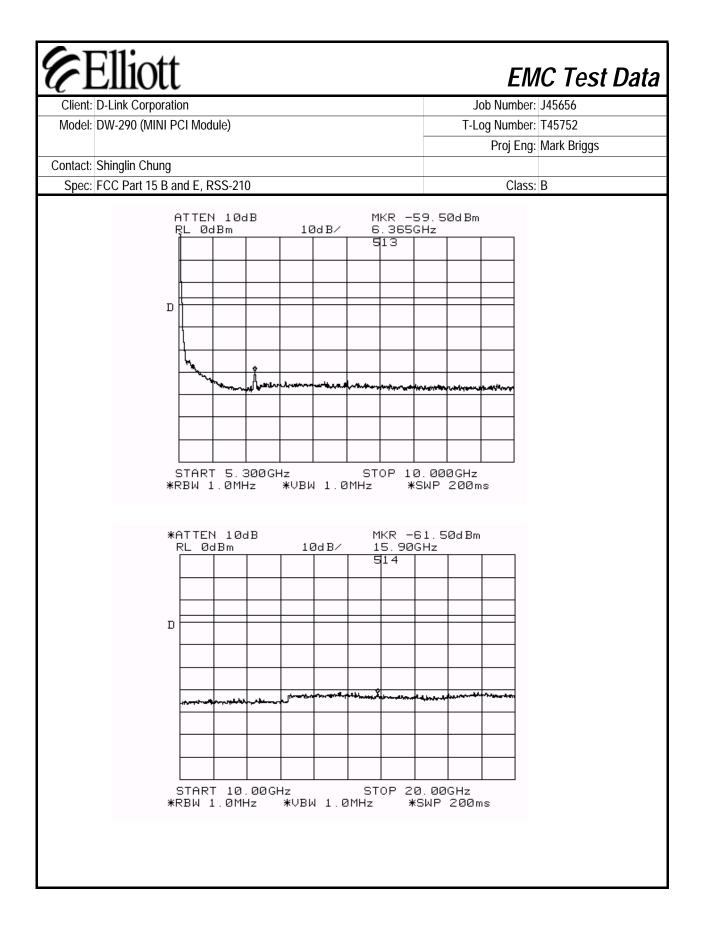

Run #5: Out Of Band Spurious Emissions - Antenna Conducted

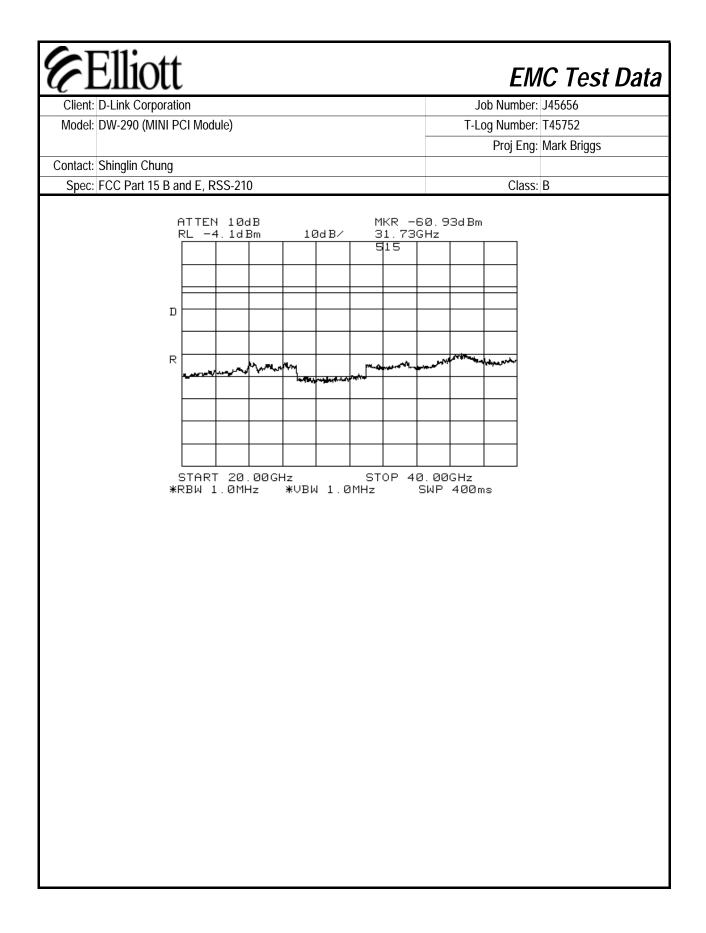

The antenna gain of the radios integral antenna is 4 dBi. The EIRP limit is -27dBm/MHz for all out of band signals that do not fall in restricted bands. A limit of -31 dBm was, therefore, used for signals not in restricted bands and close to the intentional band with the assumption that the antenna gain was equal to 4 within 100 MHz of the upper and lower band edges. For signals removed from the band edge by more than 100MHz, radiated measurements were made (refer to run #6) if the signal amplitude exceeded -37dBm.

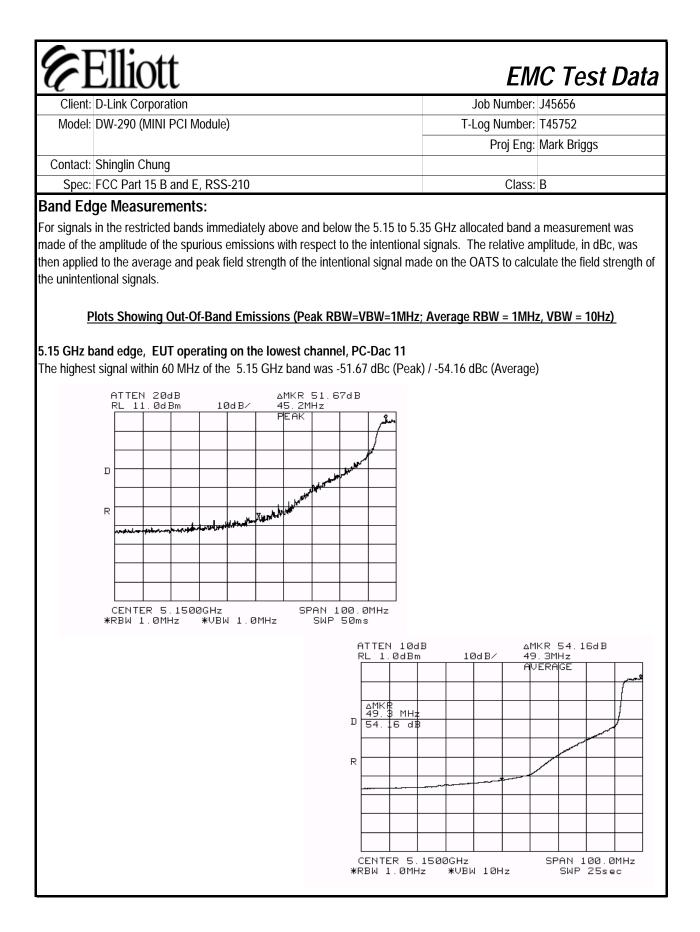

Channel	Frequency (MHz)	Frequency Range	Highest Spurious Signal	Graph reference #
		30 - 1000 MHz	Note 4	501
		1 to 5.15 GHz	4182 (Note 1)	502
low	5210	5.25 to 10 GHz	6271 (Note 3)	503
		10 GHz to 20 GHz	15670 (Note 1)	504
		20 GHz to 40 GHz	None	505
		30 - 1000 MHz	Note 4	506
		1 to 5.25 GHz	4216 (Note 1)	507
mid	5250	5.35 to 10 GHz	6319 (Note 2)	508
		10 GHz to 20 GHz	None	509
		20 GHz to 40 GHz	None	510
		30 - 1000 MHz	Note 4	511
		1 to 5.30 GHz	4247 (Note 1)	512
high	5290	5.34 to 10 GHz	6365 (Note 3)	513
		10 GHz to 20 GHz	15870 (Note 1)	514
		20 GHz to 40 GHz	None	515

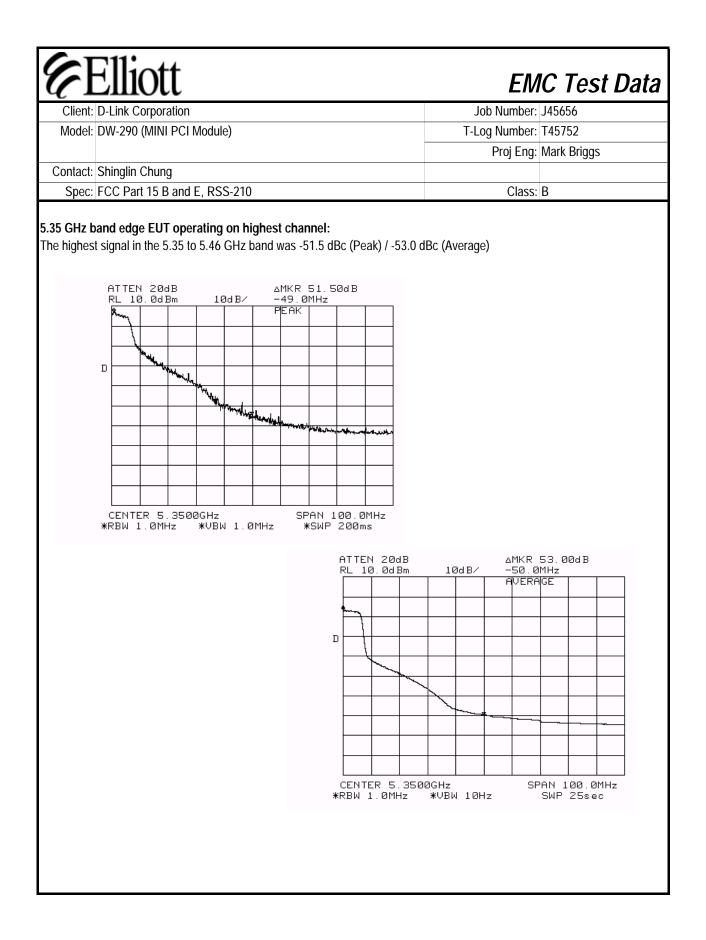

Note 1:	Signal is in a restricted band. Refer to run #6 for field strength measurements.
Note 2:	Signal is not in restricted band. Limit is -27dBm eirp. As the signal strength is significantly lower than -27dBm no field strength measurements required.
Note 3:	Signal is not in restricted band. Limit is -27dBm eirp. Although the signal strength is significantly lower than - 27dBm field strength measurements were made (refer to run #6)
Note 4:	All spurious signals in this frequency band measured during digital device radiated emissions test.





