

www.elliotlabs.com

Elliott Laboratories Inc. 684 West Maude Avenue Sunnwale, CA 94086-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to FCC Part 15, Subpart E (UNII Devices) and Industry Canada RSS 210 Issue 4 (LELEAN Devices) on the D-Link Corporation Model: DWL-A650 and DW-690

FINAL TEST DATE:

December 18 and December 19, 2001

Mark Briggs

AUTHORIZED SIGNATORY:

Mark Briggs **Director of Engineering**

This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

DECLARATIONS OF COMPLIANCE

Equipment Name and Model: DWL-A650 and DW-690

Manufacturer:

D-Link Corporation No.8, Li-shing Road VII Hsinchu, Taiwan

Tested to applicable standards:

RSS-210, Issue 4, December 2000 (Low Power License-Exempt Radiocommunication Devices) FCC Part 15 Subpart E (UNII Devices)

Measurement Facility Description Filed With Department of Industry:

Departmental Acknowledgement Number: IC2845**SV2** Dated August 12, 2001 Departmental Acknowledgement Number: IC2845**SV4** Dated July 19, 2001

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above mentioned departmental standards (through the use of ANSI C63.4 as detailed in section 5.3 of RSS-210, Issue 4); and that the equipment performed in accordance with the data submitted in this report.

Mark Briggs

Signature Name Title Company Address

Mark Briggs Director of Engineering Elliott Laboratories Inc. 684 W. Maude Ave Sunnyvale, CA 94086 USA

Date: December 27, 2001

Maintenance of compliance with the above standards is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

TABLE OF CONTENTS

COVER PAGE	1
DECLARATIONS OF COMPLIANCE	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	4
SUMMARY OF RESULTS	5
MEASUREMENT UNCERTAINTIES	6
EQUIPMENT UNDER TEST (EUT) DETAILS	7
GENERAL	7
OTHER EUT DETAILS	
ENCLOSURE	7
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION ANTENNA REQUIREMENTS	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	9
MEASUREMENT INSTRUMENTATION	10
RECEIVER SYSTEM	10
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
POWER METER	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	12
EUT AND CABLE PLACEMENT	12
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	13
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	14
FCC 15.407 (A) OUTPUT POWER LIMITS	15
RS-210 6.2.2(Q1) OUTPUT POWER LIMITS	15
SPURIOUS RADIATED EMISSIONS LIMITS	
AC POWER PORT CONDUCTED EMISSIONS LIMITS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
APPENDIX 1: Test Equipment Calibration Data	
APPENDIX 2: Test Data Log Sheets	2

SCOPE

An electromagnetic emissions test has been performed on the D-Link Corporation model DWL-A650 and DW-690 pursuant to Subpart E of Part 15 of FCC Rules for Unlicensed National Information Infrastructure (UNII) devices and RSS-210 Issue 4 for licence-exempt local area network (LELAN) devices. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the D-Link Corporation model DWL-A650 and DW-690 and therefore apply only to the tested sample. The sample was selected and prepared by Shinglin Chung of D-Link Corporation.

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart E of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units which are subsequently manufactured.

SUMMARY OF RESULTS

FCC Part 15 Section	RSS 210 Section	Description	Comments	Result
	he 5.15 – 5.25 GE	Iz Band		
15.407 (d)		As the device operates in the $5.15 - 5.25$ GHz band the antenna must be integral to the device.	Antenna Gain = 4 dBi The antenna is integral to the device.	COMPLIES
15.407(e)		Indoor operation only	Refer to user's manual in Appendix 6	COMPLIES
15.407(a) (1)		26dB Bandwidth	55.8 – 77 MHz in Turbo Mode 28.2 - 41.8 MHz in 802.11a (Normal) Mode	N/A
	6.2.2 q1 (i)	20dB Bandwidth	33.8 – 49.3 MHz in Turbo Mode 17.7 - 26 MHz in 802.11a Mode	N/A
15.407(a) (1)	6.2.2 q1 (i)	Output Power	12.8 dBm in Turbo Mode 13.2 dBm in 802.11a Mode	COMPLIES
15.407(a) (1))	6.2.2 q1 (i)	Power Spectral Density	-2.47 dBm/MHz in Turbo Mode 1.2 dBm/MHz in 802.11a Mode	COMPLIES
15.407(b) (2)	6.2.2 q1 (ii)	Spurious Emissions above 1GHz	1dB @ 15630MHz in turbo mode -1.5dB @ 15540MHz in 802.11a Mode	COMPLIES
density of spur	ious emissions in		is restricted to indoor use only, therefore th were limited to the power spectral limits for in	
signals uctaned		Maximum Antenna Gain /Integral Antenna	Antenna Gain = 4 dBi The antenna is integral to the device.	COMPLIES
15.407(a) (1)		26dB Bandwidth	55.8 – 77 MHz in Turbo Mode 28.2 - 41.8 MHz in 802.11a (Normal) Mode	N/A
	6.2.2 q1 (i)	20dB Bandwidth	33.8 – 49.3 MHz in Turbo Mode 17.7 - 26 MHz in 802.11a Mode	N/A
15.407(a) (2)	6.2.2 q1 (ii)	Output Power	14.5 dBm in turbo mode 12.7 dBm in 802.11a Mode	COMPLIES
15.407(a) (2))	6.2.2 q1 (ii)	Power Spectral Density	-3.03 dBm/MHz in turbo mode -0.1dBm/MHz in 802.11a Mode	COMPLIES
15.407(b) (2)	6.2.2 q1 (ii)	Spurious Emissions above 1GHz	-1.5dB @ 15750MHz in turbo mode -0.1dB @ 15780MHz in 802.11a Mode	COMPLIES
General requir	ements for all ba	nds		
15.407(b) (5) / 15.209	6.2.2 q1 (ii)	Spurious Emissions below 1GHz	-15.5dB @ 100MHz	COMPLIES
	6.2.2 q(iv)(a)	Digital Modulation	Digital Modulation is used, refer to the "Theory of Operations" (Appendix 9) for a detailed explanation.	COMPLIES
	6.2.2 q(iv)(b)	Peak Spectral Density	3.0 dBm/MHz in turbo mode 6.1 dBm/MHz in 802.11a Mode	COMPLIES
15.407(a)(6)		Peak Excursion Ratio	Less than 13dB	COMPLIES
	6.2.2 q(iv)(c)	Channel Selection	The channels used represent the highest, lowest and center channels available.	N/A
15.407 (c)	6.2.2 q(iv)(d)	Automatic Discontinuation of Operation in the absence of information to transmit	Operation is discontinued in the absence of information to transmit, refer to the "Theory of Operations" in Appendix 9 for a detailed explanation.	COMPLIES
15.407 (g)	6.2.2 q(iv)(e)	Frequency Stability	Frequency stability is 20 ppm, refer to the "Theory of Operations" in Appendix 9 for a detailed analysis.	COMPLIES

Test Report Report Date: December 27, 2001

FCC Part 15 Section	RSS 210 Section	Description	Comments	Result
	6.2.2 q(iv)(g)	User Manual information	All relevant statements have been included in the user's manuals. Refer to Appendix 6 for details	COMPLIES
15.407 (f)	6.2.2 q(iv)(g)	RF Exposure Requirements	Refer to MPE calculations in Appendix 11	COMPLIES
15.407(b) / 15.207	6.6	AC Conducted Emissions	-13.7dB @ 0.4701MHz	COMPLIES

MEASUREMENT UNCERTAINTIES

ISO Guide 25 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.2

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The D-Link Corporation model DWL-A650 and DW-690 is an 802.11a DWL-A650 and DW-690 device that is designed to operate in the 5.15-5.25 and 5.25-5.35GHz UNII/LELAN bands. Normally, the EUT would be installed into the PC Card slot of a laptop PC. The EUT was installed in a laptop and the whole system was treated as table-top equipment during testing to simulate the end user environment.

The EUT can support data rates of up to 54Mb/s in 802.11a mode using a nominal channel bandwidth of 20MHz. It has a higher data rate mode of 72Mb/s when operating in "Turbo Mode". This mode uses a nominal channel bandwidth of 40MHz.

The sample was received on December 18, 2001 and tested on December 18 and December 19, 2001. The EUT consisted of the following component(s):

Manufacturer/Model/Description	Serial Number
D-Link Corporation DWL-A650, DW-690 802.11a	3
DWL-A650 and DW-690	
D-Link Corporation 802.11a DWL-A650 and DW-	18
690	

OTHER EUT DETAILS

The two cards used identical circuit boards. One card $(s/n \ 18)$ was used for tests performed on the device operating in 802.11a mode and the other card $(s/n \ 3)$ was used for tests performed in Turbo Mode. The two cards use different plastic housings (which extend beyond the metal DWL-A650 and DW-690 enclosure and outside the laptop) for the antennae.

The output power is set via software using PCDAC values. These values are used in a look-up table within the device to set the output power to a nominal level. The PCDAC values used for the tests results submitted for product certification are the ones that will be used in normal operation.

ENCLOSURE

The EUT enclosure is primarily fabricated from sheet metal to fit the form factor for PC cards.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with the emission specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing.			
Manufacturer/Model/Description	Serial Number	FCC ID Number	
ASUS M1300 Series Laptop	18NG008506	DoC	
Dell PP01L Laptop	TW-0791UH-12800-0BD-1339	-	
Hewlett Packard Printer	2714S40166	-	
US Robotics Pilot PDA	-	-	
Dell ADP-70EB Power Adaptor	TH-09364U-17971-0AU-0VWN	-	

The following equipment was used as local support equipment for emissions testing:

No remote support equipment was used during emissions testing.

EUT INTERFACE PORTS

		Cable(s)		
Port	Connected To	Description	Shielded or Unshielded	Length (m)
PCI Card	Laptop	Wireless Card	N/A	N/A
Parallel	Printer	Parallel	Shielded	3
Serial	PDA	Serial	Shielded	3
AC	Adaptor	Two Wire	Unshielded	2

The I/O cabling configuration during emissions testing was as follows:

EUT OPERATION

The EUT was set to operate in a continuous transmit mode at a data rate of 6Mb/s for 802.11a mode and 12Mb/s for turbo mode. These data rates produce the highest spectral density for their respective modes.

The channels used for testing were selected as representing the highest and lowest available channels for each mode plus a channel from the middle of the frequency band.

During the radiated emissions below 1GHz and conducted emissions tests the laptop was transmitting data at 5.26GHz in normal mode and pcdac at 12. In addition to transmitting on the center channel the laptop was displaying an H pattern on its screen.

ANTENNA REQUIREMENTS

As the device is intended to operate in the 5.15 - 5.25 GHz band an integral antenna as detailed in 15.407 (d) and RSS-210 6.2.2(q1) (i) is required. The antenna for the device is an integral antenna that is not accessible to the end user.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on December 18 and December 19, 2001at the Elliott Laboratories Open Area Test Site #4 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Federal Communications Commission. In accordance with Industry Canada rules detailed in RSS 210 Issue 4 and RSS-212, construction, calibration, and equipment data for the test sites have been filed with the Federal Communications Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4-1992. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde and Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

POWER METER

Either a spectrum analyzer or a power meter and thermister mount are used for all direct output power measurements from transmitters.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An Appendix of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Measurement bandwidths (video and resolution) are set in accordance with FCC procedures for the type of radio being tested.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions from the AC power port are given in units of microvolts, the limits for radiated electric field emissions are given in units of microvolts per meter at a specified test distance and the output power limits are given in temrs of Watts, milliwatts or dBm. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp) the following formula is used to determine the field strength limit in terms of microvolts per meter at a distance of 3m from the equipment under test:

 $E = \frac{1000000 \text{ v } 30 \text{ P}}{3} \quad \text{microvolts per meter}$

where P is the eirp (Watts)

For reference, converting the voltage and electric field strength specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. Conversion of power specification limits from linear units (in milliwatts) to decibel form (in dBm) is accomplished by taking the base ten logarithm, then multiplying by 10.

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

RS-210 6.2.2(q1) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	200mW (23 dBm)	10 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

SPURIOUS RADIATED EMISSIONS LIMITS

The table below shows the limits for unwanted (spurious) emissions falling in the restricted bands detailed in Part 15.205 and Industry Canada RSS-210 Table 2.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

The table below shows the limits for unwanted (spurious) emissions outside of the restricted bands above 1GHz.

Operating Frequency (MHz)	EIRP Limit (dBm)	Equivalent Field Strength At 3m (dBuV/m)
5150 - 5250	-27 dBm	68.3 dBuV/m
5250 - 5350	-27 dBm (note 1)	68.3 dBuV/m
5725 - 5825	-27 dBm (note 2)	68.3 dBuV/m
	-17 dBm (note 3)	78.3 dBuV/m

Note 1: If operation is restricted to indoor use only then emissions in the band 5.15 – 5.25 GHz must meet the power spectral density limits for the intentional signals detailed in RSS 210 and FCC Subpart E for devices operating in the 5.15 – 5.25 GHz band.
Note 2: Applies to spurious signals separated by more than 10 MHz from the allocated band.
Note 3: Applies to spurious signals within 10 MHz of the allocated band.

AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in FCC Part 15.205 and Industry Canada RSS-210 section 6.6.

Frequency		
Range	Limit	Limit
(MHz)	(uV)	(dBuV)
0.450 to 30.000	250	48

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

$$C - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

B = Broadband Correction Factor*

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

^{*} Broadband Level - Per ANSI C63.4, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

- R_r = Receiver Reading in dBuV/m
- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

APPENDIX 1: Test Equipment Calibration Data

Conducted and Radiated Emissions, 20-Dec-01 12:03 AM Engineer: Vishal

Engineer. visitai							
Manufacturer	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due	
EMCO	Biconical Antenna, 30-300 MHz	3110B	1320	12	5/23/2001	5/23/2002	
Elliott Laboratories	LISN 2 x (Solar 8028 LISN + 6512 Caps)	LISN-5, Support	379	12	8/10/2001	8/10/2002	
Fischer Custom Comm.	LISN, Freq. 0.9 -30 MHz,16 Amp	FCC-LISN-50/250-16-2	1079	12	6/15/2001	6/15/2002	
EMCO	Log Periodic Antenna, 0.2-1 GHz	3146	1294	12	3/27/2001	3/27/2002	
Rohde& Schwarz	Pulse Limiter	ESH3 Z2	812	12	1/23/2001	1/23/2002	
Rohde & Schwarz	Test Receiver, 0.009-30 MHz	ESH3	1316	12	5/9/2001	5/9/2002	
Rohde & Schwarz	Test Receiver, 20-1300 MHz	ESVP	1317	12	5/9/2001	5/9/2002	

Antenna Conducted Emissions, Radiated Spurious Emissions Above 1GHz

Engineer: Mark						
Manufacturer	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	786	12	2/7/2001	2/7/2002
Hewlett Packard	Microwave EMI test system (SA40, 30Hz - 40GHz)	84125C	1149	12	2/5/2001	2/5/2002
Hewlett Packard	Spectrum Analyzer 9KHz - 26GHz	8563E	284	12	2/22/2001	2/22/2002

APPENDIX 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T 45735 63 Pages

Elliott	EM	C Tes
Client: D-Link Corporation	Job Number:	
Model: Cardbus	T-Log Number:	
		Mark Briggs
Contact: Shinglin Chung		
missions Spec: FCC 15 B & E	Class:	В
mmunity Spec: N/A	Environment:	N/A
EMC Test Da	ta	
For The	iu iii	
D-Link Corpora	tion	
Model		
Cardbus		

Ellio	t	EM	C Test Data
Client:	D-Link Corporation	Job Number:	J45652
Model:	Cardbus	T-Log Number:	T45735
		Proj Eng:	Mark Briggs
Contact:	Shinglin Chung		
Emissions Spec:	FCC 15 B & E	Class:	В
Immunity Spec:	N/A	Environment:	N/A

EUT INFORMATION

General Description

The EUT is an 802.11a CardBus device that is designed to operate in the 5.15-5.25 and 5.25-5.35GHz UNII/LELAN bands. Normally, the EUT would be installed into the PC Card slot of a laptop PC. The EUT was installed in a laptop and the whole system was treated as table-top equipment during testing to simulate the end user environment.

The EUT can support data rates of up to 54Mb/s in 802.11a mode using a nominal channel bandwidth of 20MHz. It has a higher data rate mode of 72Mb/s when operating in "Turbo Mode". This uses a nominal channel bandwidth of 40MHz.

Equipment Under Test

	-1					
Manufacturer	Model	Description	Serial Number	FCC ID		
D-Link Corporation	DWL-A650, DW-690	802.11a CardBus	3			
D-Link Corporation		802.11a CardBus	18			

Other EUT Details

The two cards used identical circuit boards. One card (s/n 18) was used for tests performed on the device operating in 802.11a mode and the other card (s/n 3) was for tests performed in Turbo Mode. The two cards use different plastic housings (which extends beyond the metal CardBus enclosure and outside the laptop) for the antennae. The output power is set via software using PCDAC values. These values are used in a look-up table within the device to set

the output power to a nominal level. The PCDAC values used for the tests results submitted for product certification are the ones that will be used in normal operation.

EUT Enclosure

The EUT enclosure is primarily fabricated from sheet metal to fit the form factor for PC cards.

Modification History

Mod. # Test Date		Modification				
-	-	None made during testing				
	Test -					

6		1
4	H	110ff
41		liott

EMC Test Data

Client:	D-Link Corporation	Job Number:	J45652			
Model:	Cardbus	T-Log Number:	T45735			
		Proj Eng:	Mark Briggs			
Contact:	Shinglin Chung					
Emissions Spec:	FCC 15 B & E	Class:	В			
Immunity Spec:	N/A	Environment:	N/A			

Test Configuration #1

	Local Support Equipment							
Manufacturer	Model	Description	Serial Number	FCC ID				
ASUS	M1300 Series	Laptop	18NG008506	DoC				
Dell	PP01L	Laptop	TW-0791UH-12800-0BD- 1339					
Hewlett Packard		Printer	2714S40166					
US Robotics	Pilot	PDA						
Dell	ADP-70EB	Power Adaptor	TH-09364U-17971-0AU- 0VWN					

The ASUS laptop was used as the host laptop for radiated spurious emissions measurements above 1GHz and all antenna conducted emissions. The Dell laptop was used for all digital device radiated emissions tests and the AC power conducted emissions test. The printer and palm pilot were not connected when the ASUS laptop was being used.

Remote Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID	
None					
		Interface Ports			
Cable(s)					
Port	Connected To	Description	Shielded or Unshielded	Length(m)	
PCI Card	Laptop	Wireless Card	N/A	N/A	
Parallel	Printer	Parallel	Shielded	3	
Serial	PDA	Serial	Shielded	3	
AC	Adaptor	Two Wire	Unshielded	2	

EUT Operation During Emissions

The EUT was set to operate in a continuous transmit mode at a data rate of 6Mb/s for 802.11a mode and 12Mb/s for turbo mode. These data rates produce the highest spectral density for their repsective modes.

The channels used for testing were selected as representing the highest and lowest available channels for each mode plus a channel from the middle of the frequency band.

During the radiated emissions below 1GHz and conducted emissions tests the laptop was transmitting data at 5.26GHz in normal mode and pcdac at 12. In addition to transmitting on the center channel the laptop was displaying an H pattern on its screen.

Test Specifics		
	The objective of this test ses specification listed above.	ssion is to perform final qualification testing of the EUT with respect to the
Date of Test:	12/19/2001	Config. Used: 1
Test Engineer:	Vishal	Config Change: None
Test Location:	SVOATS #2	EUT Voltage: 120V/60Hz

Radiated Emissions

General Test Configuration

Client: D-Link Corporation

Model: Cardbus

Contact: Shinglin Chung Spec: FCC 15 B & E

The EUT and all local support equipment were located on the turntable for radiated emissions testing.

On the OATS, the measurement antenna was located 3 meters from the EUT for the measurement range 30 - 1000 MHz and 3m from the EUT for the frequency range 1 - 10 GHz.

Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, <u>and</u> manipulation of the EUT's interface cables.

Note, for testing above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the peak reading of any emission above 1 GHz, can not exceed the average limit by more than 20 dB.

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	RE, Preliminary Scan 30 - 1000 MHz	FCC B	Pass	-15.5dB @ 100MHz
2	RE, 30 - 1000MHz - Maximized Emissions	FCC B	Pass	-15.5dB @ 100MHz

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

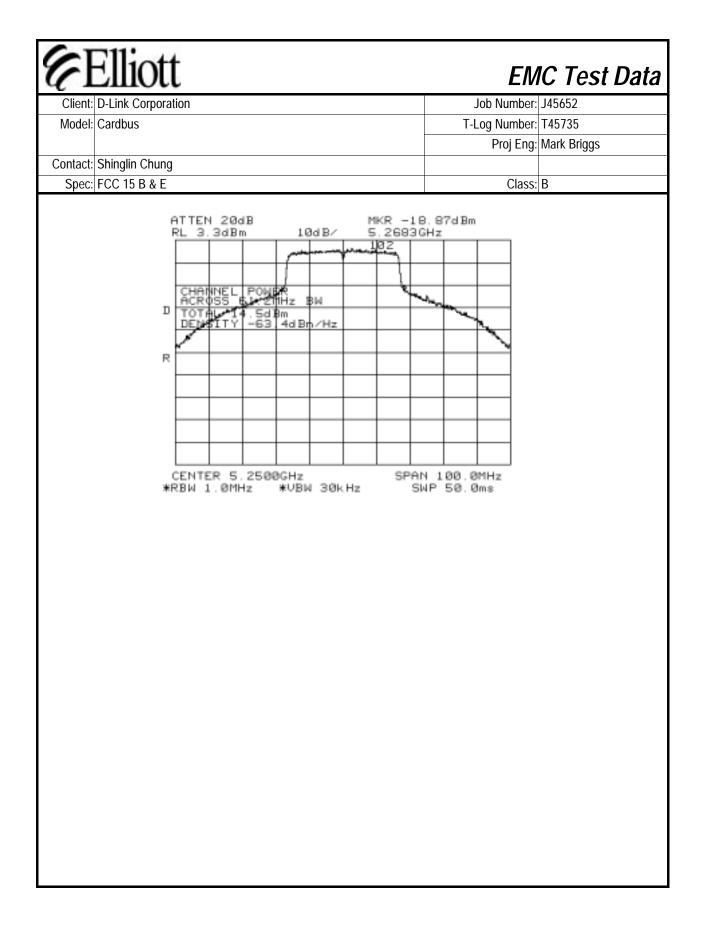
No deviations were made from the requirements of the standard.

EMC Test Data

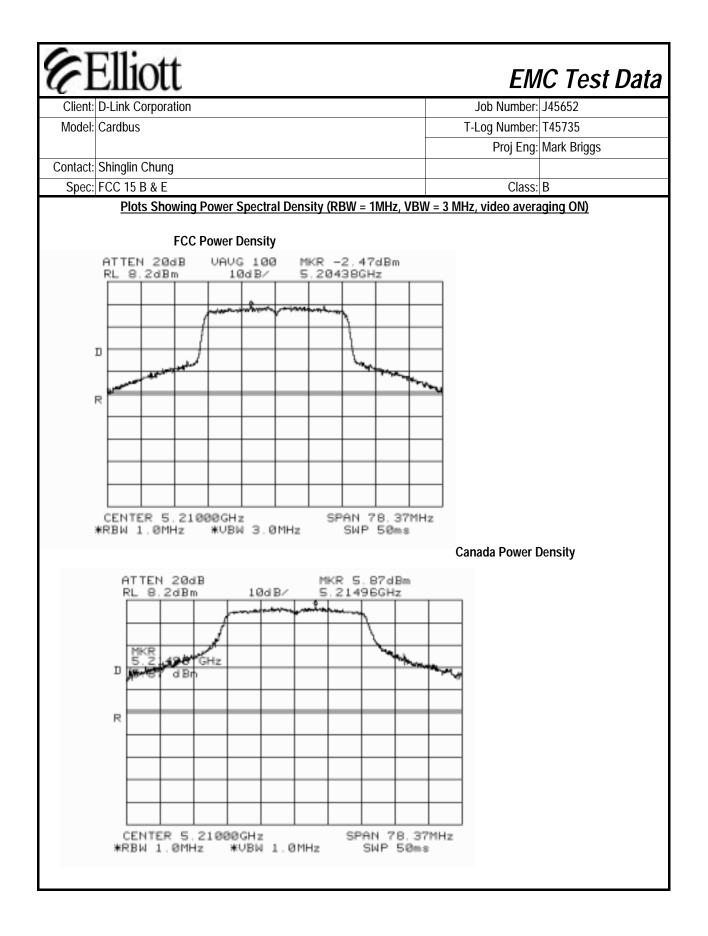
Job Number: J45652

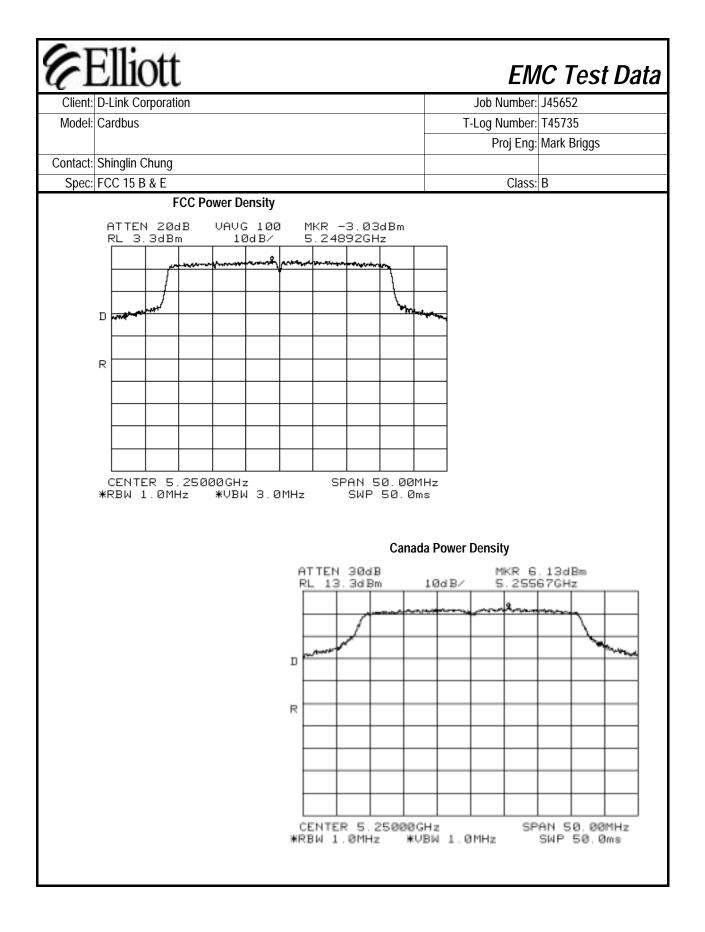
Class: B

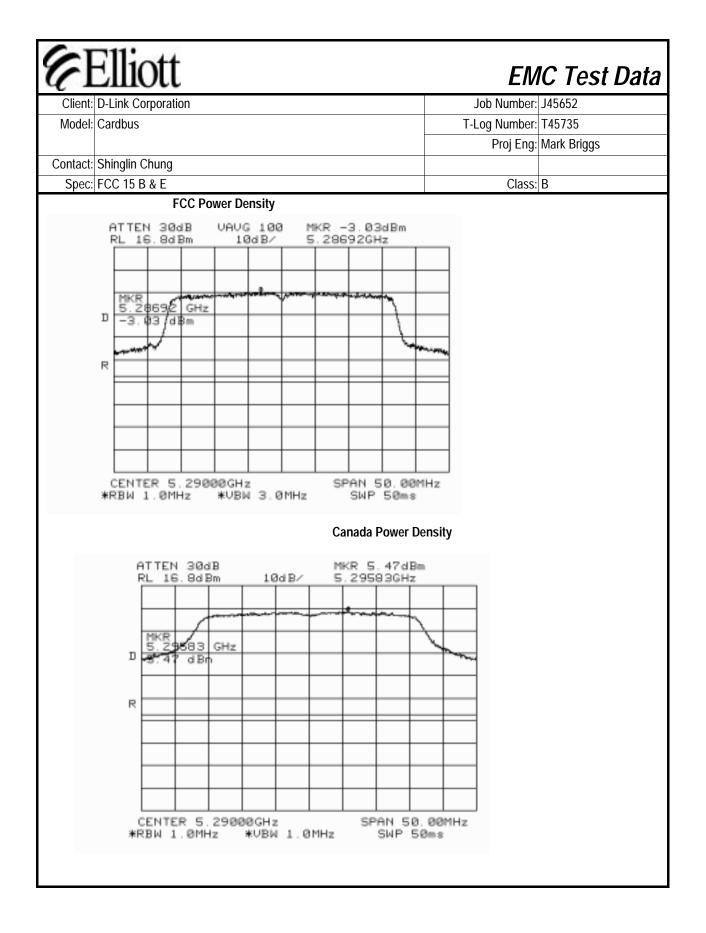
Proj Eng: Mark Briggs

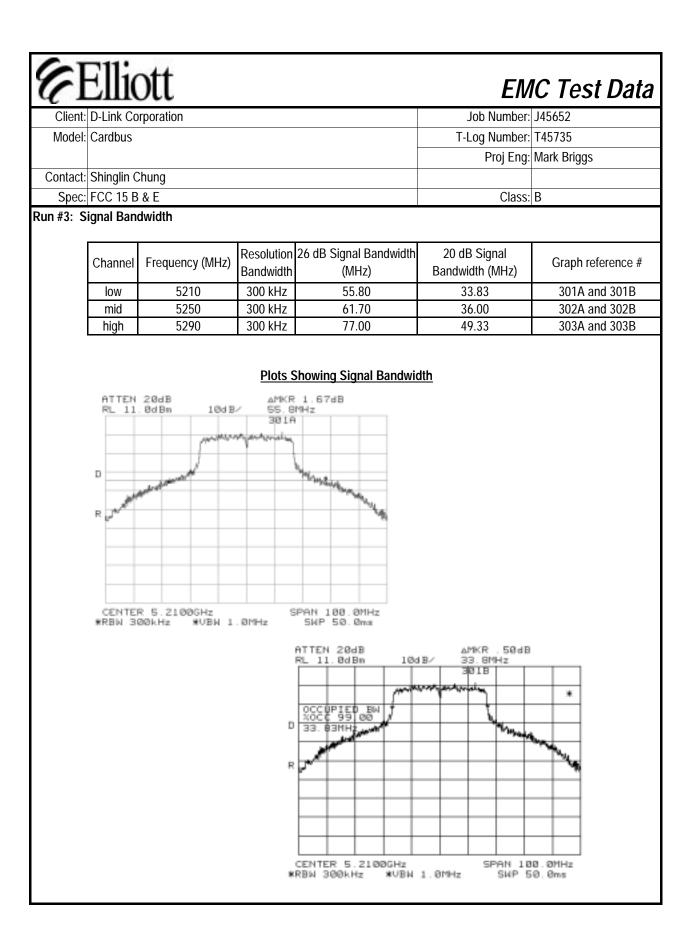

T-Log Number: T45735

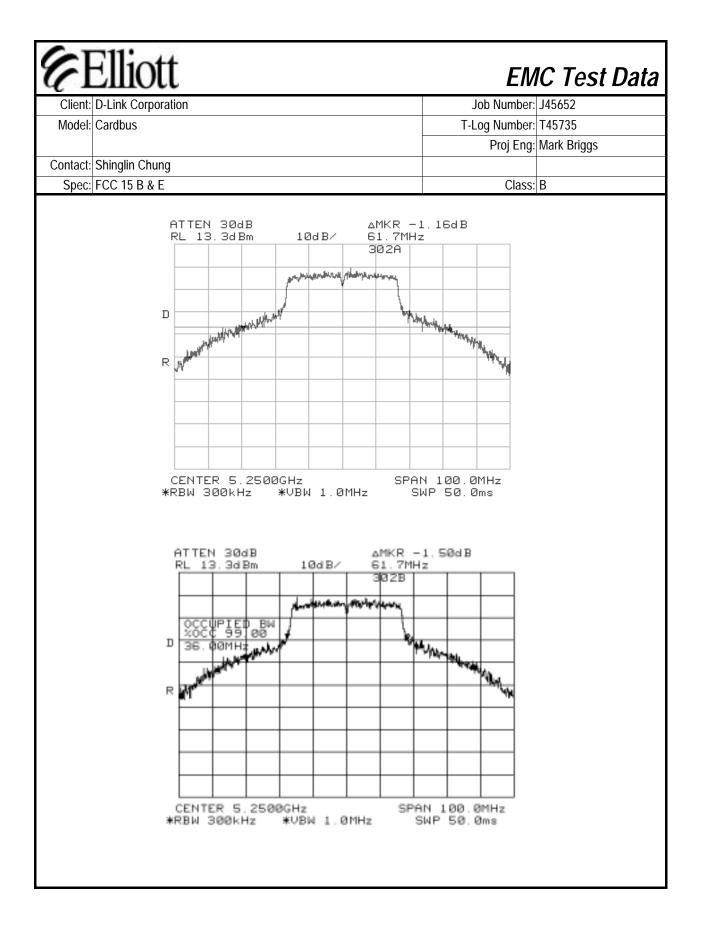
	Ellic D-Link Co		า					ob Number:	145652
	Cardbus	iporatio	1					.og Number:	
wouer.	Calubus						1-L	•	
Combook	Chinalia C	·						Ploj Elig:	Mark Briggs
	Shinglin C	-						01	
Spec:	FCC 15 B	& E						Class:	В
Run #1: P	reliminary	Radiate	ed Emissio	ns, 30-100	0 MHz			_	
requency	Level	Pol		СВ	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
100.000		V	43.5	-15.5	QP	280	1.0		
210.000	28.0	Н	43.5	-15.5	QP	160	1.5		
797.500	29.0	V	46.0	-17.0	QP	360	1.0		
300.000	29.0	Н	46.0	-17.0	QP	140	1.4		
797.500	28.7	H	46.0	-17.3	QP	250	1.1		
53.600	22.0	V	40.0	-18.0	QP	300	1.1		
300.000	28.0	V	46.0	-18.0	QP	170	1.0		
695.500	27.7	<u>V</u>	46.0	-18.3	QP	120	1.2		
695.500	27.5	H	46.0	-18.5	QP	210	1.0		
424.300 530.000	26.0 26.0	V H	46.0 46.0	-20.0	QP QP	180 0	1.0 1.1		
400.000	26.0	<u>н</u> V	46.0	-20.0 -20.8	QP	180	1.1		
400.000	25.2	H	46.0	-20.8	QP QP	180	1.2		
499.000	25.0	H	46.0	-21.0	QP	200	1.0		
180.000		<u> </u>	43.5	-21.5	QP	200	1.8		
100.000	22.0		-J.J	-21.5		220	1.0		
un #2: N		Reading Pol	js From Ru FC	n #1 C B	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
100.000	· · · · · · · · · · · · · · · · · · ·	V	43.5	-15.5	QP	280	1.0		
210.000		Н	43.5	-15.5	QP	160	1.5		
797.500	29.0	V	46.0	-17.0	QP	360	1.0		
300.000		Н	46.0	-17.0	QP	140	1.4		
797.500	28.7	Н	46.0	-17.3	QP	250	1.1		
	22.0	V	40.0	-18.0	QP	300	1.1		

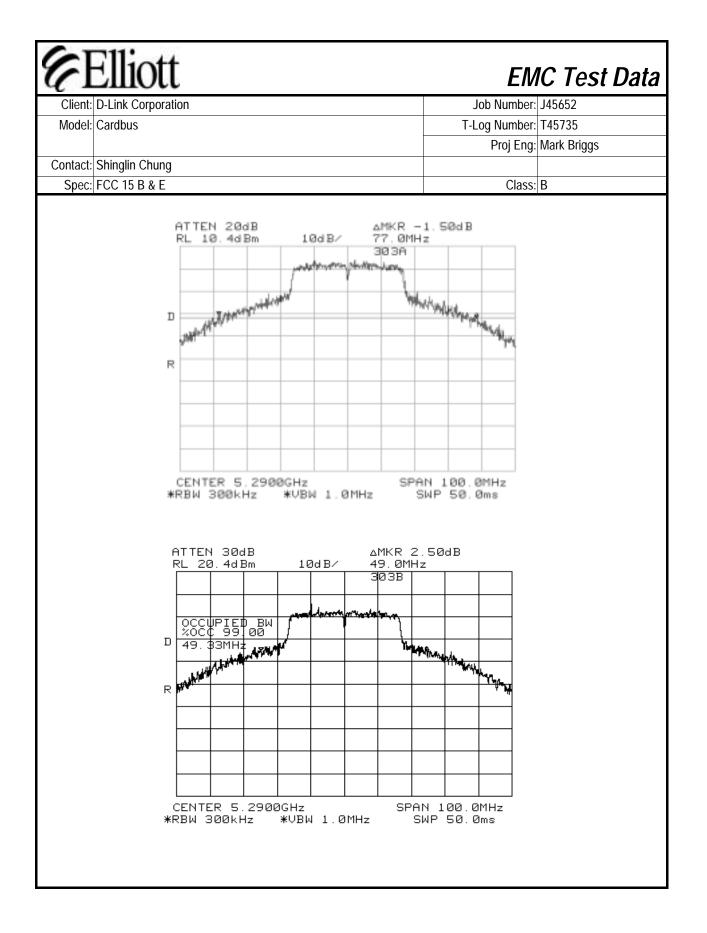

G	Ellio	ott						EM	C Test Data
Client:	D-Link Co	orporation	า				J	ob Number:	
	Cardbus							og Number:	
	0010000							•	Mark Briggs
Contact.	Shinglin (Chuna						rioj Eligi	mant Briggs
	FCC 15 E	-						Class:	R
Opec.	100 131							01035.	0
			Condu	ucted E	Emissio	ons - Po	ower P	orts	
Test Spe	cifics								
-			ective of this ation listed a		n is to perfo	rm final qualif	ication testi	ng of the El	JT with respect to the
Dat	e of Test:	12/19/20	001		C	Config. Used:	1		
Test	Engineer:	Vishal				nfig Change:			
Test	Location:	SVOATS	S #2		E	EUT Voltage:	120V/60Hz		
LISN. A	top equip second L	ment, the ISN was u	EUT was loused for all	local suppor	t equipmen		n a vertical	coupling pla	ine and 80cm from the
Ambient	Conditi	ons:		emperature: I. Humidity:					
Summar	y of Res	sults							
Rur	n #	-	Test Perforr	ned	L	imit	Result	Ма	argin
1		CE, A	C Power 12	0V/60Hz	FC	C B	Pass	-13.7dB @	.4701MHz
No modif Deviatio No devia	ications w 1s From tions were	vere made I The St e made fr	andard om the requ	r during test irements of	the standar	d. 120 V / 60 H	7		
Frequency	Level	Power	FCC-B	FCC-B	Detector	Comments	L		
MHz	dBuV	Lead	Limit	Margin	Function				
0.470	34.3	Line 1	48.0	-13.7	PK				
5.700	34.3	Line 1	48.0	-13.7	PK				
19.258	33.3	Line 1	48.0	-14.7	PK				
5.753	30.0	Neutral	48.0	-18.0	QP				
19.056	28.8	Neutral	48.0	-19.2	QP				
0.470	27.7	Neutral	48.0	-20.3	QP				