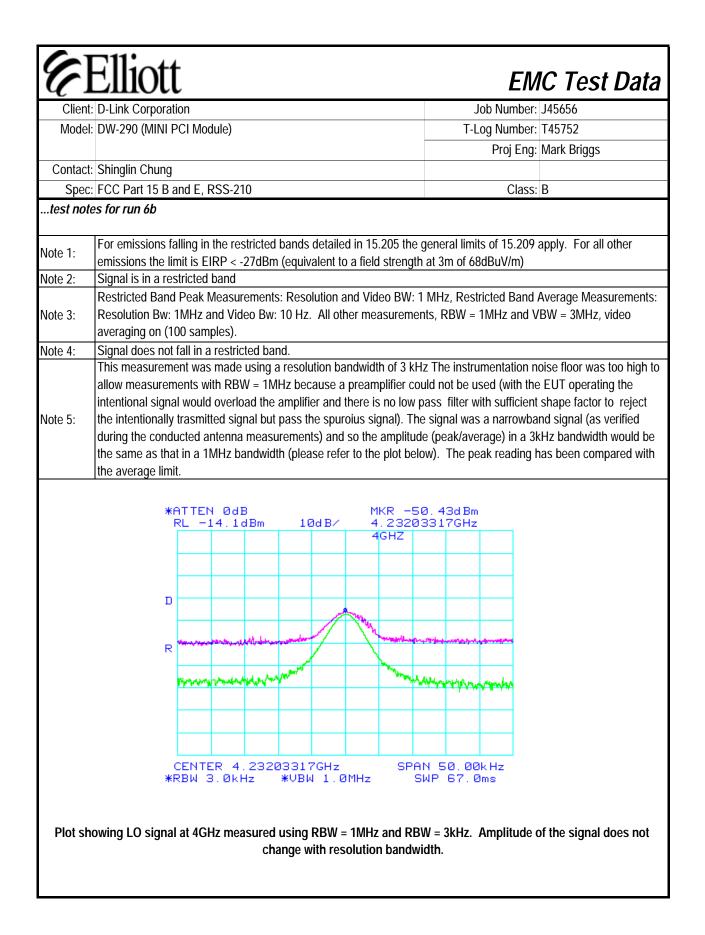






12-19-01 Turbo Mode

Model:	D/W/ 200 /M						J	ob Number	. 343030
	UVV-Z7U (I	AINI PC	Module)				T-L	.og Number	: T45752
			·					•	: Mark Briggs
Contact:	Shinglin C	huna						- J 3	55
	0	0	E, RSS-21	0				Class	:• R
			Emissions		000 MHz			Old3c	
		F		,					
			ons in restric		n (Average)		/m (Peak)		
Limit	for emission	ons outs	de of restric	ted bands:	7dBm/MHz	(68dE	3uV/m)		
Fundamen	tal signal i	measur	ements (to	calculate t	he hand edo	je field stren	aths).		
Frequency	Level	Pol	15.209/		Detector	Azimuth	Height	Comment	S
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		-
5209.325	102.0	V	74.0	28.0	Pk	181	1.5	Peak read	ling, peak limit
5209.015	91.9	V	54.0	37.9	Avg	181	1.5		eading, average limit
5209.560	90.8	Н	74.0	16.8	Pk	168	1.0	Peak read	ling, peak limit
5209.019	81.3	Н	54.0	27.3	Avg	168	1.0	Average r	eading, average limit
5289.425	101.0	V	74.0	27.0	Pk	189	1.3	Peak read	ling, peak limit
5289.129	92.9	V	54.0	38.9	Avg	189	1.3	Average r	eading, average limit
5289.295	94.0	Η	74.0	20.0	Pk	0	0.0	Peak read	ling, peak limit
5289.172	84.7	Н	54.0	30.7	Avg	0	0.0	Average r	eading, average limit
-	Level	Pol	alculations 15.209 /	15 407	Detector	Azimuth	Hoight	Comment	<u></u>
Frequency MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	Height meters	Comment	3
5150.0	50.3	V	74.0	-23.7	Pk	uegiees	11161613	Note 1	
5150.0	30.3	V	54.0	-16.3	Avg			Note 1	
5150.0	39.1	h	74.0	-34.9	Pk			Note 1	
5150.0	27.1	h	54.0	-26.9	Avg			Note 1	
5350.0	29.8	V	74.0	-44.2	Pk			Note 2	
5350.0	39.9	v	54.0	-14.1	Avg			Note 2	
5350.0	42.5	h	74.0	-31.5	Pk			Note 2	
5350.0	31.7	h	54.0	-22.3	Avg			Note 2	
	EUT opera	ating on	the lowest c	hannel avai	ilable in the 5	5.15 - 5.25 M	Hz band. S	ignal level	calculated using the
									d to the highest peak a
	average fie	eld stren	gth measure	ements of th	ne fundamen	tal signal lev	el.		
	EUT opera	ating on	highest char	nnel availat	ble in the 5.2	5 - 5.35 MHz	band. Sigr	nal level cal	culated using the relati
		0	0				0		est peak and average
			•		mental signa			0	


<u> 6</u>										st Dat
Client:	D-Link Co	rporatior	ו				J	ob Number:	J45656	
Model:	DW-290 (M	MINI PC	I Module)				T-Lo	og Number:	T45752	
				-		Proj Eng:	Mark Brig	gs		
Contact:	Shinglin C	hung							<u> </u>	
Spec:	FCC Part	15 B and	d E, RSS-21	0				Class:	В	
			s Emission		000 MHz					
		-				a. PC-Dac 1 ⁴	1			
Frequency		Pol	15.209	-	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
15630.0	52.1	V	54.0	-1.9	Avg	259	1.3	Note 2		
10420.0	60.8	V	68.3	-7.5	Note 3	59	1.5	Note 4		
20840.0	45.3	٧	54.0	-8.7	Avg	290	1.2	Note 2		
15630.0	64.0	٧	74.0	-10.0	Pk	259	1.3	Note 2		
4168.0	43.3	V	54.0	-10.7	Avg	230	1.1	Note 2		
20840.0	42.9	h	54.0	-11.1	Avg	215	1.2	Note 2		
15630.0	42.5	h	54.0	-11.5	Avg	299		Note 2		
20840.0	58.8	V	74.0	-15.2	Pk	290		Note 2		
20840.0	55.2	h	74.0	-18.8	Pk	215		Note 2		
15630.0	54.6	h	74.0	-19.4	Pk	299		Note 2		
4168.0	33.7	h	54.0	-20.3	Avg	15		Note 2		
4168.0	49.9	V	74.0	-24.1	Pk	230		Note 2		
10420.0	43.0	h	68.3	-25.3	Note 3	294		Note 4		
4168.0	45.6	h	74.0	-28.4	Pk	15		Note 2		
6252.0	36.5	h	68.3	-31.8	Note 3	300		Note 4		
6252.0	36.1	V	68.3	-32.2	Note 3	0	1.2	Note 4		

Client: D	-Link Cor	poratior	า				Job Number: J45656
Model: D	W-290 (N	/INI PC	I Module)				T-Log Number: T45752
							Proj Eng: Mark Briggs
Contact: S	hinglin Cl	nung					
Spec: F	CC Part 1	15 B and	d E, RSS-21	0			Class: B
		nel (5.2	5 GHz), Ath	eros Anter	nna PC-dac 12		
15750.0	53.0	V	54.0	-1.0	Avg	274	1.2 Note 2
15750.0	46.6	h	54.0	-7.4	Avg	270	1.3 Note 2
10500.0	58.8	V	68.3	-9.5	Note 3	34	1.5 Note 4
15750.0 4200.0	64.3 43.9	V	74.0 54.0	-9.7 -10.2	Pk	274 350	1.2 Note 2 1.4 Note 2
4200.0 21000.0	43.9	V V	54.0 54.0	-10.2	Avg Avg	<u> </u>	1.4 Note 2
21000.0	43.2	h	54.0	-10.8	Avg	40	1.0 Note 2
15750.0	40.3 59.4	 h	74.0	-13.7	Pk	270	1.3 Note 2
21000.0	56.8	v	74.0	-17.2	Pk	40	1.3 Note 2
10500.0	50.8	h	68.3	-17.5	Note 3	331	1.4 Note 4
4200.0	34.6	h	54.0	-19.4	Avg	330	1.3 Note 2
21000.0	53.6	h	74.0	-20.4	Pk	0	1.0 Note 2
4200.0	44.1	h	74.0	-29.9	Pk	330	1.3 Note 2
6300.0	36.0	V	68.3	-32.3	Note 3	150	1.1 Note 4
6300.0	35.2	h	68.3	-33.1	Note 3	100	1.0 Note 4
4200.0	27.9	V	74.0	-46.2	Pk	350	1.4 Note 2
JT On High	nest Chai	nnel Av	ailable (5.2	9 GHz), Ath	neros antenna	PC-dac 16	
15870.0	51.0	V	54.0	-3.0	Avg	270	1.4 Note 2
4232.0	46.4	V	54.0	-7.7	Avg	55	1.6 Note 2
21160.0	45.8	V	54.0	-8.2	Avg	20	1.4 Note 2
10580.0	58.5	V	68.3	-9.8	Note 3	38	1.6 Note 4
15870.0	63.1	V	74.0	-11.0	Avg	270	1.4 Note 2
15870.0	42.7	h	54.0	-11.3	Avg	295	1.6 Note 2
21160.0 4232.0	41.7 40.4	<u>h</u> h	54.0 54.0	-12.3 -13.6	Avg Avg	300 0	1.2 Note 2 1.0 Note 2
4232.0 21160.0	40.4 59.3	V	74.0	-13.0	Pk	20	1.4 Note 2
15870.0	54.9	h	74.0	-14.7	Pk	295	1.6 Note 2
21160.0	54.7	h	74.0	-19.3	Pk	300	1.2 Note 2
10580.0	45.7	h	68.3	-22.6	Note 3	118	1.8 Note 4
4232.0	50.0	V	74.0	-24.0	Pk	55	1.6 Note 2
4232.0	46.1	h	74.0	-27.9	Pk	0	1.0 Note 2
6348.0	37.7	V	68.3	-30.6	Note 3	320	1.2 Note 4
6348.0	37.0	h	68.3	-31.3	Note 3	350	1.1 Note 4

Client:	D-Link Co		1				J	ob Number	: J45656
Model:	DW-290 (N	MINI PC	Module)				T-L	og Number	: T45752
	,		,					•	: Mark Briggs
Contact.	Shinglin C	huna							
			I E, RSS-21	0				Class	· B
1			Emissions		000 MHz			01033	
	Limit for	omicci	ons in restric	tod bando	E4dDu\//m	(Avorago)		/m (Peak)	1
L imit			ide of restric		n (Average) 7dBm/MHz		BuV/m)		
Linin							(0001	Juviniy]
	Ū		· · ·			je field stren	U ,	I	
Frequency	Level	Pol	15.209/		Detector	Azimuth	Height	Comments	5
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Dual 1	and the last
5212.804	105.2	V V	74.0	31.2	Pk	142	1.4		ing, peak limit
5212.648	96.1	-	54.0	42.1	Avg	142	1.4	U U	eading, average limit
5197.553 5198.748	92.7 84.2	<u>Н</u> Н	74.0 54.0	18.7 30.2	Pk Ava	80 80	1.1 1.1		ing, peak limit eading, average limit
5198.748	84.2 105.9	<u>п</u> V	54.0 74.0	30.2	Avg Pk	213	1.1		ing, peak limit
5290.378	96.7	V	54.0	42.7	Avg	213	1.6		eading, average limit
5290.585	87.9	H	74.0	13.9	Pk	66	1.3	U U	ing, peak limit
5289.062	79.0	H	54.0	25.0	Avg	66	1.3		eading, average limit
							<u> </u>	<u> </u>	<u> </u>
Frequency	Level	Pol	alculations 15.209/	15.407	Detector	Azimuth	Height	Comments	3
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5150.0	53.5	V	74.0	-20.5	Pk			Note 1	
5150.0	41.9	V	54.0	-12.1	Avg			Note 1	
5150.0	41.0	h	74.0	-33.0	Pk			Note 1	
5150.0	30.0	h	54.0	-24.0	Avg			Note 1	
5350.0	54.4	V	74.0	-19.6	Pk			Note 2	
5350.0	43.7	V	54.0	-10.3	Avg			Note 2	
5350.0	36.4	h	74.0	-37.6	Pk			Note 2	
5350.0	26.0	h	54.0	-28.0	Avg			Note 2	
Note 1:	relative me	easurem	ents in run #	≇5 (-51.67 α	Bc for peak		Bc for avera		calculated using the I to the highest peak an
Note 2:	measurem	ients in i	un #5 (-51.5	dBc for pe		Bc for average	•		culated using the relatives the selatives the selation of the

61	Ellic	Ott						EM	IC Test D
Client:	D-Link Co	rporatior	າ				J	ob Number:	J45656
Model:	DW-290 (I	MINI PC	I Module)				T-L	og Number:	T45752
			,		-		0	Mark Briggs	
Contact	Shinglin C	huna							
	•	0	d E, RSS-21	0				Class:	B
0000	1001 dit		a E, 1100 21	0				01033.	D
EUT On Lo	west Cha	nnel Ava		1 GHz), Joy	Max antenn	1	lloight	Commonto	
requency		Pol		/ 15.407	Detector	Azimuth	Height	Comments	
MHz PC-Dac 11	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
	FD 4	.,	F4.0	1 /	A.v.~	104	1.0	Note 2	
15630.0 10420.0	52.4 61.6	V V	54.0 68.3	-1.6 -6.7	Avg Note 3	104 244		Note 2 Note 4	
4168.0	46.8	V	54.0	-0.7	Avg	244		Note 2	
15630.0	45.3	h	54.0	-7.2	Avg	140		Note 2	
20840.0	44.9	V	54.0	-9.1	Avg	35		Note 2	
15630.0	64.9	v	74.0	-9.1	Pk	104		Note 2	
20840.0	42.9	h	54.0	-11.1	Avg	235		Note 2	
10420.0	53.3	h	68.3	-15.0	Note 3	55	1.5	Note 4	
20840.0	58.7	V	74.0	-15.3	Pk	35	1.4	Note 2	
15630.0	58.4	h	74.0	-15.6	Pk	140	1.5	Note 2	
20840.0	56.1	h	74.0	-17.9	Pk	235	1.3	Note 2	
4168.0	34.4	h	54.0	-19.6	Avg	25	1.2	Note 2	
4168.0	51.3	V	74.0	-22.7	Pk	280	1.5	Note 2	
14/0.0	45.5	h	74.0	-28.5	Pk	25		Note 2	
4168.0	36.9	V	68.3	-31.4	Note 3	15		Note 4	
4168.0 6252.0 6252.0	36.1		68.3	-32.2		300	1.0		

Client: D)-Link Cor	poratior	1				J	ob Number: J45656
)W-290 (N	•					T-L	og Number: T45752
	, i i i i i i i i i i i i i i i i i i i		· · · · /					Proj Eng: Mark Brigg
Contact: S	Shinalin Cl	าแทต						rioj Eng. mark Brigg
			d E, RSS-21	0				Class: B
								CIdSS. D
C_Dac 12	iter Chan	nei (5.2	5 GHz), Joy	ywax Anter	ina			
15750.0	50.1	V	54.0	-3.9	Avg	232	13	Note 2
4200.0	47.0	V	54.0	-7.0	Avg	10		Note 2
15750.0	43.7	h	54.0	-10.3	Avg	125		Note 2
21000.0	42.9	v	54.0	-11.1	Avg	360		Note 2
10500.0	57.0	V	68.3	-11.3	Note 3	43		Note 4
15750.0	61.8	V	74.0	-12.2	Pk	232		Note 2
21000.0	40.8	h	54.0	-13.2	Avg	270		Note 2
15750.0	56.2	h	74.0	-17.8	Pk	125	1.4	Note 2
21000.0	56.1	V	74.0	-17.9	Pk	360	1.3	Note 2
10500.0	49.9	h	68.3	-18.4	Note 3	75	1.4	Note 4
21000.0	54.1	h	74.0	-19.9	Pk	270	1.3	Note 2
4200.0	33.6	h	54.0	-20.4	Avg	350	1.3	Note 2
4200.0	50.9	V	74.0	-23.1	Pk	10	1.4	Note 2
4200.0	44.4	h	74.0	-29.6	Pk	350	1.3	Note 2
6300.0	36.7	V	68.3	-31.6	Note 3	30	1.0	Note 4
6300.0	35.0	h	68.3	-33.3	Note 3	360	1.1	Note 4
-	hest Chai	nnel Av	ailable (5.2	9 GHz), Joy	yMax antenna	l I		1
C-Dac 16	50.0		54.0	0.0		00/	4.0	
15870.0	52.0	V	54.0	-2.0	Avg	206		Note 2
4232.0	49.4	V	54.0	-4.6	Avg	10		Note 2
15870.0	64.2	V	74.0	-9.8	Avg	206		Note 2
21160.0	44.2	V	54.0	-9.8	Avg	350		Note 2
15870.0	42.5	h	54.0	-11.5	Avg	140		Note 2
10580.0	55.8	V	68.3	-12.5	Note 3	74		Note 4
21160.0	40.9	h	54.0	-13.1	Avg	50		Note 2
21160.0	57.1	V b	74.0	-16.9	Pk Noto 2	350		Note 2 Note 4
10580.0 15870.0	50.0 54.5	h b	68.3 74.0	-18.3 -19.5	Note 3 Pk	50 140		Note 2
	54.5 33.6	h b	74.0 54.0			140		Note 2
4232.0 21160.0	53.0 53.5	h b		-20.4	Avg			Note 2
Z110U.U	53.5 53.0	h	74.0 74.0	-20.5	Pk Pk	50 10		Note 2
		V	74.0	-21.0 -29.3	PK Pk			
4232.0	117		1411	1 -27.5	I PK	15	1.1	Note 2
	44.7 36.2	h v	68.3	-32.1	Note 3	325	1 /	Note 4

Elliott EMC Test Data Client: D-Link Corporation Job Number: J45656 Model: DW-290 (MINI PCI Module) T-Log Number: T45752 Proj Eng: Mark Briggs Contact: Shinglin Chung Spec: FCC Part 15 B and E, RSS-210 Class: B FCC Part 15 Subpart E Tests: Normal Mode Test Specifics Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 12/19 & 12/20/2001 Config. Used: #2 Test Engineer: Mark Briggs/Rafael Config Change: N/A Test Location: SVOATS #4 Host Unit Voltage 120V/60Hz General Test Configuration The EUT was located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT unless stated otherwise. When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used. Temperature: 8.9°C Ambient Conditions: Rel. Humidity: 89% Summary of Results Run # **Test Performed** Comments Limit Result 11.5dBm@5180MHz, 1 15.407(a) (1), (2) **Output Power** Pass 12.3dBm@5260MHz -2dBm@5180MHz, 2 Power Spectral Density (PSD) 15.407(a) (1), (2) Pass 1.8dBm@5260MHz 26dB Bandwidth 3 15.407 Pass > 20 MHz

3

4

5

6&7

20 dB Bandwidth

Peak Excursion Envelope

Antenna Conducted - Out of

Band Spurious RE, 1000 - 40000 MHz -

Spurious Emissions

RSS 210

15.407(a) (6)

15.407(b)

15.407(b)(6)