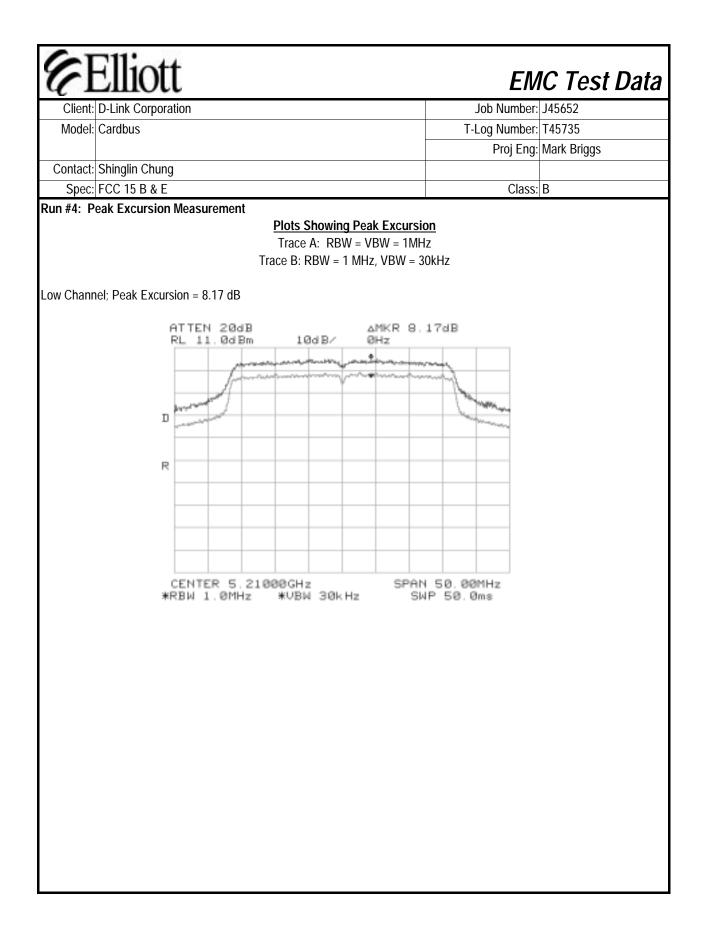

y Lu	lott			EN	IC Test Da
Client: D-Link	Corporation		J	ob Number:	J45652
Model: Cardb	JS		T-L	og Number:	T45735
				Proj Eng:	Mark Briggs
Contact: Shingl	n Chung				
Spec: FCC 1	5 B & E			Class:	В
	FCC Part 15 Su	bpart E Tests	: Turbo	o Mode	•
Test Specifics					
Objectiv	ve: The objective of this test session specification listed above.	n is to perform final quali	ification test	ing of the E	UT with respect to th
Date of Te	est: 12/18/2001 - 12/19/2001	Config. Used:	PC Card #	18	
-	er: Juan M. / Vishal / Mark	Config Change:			
Test Location	on: SVOATS# 4	Host Unit Voltage	•		
General Test (Configuration cated on the turntable for radiated s	spurious omissions tosti	a		
			•		
For radiated em	issions testing the measurement an	itenna was located 3 me	eters from th	e EUT unles	ss stated otherwise.
spectrum analyz	g the conducted emissions from the zer or power meter via a suitable att	•	•		
measurements	are corrected to allow for the extern	al attenuators and cable	es used.		
			es used.		
Ambient Cond		10°C	es used.		
Ambient Cond	litions: Temperature:	10°C	es used.		
Ambient Cond	litions: Temperature: Rel. Humidity:	10°C	es used.	_	nments
Ambient Cond Summary of R	litions: Temperature: Rel. Humidity: esults: Turbo Mode	10°C 89%		Com 12.8dBm	nments
Ambient Cond Summary of R Run #	litions: Temperature: Rel. Humidity: esults: Turbo Mode Test Performed	10°C 89% <u>Limit</u> 15.407(a) (1), (2) 15.407(a) (1), (2)	Result	Com 12.8dBm -2.47dBm/	nments
Ambient Cond Summary of R Run # 1 2 2	Iitions: Temperature: Rel. Humidity: esults: Turbo Mode Test Performed Output Power Output Power Power Spectral Density (PSD) Power Spectral Density (PSD) Power Spectral Density (PSD)	10°C 89% <u>Limit</u> 15.407(a) (1), (2) 15.407(a) (1), (2) RSS 210	Result pass	Com 12.8dBm -2.47dBm/ 3.03d 6.1dE	nments 1/ 14.5dBm MHz / Bm/MHz Bm/MHz
Ambient Cond Summary of R Run # 1 2 2 3	Iitions: Temperature: Rel. Humidity: esults: Turbo Mode Test Performed Output Power Power Spectral Density (PSD) Power Spectral Density (PSD) 26dB Bandwidth	10°C 89% <u>Limit</u> 15.407(a) (1), (2) 15.407(a) (1), (2) <u>RSS 210</u> 15.407	Result pass pass	Com 12.8dBm -2.47dBm/I 3.03d 6.1dE 55.8 -	nments i / 14.5dBm MHz / Bm/MHz 3m/MHz 77 MHz
Ambient Cond Summary of R Run # 1 2 2	Iitions: Temperature: Rel. Humidity: esults: Turbo Mode Test Performed Output Power Output Power Power Spectral Density (PSD) Power Spectral Density (PSD) Power Spectral Density (PSD)	10°C 89% <u>Limit</u> 15.407(a) (1), (2) 15.407(a) (1), (2) RSS 210	Result pass pass pass	Com 12.8dBm -2.47dBm/ 3.03d 6.1dE 55.8 - 33.8 -	nments / 14.5dBm MHz / Bm/MHz 3m/MHz 77 MHz 49.3 MHz
Ambient Cond Summary of R Run # 1 2 2 3	Iitions: Temperature: Rel. Humidity: esults: Turbo Mode Test Performed Output Power Power Spectral Density (PSD) Power Spectral Density (PSD) 26dB Bandwidth	10°C 89% <u>Limit</u> 15.407(a) (1), (2) 15.407(a) (1), (2) <u>RSS 210</u> 15.407	Result pass pass pass pass	Com 12.8dBm/ 3.03d 6.1dE 555.8 - 33.8 - 4 Peak to	nments i / 14.5dBm MHz / Bm/MHz 3m/MHz 77 MHz
Ambient Cond Summary of R Run # 1 2 2 3 3 3	Iitions: Temperature: Rel. Humidity: esults: Turbo Mode Test Performed Output Power Power Spectral Density (PSD) Power Spectral Density (PSD) 26dB Bandwidth 20 dB Bandwidth	10°C 89% <u>Limit</u> 15.407(a) (1), (2) 15.407(a) (1), (2) RSS 210 15.407 RSS 210	Result pass pass pass pass pass	Corr 12.8dBm/ -2.47dBm/ 3.03d 6.1dE 55.8 - 33.8 - Peak to excursio All emissio	nments / 14.5dBm MHz / Bm/MHz 3m/MHz 77 MHz 49.3 MHz o average

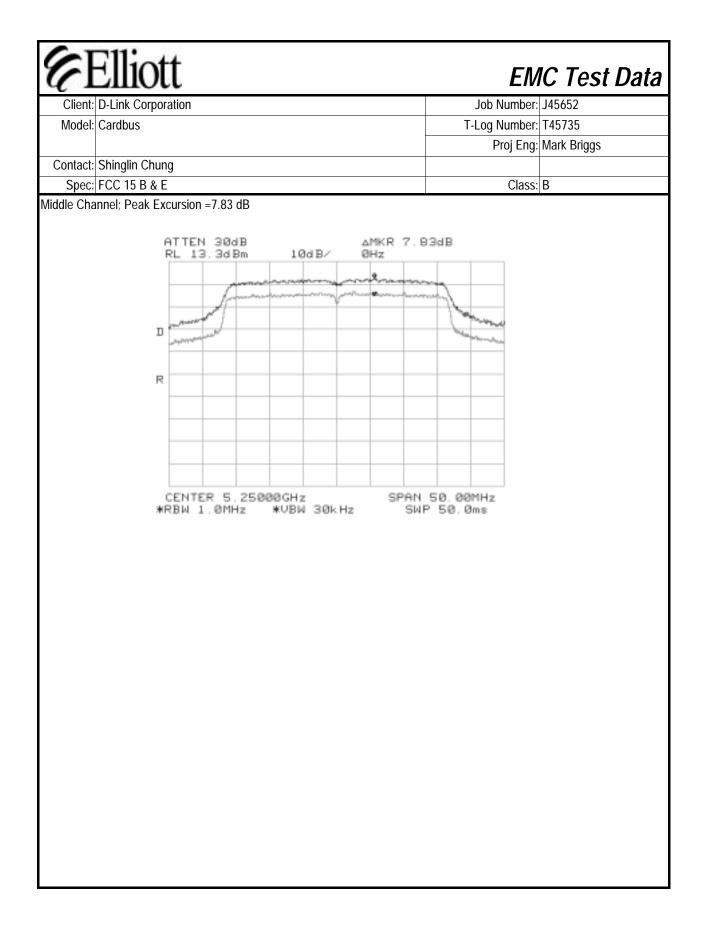

E	Ellio	ott			EN	IC Test Data
	: D-Link Co				Job Number:	J45652
Model	: Cardbus	<u>.</u>			T-Log Number:	T45735
					-	Mark Briggs
Contact	: Shinglin C	:huna			, ,	33
	: FCC 15 B				Class:	R
-1.		<u></u>				5
No modi	ifications w	ere made to the EUT	•	ing		
		The Standard made from the requ	irements of	the standard.		
Run #1: C	-	ver na Gain: 4	dBi			
	Channel	Frequency (MHz)	PC_DAC	Output Power (dBm)	FCC Limit (dBm) (note 3)	Comments
	Low	5210	11	12.1	17.0	Note 2
	LUW	5210	11	12.8	17.0	Note 1
	Mid	5250	12	13.8	17.0	Note 2
		5250	12	14.5	17.0	Note 1 / (102)
	High	5290	10	11.7	24.0	Note 2
		5290	10	12.6	24.0	Note 1
Note 1:		l using spectrum ana over the occupied b	· ·	er measurement functior 26dB bandwidth).	ו (RBW = 1MHz, VBW =	30kHz) which summed
Note 2:		l using a Power Mete				
Note 3:		limit is 23dBm in the bandwidth and opera		5 GHz band, 6dB higher ncy.	than the FCC limit. This	s limit is based on the

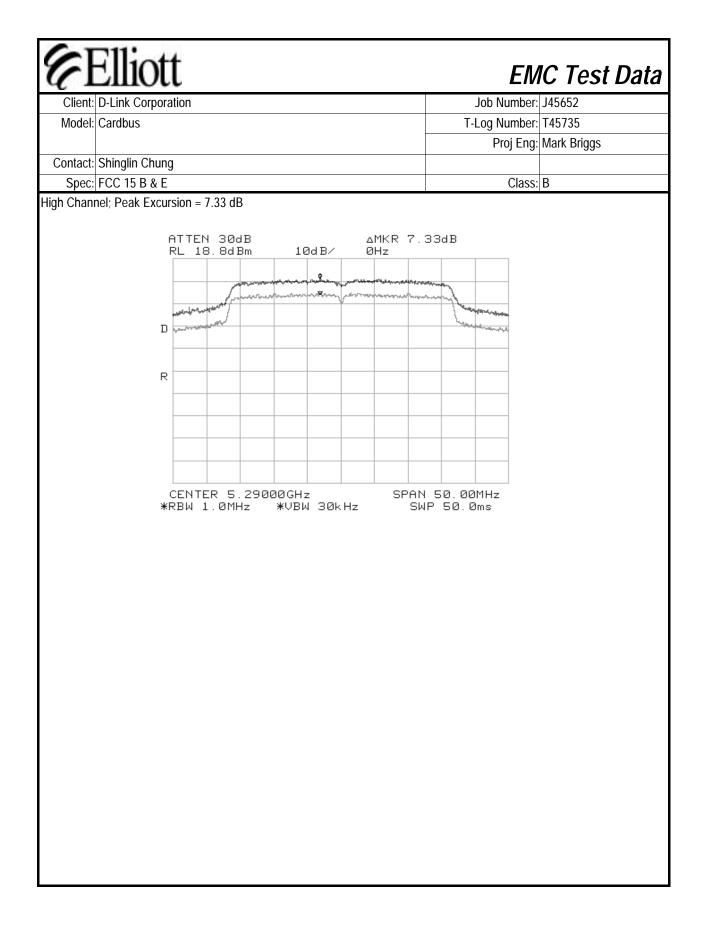


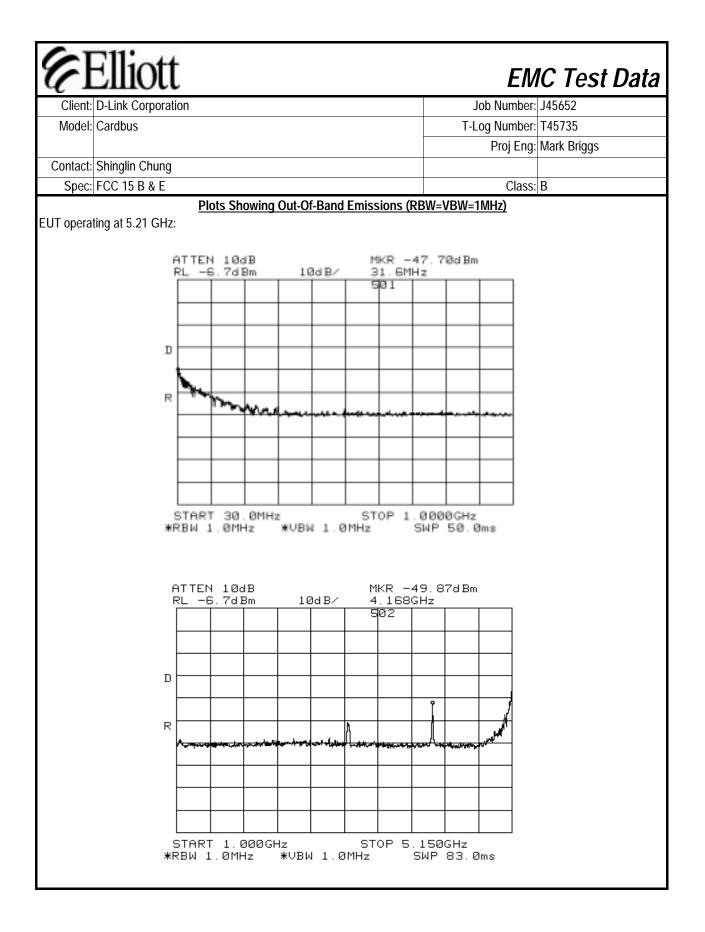

Client:	D-Link Co	rporation			J	b Number:	J45652	
Model:	Cardbus				T-Lo	og Number:	T45735	
						Proj Eng:	Mark Briggs	
Contact:	Shinglin C	Chung						
Spec:	FCC 15 B	& E				Class:	В	
un #2: P		ctral Density						
	Antenr	na Gain: 4	dBi					
			Power Spectral			Peak Pov	ver Spectral	
	PCDAC	Frequency (MHz)	Density (dBm/MHz)	FCC Limit (d	Bm) note 2		ty (dBm)	
	11	5210	-2.47	4.	0		.87	Note 1
	12	5250	-3.03	4.			.13	Note 1
	10	5290	-3.03	11	.0	ļ	5.5	Note 1
	exceed th so no rest	e maximum permitte riction is placed on t	ents (run #4). The pea d average PSD of 10dl he output power or ave n the 5.15 to 5.25 GHz	ik PSD (meau Bm (5.15 to 5 rage PSD wit	isred with R .25 GHz bar h respect to	nd) or 11dB RSS 210.	1MHz) of 6.1 m (5.25-5.35	dBm did
ote 1:	exceed th so no rest	e maximum permitte riction is placed on t	ents (run #4). The pea d average PSD of 10d he output power or ave	ik PSD (meau Bm (5.15 to 5 rage PSD wit	isred with R .25 GHz bar h respect to	BW=VBW= nd) or 11dB RSS 210.	1MHz) of 6.1 m (5.25-5.35	dBm did