> 20 MHz

Peak to average

excursion < 13dB

All emissions below the

27dBm/MHz limit

Refer to individual

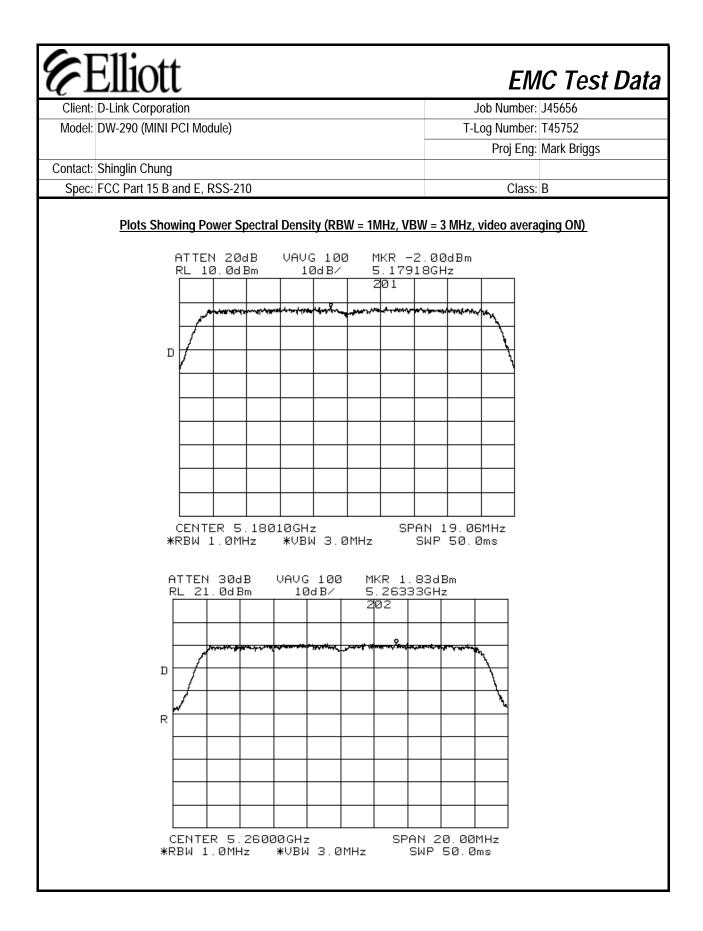
Pass

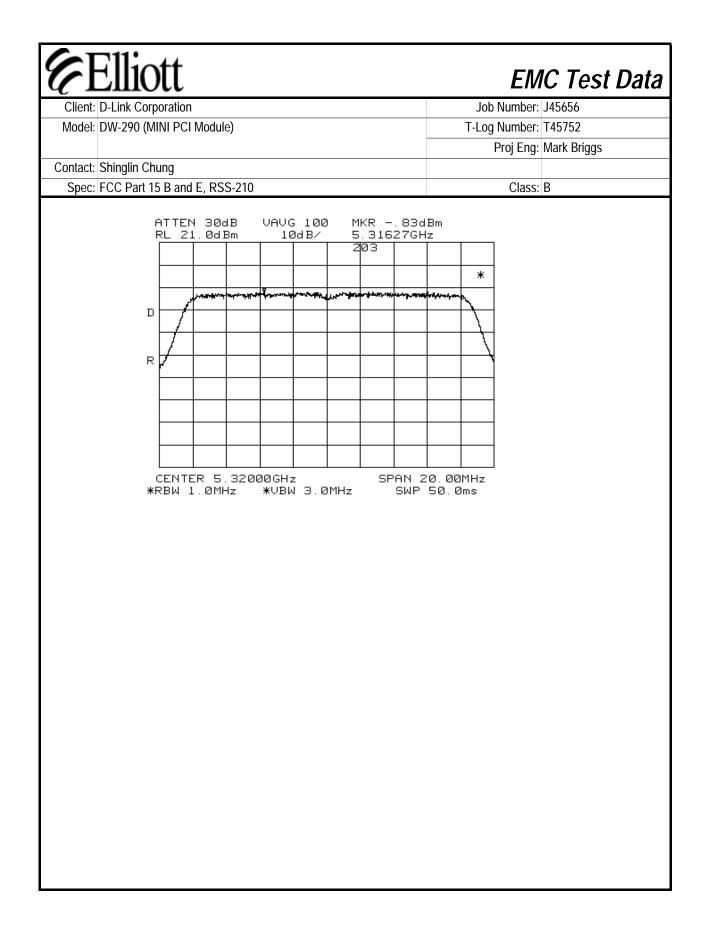
Pass

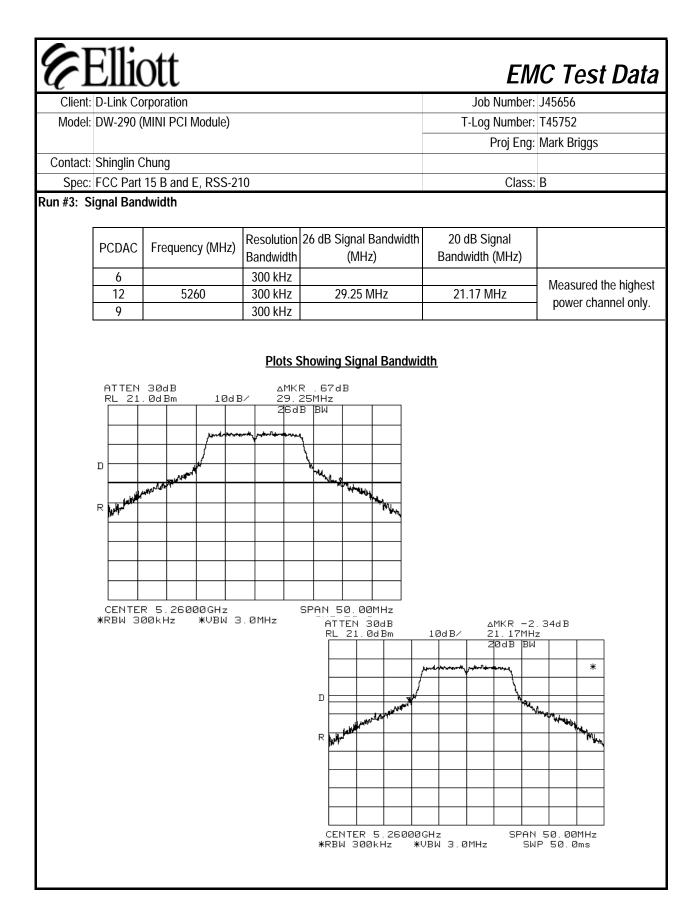
Pass

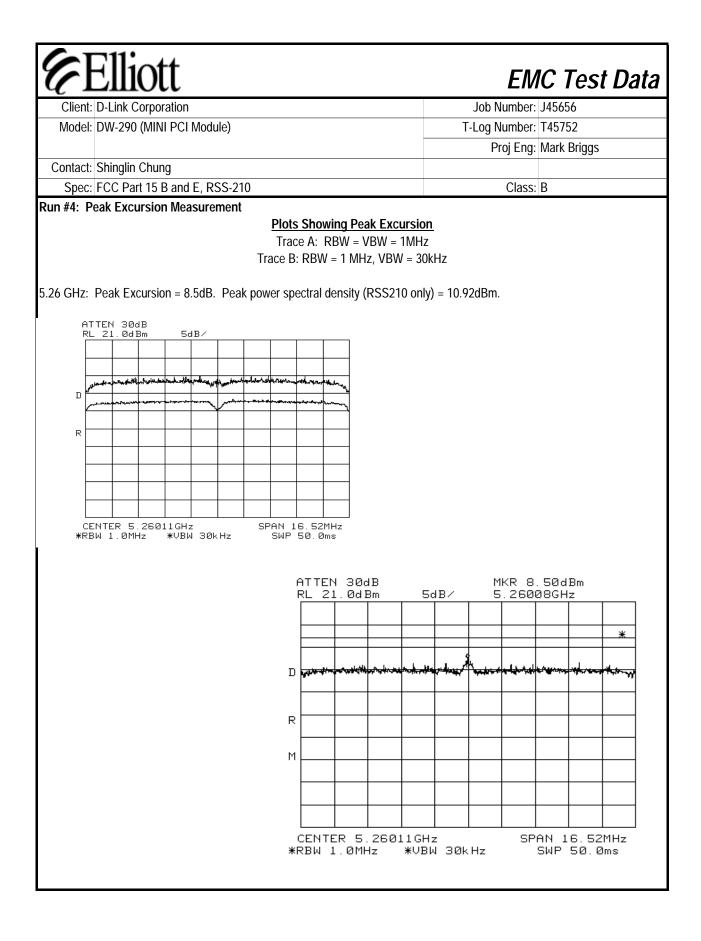
Pass

Model:						
	DW-290 (MINI PCI Module)		T-L	_og Number:	T45752
					Proj Eng:	Mark Briggs
Contact:	Shinglin C	Chuna			, ,	
	-	15 B and E, RSS-210			Class:	B
opoor	. ee r un				elacol	-
Indificat	tions Ma	de During Testin	a٠			
		-	-			
NO MOUI	lications we	ere made to the EUT of	uning testing			
	na Fram	The Clanderd				
		The Standard				
No devia	ations were	made from the require	ements of the standa	ard.		
um #1. O	Nutrut Dou					
un #1: 0	Output Pow		Di (llood the high of	acin ontonno)		
	Anteni	na Gain: <u>4</u> d	bi (Used the highest	gain antenna)		
	PCDAC	Frequency (MHz)	Output Power	FCC Limit (dBm) (note		Comments
			•	3)		
	6	5180	11.0	17.0		Note 1
	0	5180	11.5	17.0		Note 2
	12	5260	12.3	24.0		Note 1
	12	5260	12.3	24.0		Note 2
	9	5320	10.4	24.0		Note 1
	,	5320	10.3	24.0		Note 2
				2110		
	· · · ·					
ote 1:			zer's power measure	ement function (RBW = 1)	/ /Hz, VBW =	
ote 1: ote 2:	Measured	using a power meter	zer's power measure with a thermal sense	ement function (RBW = 1M or head.		30kHz)
ote 2:	Measured RSS 210	l using a power meter limit is 23dBm in the 5	zer's power measure with a thermal senso .15 to 5.25 GHz ban	ement function (RBW = 1)		30kHz)
	Measured RSS 210	using a power meter	zer's power measure with a thermal senso .15 to 5.25 GHz ban	ement function (RBW = 1M or head.		30kHz)
ote 2:	Measured RSS 210	l using a power meter limit is 23dBm in the 5	zer's power measure with a thermal senso .15 to 5.25 GHz ban	ement function (RBW = 1M or head.		30kHz)
ote 2:	Measured RSS 210	l using a power meter limit is 23dBm in the 5	zer's power measure with a thermal senso .15 to 5.25 GHz ban	ement function (RBW = 1M or head.		30kHz)
ote 2:	Measured RSS 210	l using a power meter limit is 23dBm in the 5	zer's power measure with a thermal senso .15 to 5.25 GHz ban	ement function (RBW = 1M or head.		30kHz)
ote 2:	Measured RSS 210	l using a power meter limit is 23dBm in the 5	zer's power measure with a thermal senso .15 to 5.25 GHz ban	ement function (RBW = 1M or head.		30kHz)
ote 2:	Measured RSS 210	l using a power meter limit is 23dBm in the 5	zer's power measure with a thermal senso .15 to 5.25 GHz ban	ement function (RBW = 1M or head.		30kHz)
ote 2:	Measured RSS 210	l using a power meter limit is 23dBm in the 5	zer's power measure with a thermal senso .15 to 5.25 GHz ban	ement function (RBW = 1M or head.		30kHz)
ote 2:	Measured RSS 210	l using a power meter limit is 23dBm in the 5	zer's power measure with a thermal senso .15 to 5.25 GHz ban	ement function (RBW = 1M or head.		30kHz)
ote 2:	Measured RSS 210	l using a power meter limit is 23dBm in the 5	zer's power measure with a thermal senso .15 to 5.25 GHz ban	ement function (RBW = 1M or head.		30kHz)
ote 2:	Measured RSS 210	l using a power meter limit is 23dBm in the 5	zer's power measure with a thermal senso .15 to 5.25 GHz ban	ement function (RBW = 1M or head.		30kHz)
ote 2:	Measured RSS 210	l using a power meter limit is 23dBm in the 5	zer's power measure with a thermal senso .15 to 5.25 GHz ban	ement function (RBW = 1M or head.		30kHz)
ote 2:	Measured RSS 210	l using a power meter limit is 23dBm in the 5	zer's power measure with a thermal senso .15 to 5.25 GHz ban	ement function (RBW = 1M or head.		30kHz)
ote 2:	Measured RSS 210	l using a power meter limit is 23dBm in the 5	zer's power measure with a thermal senso .15 to 5.25 GHz ban	ement function (RBW = 1M or head.		30kHz)
ote 2:	Measured RSS 210	l using a power meter limit is 23dBm in the 5	zer's power measure with a thermal senso .15 to 5.25 GHz ban	ement function (RBW = 1M or head.		30kHz)
ote 2:	Measured RSS 210	l using a power meter limit is 23dBm in the 5	zer's power measure with a thermal senso .15 to 5.25 GHz ban	ement function (RBW = 1M or head.		30kHz)
ote 2:	Measured RSS 210	l using a power meter limit is 23dBm in the 5	zer's power measure with a thermal senso .15 to 5.25 GHz ban	ement function (RBW = 1M or head.		30kHz)
ote 2:	Measured RSS 210	l using a power meter limit is 23dBm in the 5	zer's power measure with a thermal senso .15 to 5.25 GHz ban	ement function (RBW = 1M or head.		30kHz)
ote 2:	Measured RSS 210	l using a power meter limit is 23dBm in the 5	zer's power measure with a thermal senso .15 to 5.25 GHz ban	ement function (RBW = 1M or head.		30kHz)
ote 2:	Measured RSS 210	l using a power meter limit is 23dBm in the 5	zer's power measure with a thermal senso .15 to 5.25 GHz ban	ement function (RBW = 1M or head.		30kHz)
ote 2:	Measured RSS 210	l using a power meter limit is 23dBm in the 5	zer's power measure with a thermal senso .15 to 5.25 GHz ban	ement function (RBW = 1M or head.		30kHz)


EMC Test Data


Job Number: J45656


Elliott


Client: D-Link Corporation

Client:	D-Link Co	rporation			J	ob Number: J45656	
		MINI PCI Module)				og Number: T45752	
						Proj Eng: Mark Brigg	S
Contact:	Shinglin C	Chung					
Spec:	FCC Part	15 B and E, RSS-21	0			Class: B	
Run #2: P		ctral Density					
	Antenr	na Gain: 4	dBi (Used the highest g	gain antenna)			
	PCDAC	Frequency (MHz)	Power Spectral Density (dBm/MHz)	IBm) note 2	Graph Reference		
	6	5180	-2.0	4.		201	Note 1
	12	5260	1.8	11		202	Note 1
	9	5320	-0.8	11	.0	203	Note 1
	average P output pov	PSD of 10dBm (5.15 wer or average PSD		k PSD of 10.9 1dBm (5.25-5 0.	.35GHz ban	N=1MHz, video averagi not exceed the maximur Id) so no restriction is p e FCC limit.	n permitte
	average P output pov	PSD of 10dBm (5.15 wer or average PSD	to 5.25 GHz band) or 1 with respect to RSS 21	k PSD of 10.9 1dBm (5.25-5 0.	.35GHz ban	not exceed the maximur d) so no restriction is p	n permitte
ote 1:	average P output pov	PSD of 10dBm (5.15 wer or average PSD	to 5.25 GHz band) or 1 with respect to RSS 21	k PSD of 10.9 1dBm (5.25-5 0.	.35GHz ban	not exceed the maximur d) so no restriction is p	n permitte
	average P output pov	PSD of 10dBm (5.15 wer or average PSD	to 5.25 GHz band) or 1 with respect to RSS 21	k PSD of 10.9 1dBm (5.25-5 0.	.35GHz ban	not exceed the maximur d) so no restriction is p	n permitte

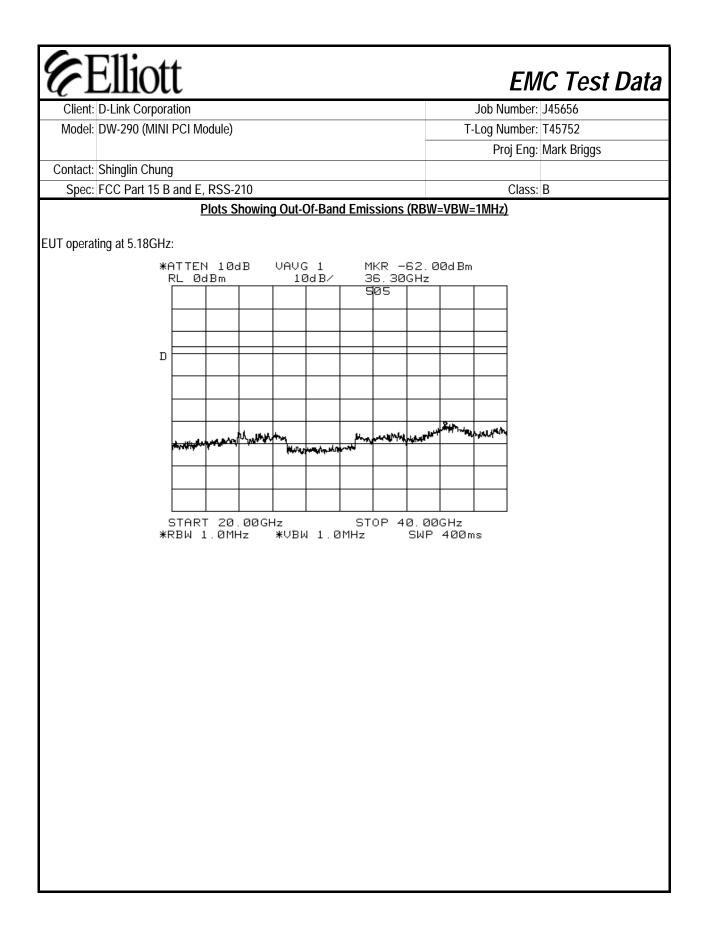
Elliott

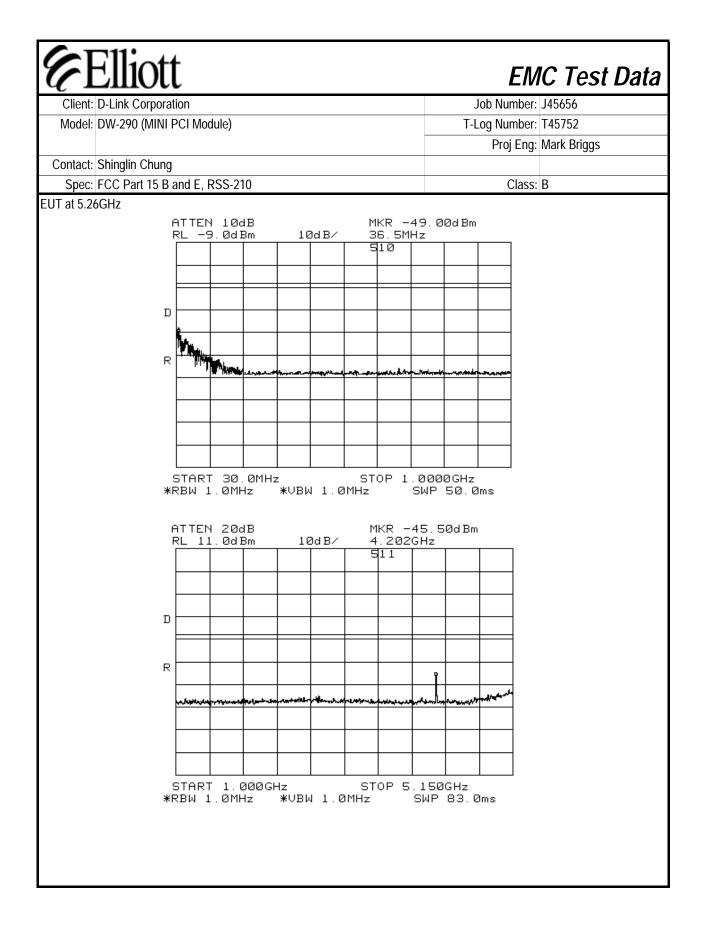
EMC Test Data

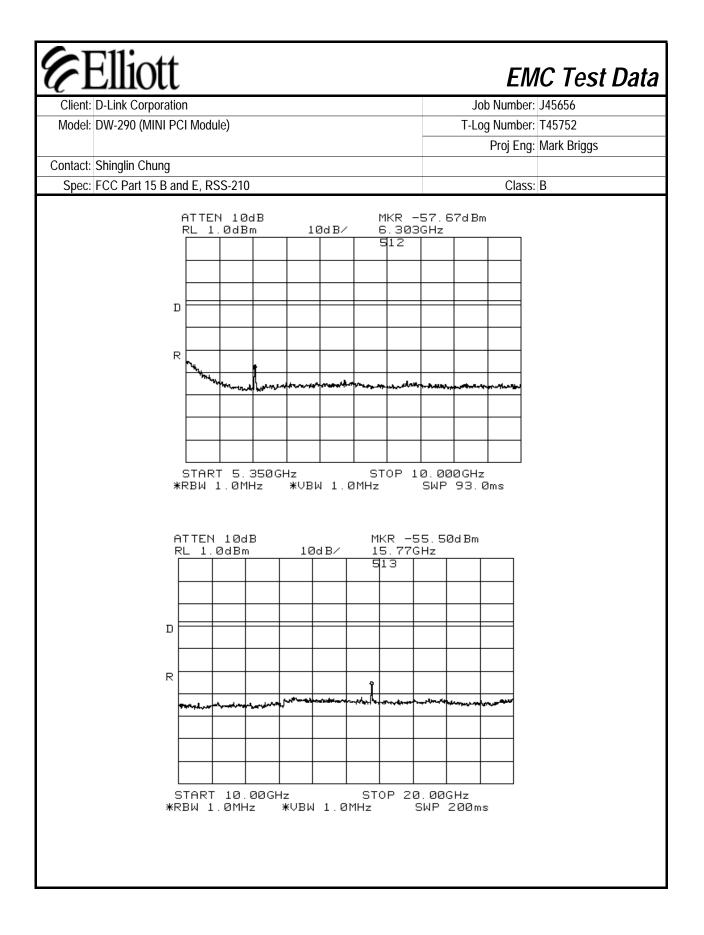
 Client:
 D-Link Corporation
 Job Number:
 J45656

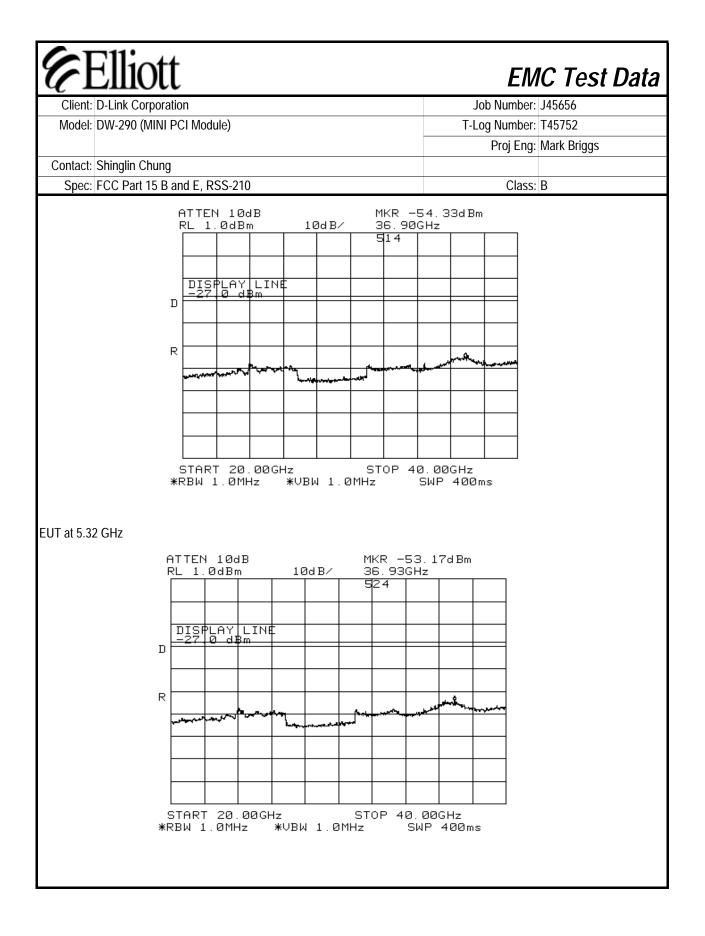
 Model:
 DW-290 (MINI PCI Module)
 T-Log Number:
 T45752