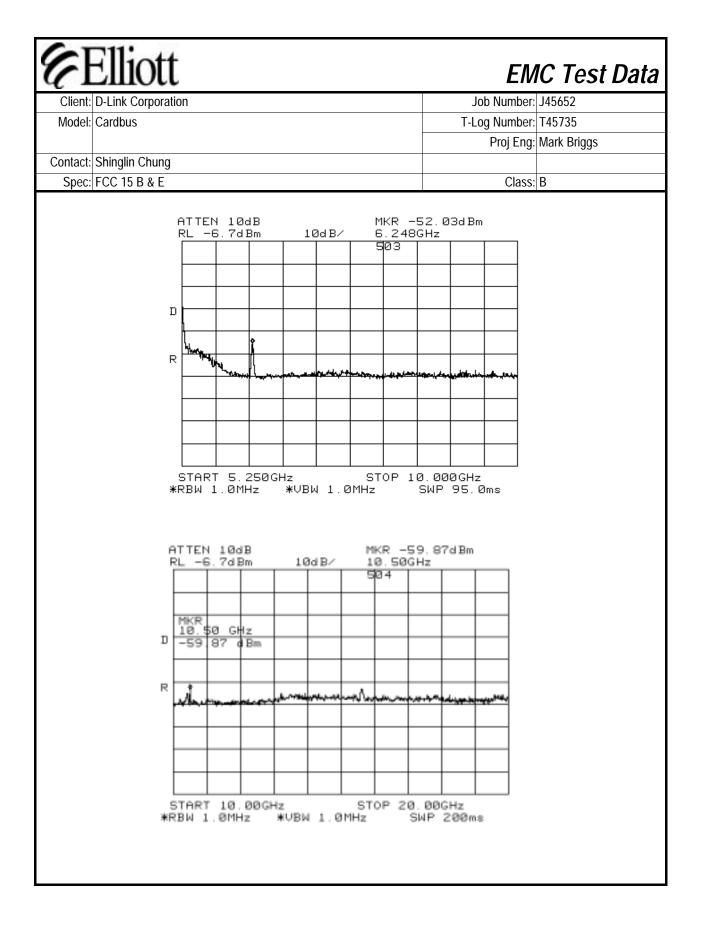


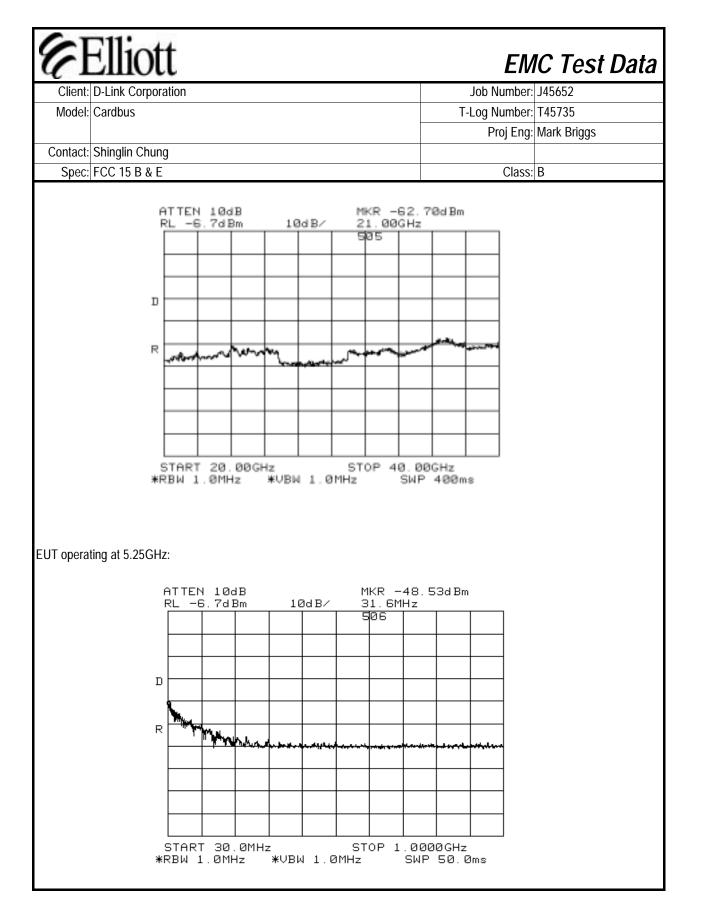


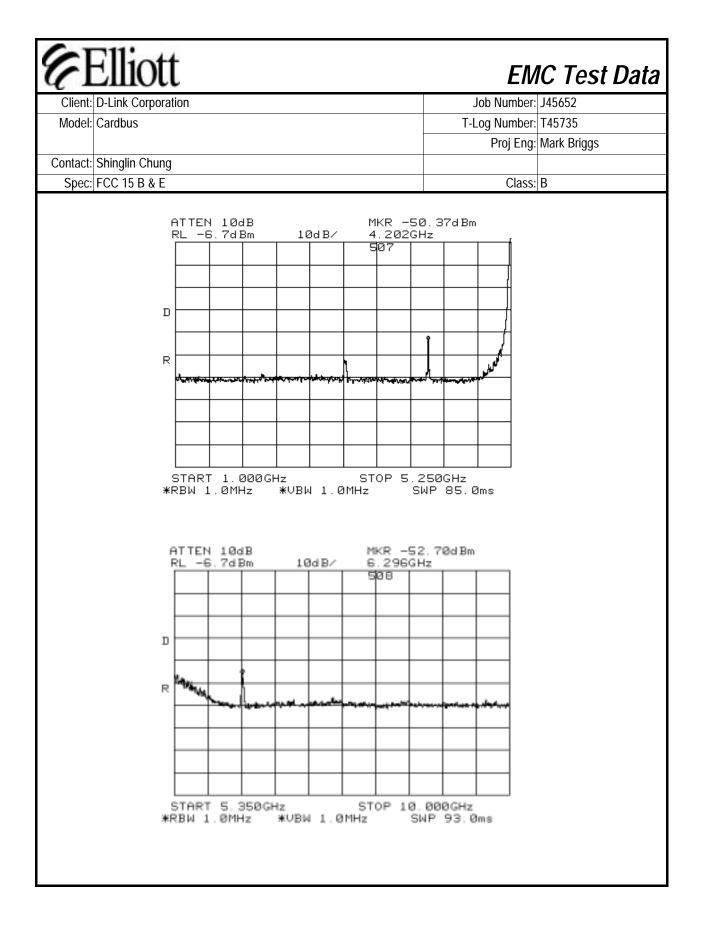


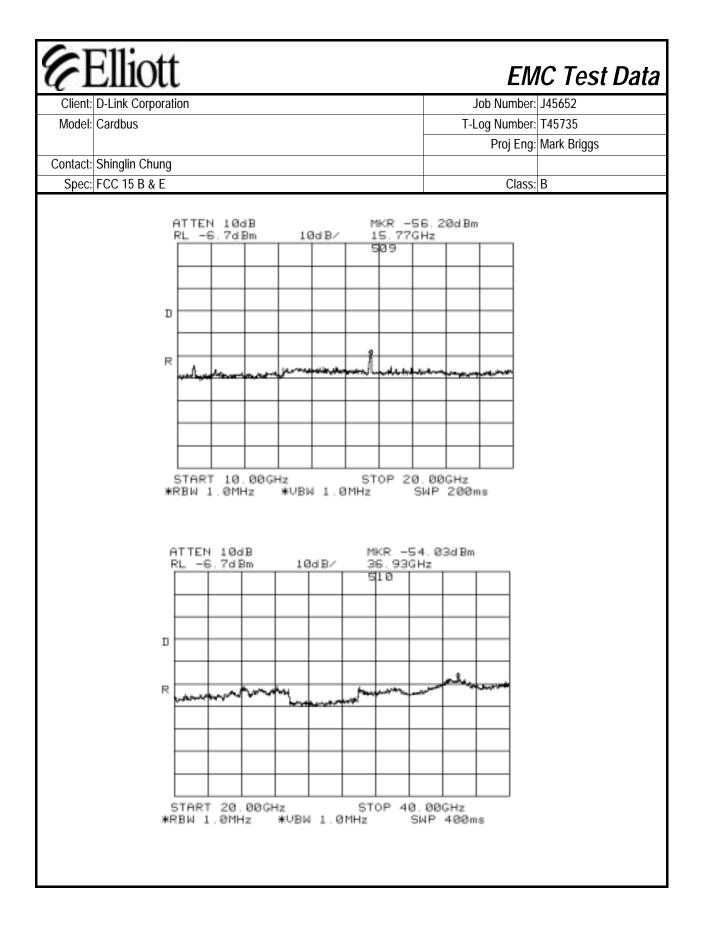


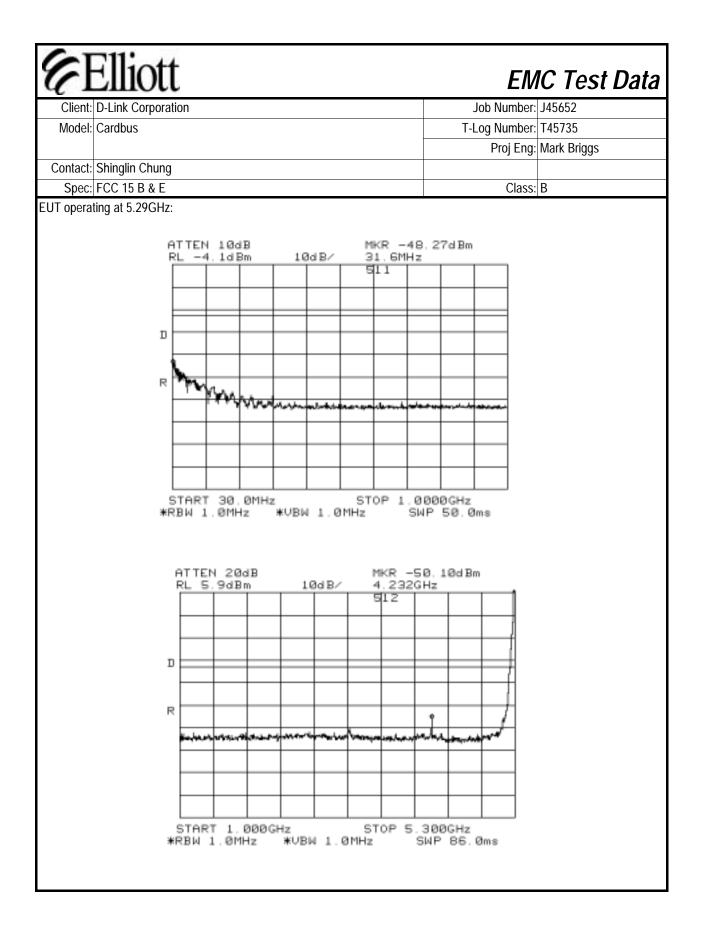


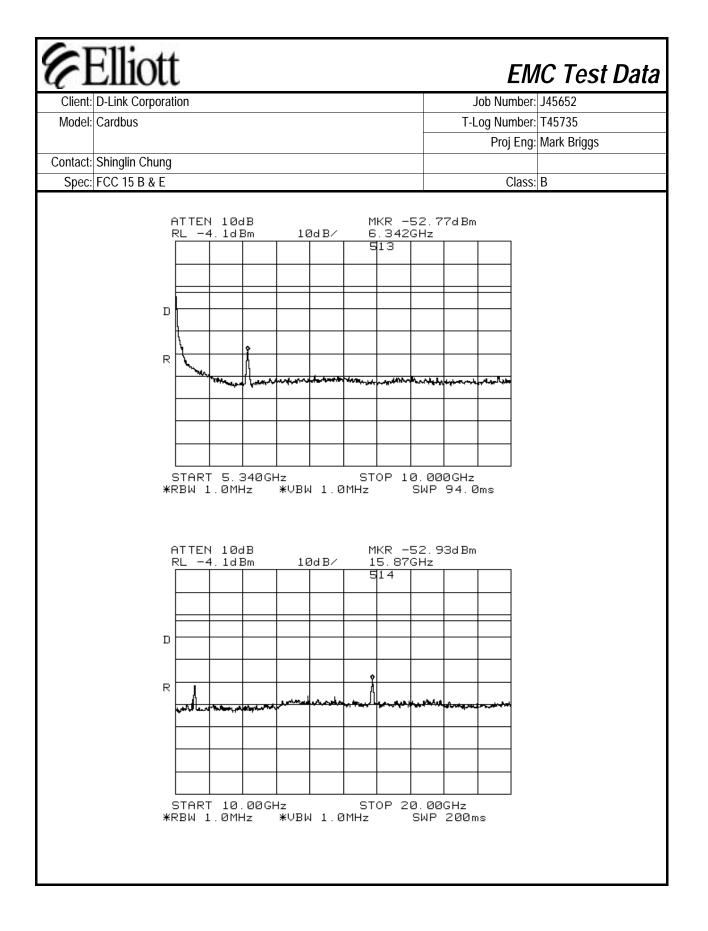

(FI	Elliott	EMC Test Data
Client:	D-Link Corporation	Job Number: J45652
Model:	Cardbus	T-Log Number: T45735
		Proj Eng: Mark Briggs
Contact:	Shinglin Chung	
Spec:	FCC 15 B & E	Class: B

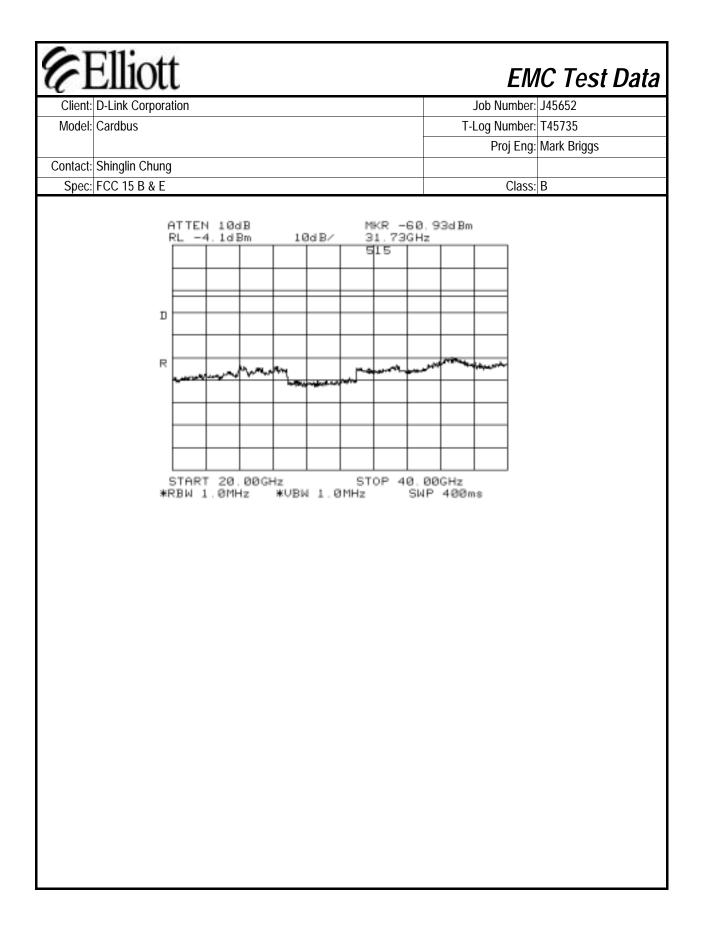

Run #5: Out Of Band Spurious Emissions - Antenna Conducted

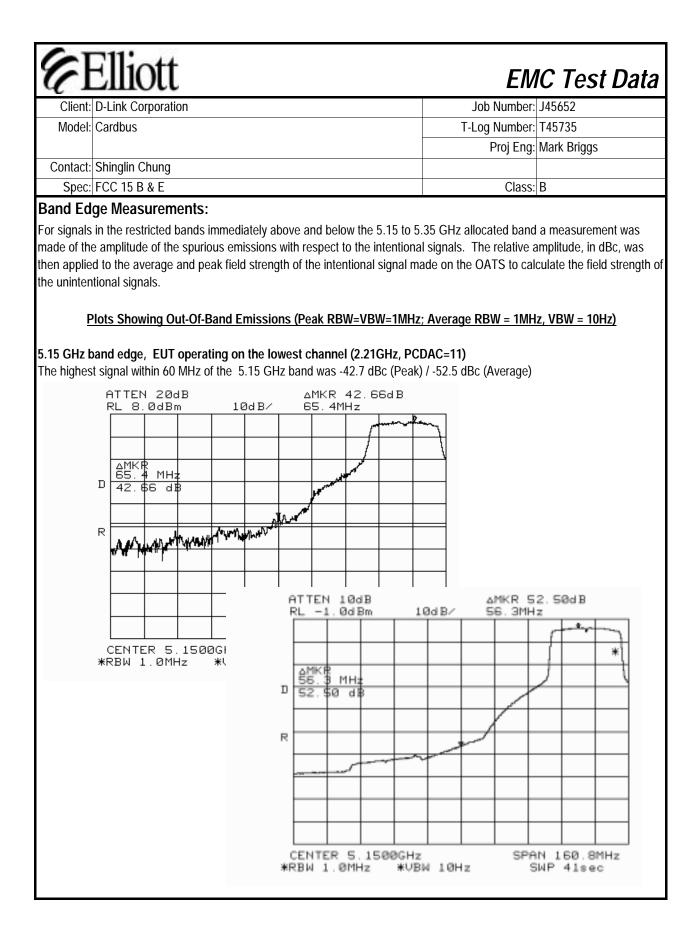

The antenna gain of the radios integral antenna is 3.9 dBi. The EIRP limit is -27dBm/MHz for all out of band signals that do not fall in restricted bands. A limit of -30.9 dBm was, therefore, used for signals not in restricted bands and close to the intentional band with the assumption that the antenna gain was equal to 3.9 within 100 MHz of the upper and lower band edges. For signals removed from the band edge by more than 100MHz, radiated measurements were made (refer to run #6) if the signal amplitude exceeded -37dBm.

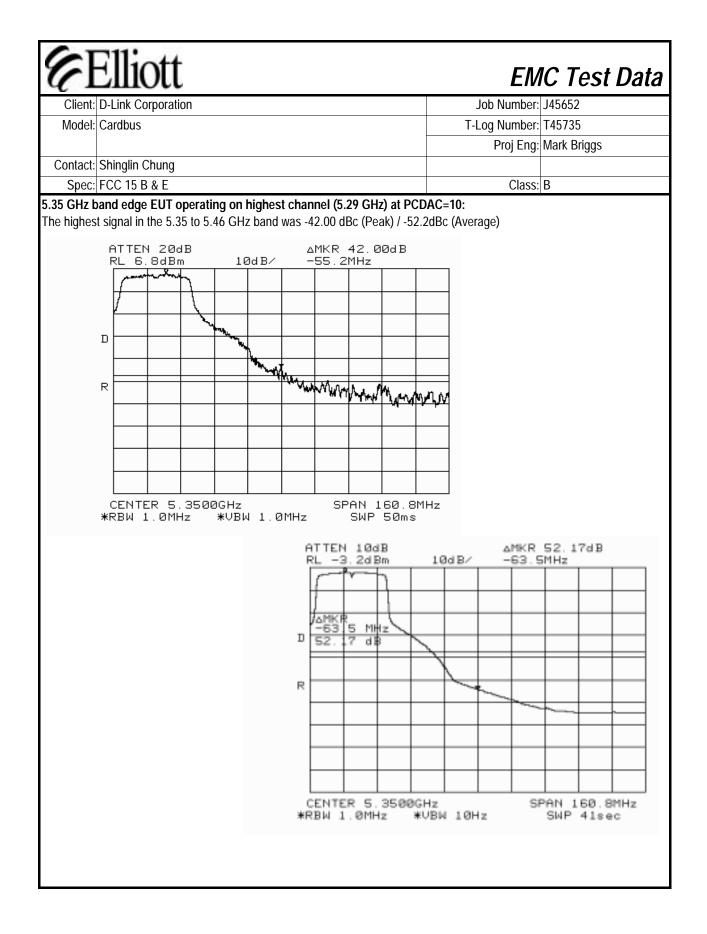

	Channel	Frequency (MHz)	Frequency Range	Highest Spurious Signal	Graph reference #			
			30 - 1000 MHz	Note 4	501			
			1 to 5.15 GHz		502			
	low	5210	5.25 to 10 GHz	6248 (Note 3)	503			
			10 GHz to 20 GHz	10420 (Note 3), 15650 (Note 1)	504			
			20 GHz to 40 GHz	None	505			
	30 - 1000 MHz Note 4 506							
			1 to 5.25 GHz	3146 (Note 2), 4202 (Note 1)	507			
	mid	5250	5.35 to 10 GHz	6296 (Note 3)	508			
			10 GHz to 20 GHz	10500 (Note 3), 15770 (Note 1)	509			
			20 GHz to 40 GHz	None	510			
			30 - 1000 MHz	Note 4	511			
		nigh 5290	1 to 5.30 GHz	3179 (Note 2), 4232 (Note 1)	512			
	high		5.34 to 10 GHz	6342 (Note 3)	513			
			10 GHz to 20 GHz	10570 (Note 3), 15870 (Note 1)	514			
			20 GHz to 40 GHz	None	515			
1:				d strength measurements.	significantly lower than -27d			
2:	field stren	gth measurements r	equired.					
3:	Signal is not in restricted band. Limit is -27dBm eirp. Although the signal strength is significantly lower than - 27dBm field strength measurements were made (refer to run #6)							
	 All spurious signals in this frequency band measured during digital device radiated emissions test. 							