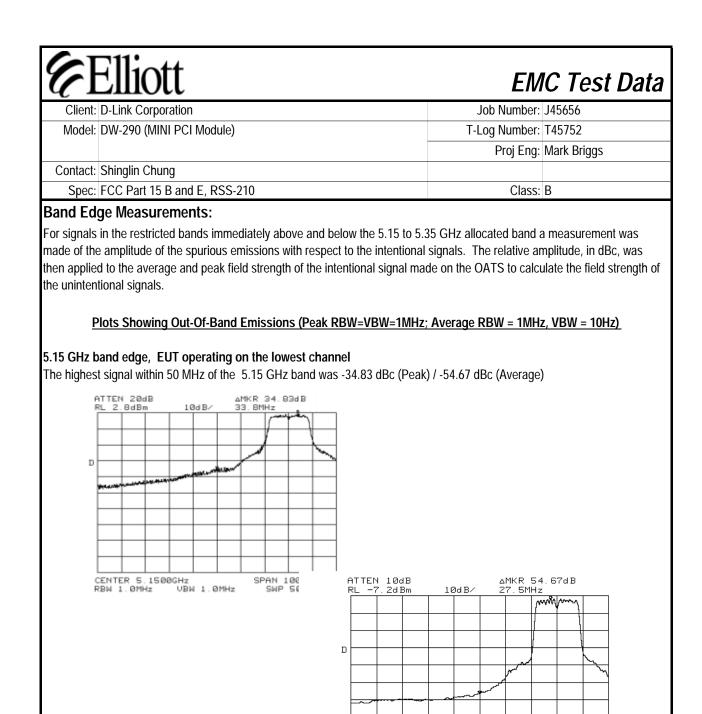
 Proj Eng:
 Mark Briggs

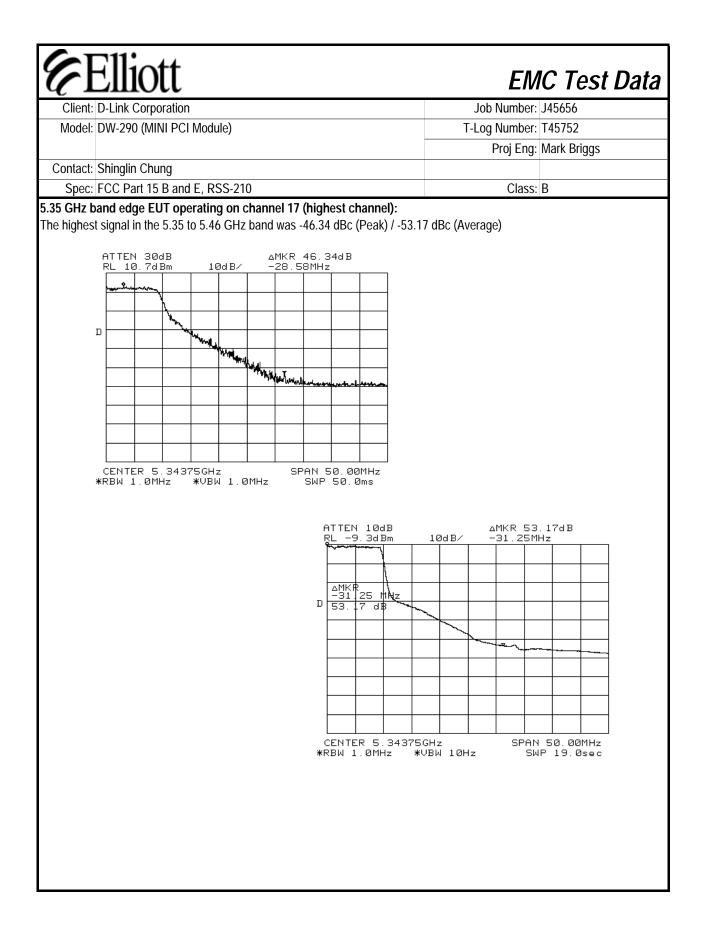

 Contact:
 Shinglin Chung
 Class:
 B


Run #5: Out Of Band Spurious Emissions - Antenna Conducted


The antenna gain of the radios integral antenna is 4 dBi. The EIRP limit is -27dBm/MHz for all out of band signals that do not fall in restricted bands. A limit of -31 dBm was, therefore, used for signals not in restricted bands and close to the intentional band with the assumption that the antenna gain was equal to 4 within 100 MHz of the upper and lower band edges. For signals removed from the band edge by more than 100MHz, radiated measurements were made (refer to run #6) if the signal amplitude exceeded -37dBm.


Channel	Frequency (MHz)	Frequency Range	Highest Spurious Signal	Graph reference #
		30 - 1000 MHz	Note 4	501
		1 to 5.15 GHz		502
Low		5.25 to 10 GHz		503
		10 GHz to 20 GHz		504
		20 GHz to 40 GHz	-62dBm @ 36 GHz	505
		30 - 1000 MHz	Note 4	510
Mid		1 to 5.25 GHz	-45.5dBm @ 4.208GHz	511
IVIIU		5.35 to 10 GHz	-57.7dBm @ 6.3GHz	512
		10 GHz to 20 GHz	-55.8dBm @ 15.7GHz	513
		20 GHz to 40 GHz		514
		30 - 1000 MHz	Note 4	520
		1 to 5.725 GHz		521
High		5.825 to 10 GHz		522
		10 GHz to 20 GHz		523
		20 GHz to 40 GHz		524


Note 2: field strength measurements required. Note 3: Signal is not in restricted band. Limit is -27dBm eirp. Although the signal strength is significantly lower than - 27dBm field strength measurements were made (refer to run #6) Note 4: All spurious signals in this frequency band measured during digital device radiated emissions test.	Note 1:	Signal is in a restricted band. Refer to run #6 for field strength measurements.
Note 3: Signal is not in restricted band. Limit is -27dBm eirp. Although the signal strength is significantly lower than - 27dBm field strength measurements were made (refer to run #6) Note 4: All spurious signals in this frequency band measured during digital device radiated emissions test.	Noto 2.	Signal is not in restricted band. Limit is -27dBm eirp. As the signal strength is significantly lower than -27dBm no
Note 3: 27dBm field strength measurements were made (refer to run #6) Note 4: All spurious signals in this frequency band measured during digital device radiated emissions test.	NULE Z.	field strength measurements required.
2/dBm field strength measurements were made (refer to run #6) Note 4: All spurious signals in this frequency band measured during digital device radiated emissions test.	Noto 2.	Signal is not in restricted band. Limit is -27dBm eirp. Although the signal strength is significantly lower than -
	Note 3:	27dBm field strength measurements were made (refer to run #6)
Note 5: Signal is within 10Mbz of the 5 725 or 5 825 Band edge Limit is -17dBm FIRP	Note 4:	All spurious signals in this frequency band measured during digital device radiated emissions test.
	Note 5:	Signal is wihtin 10Mhz of the 5.725 or 5.825 Band edge. Limit is -17dBm EIRP



CENTER 5.1500GHz RBW 1.0MHz *VBW 10Hz SPAN 100.0MHz SWP 37.0sec

Client:	Ellic D-Link Co		1					lob Number:	J45656
	DW-290 (1	·					T-L	og Number:	T45752
								•	Mark Briggs
Contact	Shinglin C	huna						i ioj Eligi	mant Briggs
	<u> </u>		1 E, RSS-21	0				Class:	D
				s, 1000 - 40	000 MHz			Class.	D
		•							
			ons in restrie			n (Average)		/m (Peak)	
Limit	for emission	ons outs	ide of restric	cted bands:	EIRP < -2	7dBm/MHz	(68dI	3uV/m)	
Fundamer	ntal signal	measur	ements (to	calculate tl	he band edg	je field stren	gths):		
Frequency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5180.290		V	74.0	33.2	Pk	0	0.0		ng, peak limit
5181.066		V	54.0	44.3	Avg	0	0.0	J J	ading, average limit
5183.567	98.6	Н	74.0	24.6	Pk	0	0.0		ng, peak limit
5182.417	88.9	Н	54.0	34.9	Avg	0	0.0	•	ading, average limit
5319.910		V	74.0	31.3	Pk	0	0.0		ng, peak limit
5319.234	96.3	V	54.0	42.3	Avg	0	0.0	J J	ading, average limit
5319.295		H	74.0	20.8	Pk	0	0.0	-	ng, peak limit
5319.066	85.9	Н	54.0	31.9	Avg	0	0.0	Average re	ading, average limit
Band Edge	e Field Stre	enath C	alculations						
Frequency		Pol		/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5150.0		V	74.0	-1.6	Pk	J		Note 1	
5150.0	43.6	٧	54.0	-10.4	Avg			Note 1	
5150.0	63.8	h	74.0	-10.2	Pk			Note 1	
5150.0	34.2	h	54.0	-19.8	Avg			Note 1	
5350.0	59.0	۷	74.0	-15.0	Pk			Note 2	
5350.0	43.1	V	54.0	-10.9	Avg			Note 2	
5350.0	48.5	h	74.0	-25.5	Pk			Note 2	
5350.0	32.7	h	54.0	-21.3	Avg			Note 2	
	FUT oner:	atina on	the lowest c	hannel avai	lable in the P	5 15 - 5 25 M	Hz hand S	Signal level o	alculated using the
Note 1:		0						0	to the highest peak an
				-		tal signal lev		-30, appilou	te the highest pour un
	Ŭ		0			0		nal level calc	ulated using the relativ
		0	0				0		ighest peak and average
Note 2:		ients in i						אוכע נט נווכ וו	

Olicina	D-Link Cor	rporatior	า				J	ob Number:	J45656
Model:	DW-290 (N	MINI PC	I Module)				T-L	og Number:	T45752
	,		,			-		0	Mark Briggs
Contact	Shinglin C	huna						i i oj Eligi	inan Diiggo
	U	•	d E, RSS-21	0				Class:	D
					000 MU-			Ciass.	D
		•	s Emission		neros antenn	^			
C_DAC 6	JWESt Chai	IIIel Av	allable (5. lo	ы GПZ), Ай	lei us antenn	d			
requency	Level	Pol	15 209	/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Commonto	
15540.0	•	V	54.0	-5.0	Avg	285		Note 2	
4144.0		V	54.0	-6.8	Avg	100		Note 2	
15540.0		V	74.0	-9.0	Pk	285		Note 2	
15540.0		h	54.0	-10.5	Avg	0		Note 2	
4144.0	42.1	h	54.0	-11.9	Avg	180	1.8	Note 2	
25900.0	41.3	V	54.0	-12.7	Avg	320	1.2	Note 2	
25900.0	40.7	h	54.0	-13.3	Avg	80	1.2	Note 2	
20720.0		V	54.0	-13.5	Avg	50		Note 2	
20720.0		h	54.0	-14.1	Avg	360		Note 2	
10360.0		V	68.3	-15.1	Note 3	270		Note 4	
15540.0		h	74.0	-16.2	Pk	0		Note 2	
20720.0		V	74.0	-16.9	Pk	50		Note 2	
25900.0	56.7	V	74.0	-17.3	Pk	320		Note 2	
20720.0		h	74.0	-19.4	Pk	360		Note 2	
25900.0		h	74.0	-19.8	Pk	80		Note 2	
10360.0		h	68.3	-22.6	Note 3	10		Note 4	
4144.0		V	74.0	-24.0	Pk	100		Note 2	
4144.0		h	74.0	-26.7	Pk	180		Note 2	
6216.0		V 	68.3	-28.0	Note 3	15		Note 4	
6216.0	38.6	h	68.3	-29.7	Note 3	150	1.0	Note 4	

Client:	Ellic D-Link Col	rporation	า				J	ob Number:	J45656
Model:	DW-290 (N	MINI PC	I Module)				T-L	og Number:	T45752
			,			-		0	Mark Briggs
Contact:	Shinglin C	hung						, , ,	55
	•	•	d E, RSS-2	10				Class:	В
0000		lo D all				0.0001	-		
EUT On Co	enter Chan	nel (5.2	6 GHz), Atl	neros Ante	nna				
DC_DAC 1		•							
requency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
15780.0		V	54.0	-2.8	Avg	250		Note 2	
4208.0	49.4	V	54.0	-4.6	Avg	100	1.8	Note 2	
15780.0	66.4	٧	74.0	-7.6	Pk	250	1.3	Note 2	
15780.0	45.6	h	54.0	-8.4	Avg	315	1.4	Note 2	
4208.0	44.9	h	54.0	-9.1	Avg	150		Note 2	
21040.0	43.9	۷	54.0	-10.1	Avg	300	1.0	Note 2	
31560.0	43.6	٧	54.0	-10.4	Avg	130	1.2	Note 2	
10520.0	57.8	۷	68.3	-10.5	Note 3	300	1.5	Note 4	
26300.0	42.6	۷	54.0	-11.4	Avg	310		Note 2	
10520.0	56.3	h	68.3	-12.0	Note 3	360		Note 4	
21040.0	61.6	۷	74.0	-12.4	Pk	300	1.0	Note 2	
21040.0	40.8	h	54.0	-13.2	Avg	0		Note 2	
26300.0	40.8	h	54.0	-13.2	Avg	0		Note 2	
15780.0	59.7	h	74.0	-14.3	Pk	315		Note 2	
26300.0	58.3	۷	74.0	-15.7	Pk	310		Note 2	
31560.0	57.4	۷	74.0	-16.6	Pk	130		Note 2	
21040.0	55.9	h	74.0	-18.1	Pk	0		Note 2	
4208.0	54.0	V	74.0	-20.0	Pk	100		Note 2	
26300.0	54.0	h	74.0	-20.0	Pk	0		Note 2	
4208.0	50.2	h	74.0	-23.8	Pk	150		Note 2	
6312.0	42.3	V	68.3	-26.0	Note 3	360		Note 4	
6312.0	40.1	h	68.3	-28.2	Note 3	0	1.2	Note 4	

	Ellic D-Link Co		`				Job Number: J45656				
		•					-				
Model:	DW-290 (I	MINI PC	i Module)			-	I-L	og Number:			
							Proj Eng: Mark Briggs				
Contact:	Shinglin C	hung									
Spec:	FCC Part	15 B an	d E, RSS-21			Class:	В				
EUT On Hi	ghest Cha	nnel Av	ailable (5.3	2 GHz), Atl	heros anteni	าล					
pc_DAC 9											
Frequency	Level	Pol	15.209	15.407	Detector	Azimuth	Height	Comments			
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
10640.0	50.7	٧	54.0	-3.3	Avg	185	1.5	Note 2			
10640.0	68.7	٧	74.0	-5.3	Pk	185	1.5	Note 2			
15960.0	46.5	٧	54.0	-7.5	Avg	295	1.2	Note 2			
10640.0	46.2	h	54.0	-7.8	Avg	120	1.8	Note 2			
15960.0	62.9	۷	74.0	-11.1	Pk	295	1.2	Note 2			
15960.0	42.8	h	54.0	-11.2	Avg	315	1.9	Note 2			
10640.0	61.5	h	74.0	-12.5	Pk	120		Note 2			
21280.0	39.9	V	54.0	-14.1	Avg	20		Note 2			
21280.0	39.4	h	54.0	-14.6	Avg	350		Note 2			
15960.0	57.8	h	74.0	-16.2	Pk	315		Note 2			
4256.0	33.8	۷	54.0	-20.2	Avg	160		Note 2			
21280.0	53.0	h	74.0	-21.0	Pk	350		Note 2			
21280.0	52.3	۷	74.0	-21.7	Pk	20		Note 2			
4256.0	23.8	h	54.0	-30.2	Avg	0		Note 2			
4256.0	38.3	۷	74.0	-35.7	Pk	160		Note 2			
6384.0	31.9	V	68.3	-36.4	Note 3	0		Note 4			
4256.0	34.8	h	74.0	-39.2	Pk	0		Note 2			
6384.0	26.9	h	68.3	-41.4	Note 3	0	1.2	Note 4			

	D-Link Co	rporatior	۱					lob Number:	J45656		
Model:	DW-290 (N	MINI PC	I Module)				T-L	og Number:	T45752		
			,					0	Mark Briggs		
Contact.	Shinglin C	huna									
	•		1 E, RSS-21	0			Class: B				
					000 MHz Jo	yMax Anten	na	01033.	D		
itan "rai i		purious		, 1000 10		- Jinax Filler	in a				
	Limit fo	r emissio	ons in restric	ted bands:	54dBuV/m	n (Average)	74dBuV	/m (Peak)]		
Limit	for emission	ons outs	ide of restric	ted bands:	EIRP < -2	7dBm/MHz	(68dl	3uV/m)			
-											
	tal signal	measur Pol	ements (to 15.209/		ne band edg Detector	je field stren Azimuth	.	Comments			
Frequency MHz	dBµV/m	v/h	Limit	15.407 Margin	Pk/QP/Avg		Height meters	Comments			
5185.981	106.6	V	74.0	32.6	Pk	0	0.0	Doak roadi	ng, peak limit		
5184.972	97.5	V	54.0	43.5	Avg	0	0.0		ading, average limit		
5183.214	91.1	 H	74.0	17.1	Pk	0	0.0	-	ng, peak limit		
5182.102	80.5	 H	54.0	26.5	Avg	0	0.0		ading, average limit		
5323.109	106.6	V	74.0	32.6	Pk	0	0.0	-	ng, peak limit		
5322.305	97.1	V	54.0	43.1	Avg	0	0.0		ading, average limit		
5322.307	93.0	H	74.0	19.0	Pk	262	1.4	J J	<u> </u>		
						ZUZ	1.4	Peak read	ng, peak limit		
5322.190	83.4	Η	54.0	29.4	Avg	262	1.4	-	ng, peak limit ading, average limit		
5322.190 Band Edge	e Field Stre		54.0 alculations 15.209 /	29.4				-	ading, average limit		
5322.190 Band Edge	e Field Stre	ength C	alculations	29.4	Avg	262	1.4	Average re	ading, average limit		
5322.190 Band Edge Frequency	e Field Stre	e ngth C Pol	alculations 15.209/	29.4 15.407	Avg Detector	262 Azimuth	1.4 Height	Average re	ading, average limit		
5322.190 Band Edge Frequency MHz	e Field Stre Level dBμV/m 71.8 42.8	e ngth C Pol v/h v	alculations 15.209 / Limit	29.4 7 15.407 Margin	Avg Detector Pk/QP/Avg	262 Azimuth	1.4 Height	Average re	ading, average limit		
5322.190 Band Edge Frequency MHz 5150.0 5150.0 5150.0	e Field Stre Level dBμV/m 71.8 42.8 56.3	e ngth C Pol v/h v	alculations 15.209 / Limit 74.0 54.0 74.0	29.4 15.407 Margin -2.2 -11.2 -17.7	Avg Detector Pk/QP/Avg Pk Avg Pk	262 Azimuth	1.4 Height	Average re Comments Note 1 Note 1 Note 1	ading, average limit		
5322.190 Band Edge Frequency MHz 5150.0 5150.0 5150.0 5150.0	e Field Stre Level dBμV/m 71.8 42.8 56.3 26.5	e ngth C Pol v/h v	alculations 15.209 / Limit 74.0 54.0 74.0 54.0 54.0	29.4 / 15.407 Margin -2.2 -11.2 -17.7 -27.5	Avg Detector Pk/QP/Avg Pk Avg Pk Avg	262 Azimuth	1.4 Height	Average re Comments Note 1 Note 1 Note 1 Note 1 Note 1	ading, average limit		
5322.190 Band Edge Frequency MHz 5150.0 5150.0 5150.0 5150.0 5350.0	e Field Stre Level dBμV/m 71.8 42.8 56.3 26.5 60.4	ength C Pol v/h v v h	alculations 15.209 / Limit 74.0 54.0 74.0 54.0 74.0 74.0	29.4 15.407 Margin -2.2 -11.2 -17.7 -27.5 -13.6	Avg Detector Pk/QP/Avg Pk Avg Pk Avg Pk Avg	262 Azimuth	1.4 Height	Average re Comments Note 1 Note 1 Note 1 Note 1 Note 1 Note 2	ading, average limit		
5322.190 Band Edge Frequency MHz 5150.0 5150.0 5150.0 5350.0 5350.0	e Field Stre Level dBμV/m 71.8 42.8 56.3 26.5 60.4 43.9	ength C Pol v/h v v h h v v v	alculations 15.209 / Limit 74.0 54.0 74.0 54.0 74.0 54.0 54.0 54.0	29.4 15.407 Margin -2.2 -11.2 -17.7 -27.5 -13.6 -10.1	Avg Detector Pk/QP/Avg Pk Avg Pk Avg Pk Avg Avg	262 Azimuth	1.4 Height	Average re Comments Note 1 Note 1 Note 1 Note 1 Note 1 Note 2 Note 2	ading, average limit		
5322.190 Band Edge Frequency MHz 5150.0 5150.0 5150.0 5150.0 5350.0 5350.0 5350.0	e Field Stre Level dBμV/m 71.8 42.8 56.3 26.5 60.4 43.9 46.8	ength C Pol v/h v v h h v v v v	alculations 15.209 / Limit 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0	29.4 / 15.407 / Margin -2.2 -11.2 -17.7 -27.5 -13.6 -10.1 -27.2	Avg Detector Pk/QP/Avg Pk Avg Pk Avg Pk Avg Pk Avg Pk	262 Azimuth	1.4 Height	Average re Comments Note 1 Note 1 Note 1 Note 1 Note 1 Note 2 Note 2 Note 2	ading, average limit		
5322.190 Band Edge Frequency MHz 5150.0 5150.0 5150.0 5350.0 5350.0	e Field Stre Level dBμV/m 71.8 42.8 56.3 26.5 60.4 43.9	ength C Pol v/h v v h h v v v	alculations 15.209 / Limit 74.0 54.0 74.0 54.0 74.0 54.0 54.0 54.0	29.4 15.407 Margin -2.2 -11.2 -17.7 -27.5 -13.6 -10.1	Avg Detector Pk/QP/Avg Pk Avg Pk Avg Pk Avg Avg	262 Azimuth	1.4 Height	Average re Comments Note 1 Note 1 Note 1 Note 1 Note 1 Note 2 Note 2	ading, average limit		
5322.190 Band Edge Frequency MHz 5150.0 5150.0 5150.0 5150.0 5350.0 5350.0 5350.0	e Field Stre Level dBμV/m 71.8 42.8 56.3 26.5 60.4 43.9 46.8 30.2	ength C Pol v/h v v h h v v h h	alculations 15.209 / Limit 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	29.4 15.407 Margin -2.2 -11.2 -17.7 -27.5 -13.6 -10.1 -27.2 -23.8	Avg Detector Pk/QP/Avg Pk Avg Pk Avg Pk Avg Pk Avg Pk Avg	262 Azimuth degrees	1.4 Height meters	Average re Comments Note 1 Note 1 Note 1 Note 1 Note 1 Note 2 Note 2 Note 2 Note 2	ading, average limit		
5322.190 Band Edge Frequency MHz 5150.0 5150.0 5150.0 5350.0 5350.0 5350.0 5350.0 5350.0	e Field Stre Level dBμV/m 71.8 42.8 56.3 26.5 60.4 43.9 46.8 30.2 EUT opera relative me	ength C Pol v/h v v h h v v h h h ating on easurem	alculations 15.209 / Limit 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 r4.0 the lowest c ents in run #	29.4 29.4 15.407 Margin -2.2 -11.2 -17.7 -27.5 -13.6 -10.1 -27.2 -23.8 hannel ava \$5 (-34.83 c)	Avg Detector Pk/QP/Avg Pk Avg Pk Avg Pk Avg Pk Avg Bk Avg	262 Azimuth degrees	1.4 Height meters Hz band. S	Average re Comments Note 1 Note 1 Note 1 Note 1 Note 2 Note 2 Note 2 Note 2 Note 2	ading, average limit		
5322.190 Band Edge Frequency MHz 5150.0 5150.0 5150.0 5350.0 5350.0 5350.0 5350.0 5350.0	e Field Stre Level dBμV/m 71.8 42.8 56.3 26.5 60.4 43.9 46.8 30.2 EUT opera relative me average fie	ength C Pol v/h v h h v v h h h ating on easurem	alculations 15.209 / Limit 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 the lowest c ents in run #	29.4 29.4 15.407 Margin -2.2 -11.2 -17.7 -27.5 -13.6 -10.1 -27.2 -23.8 hannel ava \$5 (-34.83 c) ements of the second seco	Avg Detector Pk/QP/Avg Pk Avg Pk Avg Pk Avg Pk Avg ilable in the 5 Bc for peak he fundamen	262 Azimuth degrees 5.15 - 5.25 Mi and -54 dBc tal signal leve	1.4 Height meters Hz band. S for average el.	Average re Comments Note 1 Note 1 Note 1 Note 1 Note 2 Note 2 Note 2 Note 2 Signal level c	ading, average limit		
5322.190 Band Edge Frequency MHz 5150.0 5150.0 5150.0 5150.0 5350.0 5350.0 5350.0	E Field Stree Level dBµV/m 71.8 42.8 56.3 26.5 60.4 43.9 46.8 30.2 EUT opera relative me average fie EUT opera	ength C Pol V/h V V h h h h ating on easurem eld strem	alculations 15.209 / Limit 74.0 54.0 74.0	29.4 (15.407 Margin -2.2 -11.2 -17.7 -27.5 -13.6 -10.1 -27.2 -23.8 hannel ava #5 (-34.83 c ements of the second sec	Avg Detector Pk/QP/Avg Pk Avg Pk Avg Pk Avg Pk Avg Ible in the 5 IBc for peak he fundamen	262 Azimuth degrees	1.4 Height meters Hz band. S for average el. band. Sigr	Average re Comments Note 1 Note 1 Note 1 Note 1 Note 2 Note 2 Note 2 Note 2 Signal level company lev	ading, average limit		