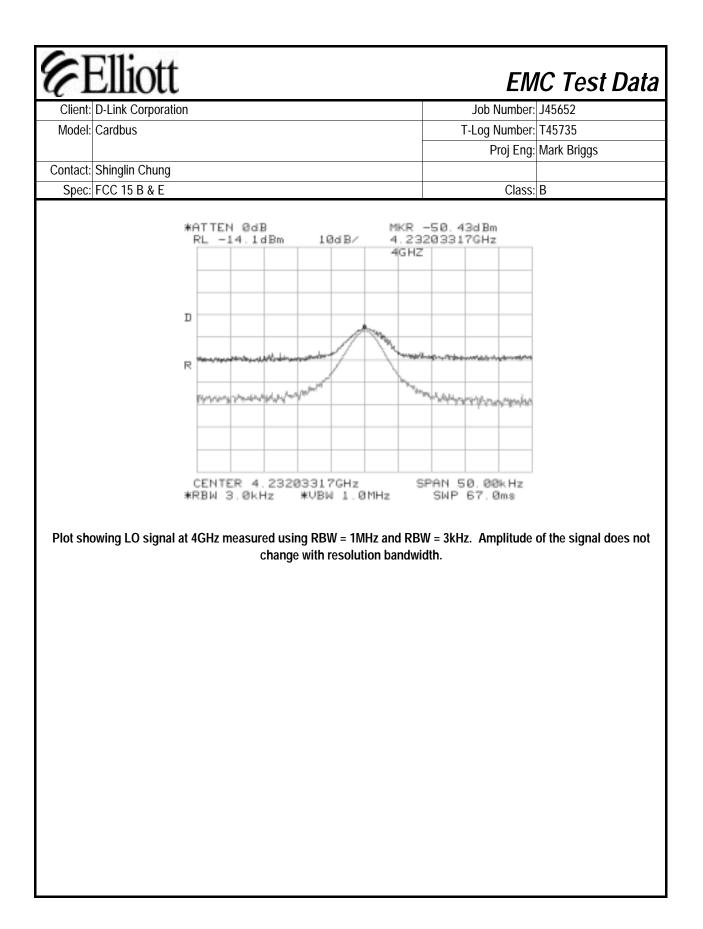






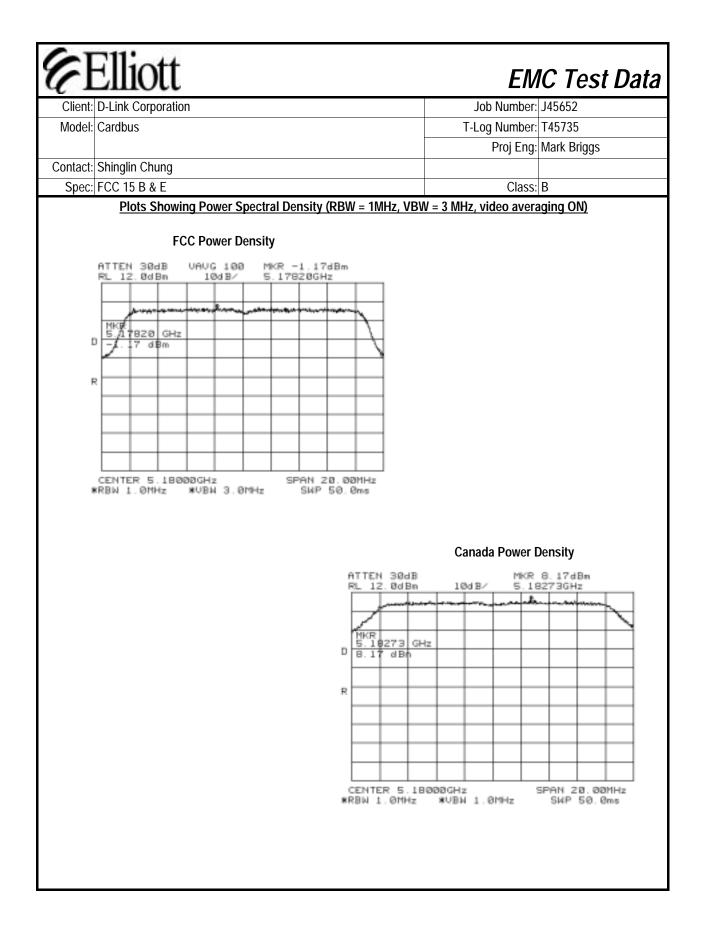


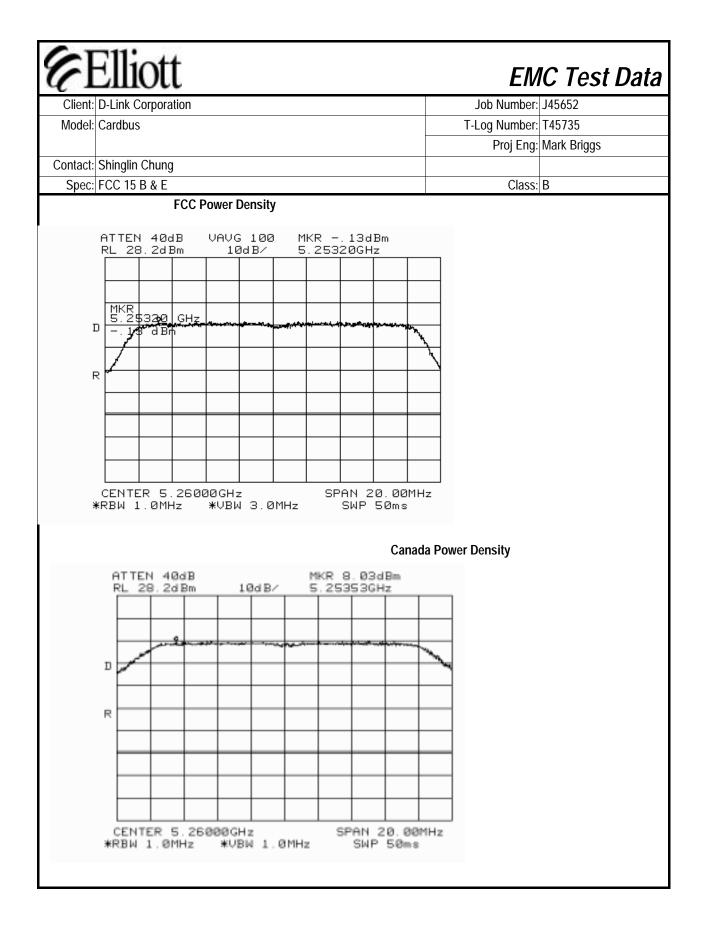


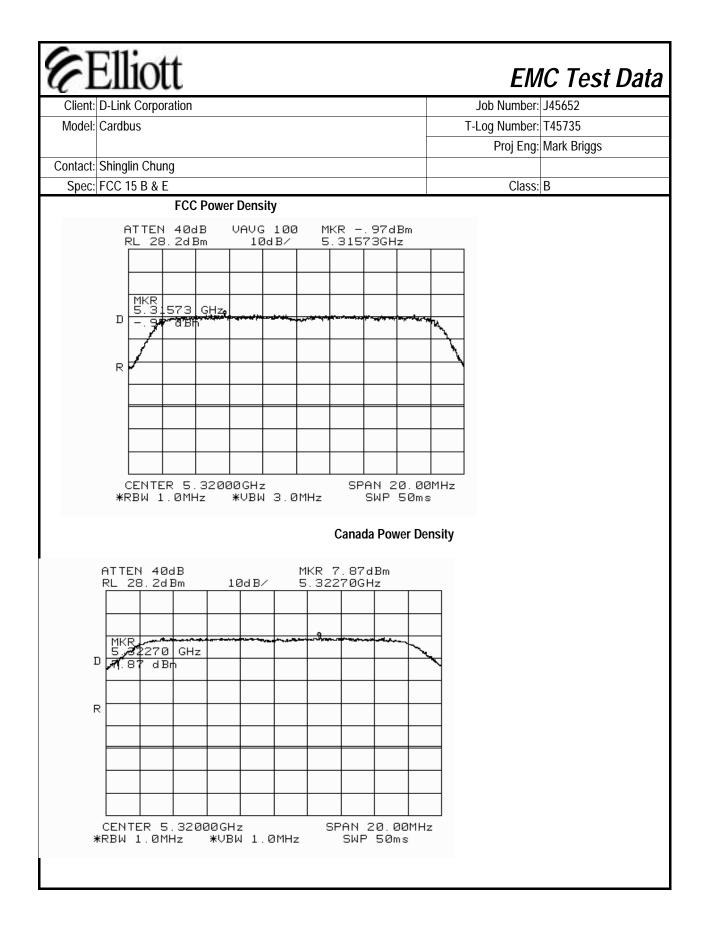


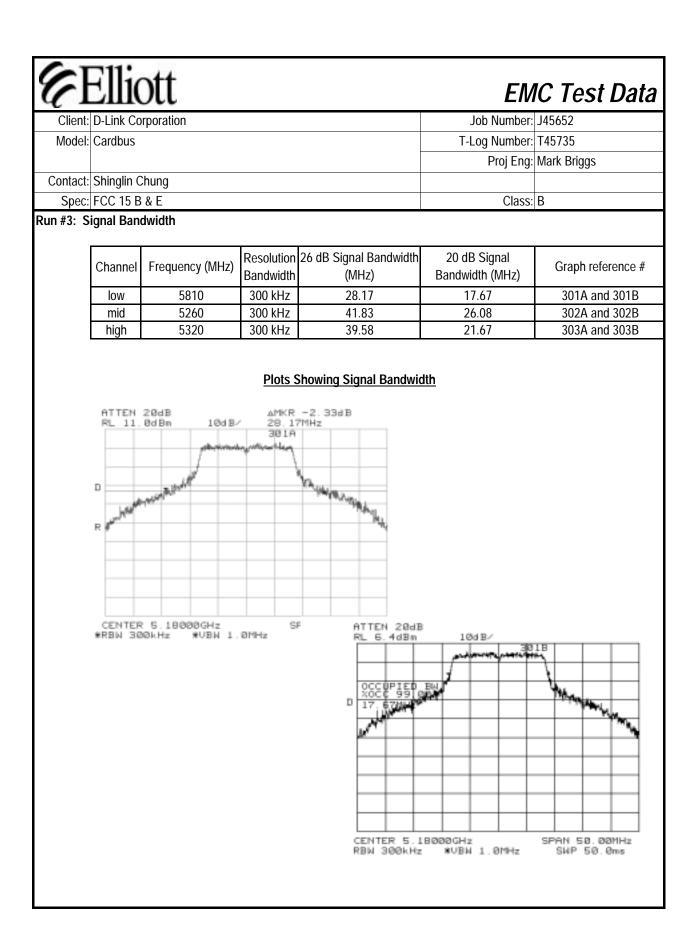
Client:	Ellic D-Link Col		ו					Job Number:	J45652
	Cardbus						T-L	og Number:	T45735
								0	Mark Briggs
Contact	Shinglin C	huna						i ioj Eligi	indix Diiggo
	FCC 15 B	•						Class:	B
			Emission	s, 1000 - 40	000 MHz			01033.	D
		-				rformina emi:	ssions mea	surements o	of the digital device.
	Limit fo	r emissio	ons in restric	cted bands:	54dBuV/m	n (Average)	74dBuV	/m (Peak)	
Limit	for emission	ons outsi	ide of restric	cted bands:	$EIRP < -2^{\circ}$	7dBm/MHz	(68dl	3uV/m)	
	•					ge field strei	ngths):		
		nnel Ava Pol		1 GHz), PCI / 15.407	DAC=11 Detector	Azimuth	Hoight	Comments	
Frequency MHz	dBµV/m	v/h	Limit		Pk/QP/Avg	degrees	Height meters	Comments	
5214.646		V	-	-	Pk	uegrees	meters	Peak readi	ng, peak limit
5213.692		V	-	-	Avg				ading, average limit
		nnel Av	ailable (5.2	9GHz), PCI				· · · · · · · · · · · · · · · · · · ·	
Frequency	Level	Pol	-	/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5294.592		V	-	-	Pk	300	1.0		ng, peak limit
5293.770	96.2	V	-	-	Avg	300	1.0	Average re	ading, average limit
Donal Eday		math C	alaulatiana		10 11 for lo	wahannala		10 for big	a abannalı
Frequency		Pol		15.407	Detector	w channel a Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit		Pk/QP/Avg	degrees	meters	Comments	
5150.0		V	74.0	-10.4	Pk	uogrooo	motors	Note 1	
5150.0		V	54.0	-9.0	Avg			Note 1	
5350.0	62.5	٧	74.0	-11.5	Pk			Note 2	
5350.0	44.0	٧	54.0	-10.0	Avg			Note 2	
		•						•	calculated using the
Note 1:							•	e) applied to	the highest peak and
	÷		÷			ntal signal lev			
Note 2:									culated using the relat est peak and average
					mental signa		iye) applied		esi peak allu avelaye
VOLE Z.		jui meas			nemai siyna				

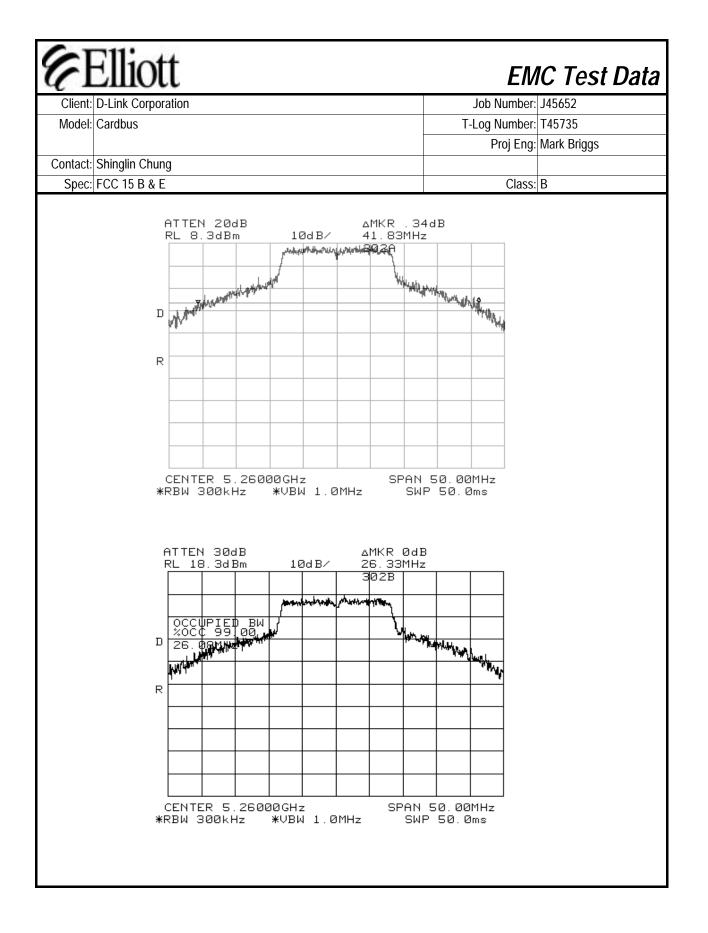
Æ	Ellic	ott						EN	IC Test Data	
Client:	D-Link Co	rporatio	า				J	ob Number:	J45652	
Model:	Cardbus				T-Log Number: T45735					
						Proi Ena:	Mark Briggs			
Contact.	Shinglin C	:huna		· J J	33					
	FCC 15 B	-				Class:	B			
			Emission			01033.	D			
Run #6b: Radiated Spurious Emissions, 1000 - 40000 MHz EUT On Lowest Channel Available (5.21 GHz), PCDAC = 11										
Frequency		Pol		/ 15.407	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments		
15630.0		h	54.0	-0.1	Avg	333		Note 2		
15630.0	53.8	v	54.0	-0.2	Avg	333		Note 2		
15630.0	66.1	h	74.0	-7.9	Pk	333		Note 2		
20840.0	44.2	V	54.0	-9.8	Avg	286		Note 2		
15630.0	63.8	V	74.0	-10.2	Pk	333		Note 2		
10420.0	57.1	h	68.3	-11.2	Note 3	306		Note 4		
10420.0	56.3	V	68.3	-12.0	Note 3	266		Note 4		
4168.0	41.2	h	54.0	-12.8	Pk			Note 2,5, F	Peak reading, avg limit	
4168.0	39.3	V	54.0	-14.7	Pk				Peak reading, avg limit	
20840.0	57.6	V	74.0	-16.4	Pk	286	1.4	Note 2	<u> </u>	
6252.0	44.1	V	68.3	-24.2	Note 3	335	1.6	Note 4		
6252.0	37.0	h	68.3	-31.3	Note 3	0	1.1	Note 4		
Note, at PCDAC=12 the third harmonic was 0.2dB above the radiated limit of 54dBuV/m.										
Frequency		Pol		/ 15.407	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
15750.0		V	54.0	-1.5	Avg	325		Note 2		
15750.0	51.4	h	54.0	-2.6	Avg	311		Note 2		
4200.0	46.0	V	54.0	-8.0	Pk	15			Pk level, avg limit	
4200.0		h	54.0	-9.5	Pk	0			Pk level, avg limit	
15750.0		V	74.0	-10.2	Pk	325		Note 2		
15750.0		h	74.0	-10.7	Pk	311		Note 2		
21000.0		V	54.0	-10.7	Avg	293		Note 2		
4200.0		۷	54.0	-11.1	Avg	15		Note 2		
10500.0		h	68.3	-12.6	Note 3	240		Note 4		
10500.0	55.6	V	68.3	-12.7	Note 3	280	1.7	Note 4		
21000.0			74.0	-17.2	Pk	293		Note 2		

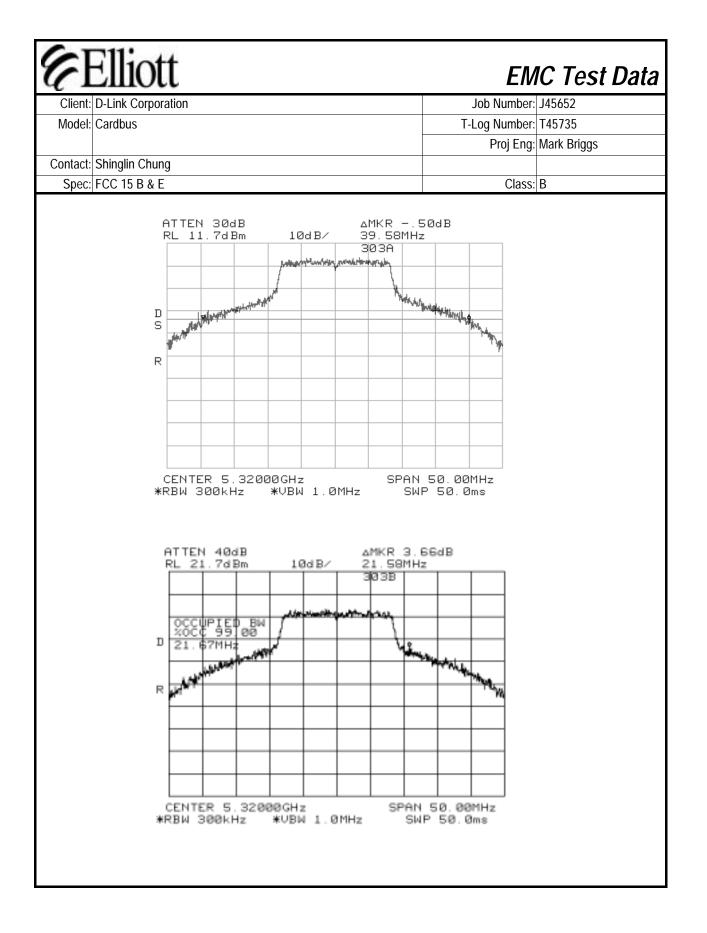

Cilent.	Ellic D-Link Cor		l				J	b Number:	J45652
Model:	Cardbus						T-Log Number: T4		T45735
						Proj Eng:	Mark Briggs		
Contact:	Shinglin C	hung							
Spec:	FCC 15 B	& E						Class:	В
						ut power to I			
Frequency		Pol		/ 15.407	Detector	Azimuth	3	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
15870.0		V	54.0	-1.6	Avg	10		Note 2	
15870.0		h	54.0	-2.8	Avg	0		Note 2	
15870.0		V	74.0	-8.0	Pk	10		Note 2	
15870.0		h	74.0	-9.7	Pk	0		Note 2	
4232.0		V	54.0	-10.3	Pk	320			Pk level, avg limit
4232.0		h	54.0	-11.2	Pk	300			Pk level, avg limit
21160.0		V	54.0	-11.4	Avg	285		Note 2	
10580.0		V	68.3	-12.5	Note 3	250		Note 4	
10580.0		h	68.3	-13.4	Note 3	300		Note 4	
21160.0		h	54.0	-13.7	Avg	300		Note 2	
21160.0		V	74.0	-18.6	Pk	285		Note 2	
21160.0	53.1	h	74.0	-20.9	Pk	300	1.3	Note 2	
Note 1: Note 2: Note 3: Note 4:	Signal is ir Restricted Resolution averaging Signal doe This meas	a restri Band P Bw: 1W on (100 s not fa urement	cted band eak Measur 1Hz and Vid samples). Il in a restric t was made	ements: Re eo Bw: 10 I cted band. using a res	esolution and Hz. All other olution band	measuremer width of 3 kH	MHz, Rest hts, RBW = z The instru	ricted Band 1MHz and V imentation r	Average Measurements /BW = 3MHz, video
Note 5:	intentional the intentio	signal v onally tra conduct	vould overlo asmitted sig ted antenna	ad the amp nal but pase measurem	lifier and the s the spuroiu ents) and so	re is no low p is signal). The the amplitud	bass filter w e signal was e (peak/ave	rith sufficien a narrowba erage) in a 3	e EUT operating the t shape factor to reject and signal (as verified kHz bandwidth would be has been compared with

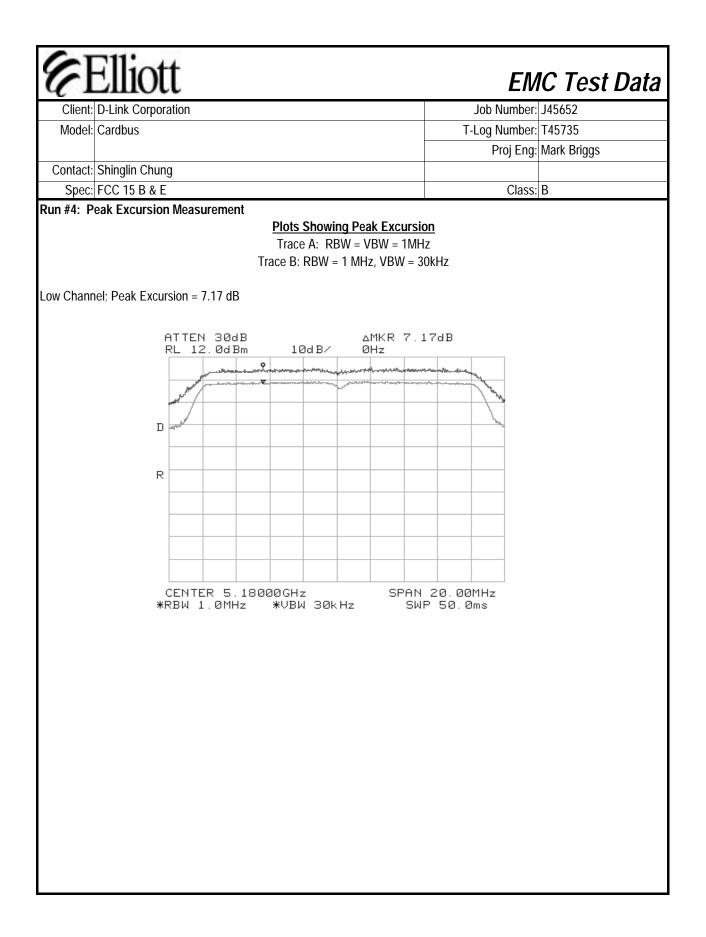


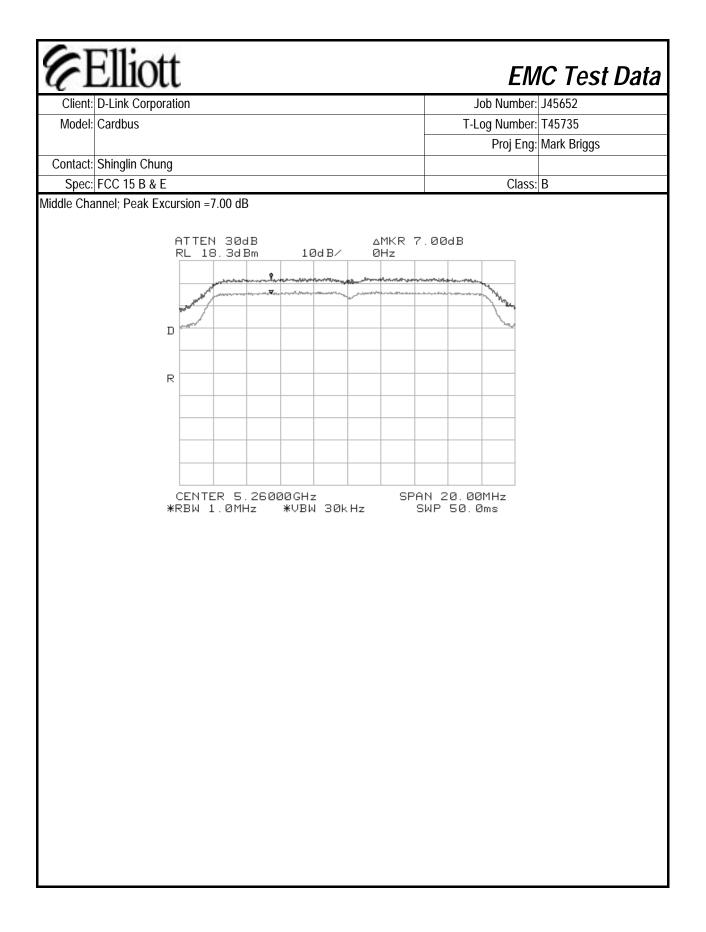

CEEL	iott		1		IC Test	' Data
Client: D-Link	1			ob Number:		
Model: Cardb	us		I-L	og Number:		
				Proj Eng:	Mark Briggs	
Contact: Shingl	in Chung					
Spec: FCC 1	5 B & E			Class:	В	
	FCC Part 15 Sub	opart E Tests:	Norm	al Mod	е	
Test Specifics						
Objecti	ve: The objective of this test sessio specification listed above.	n is to perform final qual	ification test	ing of the E	UT with respec	ct to the
Test Engine	est: 12/18/2001 - 12/19/2001 er: Juan M. / Vishal / Mark on: SVOATS# 4	Config. Used: Config Change: Host Unit Voltage		3		
	ocated on the turntable for radiated					
For radiated em	issions testing the measurement ar	ntenna was located 3 me	ters from th	e EUT unles	ss stated other	wise.
spectrum analyz	g the conducted emissions from the zer or power meter via a suitable att are corrected to allow for the extern	tenuator to prevent overl	oading the			cted to the
Ambient Cond	litions: Temperature:	10°C				
	Rel. Humidity:					
Summary of R	esults: Normal Mode	0770				
Run #	Test Performed	Limit	Result	Com	nments	
1	Output Power	15.407(a) (1), (2)	pass	13.2dBm	n / 12.7dBm	
2	Power Spectral Density (PSD)	15.407(a) (1), (2)	pass		m/MHz / Bm/MHz	
2	Power Spectral Density (PSD)	RSS 210	pass	8.2dE	3m/MHz	
3	26dB Bandwidth	15.407	pass	28.2 - 4	41.8 MHz	
3	20 dB Bandwidth	RSS 210	pass	17.7 -	26 MHz	
4	Peak Excursion Envelope	15.407(a) (6)	Pass		o average on < 13dB	
5	Antenna Conducted - Out of Band Spurious	15.407(b)	pass		ns below the /MHz limit	
6	RE, 1000 - 40000 MHz - Spurious Emissions	15.407(b)(6)	pass	1dB @	15780MHz	

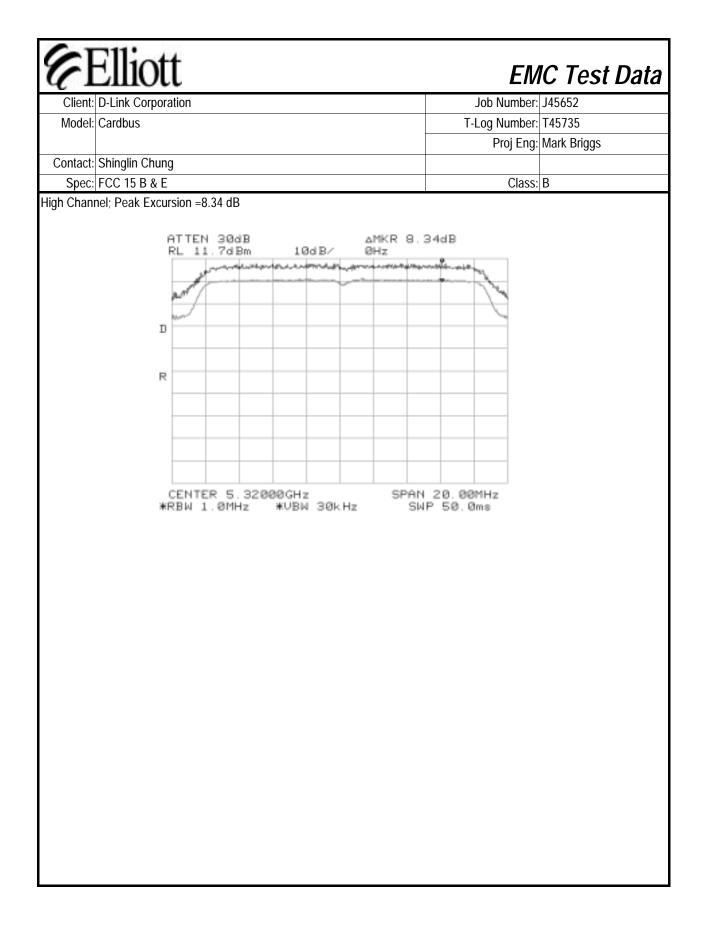

\mathcal{C}	Ellic	ott			EM	IC Test Data
	: D-Link Co				Job Number:	J45652
Model	: Cardbus				T-Log Number:	T45735
					Proj Eng:	Mark Briggs
Contact	: Shinglin C	Chung				
Spec	: FCC 15 B	& E			Class:	В
No modi Deviatio	ifications w ns From	ade During Testi ere made to the EUT The Standard made from the requ	during test			
Run #1: (•	ver na Gain: 4	dBi			
	Channel	Frequency (MHz)	PC_DAC	Output Power (dBm)	FCC Limit (dBm) (note 3)	Comments
	Low	5180	10	13.2	17.0	Note 2
	Low	5180	10	13.2	17.0	Note 1/ (101)
	Mid	5260	12	12.1	24.0	Note 2
		5260	12	12.7	24.0	Note 1 / (102)
	High	5320	8	11.0	24.0	Note 2
	Ű	5320	8	11.8	24.0	Note 1
Note 1:	the power	over the occupied b	andwidth (2		(RBW = 1MHz, VBW =	30kHz) which summed
Note 2:		l using a Power Mete				
Note 3:		limit is 23dBm in the bandwidth and opera		5 GHz band, 6dB higher	than the FCC limit. This	s limit is based on the
		R	30dB 8dBn NEL POWER 55 28.200 13.200 ITY 81 3	MKR 1 10d B/ 5.18125 101 2 BN 3d Bn/Hz 0GHz SPAN		

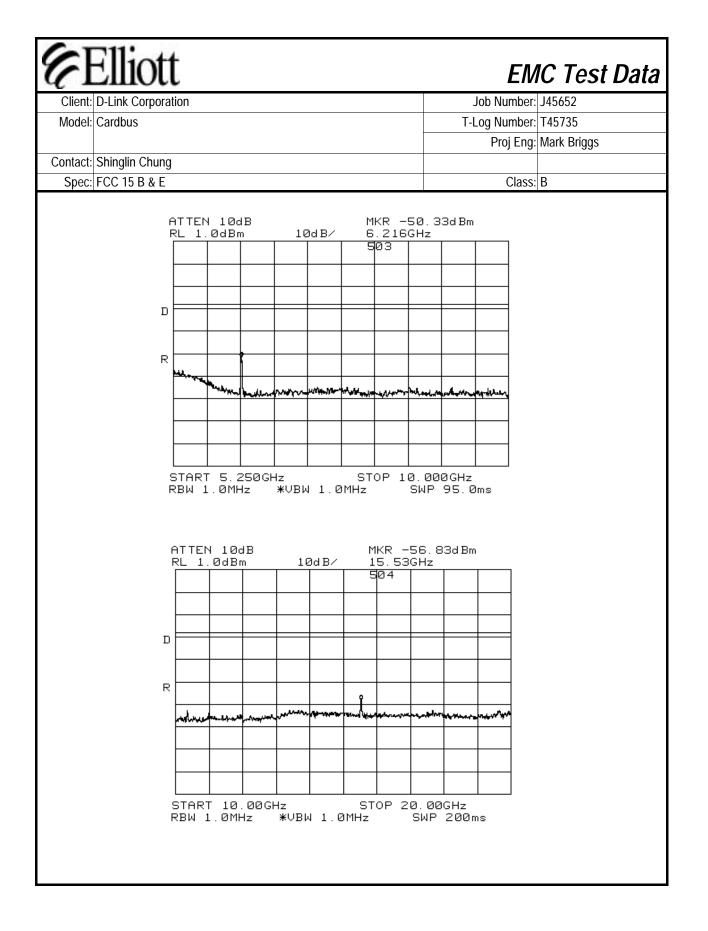

Model: Cardbus T-Log Number: T45735 Proj Eng: Mark Briggs Contact: Shinglin Chung	Client	: D-Link Co	rporation			J	ob Number:	J45652	- Euro
Contact: Shinglin Chung Image: Special Class: B Spec: FCC 15 B & E Class: B Run #2: Power Spectral Density Antenna Gain:4 dBi Class: B PCDAC Frequency (MHz) Power Spectral Density (dBm/MHz) FCC Limit (dBm) note 2 Peak Power Spectral Density (dBm) 10 5180 -1.17 4.0 8.17 Note 1 12 5260 -0.13 11.0 8.03 Note 1 8 5320 -0.97 11.0 7.87 Note 1 The above measurements were made using RBW = 1MHz, VBW = 3MHz, video averaging on. To demonstrate compliance with RSS 210, the peak PSD was also measured using RBW= VBW=1MHz, video averaging off durin the peak excursion measurements (run #4). The peak PSD (meausred with RBW=VBW=1MHz) of 8.2 dBm did in exceed the maximum permitted average PSD of 10dBm (5.15 to 5.25 GHz band) or 11dBm (5.25-5.35GHz band so no restriction is placed on the output power or average PSD with respect to RSS 210.			1			T-Log Number: T45735			
Spec: FCC 15 B & E Class: B Run #2: Power Spectral Density Antenna Gain:4 dBi Power Spectral Density (dBm/MHz) FCC Limit (dBm) note 2 Peak Power Spectral Density (dBm) 10 5180 -1.17 4.0 8.17 Note 1 12 5260 -0.13 11.0 8.03 Note 1 8 5320 -0.97 11.0 7.87 Note 1 The above measurements were made using RBW = 1MHz, VBW = 3MHz, video averaging on. To demonstrate compliance with RSS 210, the peak PSD was also measured using RBW= VBW=1MHz, video averaging off durin the peak excursion measurements (run #4). The peak PSD (meausred with RBW=VBW=1MHz) of 8.2 dBm did to exceed the maximum permitted average PSD of 10dBm (5.15 to 5.25 GHz band) or 11dBm (5.25-5.35GHz band so no restriction is placed on the output power or average PSD with respect to RSS 210.							Proj Eng:	Mark Briggs	
Run #2: Power Spectral Density Antenna Gain:4 dBi PCDAC Frequency (MHz) Power Spectral Density (dBm/MHz) FCC Limit (dBm) note 2 Peak Power Spectral Density (dBm) 10 5180 -1.17 4.0 8.17 Note 1 12 5260 -0.13 11.0 8.03 Note 1 8 5320 -0.97 11.0 7.87 Note 1 The above measurements were made using RBW = 1MHz, VBW = 3MHz, video averaging on. To demonstrate compliance with RSS 210, the peak PSD was also measured using RBW= VBW=1MHz, video averaging off durin the peak excursion measurements (run #4). The peak PSD (meausred with RBW=VBW=1MHz) of 8.2 dBm did exceed the maximum permitted average PSD of 10dBm (5.15 to 5.25 GHz band) or 11dBm (5.25-5.35GHz band so no restriction is placed on the output power or average PSD with respect to RSS 210.									
Antenna Gain: 4 dBi PCDAC Frequency (MHz) Power Spectral Density (dBm/MHz) FCC Limit (dBm) note 2 Peak Power Spectral Density (dBm) 10 5180 -1.17 4.0 8.17 Note 1 12 5260 -0.13 11.0 8.03 Note 1 8 5320 -0.97 11.0 7.87 Note 1 The above measurements were made using RBW = 1MHz, VBW = 3MHz, video averaging on. To demonstrate compliance with RSS 210, the peak PSD was also measured using RBW= VBW=1MHz, video averaging off durin the peak excursion measurements (run #4). The peak PSD (meausred with RBW=VBW=1MHz) of 8.2 dBm did to exceed the maximum permitted average PSD of 10dBm (5.15 to 5.25 GHz band) or 11dBm (5.25-5.35GHz band) so no restriction is placed on the output power or average PSD with respect to RSS 210.	Spec	: FCC 15 B	& E				Class:	В	
PCDAC Frequency (WH2) Density (dBm/MHz) PCC Limit (dBm) note 2 Density (dBm) 10 5180 -1.17 4.0 8.17 Note 1 12 5260 -0.13 11.0 8.03 Note 1 8 5320 -0.97 11.0 7.87 Note 1 The above measurements were made using RBW = 1MHz, VBW = 3MHz, video averaging on. To demonstrate compliance with RSS 210, the peak PSD was also measured using RBW= VBW=1MHz, video averaging off durin the peak excursion measurements (run #4). The peak PSD (meausred with RBW=VBW=1MHz) of 8.2 dBm did to exceed the maximum permitted average PSD of 10dBm (5.15 to 5.25 GHz band) or 11dBm (5.25-5.35GHz band) so no restriction is placed on the output power or average PSD with respect to RSS 210.	Run #2: P		-		Γ				
12 5260 -0.13 11.0 8.03 Note 1 8 5320 -0.97 11.0 7.87 Note 1 The above measurements were made using RBW = 1MHz, VBW = 3MHz, video averaging on. To demonstrate compliance with RSS 210, the peak PSD was also measured using RBW= VBW=1MHz, video averaging off durin the peak excursion measurements (run #4). The peak PSD (meausred with RBW=VBW=1MHz) of 8.2 dBm did exceed the maximum permitted average PSD of 10dBm (5.15 to 5.25 GHz band) or 11dBm (5.25-5.35GHz band so no restriction is placed on the output power or average PSD with respect to RSS 210.		PCDAC	Frequency (MHz)		FCC Limit (d	Bm) note 2			
8 5320 -0.97 11.0 7.87 Note 1 The above measurements were made using RBW = 1MHz, VBW = 3MHz, video averaging on. To demonstrate compliance with RSS 210, the peak PSD was also measured using RBW= VBW=1MHz, video averaging off durin the peak excursion measurements (run #4). The peak PSD (meausred with RBW=VBW=1MHz) of 8.2 dBm did texceed the maximum permitted average PSD of 10dBm (5.15 to 5.25 GHz band) or 11dBm (5.25-5.35GHz band, so no restriction is placed on the output power or average PSD with respect to RSS 210.									
The above measurements were made using RBW = 1MHz, VBW = 3MHz, video averaging on. To demonstrate compliance with RSS 210, the peak PSD was also measured using RBW= VBW=1MHz, video averaging off durin the peak excursion measurements (run #4). The peak PSD (meausred with RBW=VBW=1MHz) of 8.2 dBm did exceed the maximum permitted average PSD of 10dBm (5.15 to 5.25 GHz band) or 11dBm (5.25-5.35GHz band so no restriction is placed on the output power or average PSD with respect to RSS 210.									
compliance with RSS 210, the peak PSD was also measured using RBW= VBW=1MHz, video averaging off durin the peak excursion measurements (run #4). The peak PSD (meausred with RBW=VBW=1MHz) of 8.2 dBm did exceed the maximum permitted average PSD of 10dBm (5.15 to 5.25 GHz band) or 11dBm (5.25-5.35GHz band so no restriction is placed on the output power or average PSD with respect to RSS 210.		8	5320	-0.97	11.	U	/	.ŏ/	Note 1
	Note 1: Note 2:	compliance the peak e exceed th so no rest	e with RSS 210, the excursion measurem e maximum permitte riction is placed on t	ents (run #4). The pea d average PSD of 10d he output power or ave	ak PSD (meau Bm (5.15 to 5. erage PSD with	isred with R .25 GHz bar h respect to	W=1MHz, v BW=VBW= nd) or 11dB RSS 210.	ideo averagii 1MHz) of 8.2 m (5.25-5.35	dBm did n

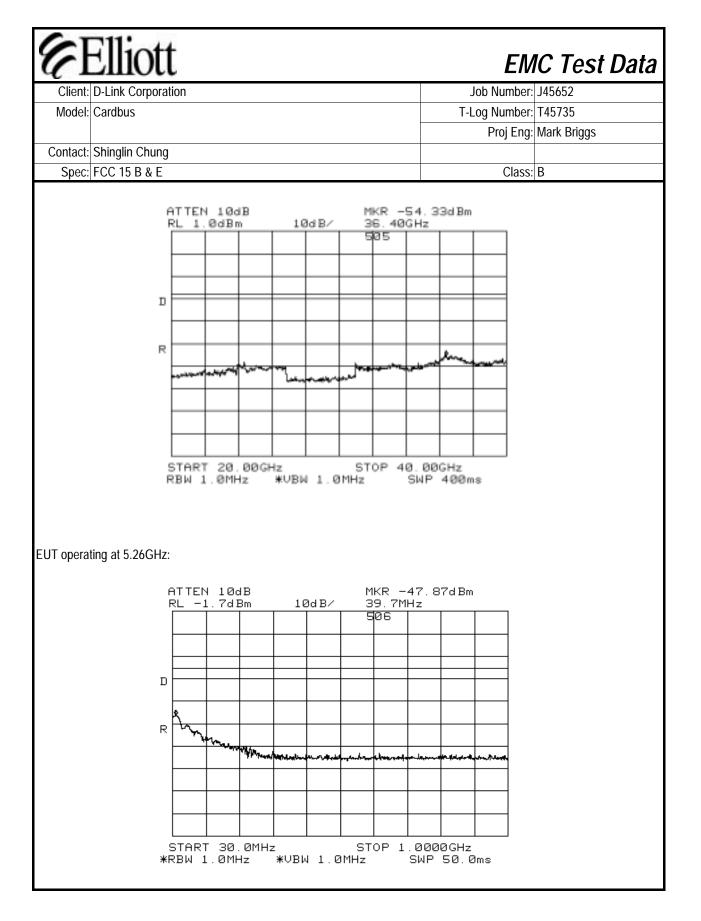


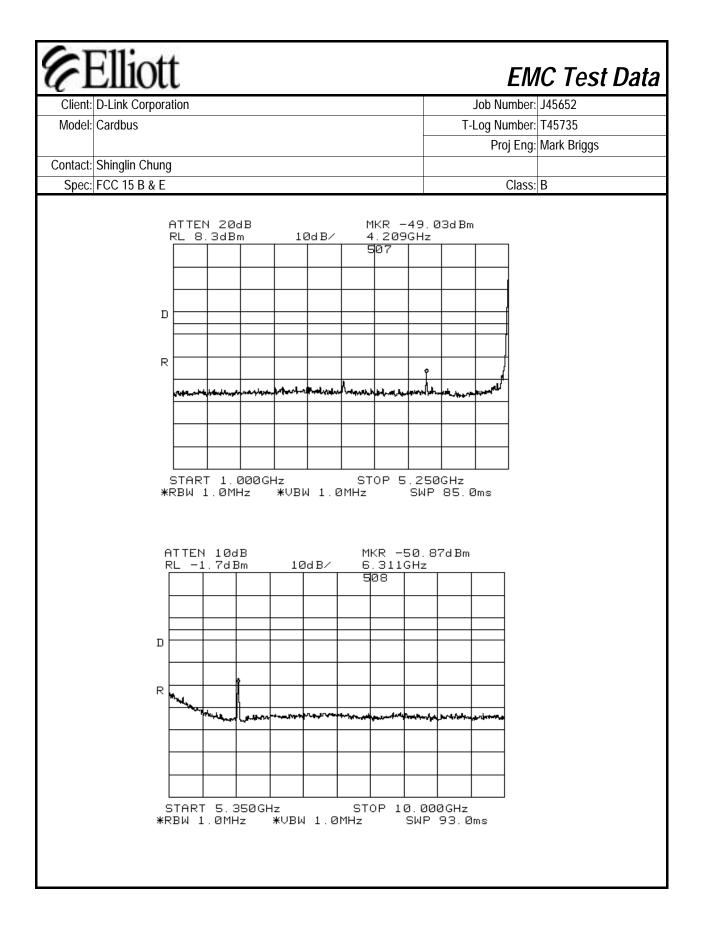


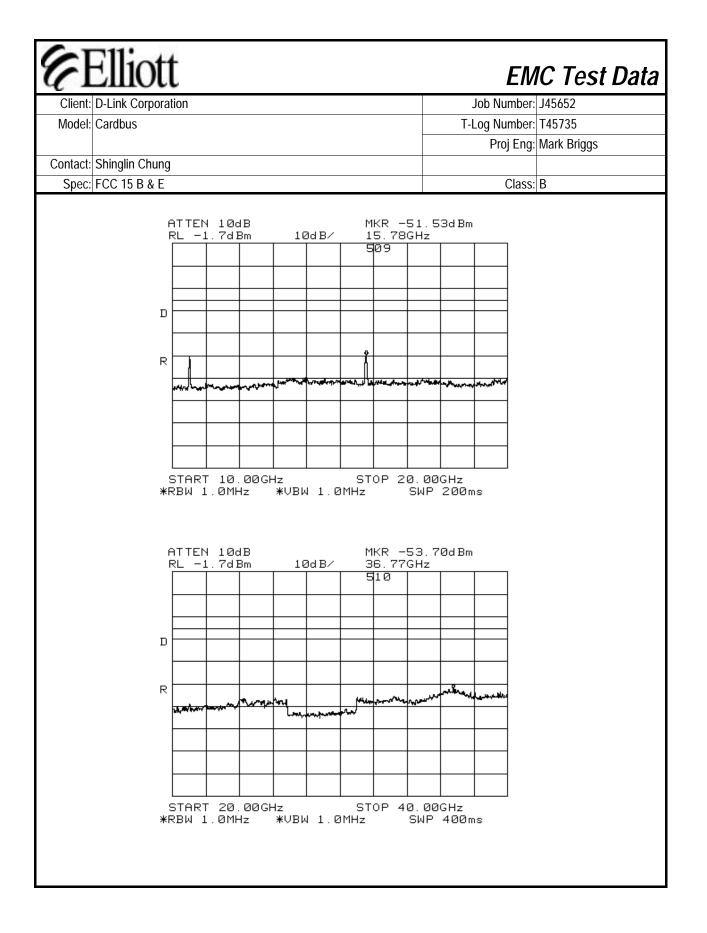


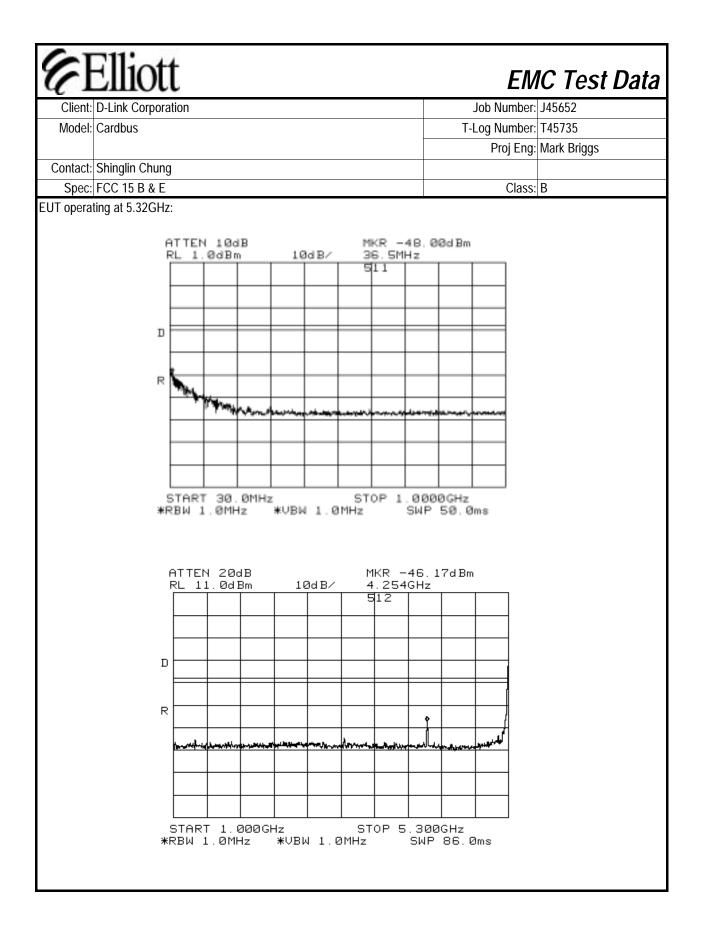


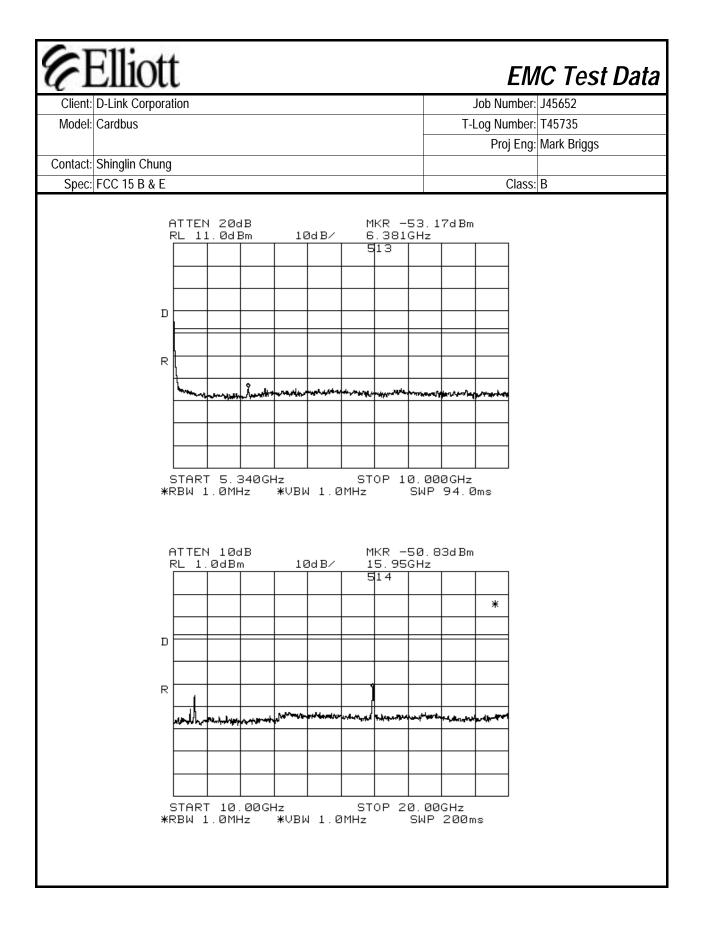

Æ	Elliott	EN	IC Test Data
Client:	D-Link Corporation	Job Number:	J45652
Model:	Cardbus	T-Log Number:	T45735
		Proj Eng:	Mark Briggs
Contact:	Shinglin Chung		
Spec:	FCC 15 B & E	Class:	В