Client.	D-Link Co	rnoratio	n				l	ob Number:	145656		
	DW-290 (N	•						og Number:			
wouer.	DW-290 (I		i wouule)				1-L(0			
								Proj Eng:	Mark Briggs		
Contact:	Shinglin C	hung									
Spec:	FCC Part	15 B an	d E, RSS-21	0				Class:	В		
Run #7b:	Radiated S	Spuriou	s Emission	s, 1000 - 40	0000 MHz						
EUT On Lo	west Chai	nnel Av	ailable (5.18	B GHz), Joy	Max Antenn	a					
PC-dac 6				-							
Frequency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments			
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
15540.0	53.6	V	54.0	-0.4	Avg	275		Note 2			
10360.0	62.0	۷	68.3	-6.3	Note 3	74	1.5	Note 4			
15540.0	46.7	h	54.0	-7.3	Avg	65		Note 2			
15540.0	66.2	V	74.0	-7.8	Pk	275		Note 2			
20720.0	44.1	V	54.0	-9.9	Avg	290		Note 2			
20720.0	42.7	h	54.0	-11.3	Avg	320		Note 2			
4144.0	41.3	V	54.0	-12.7	Avg	240		Note 2			
20720.0	60.9	V	74.0	-13.1	Pk	290		Note 2			
15540.0	59.3	h	74.0	-14.7	Pk	65		Note 2			
10360.0	52.2	h	68.3	-16.1	Note 3	340		Note 4			
20720.0	56.6	h	74.0	-17.4	Pk	320		Note 2			
4144.0	33.0	h	54.0	-21.0	Avg	50		Note 2			
4144.0	48.1	V	74.0	-25.9	Pk	240		Note 2			
4144.0	44.6	h	74.0	-29.4	Pk	50	1.1	Note 2			
6216.0	36.9	h	68.3	-31.4	Note 3	35	1.2	Note 4			
6216.0	36.2	V	68.3	-32.1	Note 3	320	1.4	Note 4			

6I									C Test Data		
Client:	D-Link Co	rporation	l				J	ob Number:	J45656		
Model:	DW-290 (N	AINI PC	I Module)				T-Log Number: T45752				
						-	Proj Eng: Mark Briggs				
Contact:	Shinglin C	hung									
Spec:	FCC Part	15 B an	d E, RSS-21	0				Class:	В		
EUT On Ce PC_Dac 12		nel (5.2	6 GHz), Ath	ieros Antei	nna, JoyMax	Antenna					
Frequency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments			
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
15780.0	53.0	V	54.0	-1.0	Avg	279	1.2	Note 2			
4208.0	49.5	V	54.0	-4.5	Avg	20	1.2	Note 2			
15780.0	48.1	h	54.0	-5.9	Avg	261	1.3	Note 2			
15780.0	67.3	V	74.0	-6.7	Pk	279	1.2	Note 2			
21040.0	44.5	V	54.0	-9.5	Avg	50	1.3	Note 2			
10520.0	58.2	V	68.3	-10.1	Note 3	312	1.5	Note 4			
21040.0	61.1	V	74.0	-12.9	Pk	50		Note 2			
15780.0	60.9	h	74.0	-13.1	Pk	261	1.3	Note 2			
21040.0	40.4	h	54.0	-13.6	Avg	350		Note 2			
4208.0	37.3	h	54.0	-16.7	Avg	65	1.6	Note 2			
10520.0	51.3	h	68.3	-17.0	Note 3	90		Note 4			
4208.0	53.4	V	74.0	-20.6	Pk	20	1.2	Note 2			
21040.0	53.2	h	74.0	-20.8	Pk	350		Note 2			
4208.0	45.9	h	74.0	-28.1	Pk	65		Note 2			
6312.0	36.9	V	68.3	-31.4	Note 3	15		Note 4			
6312.0	36.3	h	68.3	-32.0	Note 3	50	1.0	Note 4			

Client:	D-Link Co	rporatior	า				J	ob Number: J45656			
Model:	DW-290 (N	MINI PC	I Module)				T-L	og Number: T45752			
			,			_	Proj Eng: Mark Briggs				
Contact	Shinglin C	huna									
	<u> </u>	<u> </u>	d E, RSS-21	0				Class: B			
			-		Max Anton			Class. D			
UT UN HI	gnest Cha	nnei Av	allable (5.3	2 GHZ), JO	yMax Anten	na					
requency	Level	Pol	15.209	15.407	Detector	Azimuth	Height	Comments			
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
PC-dac 9					9						
10640.0	51.5	٧	54.0	-2.5	Avg	134	1.5	Note 2			
10640.0	68.0	٧	74.0	-6.0	Pk	134	1.5	Note 2			
4256.0	47.7	V	54.0	-6.3	Avg	15	1.2	Note 2			
10640.0	46.2	h	54.0	-7.8	Avg	120	1.8	Note 2			
15960.0	45.1	٧	54.0	-8.9	Avg	320	1.3	Note 2			
15960.0	42.8	h	54.0	-11.2	Avg	315	1.9	Note 2			
10640.0		h	74.0	-12.5	Pk	120		Note 2			
21280.0		V	54.0	-13.4	Avg	10		Note 2			
21280.0		h	54.0	-13.6	Avg	360		Note 2			
15960.0		۷	74.0	-13.7	Pk	320		Note 2			
15960.0		h	74.0	-16.2	Pk	315		Note 2			
21280.0	54.4	V	74.0	-19.6	Pk	10		Note 2			
4256.0	34.2	h	54.0	-19.8	Avg	50		Note 2			
21280.0	53.2	h	74.0	-20.8	Pk	360		Note 2			
4256.0	51.0	V	74.0	-23.0	Pk	15		Note 2			
4256.0	44.2	h	74.0	-29.8	Pk	50		Note 2			
6384.0	36.5	V	68.3	-31.8	Note 3	350		Note 4			
6384.0	36.3	h	68.3	-32.0	Note 3	10	1.1	Note 4			

See following page for test notes...

Chent.	D Link Cornerat	ion								I	ob Number:	145656	
	D-Link Corporat DW-290 (MINI F										og Number:		
woder:	DVV-290 (IVIIIVI P		ue)							I-L	•		
O such s at											Proj Eng:	Mark Briggs	
	Shinglin Chung		00.010									2	
	FCC Part 15 B a	and E, R	SS-210)							Class:	В	
	s for run 6b					مادادها		205 14			f 1F 200	annha Fan all at	
lote 1:	For emissions fa emissions the lir	•							•			apply. For all of	ner
lote 2:	Signal is in a res			Jubin	(equit			Such	jin ai J		ubuviii)		
1016 2.	Restricted Band			ments	· Reso	olution a	nd Vid	≏∩ RW	· 1 MH	z Resti	ricted Band	Average Measu	rements
lote 3:	Resolution Bw: 7												
1010 0.	averaging on (10											,	
lote 4:	Signal does not		-	ed ban	d.								
	This measureme					ution ba	ndwidt	h of 3 l	kHz Th	e instru	mentation n	oise floor was to	o high
	allow measurem						•	•			-		
	intentional signa	l would	overloa	nd the a	amplifi	ier and t	here is	no lov	v pass	filter w	ith sufficient	shape factor to	reject
lote 5:	the intentionally												
	during the condu												
	the same as tha	t in a 1N	1Hz bar	ndwidtl	h (plea	ase refe	r to the	plot b	elow).	The pe	ak reading l	has been compa	red witl
	the average limi	t.											
		ATTEN								3d Bm			
		₹L -1	4.1a	Bm	10	ØdB∕		. 232 GHZ	0331	7GHz			
	D												
							THE REAL						
	_	****	money	ab de marca	-	/	<u>\</u> ^	-	Constitutions				
	R					/							
		rywww	بەر <u>مەر</u>	dame.	and the second			A REAL PROPERTY OF	Luu.	- HYVW	the day		
		1.1.1.1.1.1.1								стүүм	A. Market		
	(CENTE	R 4.	2320	331	7GHz		SP	AN 5	0.00	k Hz		
	*F	₹ВМ З	. ØKH:	z	¥ΩBΙ	4 1.0	MHz		SWP	67.0	ms		
Plot sho	wing LO signal	at 4GH	z meas	sured	using	RBW =	1MHz	and R	BW =	3kHz.	Amplitude	of the signal do	es not
1 101 5110													
1 101 511				cha	nge v	vith res	olutior	n band	width.				