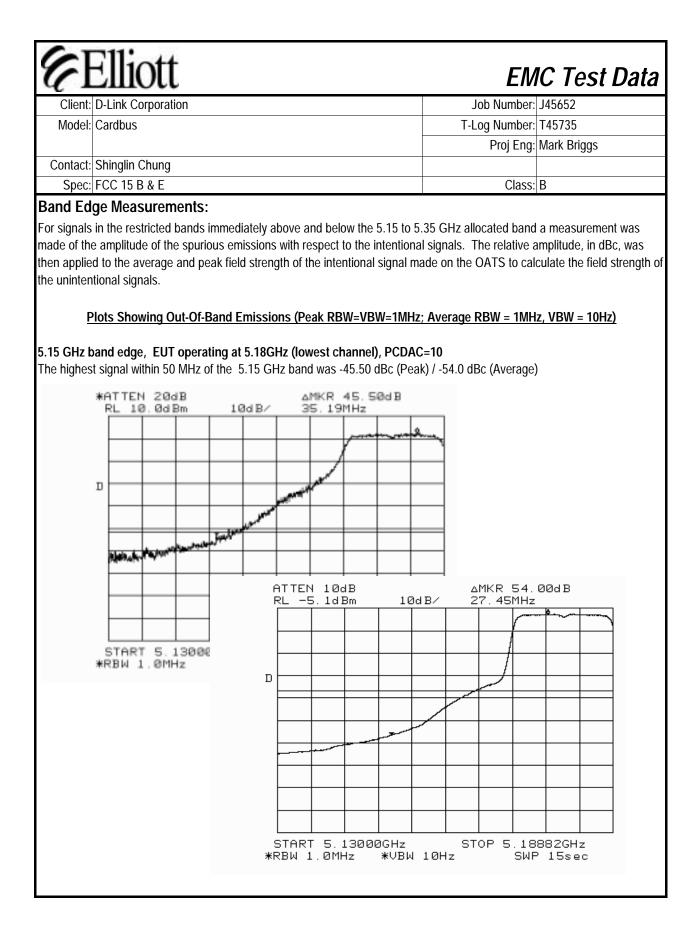

Run #5: Out Of Band Spurious Emissions - Antenna Conducted


The antenna gain of the radios integral antenna is 3.9 dBi. The EIRP limit is -27dBm/MHz for all out of band signals that do not fall in restricted bands. A limit of -30.9 dBm was, therefore, used for signals not in restricted bands and close to the intentional band with the assumption that the antenna gain was equal to 3.9 within 100 MHz of the upper and lower band edges. For signals removed from the band edge by more than 100MHz, radiated measurements were made (refer to run #6) if the signal amplitude exceeded -37dBm.

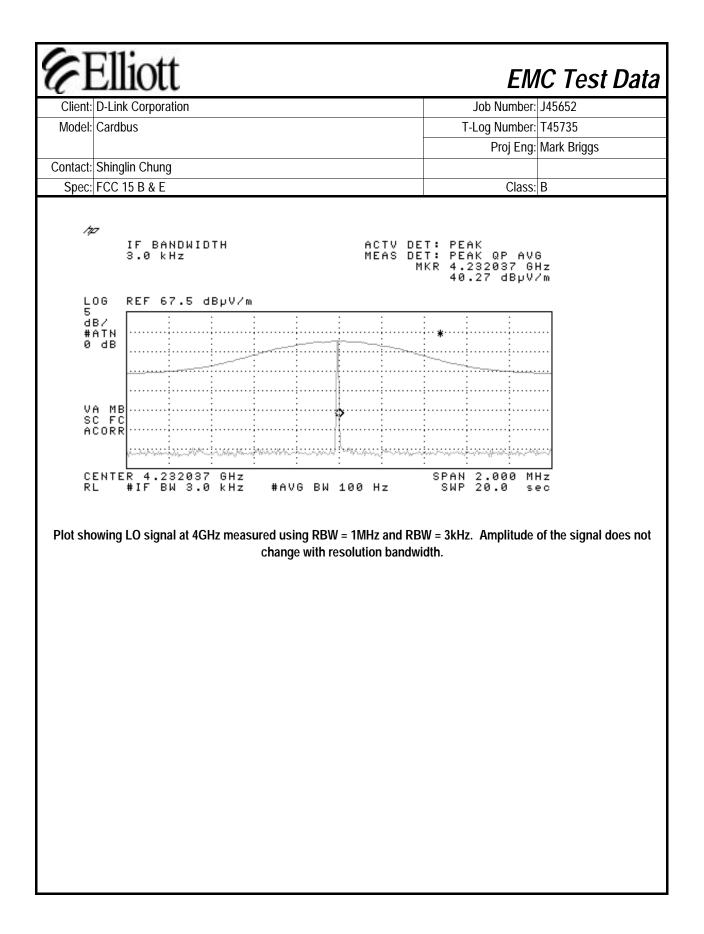

low	5180	30 - 1000 MHz 1 to 5.15 GHz 5.25 to 10 GHz 10 GHz to 20 GHz 20 GHz to 40 GHz	Note 4 3096 (Note 2), 4140 (Note 1) 6.216 (Note 3) 10350 (Note 3), 15530 (Note 1)	501 502 503 504				
	5180	5.25 to 10 GHz 10 GHz to 20 GHz 20 GHz to 40 GHz	(Note 1) 6.216 (Note 3) 10350 (Note 3), 15530 (Note 1)	503				
	5180	10 GHz to 20 GHz 20 GHz to 40 GHz	10350 (Note 3), 15530 (Note 1)					
		20 GHz to 40 GHz	(Note 1)	504				
			None	505				
		30 - 1000 MHz	Note 4	506				
		1 to 5.25 GHz	3160 (Note 2), 4209 (Note 1)	507				
mid	5260	5.35 to 10 GHz	6311 (Note 3)	508				
		10 GHz to 20 GHz	10520 (Note 3), 15780(Note 1)	509				
20 GHz to 40 GHz None 510 30 - 1000 MHz Note 4 511								
high	5320	5.34 to 10 GHz	6381 (Note 3)	513				
-		10 GHz to 20 GHz	10630 (Note 1), 15950 (Note 1)	514				
		20 GHz to 40 GHz	None	515				
-		-	As the signal strength is	significantly lower than -27dE				
Signal is n	ot in restricted band	. Limit is -27dBm eirp.	8 8	gth is significantly lower thar				
			-	ted emissions test				
Si Si Si	ignal is ii ignal is r eld stren ignal is r 7dBm fie	ignal is in a restricted band. ignal is not in restricted band eld strength measurements r ignal is not in restricted band 7dBm field strength measure	high 5320 5.34 to 10 GHz 1 to 5.30 GHz 1 to 5.30 GHz 1 to 5.30 GHz 10 GHz to 20 GHz 20 GHz to 40 GHz 20 GHz to 40 GHz ignal is in a restricted band. Refer to run #6 for field ignal is not in restricted band. Limit is -27dBm eirp. eld strength measurements required. ignal is not in restricted band. Limit is -27dBm eirp. 7dBm field strength measurements were made (reference)	10 GHZ to 20 GHZNote 1)20 GHZ to 40 GHZNone30 - 1000 MHZNote 430 - 1000 MHZNote 41 to 5.30 GHZ3193 (Note 2), 4254 (Note 1)53205.34 to 10 GHZ6381 (Note 3)10 GHZ to 20 GHZ10630 (Note 1), 15950 (Note 1)20 GHZ to 40 GHZNone				

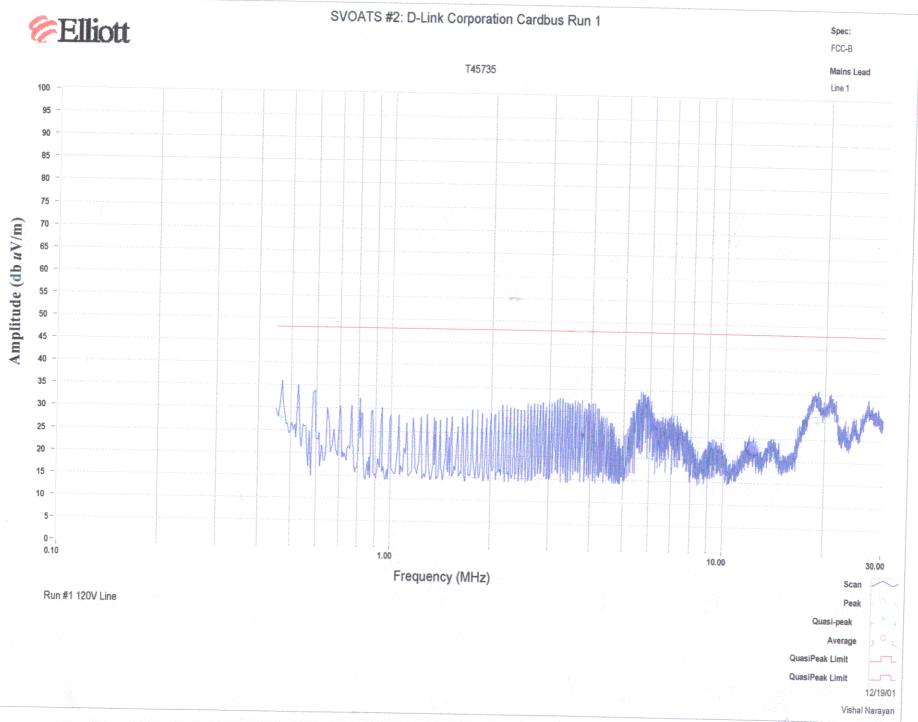

Elliot	t						EN	IC Test Data
Client: D-Link Corporat							Job Number:	: J45652
Model: Cardbus						T-	Log Number	: T45735
							Proj Eng	: Mark Briggs
Contact: Shinglin Chung								
Spec: FCC 15 B & E							Class	: B
EUT operating at 5.18 GHz		<u>wing Out-O</u>	f-Band E	<u>missions</u>	<u>(RBW</u>	=VBW=	<u>=1MHz)</u>	
	TTEN 10dB L 1.0dBm	100	∃B∕	MKR -		Ød Bm		
				501				
l l								
R	₩.							
-		Nurlly and the	when			A	****	
-			v wran war	**************************************		-1-4-20 Marker		
-								
-				_				
L								
	TART 30.01 BW 1.0MHz		1.0MH	STOP 1 Iz		ИGHz 50.0	ms	
	TTEN 10dB	10	10.4	MKR -		Ød Bm		
г Г	L 1.0dBm		dB/	4.140 502	энz			
-								
-		_		_				
α				_				
_								
R			h		Î		н	
	LAN MARTIN PARTY	All and the second	بالبالي والمراجع	white and the second	لم الم الم		and the state of t	
ĺ								
	TART 1.000			STOP 5	150	L СН-		
	BW 1.0MHz						lms	







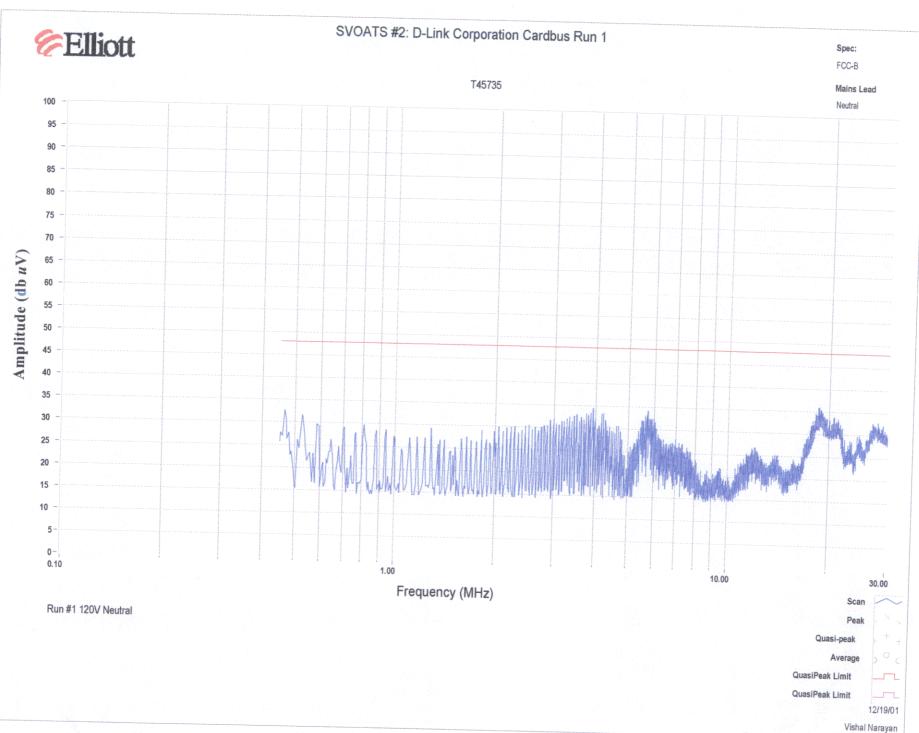




Client	D-Link Co	rporatior	า				J	ob Number:	J45652
	Model: Cardbus						T-Log Number:		
wouci.	Carabas						1-6	0	Mark Briggs
Combook	Chinalia O							Pluj Eliy.	IVIAIR DIIYYS
	Shinglin C	•							-
	FCC 15 B & E Radiated Spurious Emissions, 1000 - 40000 MHz Normal Mode							Class:	В
	missions fr	om 30 - 1	1000 MHz v		red while pe			surements o /m (Peak)	f the digital device
l imit				cted bands:		7dBm/MHz		BuV/m)	
	west Cha		ailable (5.1	calculat e t 8 GHz), PCI / 15.407		ge field strei Azimuth	n gths) : Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5176.899		V			Pk	290	1.7		
5176.283		V			Avg	290	1.7		
						nit number 3		-	
requency		Pol		/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	3	meters		
5317.833		V			Pk	312	1.9		
5318.422	100.0	V			Avg	312	1.9		
ond Eda		anath C	alaulatiana		AC 10 for la			0 for blab	ahannal
Ť		Pol		using PCD/ / 15.407	Detector	w channel a Azimuth	Height	Comments	channei:
requency MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg		meters	Comments	
5150.0		V	74.0	-9.1	Pk	290	1.7	Note 1	
5150.0		V	54.0	-6.3	Avg	290	1.7	Note 1	
5350.0		V	74.0	-5.8	Pk	312	1.7	Note 2	
5350.0		V	54.0	-5.5	Avg	312	1.7	Note 2	
lote 1: lote 2:	relative m average fi EUT opera measurem	easurem eld stren ating on nents in r	ents in run gth measur highest cha run #5 (-40.	#5 (-43.50 c ements of tl nnel availat 7 dBc for pe	IBc for peak ne fundamer ble in the 5.2 eak and -51.	and -54dBc ntal signal lev 25 - 5.35 MHz	for average /el. 2 band. Sig average) a	applied to	calculated using the the highest peak and culated using the relati highest peak and

	Ellic						L	oh Numbor	145450
	D-Link Co	poration	1					ob Number:	
Model:	Cardbus					-	T-Lo	og Number:	
								Proj Eng:	Mark Briggs
Contact:	Shinglin C	hung							
Spec:	FCC 15 B	& E						Class:	В
Run #6b:	Radiated S	Spuriou	s Emission	s, 1000 - 40	000 MHz No	ormal Mode			
UT On Lo	west Char	nnel Av	ailable (5.18	B GHz), PC	DAC=10				
requency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
15540.0	52.5	V	54.0	-1.5	Avg	307	1.2	Note 2	
20720.0	50.0	h	54.0	-4.0	Avg	110	1.3	Note 2	
20720.0	49.7	V	54.0	-4.3	Avg	110	1.3	Note 2	
15540.0	46.6	h	54.0	-7.4	Avg	290	1.5	Note 2	
10360.0	60.2	V	68.3	-8.1	Note 3	254	1.4	Note 4	
10360.0	59.8	h	68.3	-8.5	Note 3	269	1.5	Note 4	
15540.0	64.8	V	74.0	-9.2	Pk	307	1.2	Note 2	
20720.0	64.2	V	74.0	-9.8	Pk	110	1.3	Note 2	
20720.0	64.0	h	74.0	-10.0	Pk	110	1.3	Note 2	
45540.0	F0 0	L.	74.0						
15540.0	59.9	h	74.0	-14.1	Pk	290	1.5	Note 2	
15540.0 4144.0	59.9 38.3	n v	74.0 54.0	-14.1 -15.7	Pk Pk	290 270			Peak reading, avg limi
4144.0 UT On Ce	38.3 enter Chan	v inel (5.2	54.0 6 GHz), PC	-15.7 DAC = 12	Pk	270	1.5	Note 2, 5 -	
4144.0 UT On Ce requency	38.3 enter Chan Level	v I nel (5.2 Pol	54.0 6 GHz), PC 15.209	-15.7 DAC = 12 / 15.407	Pk Detector	270 Azimuth	1.5 Height		
4144.0 UT On Ce requency MHz	38.3 enter Chan Level dBµV/m	v I nel (5.2 Pol v/h	54.0 6 GHz), PC 15.209 Limit	-15.7 DAC = 12 / 15.407 Margin	Pk Detector Pk/QP/Avg	270 Azimuth degrees	1.5 Height meters	Note 2, 5 - Comments	
4144.0 UT On Ce requency MHz 15780.0	38.3 enter Chan Level dBµV/m 53.9	v I nel (5.2 Pol v/h v	54.0 6 GHz), PC 15.209 / Limit 54.0	-15.7 DAC = 12 (15.407 Margin -0.1	Pk Detector Pk/QP/Avg Avg	270 Azimuth degrees 293	1.5 Height meters 1.4	Note 2, 5 - Comments Note 2	
4144.0 UT On Ce requency MHz 15780.0 15780.0	38.3 enter Chan Level dBμV/m 53.9 50.9	v Inel (5.2 Pol v/h v h	54.0 6 GHz), PC 15.209 Limit 54.0 54.0	-15.7 DAC = 12 / 15.407 Margin -0.1 -3.1	Pk Detector Pk/OP/Avg Avg Avg	270 Azimuth degrees 293 327	1.5 Height meters 1.4 1.4	Note 2, 5 - Comments Note 2 Note 2	
4144.0 UT On Ce requency MHz 15780.0 15780.0 15780.0	38.3 enter Chan Level dBμV/m 53.9 50.9 67.5	v nnel (5.2 Pol v/h v h v	54.0 6 GHz), PC 15.209 Limit 54.0 54.0 74.0	-15.7 DAC = 12 (15.407 Margin -0.1 -3.1 -6.5	Pk Detector Pk/QP/Avg Avg Pk	270 Azimuth degrees 293 327 293	1.5 Height meters 1.4 1.4 1.4	Note 2, 5 - Comments Note 2 Note 2 Note 2	
4144.0 UT On Ce requency MHz 15780.0 15780.0 15780.0 10520.0	38.3 enter Chan Level dBµV/m 53.9 50.9 67.5 60.8	V nnel (5.2 Pol v/h V h v v	54.0 6 GHz), PC 15.209 Limit 54.0 54.0 74.0 68.3	-15.7 DAC = 12 (15.407 Margin -0.1 -3.1 -6.5 -7.5	Pk Detector Pk/QP/Avg Avg Avg Pk Note 3	270 Azimuth degrees 293 327 293 263	1.5 Height meters 1.4 1.4 1.4 1.5	Note 2, 5 - Comments Note 2 Note 2	
4144.0 UT On Ce requency MHz 15780.0 15780.0 15780.0 10520.0 21040.0	38.3 enter Chan Level dBµV/m 53.9 50.9 67.5 60.8 45.8	V nnel (5.2 Pol v/h V h v v v v v v	54.0 6 GHz), PC 15.209 Limit 54.0 54.0 74.0 68.3 54.0	-15.7 DAC = 12 (15.407 Margin -0.1 -3.1 -6.5 -7.5 -8.2	Pk Detector Pk/QP/Avg Avg Avg Pk Note 3 Avg	270 Azimuth degrees 293 327 293 263 100	1.5 Height meters 1.4 1.4 1.4 1.5 1.2	Note 2, 5 - Comments Note 2 Note 2 Note 2 Note 2 Note 4	
4144.0 UT On Ce requency MHz 15780.0 15780.0 15780.0 10520.0 21040.0 10520.0	38.3 enter Chan Level dBμV/m 53.9 50.9 67.5 60.8 45.8 59.3	v nnel (5.2 Pol v/h v h v v v v v v	54.0 6 GHz), PC 15.209, Limit 54.0 54.0 74.0 68.3 54.0 68.3	-15.7 DAC = 12 (15.407 Margin -0.1 -3.1 -6.5 -7.5 -8.2 -9.0	Pk Detector Pk/QP/Avg Avg Avg Pk Note 3 Avg Note 3	270 Azimuth degrees 293 327 293 263 100 237	1.5 Height meters 1.4 1.4 1.4 1.5 1.2 1.2 1.4	Note 2, 5 - Comments Note 2 Note 2 Note 2	
4144.0 UT On Ce requency MHz 15780.0 15780.0 15780.0 10520.0 21040.0 21040.0	38.3 enter Chan Level dBµV/m 53.9 50.9 67.5 60.8 45.8 59.3 44.4	V nnel (5.2 Pol V/h V h V V V V h h	54.0 6 GHz), PC 15.209 Limit 54.0 54.0 74.0 68.3 54.0 68.3 54.0	-15.7 DAC = 12 (15.407 Margin -0.1 -3.1 -6.5 -7.5 -8.2 -9.0 -9.6	Pk Detector Pk/QP/Avg Avg Avg Pk Note 3 Avg Note 3 Avg	270 Azimuth degrees 293 327 293 263 100 237 60	1.5 Height meters 1.4 1.4 1.4 1.5 1.2 1.4 1.2	Note 2, 5 - Comments Note 2 Note 2 Note 2 Note 4 Note 4	
4144.0 UT On Ce requency MHz 15780.0 15780.0 15780.0 21040.0 21040.0 21040.0 15780.0	38.3 enter Chan Level dBµV/m 53.9 50.9 67.5 60.8 45.8 59.3 44.4 63.3	V nnel (5.2 Pol V/h V h V V V V V h h h	54.0 6 GHz), PC 15.209 Limit 54.0 54.0 74.0 68.3 54.0 68.3 54.0 68.3 54.0 74.0	-15.7 DAC = 12 (15.407 Margin -0.1 -3.1 -6.5 -7.5 -8.2 -9.0 -9.6 -10.7	Pk Detector Pk/QP/Avg Avg Avg Pk Note 3 Avg Note 3 Avg Note 3 Avg Pk	270 Azimuth degrees 293 327 293 263 100 237 60 327	1.5 Height meters 1.4 1.4 1.4 1.5 1.2 1.4 1.2 1.4	Note 2, 5 - Comments Note 2 Note 2 Note 2 Note 4 Note 4 Note 2	
4144.0 UT On Ce requency MHz 15780.0 15780.0 15780.0 21040.0 21040.0 21040.0 15780.0 4208.0	38.3 enter Chan Level dBµV/m 53.9 50.9 67.5 60.8 45.8 59.3 44.4 63.3 41.9	V nnel (5.2 Pol v/h v h v v v v v h h h v	54.0 6 GHz), PC 15.209 Limit 54.0 54.0 74.0 68.3 54.0 68.3 54.0 68.3 54.0 74.0 54.0	-15.7 DAC = 12 (15.407 Margin -0.1 -3.1 -6.5 -7.5 -8.2 -9.0 -9.6 -10.7 -12.1	Pk Detector Pk/QP/Avg Avg Avg Pk Note 3 Avg Note 3 Avg Note 3 Avg Pk Pk	270 Azimuth degrees 293 327 293 263 100 237 60 327 310	1.5 Height meters 1.4 1.4 1.4 1.4 1.5 1.2 1.4 1.2 1.4 1.2 1.4 1.7	Note 2, 5 - Comments Note 2 Note 2 Note 2 Note 4 Note 4 Note 2 Note 2, 5 -	Peak reading, avg limi
4144.0 UT On Ce requency MHz 15780.0 15780.0 15780.0 21040.0 21040.0 21040.0 15780.0	38.3 enter Chan Level dBµV/m 53.9 50.9 67.5 60.8 45.8 59.3 44.4 63.3	V nnel (5.2 Pol V/h V h V V V V V h h h	54.0 6 GHz), PC 15.209 Limit 54.0 54.0 74.0 68.3 54.0 68.3 54.0 68.3 54.0 74.0	-15.7 DAC = 12 (15.407 Margin -0.1 -3.1 -6.5 -7.5 -8.2 -9.0 -9.6 -10.7	Pk Detector Pk/QP/Avg Avg Avg Pk Note 3 Avg Note 3 Avg Note 3 Avg Pk	270 Azimuth degrees 293 327 293 263 100 237 60 327	1.5 Height meters 1.4 1.4 1.4 1.4 1.5 1.2 1.4 1.2 1.4 1.2 1.4 1.7	Note 2, 5 - Comments Note 2 Note 2 Note 2 Note 4 Note 4 Note 2 Note 2, 5 -	

MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees met 15950.0 53.3 v 54.0 -0.7 Avg 255 10640.0 52.4 v 54.0 -1.6 Avg 265 10640.0 49.7 h 54.0 -4.3 Avg 275 15950.0 49.3 h 54.0 -4.7 Avg 265 10640.0 68.7 v 74.0 -5.3 Pk 265 15950.0 66.6 v 74.0 -7.4 Pk 255 4256.0 45.8 v 54.0 -8.2 Pk 307 10640.0 64.4 h 74.0 -9.6 Pk 275 4256.0 44.0 h 54.0 -11.1 Avg 55 21280.0 42.9 v 54.0 -11.1 Avg 350 21280.0 56.7 v 74.0 -17.3 P	eight eters 1.4 1.4 1.5 1.4 1.4 1.4 1.7 1.5 1.7 1.3	Class: Comments Note 2 Note 2	Mark Briggs B							
Spec:FCC 15 B & EEUT On Highest Channel Available (5.32 GHz), PCDAC = 8, Unit number 3FrequencyLevelPol15.209 / 15.407DetectorAzimuthHeiMHzdB μ V/mv/hLimitMarginPk/QP/Avgdegreesmet15950.053.3v54.0-0.7Avg25510640.052.4v54.0-1.6Avg26510640.049.7h54.0-4.3Avg27515950.049.3h54.0-4.7Avg26510640.068.7v74.0-5.3Pk26515950.066.6v74.0-7.4Pk2554256.045.8v54.0-8.2Pk30710640.064.4h74.0-9.6Pk2754256.044.0h54.0-11.1Avg5521280.042.9v54.0-11.7Pk25021280.040.7h54.0-13.3Avg35021280.056.7v74.0-17.3Pk5521280.053.3h74.0-20.7Pk350	eters 1.4 1.4 1.5 1.4 1.5 1.4 1.7 1.5 1.7 1.3	Class: Comments Note 2 Note 2 Note 2 Note 2 Note 2 Note 2 Note 2 Note 2, 5 - Note 2, 5 - Note 2	Peak reading, avg limit							
Spec:FCC 15 B & EEUT On Highest Channel Available (5.32 GHz), PCDAC = 8, Unit number 3FrequencyLevelPol15.209 / 15.407DetectorAzimuthHeiMHzdB μ V/mv/hLimitMarginPk/QP/Avgdegreesmet15950.053.3v54.0-0.7Avg25510640.052.4v54.0-1.6Avg26510640.049.7h54.0-4.3Avg27515950.049.3h54.0-4.7Avg26510640.068.7v74.0-5.3Pk26515950.066.6v74.0-7.4Pk2554256.045.8v54.0-8.2Pk30710640.064.4h74.0-9.6Pk2754256.044.0h54.0-11.1Avg5515950.062.3h74.0-11.7Pk25021280.040.7h54.0-13.3Avg35021280.056.7v74.0-17.3Pk5521280.053.3h74.0-20.7Pk350	eters 1.4 1.4 1.5 1.4 1.5 1.4 1.7 1.5 1.7 1.3	Comments Note 2 Note 2 Note 2 Note 2 Note 2 Note 2 Note 2, 5 - Note 2, 5 - Note 2, 5 - Note 2	Peak reading, avg limit							
EUT On Highest Channel Available (5.32 GHz), PCDAC = 8, Unit number 3FrequencyLevelPol15.209 / 15.407DetectorAzimuthHeiMHzdB μ V/mv/hLimitMarginPk/QP/Avgdegreesmet15950.053.3v54.0-0.7Avg25510640.052.4v54.0-1.6Avg26510640.049.7h54.0-4.3Avg27515950.049.3h54.0-4.7Avg26510640.068.7v74.0-5.3Pk26515950.066.6v74.0-7.4Pk2554256.045.8v54.0-8.2Pk30710640.064.4h74.0-9.6Pk2754256.044.0h54.0-10.0Pk25021280.040.7h54.0-11.1Avg5515950.062.3h74.0-17.3Pk5521280.056.7v74.0-17.3Pk5521280.053.3h74.0-20.7Pk350	eters 1.4 1.4 1.5 1.4 1.5 1.4 1.7 1.5 1.7 1.3	Comments Note 2 Note 2 Note 2 Note 2 Note 2 Note 2 Note 2, 5 - Note 2, 5 - Note 2, 5 - Note 2	Peak reading, avg limit							
FrequencyLevelPol15.209 / 15.407DetectorAzimuthHeiMHzdBµV/mv/hLimitMarginPk/QP/Avgdegreesmet15950.053.3v54.0-0.7Avg25510640.052.4v54.0-1.6Avg26510640.049.7h54.0-4.3Avg27515950.049.3h54.0-4.7Avg110640.068.7v74.0-5.3Pk26515950.066.6v74.0-7.4Pk2554256.045.8v54.0-8.2Pk30710640.064.4h74.0-9.6Pk2754256.044.0h54.0-10.0Pk25021280.040.7h54.0-11.1Avg5515950.062.3h74.0-17.3Pk5521280.053.3h74.0-20.7Pk350	eters 1.4 1.4 1.5 1.4 1.5 1.4 1.7 1.5 1.7 1.3	Note 2 Note 2 Note 2 Note 2 Note 2 Note 2 Note 2, 5 - Note 2 Note 2, 5 - Note 2	Peak reading, avg limit							
Frequency Level Pol 15.209 / 15.407 Detector Azimuth Hei MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees met 15950.0 53.3 v 54.0 -0.7 Avg 255 10640.0 52.4 v 54.0 -1.6 Avg 265 10640.0 49.7 h 54.0 -4.3 Avg 275 15950.0 49.3 h 54.0 -4.7 Avg 265 10640.0 68.7 v 74.0 -5.3 Pk 265 15950.0 66.6 v 74.0 -7.4 Pk 255 4256.0 45.8 v 54.0 -8.2 Pk 307 10640.0 64.4 h 74.0 -9.6 Pk 275 4256.0 44.0 h 54.0 -10.0 Pk 250 21280.0 42.9 v 54.0 -1	eters 1.4 1.4 1.5 1.4 1.5 1.4 1.7 1.5 1.7 1.3	Note 2 Note 2 Note 2 Note 2 Note 2 Note 2 Note 2, 5 - Note 2 Note 2, 5 - Note 2	Peak reading, avg limit							
15950.0 53.3 v 54.0 -0.7 Avg 255 10640.0 52.4 v 54.0 -1.6 Avg 265 10640.0 49.7 h 54.0 -4.3 Avg 275 15950.0 49.3 h 54.0 -4.7 Avg 265 10640.0 68.7 v 74.0 -5.3 Pk 265 15950.0 66.6 v 74.0 -7.4 Pk 255 4256.0 45.8 v 54.0 -8.2 Pk 307 10640.0 64.4 h 74.0 -9.6 Pk 275 4256.0 45.8 v 54.0 -10.0 Pk 250 21280.0 42.9 v 54.0 -11.1 Avg 55 15950.0 62.3 h 74.0 -11.7 Pk 210 21280.0 40.7 h 54.0 -13.3 Avg 350 21280.0 56.7 v 74.0 -17.3 Pk 55	1.4 1.4 1.5 1.4 1.4 1.7 1.5 1.7 1.3	Note 2 Note 2 Note 2 Note 2 Note 2 Note 2, 5 - Note 2, 5 - Note 2, 5 - Note 2	<u> </u>							
10640.0 52.4 v 54.0 -1.6 Avg 265 10640.0 49.7 h 54.0 -4.3 Avg 275 15950.0 49.3 h 54.0 -4.7 Avg 265 10640.0 68.7 v 74.0 -5.3 Pk 265 15950.0 66.6 v 74.0 -7.4 Pk 255 4256.0 45.8 v 54.0 -8.2 Pk 307 10640.0 64.4 h 74.0 -9.6 Pk 275 4256.0 45.8 v 54.0 -10.0 Pk 250 21280.0 42.9 v 54.0 -11.1 Avg 55 15950.0 62.3 h 74.0 -11.7 Pk 21280.0 40.7 h 54.0 -13.3 Avg 350 21280.0 56.7 v 74.0 -17.3 Pk 55 55 <	1.4 1.5 1.4 1.4 1.7 1.5 1.7 1.3	Note 2 Note 2 Note 2 Note 2 Note 2 Note 2, 5 - Note 2, 5 - Note 2, 5 - Note 2	<u> </u>							
10640.0 49.7 h 54.0 -4.3 Avg 275 15950.0 49.3 h 54.0 -4.7 Avg 1 10640.0 68.7 v 74.0 -5.3 Pk 265 15950.0 66.6 v 74.0 -7.4 Pk 255 4256.0 45.8 v 54.0 -8.2 Pk 307 10640.0 64.4 h 74.0 -9.6 Pk 275 4256.0 45.8 v 54.0 -10.0 Pk 250 21280.0 64.4 h 54.0 -11.1 Avg 55 15950.0 62.3 h 74.0 -11.7 Pk 21280.0 40.7 h 54.0 -13.3 Avg 350 21280.0 40.7 h 54.0 -13.3 Avg 350 21280.0 56.7 v 74.0 -17.3 Pk 55 21280.0	1.5 1.4 1.4 1.7 1.5 1.7 1.3	Note 2 Note 2 Note 2 Note 2 Note 2, 5 - Note 2, 5 - Note 2	<u> </u>							
15950.0 49.3 h 54.0 -4.7 Avg 10640.0 68.7 v 74.0 -5.3 Pk 265 15950.0 66.6 v 74.0 -7.4 Pk 255 4256.0 45.8 v 54.0 -8.2 Pk 307 10640.0 64.4 h 74.0 -9.6 Pk 275 4256.0 44.0 h 54.0 -9.6 Pk 250 21280.0 42.9 v 54.0 -10.0 Pk 250 21280.0 42.9 v 54.0 -11.1 Avg 55 15950.0 62.3 h 74.0 -11.7 Pk 21280.0 40.7 h 54.0 -13.3 Avg 350 21280.0 56.7 v 74.0 -17.3 Pk 55 21280.0 53.3 h 74.0 -20.7 Pk 350	1.4 1.4 1.7 1.5 1.7 1.3	Note 2 Note 2 Note 2, 5 - Note 2, 5 - Note 2, 5 - Note 2	<u> </u>							
10640.0 68.7 v 74.0 -5.3 Pk 265 15950.0 66.6 v 74.0 -7.4 Pk 255 4256.0 45.8 v 54.0 -8.2 Pk 307 10640.0 64.4 h 74.0 -9.6 Pk 275 4256.0 44.0 h 54.0 -9.6 Pk 250 21280.0 42.9 v 54.0 -10.0 Pk 250 15950.0 62.3 h 74.0 -11.1 Avg 55 15950.0 62.3 h 74.0 -11.7 Pk 21280.0 40.7 h 54.0 -13.3 Avg 350 21280.0 56.7 v 74.0 -17.3 Pk 55 21280.0 53.3 h 74.0 -20.7 Pk 350	1.4 1.7 1.5 1.7 1.3	Note 2 Note 2 Note 2, 5 - Note 2 Note 2, 5 - Note 2	<u> </u>							
15950.0 66.6 v 74.0 -7.4 Pk 255 4256.0 45.8 v 54.0 -8.2 Pk 307 10640.0 64.4 h 74.0 -9.6 Pk 275 4256.0 44.0 h 54.0 -10.0 Pk 250 21280.0 42.9 v 54.0 -11.1 Avg 55 15950.0 62.3 h 74.0 -11.7 Pk 21280.0 40.7 h 54.0 -13.3 Avg 350 21280.0 40.7 h 54.0 -17.3 Pk 55 21280.0 56.7 v 74.0 -17.3 Pk 55 21280.0 53.3 h 74.0 -20.7 Pk 350	1.4 1.7 1.5 1.7 1.3	Note 2 Note 2, 5 - Note 2 Note 2, 5 - Note 2	<u> </u>							
4256.0 45.8 v 54.0 -8.2 Pk 307 10640.0 64.4 h 74.0 -9.6 Pk 275 4256.0 44.0 h 54.0 -10.0 Pk 250 21280.0 42.9 v 54.0 -11.1 Avg 55 15950.0 62.3 h 74.0 -11.7 Pk 21280.0 40.7 h 54.0 -13.3 Avg 350 21280.0 40.7 h 54.0 -17.3 Pk 55 21280.0 56.7 v 74.0 -17.3 Pk 55 21280.0 53.3 h 74.0 -20.7 Pk 350	1.7 1.5 1.7 1.3	Note 2, 5 - Note 2 Note 2, 5 - Note 2	<u> </u>							
10640.0 64.4 h 74.0 -9.6 Pk 275 4256.0 44.0 h 54.0 -10.0 Pk 250 21280.0 42.9 v 54.0 -11.1 Avg 55 15950.0 62.3 h 74.0 -11.7 Pk 21280.0 21280.0 40.7 h 54.0 -13.3 Avg 350 21280.0 56.7 v 74.0 -17.3 Pk 55 21280.0 56.7 v 74.0 -20.7 Pk 350	1.5 1.7 1.3	Note 2 Note 2, 5 - Note 2	<u> </u>							
4256.0 44.0 h 54.0 -10.0 Pk 250 21280.0 42.9 v 54.0 -11.1 Avg 55 15950.0 62.3 h 74.0 -11.7 Pk 21280.0 21280.0 40.7 h 54.0 -13.3 Avg 350 21280.0 56.7 v 74.0 -17.3 Pk 55 21280.0 53.3 h 74.0 -20.7 Pk 350	1.7 1.3	Note 2, 5 - Note 2	Peak reading, avg limit							
21280.0 42.9 v 54.0 -11.1 Avg 55 15950.0 62.3 h 74.0 -11.7 Pk 21280.0 40.7 h 54.0 -13.3 Avg 350 21280.0 40.7 h 54.0 -13.3 Avg 350 21280.0 56.7 v 74.0 -17.3 Pk 55 21280.0 53.3 h 74.0 -20.7 Pk 350	1.3	Note 2	Peak reading, avg limit							
15950.0 62.3 h 74.0 -11.7 Pk 21280.0 40.7 h 54.0 -13.3 Avg 350 21280.0 56.7 v 74.0 -17.3 Pk 55 21280.0 53.3 h 74.0 -20.7 Pk 350										
21280.0 40.7 h 54.0 -13.3 Avg 350 21280.0 56.7 v 74.0 -17.3 Pk 55 21280.0 53.3 h 74.0 -20.7 Pk 350	1.4	Note 2								
21280.0 56.7 v 74.0 -17.3 Pk 55 21280.0 53.3 h 74.0 -20.7 Pk 350	1.4									
21280.0 53.3 h 74.0 -20.7 Pk 350		Note 2								
		Note 2								
	1.4	Note 2								
Note 1: For emissions falling in the restricted bands detailed in 15.205 the general emissions the limit is EIRP < -27dBm (equivalent to a field strength at 3m Note 2: Signal is in a restricted band Restricted Band Peak Measurements: Resolution and Video BW: 1 MHz, Note 3: Note 3: Resolution Bw: 1MHz and Video Bw: 10 Hz. All other measurements, RE	m of 68	8dBuV/m) tricted Banc	I Average Measurement							
averaging on (100 samples).										
Note 4: Signal does not fall in a restricted band.										
This measurement was made using a resolution bandwidth of 3 kHz The allow measurements with RBW = 1MHz because a preamplifier could not intentional signal would overload the amplifier and there is no low pass f the intentionally trasmitted signal but pass the spuroius signal). The signa during the conducted antenna measurements) and so the amplitude (pea the same as that in a 1MHz bandwidth (please refer to the plot below). T the average limit.	ot be u filter w nal was eak/ave	sed (with th vith sufficier s a narrowb erage) in a 3	ne EUT operating the nt shape factor to reject and signal (as verified 3kHz bandwidth would b							



*

à

-

N

N